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Abstract:
We consider a production planning problem where two competing companies are selling their items
on a common market. Moreover, the raw material used in the production is a limited non-renewable
resource. The revenue per item sold depends on the total amount of items produced by both play-
ers. If they collaborate they could apply a production strategy that leads to the highest combined
revenue. Usually the formation of such syndicates is prohibited by law; hence we assume that one
company does not know how much the other company will produce. We formulate the problem for
company A to find an optimal production plan without information on the strategy of company B as
a nonlinear mathematical optimization problem. In its naive formulation the model is too large, mak-
ing its solution practically impossible. After a reformulation we find a much smaller model, which
we solve by spatial branch-and-cut methods and linear programming. We discuss the practical
implications of our solutions.
Keywords:
Non-Cooperative Two-Person Games; Mixed-Integer Nonlinear Optimization

1 INTRODUCTION

Economists, politicians and entrepreneurs alike have
been concerned with nonrenewable resources for a long
time. Nonrenewable resources (e.g. oil, iron, zinc, phos-
phate, etc.) share the characteristic that they cannot be
replenished within a relevant time frame. The economic
literature on nonrenewable resources started with the
work of Harold Hotelling [1]. Hotelling examined the
case of a fully competitive market where extracting a
marginal unit of the resource was costless. He showed
that in this particular case, the price of the nonrenewable
resource should increase at the rate of interest. More
generally, it is the shadow price of the resource that
should increase at the rate of interest. Both the specific
and the more general result have become known in the
literature as the Hotelling rule. Since Hotelling’s semi-
nal work, a large number of papers in economics have
studied the Hotelling rule both mathematically and em-
pirically under various assumptions (see e.g. Krautkrae-
mer [2], Gaudet [3], or Kronenberg [4] for reviews of the
literature).

A critical assumption in each of these studies is that
producers of the nonrenewable resource act rationally
in the economic sense. This entails that producers are
-inter alia- assumed to maximize long run profits and
are assumed to be able to do so in the optimal way.
In the typical case when there are multiple active pro-
ducers on the market, economic rationality means the
outcome of the market can be characterized by a Nash
equilibrium. In the context of nonrenewable resources,

the Nash equilibrium entails that each producer has
adopted the best possible (profit-maximizing) production
strategy conditional on the equilibrium production strat-
egy of all the other producers on the market.

However, in practice, many producers may not be fol-
lowing the Nash equilibrium production strategy. For
example, the president of an oil producing nation may
be more concerned about being re-elected than about
maximizing long-term oil profits. In this case, he may not
follow the Nash equilibrium production strategy but may
instead produce at capacity in every period, to maximize
short-term profits. A similar argument can be made for
the CEO of a resource firm, whose bonus structure is
unlikely to be based on long term profits. When some
producers do not optimize, it will no longer be optimal to
choose the Nash equilibrium production strategy even
for producers who do optimize. Instead, they should
maximize their profits given the range of possible pro-
duction strategies they think the other producers on the
market will adopt.

This article derives the profit maximizing strategy for
producers who are faced with non-optimizing competi-
tors. In particular, we will look at a market with two pro-
ducers where one producer randomly chooses a pro-
duction strategy from the set of possible production
strategies. This approach is similar to the cognitive hi-
erarchy (or level K) approach used in behavioral eco-
nomics (see e.g., Camerer, Ho and Chong [5]). (Cog-
nitive hierarchy theory assumes that different players
have a different level of rationality, where level 1 best
responds to level 0, level 2 best responds to level 1 (or a
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mix of level 0 and level 1), etc. The behavior of level zero
players is typically assumed to be uniformly random; we
will use a similar approach in this study.) We then solve
for the optimal production strategy for the other producer
on the market using spatial branch-out methods and lin-
ear programming.

The remainder of this article is structured as follows.
In Section 2 we introduce the model that defines the
players’ payoff function, that rational players aim to max-
imize. We start in Section 3 with an analysis of the coop-
erative case, i.e., both players are able to communicate
and thus are able to maximize their income. In gen-
eral, forming such a monopoly would be not allowed,
and hence we continue in Section 4 with the case that
one player has to find a strategy to beat his competitor,
irrespective of how the other player behaves. We dis-
cuss our results in Section 5. Conclusions are drawn in
Section 6.

2 THE MODEL

We consider a two player game, where both players A
and B make one simultaneous move for nt = 6 consec-
utive rounds. Each player represents a producer, selling
from its limited and nonrenewable product stock on a
duopolistic market. In each round, each player has to
decide on the number of products to sell. The price p
that the players earn for one unit of their product de-
pends on the total number of products offered by both
players, and is computed according to the linear equa-
tion

pt =
`
a− b(qtA + qtB)

´
, t ∈ {1, 2, . . . , nt}, (1)

where a and b are parameters, qtA, q
t
B are the quantities

sold by player A and player B respectively, and t is the
current round. As abbreviation, we write qi for the vector
(q1i , . . . , q

nt
i ) for i ∈ {A,B}. In each round, each player

receives interest on the cumulative income of the previ-
ous rounds with an interest rate of r > 0. The values we
use for our numerical studies are shown in Table 1.

After nt rounds, the cumulative income from selling
the product and from accumulating interest is added up,
to yield the final payout xi(qA, qB) for player i ∈ {A,B}:

xi(qA, qb) =

ntX

t=1

`
qti · pt · (1 + r)nt−t

´

=

ntX

t=1

`
qti ·
`
a− b(qtA + qtB)

´
· (1 + r)nt−t

´
.

(2)
For a fixed value of qtB , the revenue of player A in

round t, defined by qtA 7→ qtA · pt, has a maximum at
1
2b

(a− bqtB).
In Figure 1, the revenues (qtA ·pt) of player A for given

values of qtA and qtB are represented in a contour plot
(for t fixed). For a given value of qtB , there is one unique
qtA with the highest possible revenue (shown by the red

dashed line). Selling a larger number of products than
this optimum will actually result in a lower revenue while
selling more of the product in stock.

This property of the game leads to a high potential
of conflicting strategies between the two players. It fol-
lows, that a good strategy must to be robust against un-
expected decisions of the opponent.

The task of each player i ∈ {A,B} is to choose
quantities, such that his final payout xi is maximized.
The cases of continuous as well as integer quantities
qti can be considered. In practice, this will depend on
whether the quantity is non-divisible (for example cars
or cell phones) or divisible (for example raw materials).

The following criteria for a successful strategy can be
derived from these equations:

i Distributing the quantities evenly is preferable to
selling everything at once, due to the decreasing
price depending on the amount of product on the
market.

ii Having a high income in the earlier rounds is
preferable to having a high income in the later
rounds, due to the higher achieved interest.

iii Since there is no information on the behavior of
the opponent in the current round, the strategy
should be as robust as possible against the deci-
sions of the opponents.

Strategies (i) and (ii) are obviously contradictory, and
also strategy (iii) can be in contradiction to strategies (i)
and (ii), even though this is harder to quantify. Finding
the best compromise between these criteria constitutes
the desired solution that we aim to compute.

Letter Parameter Name Value

nt Number of rounds 6
r Interest rate .1
a Maximum Price 372
b Slope of price decay 1
s Per player resource stock 170

Table 1: Overview of model parameters

3 COOPERATIVE CASE

To get a better understanding of the model, we first con-
sider the cooperative case, where both players commu-
nicate in order to find the strategy that maximizes their
combined income, and then strictly stick to this strat-
egy over the time horizon. To find the highest possible
combined income, we formulate the following nonlinear
optimization problem:

maximize
qA,qB

xA(qA, qB) + xB(qa, qB),

subject to
ntX

t=1

qti ≤ s, ∀i ∈ {A,B}.
(3)
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Figure 1: Contour plot of possible revenues of player A in a single round t for values of qtA and qtB . The broken, dark
red line connects the highest possible revenues for given values of qtB , defined by qtB = 372− 2qtA.

Since the final payout depends only on the sum of
the quantities sold by the two players in each round, we
introduce new variables qtc for the combined production
and substitute qtA + qtB = qtc (for t = 1, 2, . . . , nt) in the
model formulation (3). This leads to a reduction of the
size of the solution space, and thus a significant reduc-
tion of the solution time.

In a first experiment we set the per player resource
limit to infinity, s = ∞. Then we receive the solution
shown in Table 2 for qc with a combined final payout of
2.669 · 105.

q1c q2c q3c q4c q5c q6c

186 186 186 186 186 186

Table 2: Optimal solution for the cooperative case with
s =∞.

Since our reduced setup eliminates the motivations
behind strategies (ii) and (iii), the optimal strategy is gov-
erned entirely by (i). We can argue that this is indeed the
optimal solution, since it is the maximum of the income
function in qtA+qtB at each point in time t = 1, . . . , nt. In-
cidentally, this maximum is found at an integer quantity
value, so the solution is optimal in the continuous as well
as the integer case. In order to obtain a solution in the
variables qtA and qtB from the values of qtc, we need to
split the total production quantity among the two players
A and B. In the integer case, there are 1866 ≈ 4.1 · 1013

possible choices for qA, qB together that all sum up to
the solution qc and consequently have the same objec-
tive value. In the continuous case there are infinitely
many distributions.

As a numerical solver for the nonlinear optimiza-
tion problems we use SCIP. Information on the MINLP
framework SCIP can be found in Achterberg [6], and
in particular on nonlinear aspects of SCIP in Berthold,
Heinz, and Vigerske [7]. Setting the per player resource
stock to s = 170, we receive the continuous and integer
solutions shown in Table 3.

q1c q2c q3c q4c q5c q6c

C 85.43 75.37 64.30 52.13 38.75 24.02
I 86 75 64 52 39 24

Table 3: Optimal solutions for the cooperative continu-
ous (C) and integer (I) case.

We emphasize that the integer solution cannot be ob-
tained by simply rounding the continuous solution to the
nearest integer values (q1c = 85.43 in the continuous
case must be rounded up to q1c = 86 in the integer case).
The combined final income is 141, 235 in the continuous
and 141, 234 in the integer case. This represents the op-
timal tradeoff between strategies (i) and (ii) for the given
parameters.

4 OPTIMAL STRATEGY FOR AN UNKNOWN
OPPONENT STRATEGY

In the next step, we will consider the non-cooperative
game, where communication between the two players is
not allowed. The usual approach for such a game is to
find a Nash equilibrium. In a Nash equilibrium, the opti-
mal strategy for player A would be the profit maximizing
production strategy conditional on the equilibrium pro-
duction strategy of producer B.

By contrast, our goal is to find an optimal strategy
for player A, that is, a production schema that gives the
highest possible yield from A, no matter what player B
is doing. We will prioritize the robustness of the strat-
egy for player A and therefore assume that player B
does not necessarily follow a Nash equilibrium produc-
tion strategy. In particular, we assume that player A has
no information on the behavior of player B, and conse-
quently, that every move of player B that respects the
per player resource limit, occurs with the same probabil-
ity.

The valid choice of quantities for one player in each
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of the six turns is called a trajectory. We define a set S
that consists of nS trajectories of player B:

sk =
`
q1B,k, q

2
B,k, ..., q

nt
B,k

´
, k ∈ {1, .., nS} (4)

We assume that all trajectories in S are feasible in the
sense that

ntX

t=1

qtB,k ≤ s. (5)

Now we can define an new objective function as the av-
erage over the trajectories in s, assuming that each of
the trajectories can occur with the same uniform proba-
bility of 1/nS :

xA =
1

nS

X

k∈S
xA(qA, qB,k). (6)

Then the new optimization problem reads as follows:

maximize
qA

xA,

subject to
ntX

t=1

qtA ≤ s.
(7)

The objective here is to maximize the mean income
xA of player A. Using the definition of xi(qA, qB), and
changing the order of the two sums (the averaging over
trajectories and the sum over the rounds), we can write

xA =
1

nS

X

k∈S

ntX

t=1

`
qtA · rnt−t ·

`
a− b

`
qtA + qtB,k

´´´

=

ntX

t=1

(qtA · rnt−t · (a− b(qtA +
1

nS

X

k∈S
qtB,k

| {z }
qteff

))).

(8)
We have accumulated the averaging process in an ef-
fective quantity qeff that expresses the average produc-
tion. In order to solve (7) in the next step we need to
specify the set of trajectories.

We create a set of trajectories S by discretizing the
interval of possible quantities at a given time. The max-
imum quantity that can be produced is equal to the per
player resource stock s. We select an integer value nα.
Then the production level for a certain time step can no
longer be chosen arbitrarily, but must be an integer mul-
tiple of the basic step size δ := s

nα−1
. That means, for

each trajectory k ∈ S and each time step t = 1, . . . , nt
there exists such a multiplier αtB,k ∈ {0, 1, 2, ..., nα− 1},
such that qtB,k = δαtB,k. (Note that constraint (5) also
needs to be fulfilled, still.)

The total production output of player B over all time
periods t = 1, . . . , nt is also an integer multiplier of δ.
For α ∈ {0, . . . , nα − 1} we denote by Sα ⊆ S those
trajectories from S with

Pnt
t=1 q

t
B,k = δα.

The cardinality of Sα is denoted by nSα := |Sα|. The
value of nSα can be computed using the binomial coef-
ficient:

nSα =

 
α+ nt − 1

nt − 1

!
(9)

Using the following combinatorial identity:

mX

k=0

 
n+ k

n

!
=

 
n+m+ 1

n+ 1

!
, (10)

we can calculate the number of all possible trajectories

nS =

nα−1X

α=0

nSα =

nα−1X

α=0

 
α+ nt − 1

nt − 1

!

=

 
nt + nα
nt

!
=

(nt + nα)!

nt!nα!
.

(11)

Consider an arbitrary trajectory k ∈ S with coefficient
vector (q1B,k, . . . , q

nt
B,k). Then any permutation of these

coefficients leads to feasible trajectory, since the total
production does not change by permuting their order.
Hence summing the coefficients for any fixed time step
t always yields the same constant value:

X

k∈S
q1B,k =

X

k∈S
q2B,k = . . . =

X

k∈S
qntB,k, (12)

hence
ntX

t=1

X

k∈S
qtB,k = nt ·

X

k∈S
q1B,k = . . . = nt

X

k∈S
qntB,k (13)

follows. In particular q1eff = . . . = qnteff , and we simply
write qeff in the sequel.

We can express the left-hand side in (13) as follows:

ntX

t=1

X

k∈S
qtB,k =

nα−1X

α=0

nSα · δα, (14)

and, using the identity of (9), arrive at the following ex-
pression for qeff:

qeff =
δ

ntnS

nα−1X

α=0

α
(α+ nt − 1)!

(nt − 1)!α!

=
δ

nS

nα−1X

α=0

(α+ nt − 1)!

(nt)!(α− 1)!

(10)
=

δ

ns

 
nt + nα
nt + 1

!

(11)
= δ

nt!nα!

(nt + nα)!

(nt + nα)!

(nt + 1)!(nα − 1)!

=
δnα
nt + 1

=
s

nt + 1
.

(15)
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Figure 2: Plot of possible incomes for strategy 4 of player A and an equidstantly discretized set of trajectories for
player B with stepsize 170/40. Marked points are: (1): (68708,68708), symmetric strategy, (2): (70409,
69395) highest income of B, (3): (73325, 67898), highest combined income, (4): (63789, 39151), lowest
income of A, (5): (79943, 0), lowest income of B, highest income of A, lowest combined income

We emphasize that we obtained an expression for
qeff that does not depend on δ, the step size of the dis-
cretization. Accordingly, the averaging over trajectories
in the calculation of the total income of player A reduces
to:

xA =

ntX

t=1

qtA · rnt−t ·
„
a− b

„
qtA +

s

nt + 1

««
. (16)

We have shown that the optimal solution of (7) is in-
dependent of the stepsize of the discretization. It is
also straightforward to show that (16) holds for the case
δ → 0, where in the limit the summation in (7) is re-
placed by integration.

Using (16), problem (7) is easily accessible with stan-
dard nonlinear global optimization techniques. The op-
timal solution for the continuous and integer cases,
obtained by the solver SCIP, are summarized in Table 4.

q1c q2c q3c q4c q5c q6c

C 59.31 47.87 35.28 21.36 6.17 0.00
I 59.00 48.00 35.00 22.00 6.00 0.00

Table 4: Optimal strategy (production schema) for player
A in the case of an unknown strategy for player
B, in the integer (I) and continuous (C) case.

The mean incomes achieved by both players,
when player A always uses the integer solution, are
(xA, xB) = (7.3990 · 104, 5.5192 · 104).

5 DISCUSSION

In the previous section, we derived a strategy for player
A, that will lead to his highest average income, if the
opponent makes random decisions. In this section, the
properties of that solution will be discussed.

We will assume, that we have advised player A to
strictly follow the strategy shown in Table 4. The aver-
aging process implies that the game is repeated an in-
finite number of times, however this will not be the case
in practice, therefore we will consider the possible sce-
narios that can occur in a single game under the given
assumptions.

To allow for a visual interpretation, a diagram of the
phase space of the game is shown in Figure 2. The di-
agram shows the incomes of players A and B, where
player A uses the integer strategy in Table 4, and player
B uses one of 10.7 · 106 trajectories that result from an
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again equidistant discretization of all possible trajecto-
ries with step-size δ = 170/40. The number of points
(i.e., trajectories) at a given pixel are represented by
shades of color.

Some extreme points are marked in Figure 2. The
lower right corner of the space is defined by the point
where player B achieves zero income with the trajectory
q1B = . . . = q6B = 0. At the same time, this is the point
where xA is at its maximum, since playerA achieves the
highest possible prices. This is also the point, where the
combined income of both players has the lowest value.
The left corner of the phase space is marked by the min-
imum of xA. The corresponding trajectory of player B is
qB = (170, 0, 0, 0, 0, 0), which means that player B sells
all his products in the first round. Due to the interest
element of the model, this is the biggest possible distur-
bance of player A. However, this strategy is not benefi-
cial for player B, as it yields a sub average income.

The highest combined income of 141, 224 is
achieved when player B follows the trajectory qB =
(25.5, 25.5, 29.75, 29.75, 34.00, 25.5). The achieved
combined incomes are very close to the optimal solution
in the cooperative case, however the income of player A
is 8% higher than that of player B.

Player B achieves his highest possible income with
the trajectory qB = (46.75, 38.25, 34.00, 25.50, 21.25, 4.25).
This results in a sub average income for player A, how-
ever, player A still has a higher income than player B.
In fact, we find that the every point of the phase space
is below the diagonal. In other words, if player A follows
the strategy in Table 4, there is no way for player B to
achieve a higher income. Due to the symmetry of the
model, it is of course possible for player B to achieve
exactly the same income, by using the same strategy as
player A.

From Figure 2, it is also clear that both players fol-
lowing the strategy in Table 4 cannot be a Nash equi-
librium, since a different trajectory is optimal for player
B. Van Veldhuizen and Sonnemans [8] derive the (feed-
back) Nash equilibrium for the same parameters using
a backward induction type procedure. Our results show
that the strategy in Table 4 means that player A will
overproduce relative to the Nash equilibrium. Intuitively,
player B will on average produce less than the Nash
equilibrium in earlier periods and more in later periods,
meaning it is optimal for player A to shift his production
to earlier periods in response.

In a given instance of the game, there is still some
room for improvement of our advice for player A, by us-
ing the information gained each round on the choices of
player B. This leads to an iterative approach, where
we first calculate the strategy in Table 4, and advise
player A to choose the corresponding quantity in the
first round. When player B has made his move, we
can derive a new upper bound s, for player B, based
on the amount of his product he has sold in the first
round. Based on this, we can compute a refined strat-
egy for the second round. We can iterate these steps

each round, deriving a strategy that dynamically uses
all the available information.

6 CONCLUSIONS

In this paper, we took a statistical approach to finding
an optimal strategy for a two-player game that arises in
the context of nonrenewable resources and the Hotelling
rule. By stochastical considerations we reformulated a
potentially large optimization problem to one that can
be quickly solved to optimality using a standard branch-
and-bound approach. Using the reformulated problem,
we computed a strategy, that is unbeatable by the op-
ponent in the sense that the opponent is not able to
achieve a higher income, no matter what production
strategy he might follow.
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