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1 Introduction

Dynamical process simulation plays an increasingly important role in the
design and control of chemical plants. Mathematically speaking, the simu-
lation of such processes requires the numerical solution of systems of partial
differential equations (PDEs) of reaction-diffusion type with possibly mild
convection. In contrast to some other fields of application, time dependence
of the process is of real interest. Moreover, due to additional constraints,
differential-algebraic equations will naturally arise. As for the spatial geo-
metry, radial or simply plane symmetry will result in 1-D problems, whereas
more complex situations will lead to 2-D or even 3-D models, often only gi-
ven in the form of some CAD input. Even though such problems have been
around for quite a while, they still represent a class of hard problems. For
this reason, the development of robust and fast algorithms has been a topic
of continuing investigation during the last years. In particular, significant
progress has been made by the development of adaptive algorithms, which
aim at the control of time and space grids in such a way that on one hand
the solution is as accurate as required by the user and on the other hand the
necessary work to obtain such a solution is minimized. The present paper
surveys some of the essential features of such adaptive methods, which have
been developed recently by the authors.

In Section 2 below, the well-known method of lines approach based on first
space then time discretization is revisited in view of adaptivity. After space
discretization on a fixed grid, a block structured ODE system has to be sol-
ved numerically. Time integration with order and stepsize control represents
a first element of adaptivity, which is already quite popular. In contrast to
the widely used BDF integration formulas (GEAR, PETZOLD [14, 25]), which
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require the solution of a nonlinear system per time step, recent impressive
progress has been made by the application of linearly-implicit time discreti-
zations, which only require the solution of a linear system per time step.
Especially when combined with techniques of static regridding the linearly-
implicit one-step methods have proven to be the methods of choice both
for theoretical reasons and for evidence of performance. However, spatial re-
gridding techniques are typically restricted to 1-D situations or to associated
tensor product extensions in more than one dimension (which implies rather
simple geometries). Therefore, Section 3 treats the complementary type of
method, the so-called Rothe method, which is based on first time then space
discretization. In this approach, which in the described adaptive version has
first been suggested by BORNEMANN [2, 3] for parabolic equations, the time
dependent PDE is understood as an (ordinary) differential equation in an in-
finite dimensional space (Hilbert space). This permits one to apply the fully
developed technology of ordinary differential equations (in finite dimensi-
ons) and to treat the necessary space discretization afterwards according to
the accuracy requirements within each time layer. When combined with a
multilevel of multigrid method in space, a special kind of dynamic regridding
with time dependent number and distribution of nodes is realized, which at
the same time also leads to rather fast algorithms. One technique of adaptive
multilevel methods called cascade principle, which is due to DEUFLHARD,
LEINEN, YSERENTANT [10], is explained in some detail — both for the selfa-
djoint (elliptic) case and for the non—selfadjoint case, which arises in process
simulation. Three challenging numerical examples are inserted to illustrate
the relative merits of the here discussed methods.

2 First Space then Time Discretization

Consider a system of partial differential equations (PDEs) of reaction— dif-
fusion type with possibly mild convection

B(.I’, ta u, u;r)ut = f(xa tv Uy Ug, (D(.I’, tv u)uév)iv) . (1)

With additional initial and boundary conditions, we have a nonlinear para-
bolic initial boundary value problem for a system of PDEs.

In this section we treat the by know most popular technique, the method of
lines, which approaches the discretization of the above PDE system by first
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space then time discretization. In the standard method of lines, adaptivity
only shows up in a variable step and possibly variable order time discreti-
zation. Variants of the method, where adaptivity in space is also achieved,
thus arriving at fully adaptive methods, are, however, restricted essentially
to 1D situations, as will be shown below.

Time Adaptive Method of Lines. Upon applying some kind of space
discretization (e.g. finite differences, finite elements or spectral methods)
to the above PDE system, we arrive at a system of ordinary differential
equations (ODEs) or differential-algebraic equations (DAEs) of the kind

B(u)u’ = f(t,u), (2)

wherein the matrix B may be singular. This system is nonlinear, stiff, block
structured, and typically large and sparse in industrial applications. Its nu-
merical solution can, in principle, be attacked by any stiff integrator, which
in linear stability theory shows a vanishing root at infinity — compare, for in-
stance, the textbooks HAIRER/ WANNER [15] or DEUFLHARD / BORNEMANN
[8]. Among the most efficient integrators of this type are the implicit mul-
tistep code DASSL due to PETZOLD [25], the implicit Runge-Kutta code
RADAUS5 due to HAIRER/WANNER [15], and the linearly implicit extrapo-
lation code LIMEX due to DEUFLHARD/NOWAK [9]. The latter code has
recently proved to be clearly preferable for large scale dynamical process
simulation, since it requires — because of its linearly implicit structure —
one iteration loop less than the other two codes, which are implicit. This
greater simplicity is a clear structural advantage in really complex program-
ming environments. The time discretization within LIMEX is based on the
elementary linearly implicit Euler discretization of the type

(B(u) — 7J)Au = 7f(t + 7, u), (3)
where
J = %(f — Bu') ‘t:to . (4)

This elementary discretization is then extended to variable order by means
of extrapolation — cf. DEUFLHARD [6]. Note the special variant for time
dependent right hand sides. Incidentally, the rather frequent occurrence that
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boundary values arise via an ODE does obviously not create any difficulty in
this setting. If the dynamical process under consideration has rich dynamics,
then usually grid adaptation after each or few steps will be necessary. This
technique, however, requires the generation of initial values at the new nodes
by interpolation and may lead to changes of the dimension of the ODE or
DAE to be solved; in such a situation one-step methods have a natural
advantage — compare e.g. FLAHERTY ET.AL [12]. MOORE/FLAHERTY [20]
recommend the application of (fixed order) singly—implicit Runge-Kutta
methods, which however share the disadvantage of being implicit, so that
some kind of Newton-like iteration is needed.

For an illustration of the comparative performance of LIMEX versus DAS-
SL we refer to the combustion problem simulations done by MAAS/WARNATZ
[19], see also DEUFLHARD /NOWAK/WULKOW [11], wherein computational
speed-up factors of 10 - 15 in 1D and (estimated) factors of more than 100
in 2D have been reported.

Space Adaptation. A systematic approach towards a fully adaptive me-
thod of lines treatment of nonlinear parabolic PDE systems has recently
been published by NOWAK [21] in his thesis. An overview on the method
and its application to some real life problems from chemical engineering can
be found in NOwAK ET AL. [22]. The approach starts from second order
finite difference discretizations, which allow for a quadratic consistency er-
ror; the use of central differences for the convection term (for symmetry
reasons!) restricts this approach to mild convection (say Re < 1000). Under
the assumption that the discretization error is also quadratic (hard to prove
theoretically in the general case, but easy to monitor within the adaptive
algorithm), a coupled extrapolation in both space and time is performed.
This extrapolotion procedure yields error estimates for both the error coming
from space discretization and the error coming from time discretization. Ba-
sed on these estimates the local approximation errors are controlled and new
stepsize proposals can be derived. This fully adaptive scheme is worked out
on a non—uniform grid using an implicit monotone grid function mapping
it onto a uniform grid. The way of adapting the space grids is preferably
done by static rezoning, which involves some careful consideration of the
applied interpolation schemes. In [21] the interpolation is done by means of
the piecewise monotone Hermite interpolation due to FRITSCH/BUTLAND
[13]. The interpolation error is monitored by some heuristics. In addition
to the grid adaptation by static rezoning a so—called moving grid technique
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may be used. This dynamic rezoning approach is similar to the one used e.g.
by PETZOLD [26] and pays off especially for problems where the solution is
characterized by a single moving front. Both, the static and the dynamic
rezoning approach are restricted to 1D problems or simple tensor product
grid extensions in more than 1D (which means rather simple geometries).

Example 1: Automobile Catalytic Converter [22]. The mathematical
model comprises the following system of PDEs
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wherein the 11 state variables are: 3 temperatures (gas, converter surface
and converter hull) and 2 x 4 species concentrations (gas, converter surface).

In order to reduce air pollution the study of the startup phase is of great
importance. The simulation presented in [22] assumes that the polluted air
enters with a linearly increasing temperature (and with constant velocity)
at the left boundary. In Fig. 1 the concentration of the pollutant CsHg
is shown in a (x,t)-plane. The numerical solution on the computational
grid is plotted at all internally selected integration points — as obtained by
the program PDEX1M. The displayed time interval is [0, 100] (whereas the
actual integration interval was [0, 1000]).

Initially the converter is rapidly filled with inflowing gas. This shows up
in Fig. 1 for small times (¢ € [0,0.2]) as a front moving from left to right. In
order to resolve this fast process, small timesteps and a grid with local refi-
nements within the front arise automatically. After the initial filling process
is completed, the temperature is not yet high enough to start the reaction
so that larger time steps and a coarser grid appear to be appropriate. At
t = 25, the reaction starts and reduces the concentration of C3Hg. Steep
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gradients at the left boundary develop and require both small stepsizes in
time and a very dense grid at the left boundary. At ¢ = 50, the dynamics of
the problem dies out and accordingly timesteps increase.

Umin=0.00E+00 Umax= 1.10E-02 U

Xmin=_ 0.00E+00 Xmax= 1.60E-01  Tmin= 0.00E+00 Tmax= 1.00E+02

Fig. 1: Solution component C5Hg of example 1

Finally, the process becomes nearly stationary allowing for very large steps.
The simulation from ¢ = 100 to t = 1000 (not shown in Fig. 1) requires only
5 more steps.

3 First Time then Space Discretization

In the mathematical literature, the discretization first in time then in space
is often referred to as Rothe method reminding of an early paper on the
discretization of parabolic PDEs — see [28]. For fized space and time grids,
the sequence of the two discretizations is negligible from the numerical point
of view. If, however, adaptive space grids as a function of time are to be
applied, then the sequence of the discretizations matters indeed.
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Adaptive Rothe Method. In his work on adaptive FEMs for parabo-
lic PDEs, BORNEMANN][2, 3] introduced an algorithmic approach which is
nowadays denoted by the term ”adaptive Rothe method”. For ease of pre-
sentation, we start with the simple scalar parabolic equation

up = (D(x)ug)z, u(z,0) =up(z), boundary conditions . (5)

If we incorporate the boundary conditions together with the diffusion opera-
tor into the operator A, then we may write (5) as an ODE in Hilbert space
of the form

U' = AU, U(0) = Up. (6)

In this formulation, we may apply all the well-developed ODE technology
to solve this equation. For example, if we discretize this equation by the
implicit Euler method, we arrive at

(I—7AAU =7 AUy, Uy =Uy+ AU. (7)

This is a special linear elliptic boundary value problem, which may be at-
tacked by a FEM or FDM, where the FEM should be preferred, if the
geometry of the problem is sufficiently complicated. Extensions to higher
order time discretizations lead to one linear BVP per stage. Error estimates
required for the order and stepsize control may be approximated in the same
framework. In his first paper, which dealt with 1D problems only, Borne-
mann had still used extrapolation methods, whereas in later papers, which
included 2D and 3D as well, he had designed a more sophisticated time dis-
cretization of a recursive SDIRK type. In this approach higher order results
U; are computed from corrections 7; via a multiplicative error correction
scheme of the form

Given ug, 1g-
Compute for j =1,... (8)
Uit1 =Uj +n;, njr1 = Ri(tA)nj,
wherein the rational functions R; satisfy R;(oo) < 1. (The whole time dis-
cretization has the property R(co) = 0 and is also applicable to degenerate

parabolic equations.) As seen above, the corrections are computed in a mul-
tiplicative way rather than in an additive way — so that small numbers are
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computed by division rather than by subtraction. As a consequence, much
less stringent spatial error requirements compared with time errors are pos-
sible as compared with extrapolation methods. Moreover, this variable order
time discretization works on just one single space grid.

In LANG/WALTER][16], the adaptive Rothe method has been carried over
to the situation of reaction—diffusion systems (1). Proceeding as in the simple
parabolic case, we now arrive at an abstract ODE of the kind

U' = AU + F(U), U(0) = U, (9)

with F representing the nonlinear reaction terms. One extension of the above
implicit Euler discretization for the linear parabolic equation is the linearly-
implicit Euler method applied to the equivalent formulation

U — AU — Fy(Up)U = F(U) — Fy(Uy)U, U(0) = Uy, (10)
which leads to
(I — 7’(.,4 + FU(U())))AU = T(F(U@) + .AU()), Ui = Uy + AU. (11)

This is a non—selfadjoint linear elliptic boundary value problem. As high-
er order extension, LANG[17, 18] selected a linearly—implicit differential-
algebraic method due to ROCHE [27], which has only 3 stages for order 3
with embedded order 2 for stepsize control. As in the parabolic descendant,
the discretization has R(co) = 0 and requires only one spatial mesh. The
multiplicative error correction structure from above is not explicitly but
essentially inherited. The method is of Rosenbrock type, which means that
it would require an ezact representation of the operator A~ Fi;(Uy) — which,
however, is not available in the FE context here. The thus unavoidable
Jacobian approximation errors may lead to restrictions of the time steps
obtained from the stepsize control — an effect, which has been observed
experimentally for low accuracy requirements. In principle, so—called W-
methods (cf. the textbooks [15, 29, 8]) would be preferable to reflect the
approximation property of the problem correctly, which, however, would
require more stages.
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Cascadic Finite Element Methods. Up to now, we did not specify
the actual solution of the linear boundary value problems of the type (7)

r (11). In both cases, an adaptive multilevel FEM has been applied. We
explain the basic algorithmic approach for the simpler selfadjoint case first.
In this case, the so-called cascade principle as developed by DEUFLHARD,
LEINEN, YSERENTANT[10] has been used. It starts with the direct solution
of the linear system obtained by the FE discretization on a comparatively
coarse grid, which, however, is assumed to catch the essential features of
the problem formulation (boundary and interface conditions). The obtai-
ned coarse grid solution is checked via FE error estimators in terms of the
user required accuracy. If this requirement is not yet met, then local error
indicators are used to obtain some refined grid. On the finer grid, the (in-
terpolated) previous solution is used as starting point for a preconditioned
conjugate gradient (PCG) iteration. This PCG iteration is terminated, as
soon as an estimated algebraic error is sufficiently below the expected dis-
cretization error, so as to avoid unnecessarily accurate computations on the
refinement levels. After termination of the PCG iteration, the FE error esti-
mator is once more applied to check for the user prescribed tolerance — to be
repeated recursively until this tolerance is met on some finest mesh, which
in this way may come out to be highly non-uniform. As a preconditioner,
the hierarchical basis preconditioner of YSERENTANT[32] may be used in
2D, which has nearly optimal formal computational complexity and is quite
cheap to implement. In 3D, the more costly so-called BPX preconditioner
of Xul[5, 31] pays off, which has formally optimal computational complexity.
Rather recently, even more effective so-called CCG methods have been de-
veloped in DEUFLHARDI[7] and BORNEMANN/DEUFLHARD[4], which avoid
preconditioning at all (apart from diagonal scaling) at the expense of a few
more iterations on coarser grids, which are carefully controlled.

For the non—selfadjoint case of dynamical process simulation, the PCG
iteration needs to be replaced by some unsymmetric iterative solver. Exten-
sive numerical experiments clearly suggested the option BICG-STAB due to
[30] in combination with SSOR preconditioning. In all the examples tested
so far, this combination led to a nearly constant small number of iterati-
ons on all refinement levels. So, even in this non—selfadjoint case, optimal
computational complexity is achieved — however, without any theoretical ex-
planation yet. As for the FE estimator to monitor the discretization errors,
the present version of the program
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Fig. 2: Nodal flux of Example 2 from method of lines treatment (above)
versus Rothe method (below).
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KARDOS (mnemotechnically for KAskade Reaction DiffusiOn System) rea-
lizes a special interpolation error estimate — see [18].

Example 2: Comparative test problem [24]. This 1D problem describes
a moving flame front, which changes its shape during the process. In the
present context, this example is just taken to illustrate the two different
adaptivity concepts described so far. In Fig. 2 the nodal flux (horizontal axis:
space grids, vertical axis: time) obtained from the fully adaptive method of
lines with static rezoning (above) is compared with the one obtained from
the adaptive Rothe method with linear finite elements (below). Obviously,
the plot below is a bit ”smoother” than the plot above, requiring less spatial
nodes but more time steps — an observation, which nicely goes with the
underlying algorithmic concepts. In total, however, both pictures show a
striking similarity. A comparison of the associated computing times, even
though certainly desirable, is hard to give — at present, the two codes are
just too different. On the other hand, the example is just 1D and therefore
not at the center of interest of the present article.

Example 3: Thermally anchored flame [1]. This problem describes
the propagation of a two—dimensional premixed flame in a gaseous mix-
ture. For the numerical simulation the adaptive Rothe method (program
KARDOS) has been applied. Some simplifications of the underlying physi-

cal processes lead to the so—called thermodiffusive model described by the
reaction—diffusion equations

0T — AT = R(T,Y) +V0,T
0,y — Lie AY = —R(T,Y)+Vd,Y (12)

T o | T =)

R(T,Y) =

where T is a normalized temperature variable, Y is the reduced mass frac-

tion of the reactant. The initial data are chosen to represent a planar steady
flame in the limit § — oo. Furthermore, homogeneous Neumann conditi-
ons are imposed at the whole tube wall except at some special part, where
the temperature is forced to be equal to the adiabatic flame temperature
Ty = 1. This additional condition inhibits the run-off of the flame through
the reactor thus representing some thermal ”anchoring”. The problem was
solved for the parameters Le =1, § = 10, « = 0.84, V = —5.

A correct simulation of the flame propagation requires a dense computa-
tional mesh within the thin flame region, and especially in the boundary
layer caused by the time—fixed Dirichlet condition. First experiences have
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Fig. 3: Adaptive grids at t=0.0, 2100 nodes (above); t=1.35, 2900 nodes
(middle); at t=4.29, 14000 nodes (below)

shown that at least a tolerance TOL = 1.0e — 4 is needed to reflect the dy-
namics of the process adequately. Such a quite stringent tolerance requires
2100 nodes at the beginning up to 14000 nodes at the end of the process.
Note, however, that estimated 100 triangles would be needed to guarantee
the same accuracy on a uniform mesh. In Fig. 3 the dynamics of the grid
development is shown, whereas in Fig. 4 the level surfaces of the solution
are given for comparison. The whole computation is rather time consuming;
speed-ups would certainly be possible replacing the linear finite elements by
some h — p—strategy [33] for higher order elements — which is the subject of
further work.
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Fig. 4: Adaptive solutions at t=0.0 (above), t=1.35 (middle), t=4.29 (below)

Conclusion

Dynamical simulation of industrially relevant processes strongly advises the
use of algorithms, which are adaptive both in time and in space discretiza-
tion. The paper presented two alternatives: (a) a fully adaptive method of
lines approach, which is based on finite difference methods and essentially
applicable to 1D problems; (b) a fully adaptive Rothe method, which is ba-
sed on a fast multilevel finite element method and applicable to 1D up to
3D.
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