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Abstract

Based on the concept of free energy, we give a Hamiltonian formu-
lation for the torsion dynamics of macromolecules. The appropriate re-
action coordinates for the free energy calculations are defined in terms
of soft constraints as introduced in [3] and [14]. We consider a few
simplifications that allow one to calculate the free energy analytically
and to write the corresponding equations of motion as a constrained
Hamiltonian system. We also discuss a possible stochastic embedding
of the reduced dynamics by means of a generalized Langevin approach.

1 Introduction

For classical molecular dynamics (MD) of macromolecules such as nucleic acids,
proteins, and polymers, atomic trajectories obey the Hamiltonian equation of mo-
tion

d

dt
q = M−1p

d

dt
p = −∇V (q)

(1)

where q is the vector containing all positions (in cartesian coordinates), p is the
vector containing all conjugate momenta, M is a diagonal matrix of atomic mas-
ses replicated thrice, and V (q) is the (empirical) potential energy function [10],
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Torsion Dynamics 2

[4]. Standard numerical schemes for simulating the dynamical behavior of a ma-
cromolecule are based on discrete timestepping. Such numerical simulations are
complicated by the presence of multiple time scales [9]. Standard integrators, such
as Verlet [19], have to use timesteps which are small compared to the fastest time
scales. In most cases, those time scales come from bonded interactions. The in-
teresting dynamical phenomena of a macromolecule, however, happen on much
slower time scales and are primarily related to motions in the dihedral angles [4].
Thus it seems reasonable to average over the fastest degrees of motion and then to
solve the reduced equations numerically. This allows one to use larger timesteps
and the computation of the long-term dynamics of macromolecules could become
feasible. Several methods for the removal of the bonded interactions have been
suggested [15], [13], [5], [18], [14]. In this paper we derive the reduced equations
of motion by calculating the free energy in terms of appropriately chosen reaction
coordinates. We also give a stochastic embedding of the reduced dynamics by
using a generalized Langevin approach [11], [1].

2 The Equations of Motion

Let us rewrite the equations of motions (1) as

d

dt
q = M−1p

d

dt
p = −∇Ũ(q)− G̃(q)TKg̃(q)

where G̃ = g̃q and g̃ is the collection of functions g̃i : IR
n → IR, i = 1, . . . , m, with

corresponding force constant Kii, i.e.

g̃(q)TKg̃(q)

2
=

1

2

∑
i

Kii(g̃i(q))
2 ,

and K the m-dimensional diagonal matrix with entries Kii. The potential Ũ :
IRn → IR is defined by

Ũ(q) = V (q)− g̃(q)TKg̃(q)

2
.

The potential g̃(q)TKg̃(q)/2 stands for covalent bond stretching, i.e. g̃i(q) = r−r0,
bond-angle bending, i.e. g̃i(q) = φ − φ0, improper dihedral angles, i.e. g̃i(q) =
ψ − ψ0, and bonded Lennard-Jones interactions, i.e.

g̃i(q) = 2

(
σ

r

)6

− 1 .
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Here we have used the fact that the Lennard-Jones potentials

VLJ(q) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

can, up to a constant, be rewritten as

VLJ(q) = ε

[
2

(
σ

r

)6

− 1

]2
.

A Lennard-Jones interaction can be considered as bonded (at least temporarily)
if 2ε > kBT and the corresponding function g̃i(q) is close to zero.

The potential g̃(q)TKg̃(q)/2 represents the fastest degrees of motion of a ma-
cromolecule. To remove those degrees of freedom, we have to calculate the free
energy of our system in terms of properly chosen reaction coordinates. In contrast
to simply defining reaction coordinates through the (hard) constraints

g̃(q) = 0 ,

we use soft constraints as introduced in [3] and [14], i.e.

0 = g̃(q) +K−1[G̃(q)M−1G̃(q)T ]−1G̃(q)M−1∇Ũ(q) (2)

where we have assumed that

G̃(q)M−1G̃(q)T (3)

is invertible. See Section 7 for a brief discussion of the case when (3) is not
invertible. However, in this and the following sections, we will assume that (3) is
invertible. Then we define the new function g : IRn → IR by

g(q) := g̃(q) +K−1[G̃(q)M−1G̃(q)T ]−1G̃(q)M−1∇Ũ(q) .

The reduced dynamics of (1) will now be defined by the free energy of (1) on the
constraint manifold

M = {(q, p) ∈ IR2n : g(q) = 0, G(q)M−1p = 0 } .

The manifold can be parameterized by the unconstrained dihedral angles, the
external degrees of freedom, and their corresponding conjugate momenta. For
simplicity, we refer to the reduced dynamics on M as the torsion dynamics of (1).
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The corresponding free energy will be derived in Section 4. We finally rewrite (1)
as

d

dt
q = M−1p

d

dt
p = −∇U(q)−G(q)TKg(q)

(4)

with

U(q) = V (q)− g(q)TKg(q)

2
.

Remark. Typical constraint methods for molecular dynamics use the (hard) cons-
traints g̃(q) = 0 [16], [17]. However, when applied to the bond-angle bending, the
resulting molecule becomes too rigid and transition rates are no longer reproduced
correctly [17]. For that reason we introduced in [14] the soft constraints (2) which
maintain the flexibility of a molecule in terms of its bonds and bond-angles.

3 Mathematical Background

First we rewrite (4) in local coordinates (q1, q2) defined by

q1 = g(q)

q2 = b(q)

where b(q) is a vector valued function such that B(q)M−1G(q)T = 0, B(q) = bq(q),
and the composed matrix [G(q)T B(q)T ] is invertible and well conditioned. The
existence of such a coordinate system follows, at least locally, from the Frobenius
Theorem [2]. The corresponding conjugate momenta are given by

[G(q)T B(q)T ]

[
p1
p2

]
= p

which results in the Hamiltonian

H(q, p) =
pT1GM

−1GTp1
2

+
pT2BM

−1BT p2
2

+ U +
qT1 Kq1

2
. (5)

The equations of motion are now given by

d

dt
q1 = GM−1GT p1

d

dt
p1 = −∇q1U −Kq1 − ∇q1

pT1GM
−1GTp1 + pT2BM

−1BT p2
2

(6)
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and

d

dt
q2 = BM−1BT p2

d

dt
p2 = −∇q2U − ∇q2

pT1GM
−1GTp1 + pT2BM

−1BT p2
2

(7)

where, for notational convenience, we suppressed the arguments in the mappings
V (q1, q2), G(q1, q2), and B(q1, q2).

Let us now review a few results from statistical mechanics. A Hamiltonian system
with Hamiltonian H is called ergodic [12] if the time average

〈A〉 := lim
T→∞

1

2T

∫ T

−T
A(q(t), p(t))dt (8)

of an observable A(q, p) along a solution of (1) is equal to the microcanonical
(constant energy E = H(q, p)) ensemble average [12]

〈A〉ens :=

∫ ∫
ρens(q, p)A(q, p) dqdp (9)

with the microcanonical density function

ρens(q, p) :=
δ(H(q, p)− E)∫ ∫
δ(H(q, p)− E) dqdp

where δ(x) denotes Dirac’s delta function.

Remark. (i) If the Hamiltonian H possesses first integrals, ergodicity is always
understood as ergodicity on the level sets of these first integrals.

(ii) Throughout this paper we will assume that, along solutions of (1), we have

pTM−1p

2
≈ nkBT

2

n the number of degrees of freedom. Thus the microcanonical ensemble average
of (1) is almost identical to the macrocanonical (constant temperature) ensemble
average with density function

ρens(q, p) :=
exp(−βH(q, p))∫ ∫
exp(−βH(q, p)) dqdp

where β = 1/kBT . This is always true for systems with n large enough [1].
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Let H(q1, p1, q2, p2) be an arbitrary Hamiltonian in the variable (q1, p1, q2, p2). We
consider the ensemble average over the variable (q1, p1), i.e.

〈A〉(1)ens(q2, p2) =

∫ ∫
A(q1, p1, q2, p2)ρ

(1)
ens(q1, p1, q2, p2) dq1dp1 .

with

ρ
(1)
ens :=

exp(−βH)∫ ∫
exp(−βH) dq1dp1

The free energy H(q2, p2) of the remaining variable (q2, p2) is a function that
satisfies

∇q2H(q2, p2) = 〈∇q2H〉(1)ens(q2, p2)
and

∇p2H(q2, p2) = 〈∇p2H〉(1)ens(q2, p2)

[8]. Furthermore, let ρ
(2)
ens(q2, p2) denote the density function corresponding to the

(Hamiltonian) free energy H(q2, p2), then the total ensemble average

〈A〉ens :=
∫ ∫ ∫ ∫

A(q1, p1, q2, p2)ρens(q1, p1, q2, p2) dq1dp1dq2dp2

satisfies

〈A〉ens = 〈〈A〉(1)ens〉(2)ens
with

〈〈A〉(1)ens〉(2)ens :=
∫ ∫

〈A〉(1)ens(q2, p2)ρ(2)ens(q2, p2) dq2dp2
[8].
In general, the evaluation of ensemble averages is fairly expensive. However, there
are a few ensemble averages that are easy to obtain. For example, equipartition
of energy [12] implies that

〈pi ∂H
∂pi

〉ens = kBT (10)

and

〈qi ∂H
∂qi

〉ens = kBT (11)

where qi and pi, i = 1, . . . , n, denote the ith component of the vector q, p respec-
tively.
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4 Free Energy of the Slow Dynamics

In this Section we want to derive an approximation to the free energy of (5) in the
variable (q2, p2).

In a first step we derive an approximation to the density function

ρ
(1)
ens(q1, q2, p1, p2) =

exp(−βH(q1, q2, p1, p2))∫ ∫
exp(−βH(q1, q2, p1, p2)) dq1dp1

(12)

with H = H(q1, q2, p1, p2) the Hamiltonian (5). Note that

exp (−βH) = exp(−βp
T
1GM

−1GTp1
2

) · exp(−βp
T
2BM

−1BT p2
2

) ·

· exp(−βU(q1, q2)) · exp(−βq
T
1 Kq1
2

) .

The characteristic length of the potential U , which will be called α, is the distance
over which the potential changes by kBT . We assume that the characteristic
length of the potential U is larger than the characteristic length of qT1 Kq1/2 which
is

√
2 ||K−1|| kBT . (This is just another way of saying that (q1, p1) is the fast

variable and (q2, p2) is the slow variable.) Provided that we scale the Hamiltonian
H such that α ≈ 1, we have

exp(−βq
T
1Kq1
2

) ≈ δ(qT1 q1)

where δ(x) is Dirac’s delta function. Then, in the computation of

〈A〉(1)ens(q2, p2) =
∫ ∫

A(q1, q2, p1, p2)ρ
(1)
ens(q1, q2, p1, p2) dq1dp1

integration over q1 becomes trivial. In fact, integration over p1 is not much harder
either. The expression

exp(−βp
T
1GM

−1GTp1
2

)

describes a Gaussian distribution and, for the particular

A(q1, q2, p1) = ∇q2

pT1GM
−1GT p1
2

,

equipartitioning of energy can be used to evaluate the integral over p1. This will
be shown below.
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We summarize our discussion so far by replacing the correct reduced density

function ρ
(1)
ens by our approximation ρ̃

(1)
ens defined by

ρ̃
(1)
ens(q2, p2) :=

exp(−β pT1 G(q2)M−1G(q2)T p1
2 ) · δ(qT1 q1)∫ ∫

exp(−β pT1 G(q2)M−1G(q2)T p1
2 ) · δ (qT1 q1) dq1dp1

.

Remark. In local coordinates (q1, q2), the definition of the soft constraint g(q) = 0
and q1 := g(q) imply that

∇q1U(q1, q2) +Kq1 ≈ 0 (13)

for q1 = 0. Now the potential U(q1, q2) can be formally expanded in a Taylor series
w.r.t. the variable q1, i.e.

U(q1, q2) = U(q2) + R(q2)
T q1 + qT1 S(q2)q1 + . . . .

Because of (13), we have R(q2) ≈ 0. Furthermore, ||S(q2)|| � ||K−1||−1 and

exp(−β(U(q1, q2) +
qT1Kq1

2
))

is well approximated by

exp (−βU(q2)) · δ(qT1 q1) . (14)

Note that, for the hard constraints g̃(q) = 0 and q1 := g̃(q), we do not have
R(q2) ≈ 0 and the approximation (14) would be questionable unless ||K−1|| << 1.

The free energyH(q2, p2) in the slow variable (q2, p2) is now a function that satisfies

∇q2H(q2, p2) = 〈∇q2H〉(1)ens(q2, p2)
and

∇p2H(q2, p2) = 〈∇p2H〉(1)ens(q2, p2)
where

〈A〉(1)ens(q2, p2) =

∫ ∫
A(q1, q2)ρ̃

(1)
ens(q1, p1, q2, p2) dq1dp1 .

For the expressions ∇q2U , BM−1BT p2, and

∇q2

pT2BM
−1BT p2
2

,
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the corresponding entries in the free energyH are simply given by V (q2) = V (0, q2)
and

pT2B(q2)M
−1B(q2)

Tp2
2

.

Things are a bit more tricky for

∇q2

pT1GM
−1GTp1
2

.

We note first that equipartioning of energy implies that

〈pT1G(q)M−1G(q)Tp1〉(1)ens = 〈pT1
∂H

∂p1
(q, p)〉(1)ens

= mkBT

with m the dimension of p1. Now let W (q) be an orthogonal matrix such that
W (q)TG(q)M−1G(q)TW (q) is a diagonal matrixD(q) with entries dii(q) and define
p̃1 := W (q)Tp1. Then

〈p̃T1D(q)p̃1〉(1)ens = 〈pT1G(q)M−1G(q)Tp1〉(1)ens
= mkBT

and equipartitioning of energy between the m degrees of freedom p̃i1 yields

〈(p̃i1)2 dii(q)〉(1)ens = kBT

i = 1, . . . , m. Now

〈(p̃i1)2 dii(q)〉(1)ens = 〈(p̃i1)2〉(1)ens dii(q2)

and, therefore,

〈(p̃i1)2〉(1)ens =
kBT

dii(q2)
.

With

〈∇q2

pT1G(q)M−1G(q)Tp1
2

〉(1)ens =
∑
i

〈(p̃i1)2〉(1)ens
2

∇q2dii(q2) ,

we finally obtain

〈∇q2

pT1G(q)M−1G(q)Tp1
2

〉(1)ens =
kBT

2
∇q2ln [det D(q2)]
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which, in terms of the original matrix G(q)M−1G(q)T , leads to the potential

UF (q2) =
kBT

2
ln det [G(q2)M

−1G(q2)
T ] (15)

where we used that

det D(q) = det [W (q)D(q)W (q)T ] .

Remark. The potential (15) has been introduced before by Fixman [5] in the con-
text of statistical mechanics. He showed that (15) has to be included into the
constrained formulation, defined in local coordinates by q1 = p1 = 0, to make sure
that, in the limit ||K−1|| → 0, the unconstrained system (4) and the corresponding

constrained system possess the same reduced density function ρ
(2)
ens(q2, p2). Similar

results can be found in [18] and [13].

The free energy in the variable (q2, p2) is thus (approximately) given by

H(q2, p2) =
pT2B(q2)M

−1B(q2)
Tp2

2
+ U(q2) + UF (q2) (16)

or, in terms of the cartesian coordinates (q, p) ∈ IR2n, by the Hamiltonian

H(q, p) =
pTM−1p

2
+ U(q) + UF (q) + g(q)Tλ

together with the constraint
g(q) = 0 .

The corresponding equations of motion are

d

dt
q = M−1p

d

dt
p = −∇U(q)− ∇UF (q)− G(q)Tλ

0 = g(q)

(17)

which are identical to the equations derived in [14] by smoothing of (4) w.r.t. time.

Remark. The approximation (16) can be improved by using

U(q2) :=

∫
U(q1, q2) exp(−βqT1Kq1/2) dq1∫

exp(−βqT1 Kq1/2) dq1
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instead of
U(q2) := U(0, q2) .

However, in terms of the cartesian coordinates (q, p), the evaluation of the cor-
responding integral is far from trivial and we will use from now on the simplier
U(q2) := U(0, q2).

5 A Simplification

For large systems, the computation of the potential

UF (q) =
kBT

2
ln det [G(q)M−1G(q)T ]

becomes rather expensive. To avoid this, we first simplify UF to

UF (q) ≈ kBT

2
ln det [G̃(q)M−1G̃(q)T ]

where G̃ = g̃q and g̃ as defined in Section 2. This approximation introduces an
error of order kBT ||K−1||.

The evaluation of this UF is still too expensive for large molecules. Therefore,
Fixman suggested in [6] to simplify UF further by

UF (q) ≈ kBT

2
[ln det D −

∑
k

∑
i

D−1
kkD

−1
ii (Eki(q))

2] (18)

where D denotes the diagonal part of G̃M−1G̃T and E the off diagonal part of
G̃M−1G̃T . In turns out (see the example below) that this approximation is rather
poor and we do not recommend using it.

Instead we note that, with all the bond-lengths and bond-angles constrained,
UF will depend only on the dihedral angles ψ. Our approximation is based on the
idea that the potential UF introduces only a weak or no coupling at all between
the dihedral angles ψj, j = 1, . . ., i.e.

∂2

∂ψi∂ψj
UF (ψ) ≈ 0

for i 	= j. Our assumption implies that UF can be written as

UF (ψ) ≈
∑
j

U jF (ψ
j) . (19)
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Figure 1: Fixman potential in kBT as a function of the torsion angle ψ.

Here U jF is defined by the submatrix of G̃M−1G̃T that contains only those bond-
length and bond-angle constraints that are involved in the definition of the dihe-
dral angle ψj. For a simple polymer chain, this submatrix will be a 5× 5 matrix
ĜM−1ĜT with ĝ the vector-valued function containing the three bond-length and
two bond-angle constraints defining the torsion angle ψj.

Example. We compute the Fixman potential for a polymer with three, four
respectively, bars. We assume that the particles have equal mass m = 1 and that
the bond-lengths and bond-angles are rigidly fixed at r = 1, φ = π/2 respectively.
In case of three bars, there is one torsion angle ψ and the corresponding potential
UF (in kBT ) as a function of ψ can be found in Figure 1. In Figure 2, we plotted
the approximation obtained by using (18). Obviously, the approximation is rather
poor. Next we computed the exact potential UF for the chain with four bars. The
result as a function of the two torsion angles ψ1 and ψ2 can be found in Figure 3.
The resulting approximate potential using (19) is plotted in Figure 4.

6 Stochastic Embedding of the Slow Dynamics

We first rewrite the slow dynamics in the variable (q2, p2) in terms of the torsion
angles ψ and their conjugate momenta ψp. Let the torsion angles be uniquely
defined by q2 (and q1 = 0) through the function

ψ = ψ(q2) .
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Figure 2: Approximate Fixman potential as a function of ψ.
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Figure 3: Fixman potential for the polymer chain with four bars as a function of
the two torsion angles ψ1 and ψ2.
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Figure 4: Approximate Fixman potential for the polymer chain with four bars.

Then the momenta ψp are given by

p2 = Ψ(q2)
Tψp

where Ψ denotes the derivative of ψ w.r.t. q2, i.e. Ψ = ψq2. Upon neglecting the
three translational and three rotational degrees of freedom, the free energy H can
now be rewritten as

H =
ψTp ΨBM

−1BTΨTψp

2
+ U(ψ) +

∑
j

U jF (ψ
j) . (20)

Let us also write U
j
F as

U jF (ψ
j) =

kBT

2
lnwj(ψj) .

With each torsion angle ψj, we associate the fictitious degree of freedom (Qj, P j) ∈
IR2 with corresponding equations of motion

d

dt
Qj = wj(ψj)P j

d

dt
P j = −1

ε
Qj

(21)
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where 0 < ε � 1. This can be considered as a simplified model for the (fast)
subsystem (6). The slow system (7) is now given by

d

dt
ψ = ΨBM−1BTΨTψp

d

dt
ψp = −∇ψU −

∑
j

(P j)2

2
∇ψw

j − ∇ψ

ψTpΨBM
−1BTΨTψp

2

(22)

Upon computing the free energy of this combined system in terms of (ψ, ψp), one
would obtain again (20). Thus, the transition from (6) and (7) to the new system
(21) and (22) does not change anything w.r.t. the mean force field, free energy
respectively. However, (21) allows for a stochastic embedding of our mean force
field via a nonlinear extension [7] of Mori’s projection operator calculus [11].

Remark. Note that

∇ψ
pT1GM

−1GTp1
2

+∇ψ

ψTpΨBM
−1BTΨTψp

2
= ∇ψ

pTM−1p

2
= 0

which implies that

kBT

2
∇ψ ln det [GM−1GT ] = −kBT

2
∇ψ ln det [ΨBM−1BTΨT ] . (23)

Now, as discussed in the previous section, UF can be approximated by

UF (ψ) ≈
∑
j

kBT

2
lnwj(ψj) .

This and (23) yield that the matrix ΨBM−1BTΨT is almost diagonal, i.e.

ψTp ΨBM
−1BTΨTψp ≈

∑
j

(ψjp)
2vj(ψj) .

Of course, ΨBM−1BTΨT could contain off-diagonal elements which are constant.
In the following we will assume that those elements are small compared to vj(ψj),
j = 1, . . . .

The functions vj, j = 1, . . . , satisfy

vj(ψj)wj(ψj) ≈ const.
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This follows from (23) and

0 =
∑
j

kBT ∇ψ lnw
j(ψj) +

∑
j

kBT ∇ψ ln v
j(ψj)

=
∑
j

kBT ∇ψ ln [w
j(ψj) vj(ψj)] .

Since each variable (Qj, P j, ψj, ψjp) can be treated separately, we will simply drop
superscript j from now on. Following [7] and putting U ≡ 0 for now, the nonlinear
Langevin equation for dψp/dt (dψ

j
p/dt, to be more precise) is

d

dt
ψp = −∇ψ

(ψp)
2v(ψ)

2
− kBT

2
∇ψlnw(ψ)− F (t)−

−v(ψ)
kBT

∫ t

t′
〈F (τ)F (t′)〉ψp(t+ t′ − τ) dτ

(24)

with t′ < t, F (t) given by

F (t) = [
(P (t))2

2
− kBT

2w(ψ(t′))
]∇ψw(ψ(t

′)) ,

and P (t) the solution of (21) with ψ = ψ(t′) and the initial value (P (t′), Q(t′))
satisfies (P (t′))2wj(ψ)/2 + (Q(t′))2/(2ε) = kBT .

The next step is now to replace F (t) by a random force with first moment
〈F (t)〉 = 0 and second moment

〈F (t1)F (t2)〉 = 4γ [
kBT

2
∇ψ lnw(ψ)]

2 δ(t1 − t2)

with γ > 0 the characteristic correlation time of F (t). We also formally set t′ = t
in (24). Then the frictional force becomes

−2γ
v(ψ)

kBT
[
kBT

2
∇ψ lnw(ψ)]

2ψp

which we write as

− Γ(ψ)
d

dt
ψ (25)

where

Γ(ψ) := γ
kBT

2
[∇ψlnw(ψ)]

2
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and dψ/dt = v(ψ)ψp. With this notation we obtain

〈F (t1)F (t2)〉 = 2kBT Γ(ψ) δ(t1 − t2)

which, together with (25), can be considered as generalized dissipation-fluctuation.
Note that the function Γ is different for each torsion angle ψj. Thus, going back
to the vector valued ψ, we have in fact

Γj(ψj) := γj
kBT

4
[∇ψj lnwj(ψj)]2

with corresponding random and friction forces acting on each torsion angle ψj.
Finally, we have to reformulate everything in terms of the original cartesian

coordinates (q, p) ∈ IR2n. We obtain

d

dt
q = M−1p

d

dt
p = −∇U(q)−

∑
j

∇U jF (ψj(q))−G(q)Tλ −

−
∑
j

[F j(t) + Γj(ψj(q)) Ψj(q)M−1p]∇ψj(q)

0 = g(q)

with
〈F j(t1)F j(t2)〉 = 2kBT Γj(ψj(q)) δ(t1 − t2)

and Ψj(q) = ψjq(q). Here we used that

d

dt
ψj = Ψj(q)

d

dt
q

= Ψj(q)M−1p

and
p =

∑
j

ψjp∇ψj(q) .

7 Towards the Essential Dynamics of Macromolecules

The approach described in this paper allows one also to constrain Lennard-Jones
interactions. The problem with this is that it might lead to an overdetermined
system of constraints and that it is very likely that, if at all, Lennard-Jones inter-
actions can be considered as bonded only temporarily. Thus we need an adaptive
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approach to the selection of the proper constraint functions g̃, g respectively. In
principle, this problem can be solved by first writing all the bond stretching, bond-
angle bending, and Lennard-Jones potentials in the form

g̃(q)TKg̃(q)

2
=

1

2

∑
i

Kii(g̃i(q))
2 .

Then we compute a projector P (q) onto the eigenspace of the m (with m chosen
properly) largest eigenvalues of

G̃(q)TKG̃(q) .

and let S(q) be a projector that satisfies

P (q)T G̃(q)TKG̃(q)P (q) = G̃(q)TS(q)TKS(q)G̃(q) .

Now, assuming that S(q) can be kept constant over a certain time interval, S g̃(q)
yields the proper (hard) constraint function from which we can also derive the ap-
propriate soft constraints (2) as needed in Section 4 to formulate the corresponding
slow dynamics on the constraint manifold M. We will report about the numerical
aspects of this approach to the slow (or essential) dynamics of macromolecules in
a forthcoming publication.
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