
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ROBERT DÖBBELIN, THORSTEN SCHÜTT AND
ALEXANDER REINEFELD

Building Large Compressed PDBs for
the Sliding Tile Puzzle

ZIB-Report 13-21 (April 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Building Large Compressed PDBs for the
Sliding Tile Puzzle

Robert Döbbelin, Thorsten Schütt, and Alexander Reinefeld

Zuse Institute Berlin, www.zib.de

Abstract. The performance of heuristic search algorithms depends cru-
cially on the effectiveness of the heuristic. A pattern database (PDB) is
a powerful heuristic in the form of a pre-computed lookup table. Larger
PDBs provide better bounds and thus allow more cut-offs in the search
process. Today, the largest PDB for the 24-puzzle is a 6-6-6-6 PDB with
a size of 486 MB.

We created 8-8-8, 9-8-7 and 9-9-6 PDBs that are three orders of mag-
nitude larger (up to 1.4 TB) than the 6-6-6-6 PDB. We show how to
compute such large PDBs and we present statistical and empirical data
on their efficiency. The largest single PDB gives on average an 8-fold
improvement over the 6-6-6-6 PDB. Combining several large PDBs gives
on average an 12-fold improvement.

1 Introduction

Heuristic search algorithms are widely used to solve combinatorial optimization
problems. While traversing the problem space, the search process is guided by
a heuristic function that provides a lower bound on the cost to a goal state.
This allows to prune large parts of the search space and thus reduces the overall
search effort. The more accurate the heuristic is, the more states can be pruned
during the search.

Pattern Databases (PDBs) are powerful heuristic functions in form of a
lookup table. They store the exact solution of a relaxed version of the prob-
lem. The less the original problem is relaxed the larger is the size of the PDB
and thereby the tighter are its bounds.

In this paper we present for the first time very large complete PDBs for the
24-puzzle: a 8-8-8 PDB with 122 GB, a 9-8-7 PDB with 733 GB, and a 9-9-6
PDB with 1381 GB. The largest one gave node savings by up to a factor of 37
compared to the 6-6-6-6 PDB.

We present in Sec. 4 a parallel algorithm that allows to compute very large
PDBs on cluster systems with a modest amount of memory. The application of
such large PDBs in heuristic search, however, requires a computer with a much
higher memory capacity of more than 1.4 TB for the 9-9-6 PDB, for example.
While systems with more than one TB of memory are not (yet) commonly used as
standard computers, we believe that our work will help in studying the pruning-
power of large PDBs.

The rest of the paper is structured as follows. Sec. 2 sets the context of our
work by reviewing relevant literature. Thereafter PDBs are introduced in Sec. 3
and the algorithms and compressed data structures for generating large PDBs
are presented in Sec. 4. In Sec. 5 we provide a statistical and empirical analysis
and we summarize our work in Sec. 6.

2 Background

PDBs were first mentioned by [2]. [5] presented additive PDBs in which the
heuristic estimate is computed as the sum of the values of several smaller PDBs.
The same authors also proposed a method for compressing a PDB by disregard-
ing the blank and computing the minimum of all blank positions.

PDBs are built with a backward breadth-first search over the complete state
space. Large breadth-first searches have been used by [8] to expand the complete
graph of the 15-puzzle for the first time. This could only be achieved by keeping
the search front on disks and hiding the disk latency with multiple threads.

[3] use instance dependent PDBs to utilize large PDBs without completely
creating them. They build on the observation of [9] that only the nodes generated
by the best-first search algorithm A* are needed in the pattern space to solve
an individual instance. For each pattern of the given instance, they perform an
A* search from the goal pattern towards the start pattern until the available
memory is exhausted. This database is then used for the forward search. When
h-values are missing, several smaller PDBs are used instead.

[6] suggest to take the maximum h-value from several smaller PDBs instead of
a large one. They show that the accuracy of small h-values is especially important
for reducing the number of expanded nodes.

3 Pattern Databases

In this paper we are concerned with sliding tile puzzles. An instance of the
(n−1)-puzzle can be described by n state variables, one for each tile. Each state
variable describes the position of one specific tile in the tray. A pattern considers
only a subset of the state variables; the remaining state variables are ignored.
Hence, patterns abstract from the original problem by mapping several states to
the same point in the pattern space. The number of ignored state variables can
be used to control the information loss.

In the (n−1)-puzzle, a pattern is defined by a subset of the tiles. The position
of the pattern tiles, the pattern tile configuration, and the blank defines a node in
the pattern space. Move operations in the original problem can be analogously
applied to nodes in the pattern space by moving either a pattern tile or a non-
pattern tile, i.e. a don’t care tile. Although we count the moves of don’t cares,
they are indistinguishable from each other. The size of the pattern space for a
pattern with k tiles for the (N − 1)-puzzle is N !

(N−k−1)! .

The number of moves needed to reach the goal in the pattern space can
be used as an admissible heuristic for the move number in the original space.

1

4

7

1

4

7

1

4

7

(a) (b) (c)

Fig. 1. Patterns with different blank positions (8-puzzle).

Because of the don’t care tiles, a path in the original search space can only be
longer than the corresponding path in the pattern space and hence the heuristic
is admissible, i.e. non-overestimating.

To compute a PDB, we perform a backward breadth-first search from the
goal to the start node and record for each visited node the distance from the
goal.

3.1 Additive Pattern Databases

Because of space limitations, only small PDBs can be built. To get better heuris-
tic estimates, several PDBs must be combined. However, with the above method,
which also counts the movements of don’t care tiles, we cannot simply add the
h values of PDBs, even when the patterns are disjoint, because the same move
would be counted several times. For additive pattern databases [4] we only count
the moves of pattern tiles.

The search space is mapped to the pattern space in the following way. Two
states of the original space map to the same state in the pattern space, if the
pattern tiles are in the same position and the two blank positions can be reached
from each other by moving only don’t care tiles. There is an edge between two
nodes a and b in the pattern space if and only if there are two nodes c and d
in the puzzle space where c maps to a and d maps to b and there is an edge
between c and d.

Fig. 1 shows an example for the 8-puzzle. Positions (a) and (b) map to the
same state in the pattern space, because the blank positions are reachable from
each other without moving pattern tiles. Positions (a) and (c), in contrast, do
not map to the same state in the pattern space, because at least one pattern tile
must be moved to shift the blank to the same position.

To further reduce the memory consumption, we compress the databases by
the blank position as described in [4]. This is done by storing for any pattern-
tile configuration, independent of the different blank positions, only the minimal
distance from the goal node. For the three examples shown in Fig. 1 we only
store one (the smallest) distance g in the PDB.

4 Building Compressed PDBs

When building large PDBs we ran into two limits: space and time. Not only do
we need to keep the PDB itself in memory, but also the Open and Closed lists

Algorithm 1 BFS in compressed, indexed PDB space.
1: PDBArray A
2: initialize array
3: expandedNodes = −1;
4: g = 1;
5: while expandedNodes 6= 0 do
6: expandedNodes = 0;
7: for i = 0→ A.size− 1 do
8: if A[i].open list = ∅ then
9: continue;

10: end if
11: expandedNodes++;
12: pattern = unindex(i);
13: blanks = unpackBlanks(A[i].open list);
14: succs = genSuccs(pattern, blanks);
15: for j = 0→ succs.size− 1 do
16: sIndex = index(succs[j]);
17: rBlanks = reachableBlanks(succs[j]);
18: pBlanks = packBlanks(rBlanks);
19: pBlanks −= A[sIndex].closed list;
20: A[sIndex].open list += pBlanks;
21: A[sIndex].g = min(A[sIndex].g, g);
22: end for
23: A[i].closed list += A[i].open list;
24: A[i].open list = ∅;
25: end for
26: g++;
27: end while

must be stored. In Sec. 4.1 we describe a sequential algorithm and a compressed
data structure for computing large PDBs. In Sec. 4.2 we describe a parallel
implementation that uses the combined memory and compute capacity of a
cluster as a single resource.

4.1 Sequential Algorithm

Our algorithm for building PDBs builds on ideas of [1]. To store the k-tile PDB,
we use an array of N !

(N−k)! elements, one entry for each state of the compressed

pattern space. For our 9 tile PDB this results in 25!
16! = 741 · 109 entries. We

use a perfect hash function to map a configuration of the pattern to this array.
The hash function is reversible so that we can map an array index back to its
pattern tile configuration. Each entry in the array is made up of three values: g,
open list and closed list.

struct {
byte g ;
byte o p e n l i s t ;

byte c l o s e d l i s t ;
} a r ray en t ry ;

The variable g in Alg. 1 stores for each entry the minimum g in which we
found that state. Additionally, we need to store for each tuple of a pattern tile
configuration and blank position whether it is in the Open or in the Closed list.
This could be done by simply storing two bit strings of length N−k in each PDB
entry and setting the responsible bit whenever a new blank position is visited.

However, this simple approach can be improved to achieve a further data
compression. A blank partition is a set of blank positions with a common pattern
tile configuration where all blank positions are reachable from each other by only
moving don’t care tiles. This is shown in Fig. 1: (a) and (b) belong to the same
blank partition, while (a) and (c) do not. For patterns with 9 tiles, the pattern tile
configurations have no more than 8 blank partitions. We can simply enumerate
the blank partitions and only store one bit for each partition in the open list

or closed list. In the backward breadth-first search we used pre-computed
lookup tables to map the blank positions to blank partitions. To build a PDB
with up to 9 tiles, this scheme requires 3 bytes per state, one for g, open list,
and closed list, respectively.

The breadth-first search over the pattern space is performed as follows (Alg. 1):
All open lists and closed lists are initialized with zeroes. The g for each
state is set to the maximum value. For the initial state, the blank partition of
the initial position is set in the open list.

Then the array is scanned repeatedly (line 4). For each entry, we check if the
Open list is empty (line 7). If not, we create the pattern tile configuration (line
11), extract all blank positions from the Open list (line 12) and finally generate
the successors (line 13). For each successor, we calculate the index in the PDB
(line 15), compress the blank positions (line 16-17) and update the successor’s
entry in the PDB (line 18-20). Note that backward steps are eliminated with
the update. Finally, we update the open list and closed list of the current
position. This is repeated until the complete pattern space has been visited.

4.2 Parallel Algorithm

For the parallel algorithm, we distribute the array (in disjoint partitions) over
all compute nodes. To avoid imbalances in the work load, we do not assign
contiguous parts to the nodes but use a hash function for assigning rows of the
array to the compute nodes. The parallel algorithm has the same structure as
the sequential algorithm (see Fig. 2) but it needs additional communication to
move the results to remote compute nodes.

For each g, first each node scans its part of the array and generates the
successors as described in Alg. 1. But instead of directly updating the PDB,
each node collects the successors locally. In the shuffle phase (Fig. 2), these
successors are sent to the nodes storing the corresponding rows in the PDB.
Finally, the PDB is updated locally.

generate
successors

shuffle data

update PDB

CPU A CPU B CPU C CPU D

Fig. 2. Workflow of the parallel implementation.

5 Evaluation

We used the presented parallel algorithm to build three large PDBs, 8-8-8, 9-
8-7, and 9-9-6, with sizes of 122 GB, 733 GB and 1381 GB, respectively. For
comparison, the previously largest 6-6-6-6 PDB has a size of only 488 MB.

(a) 6-6-6-6 (b) 8-8-8 (c) 9-8-7 (d) 9-9-6

In our cluster, each compute node has 2 quad-core Intel Xeon X5570 with
48 GB of main memory. It took about 6 hours to build a single 9 tile PDB on
255 nodes. For the empirical analysis we used an SGI UV 1000, a large shared-
memory machine with 64 octo-core Intel Xeon X7560 and 2 TB of main memory.

In the following, we first present a statistical analysis of the performance
of our PDBs on a large number of randomly generated positions. Thereafter
we show the performance on Korf’s set of random 24-puzzle instances. In both
cases, we used mirroring [2] to improve the accuracy of the heuristics.

5.1 Statistical Evaluation

We created 100,000,000 random instances of the 24-puzzle and recorded the h-
values obtained with the 6-6-6-6, 8-8-8, 9-8-7, and 9-9-6 PDB. Fig. 3 shows the
cumulative distribution, i.e. the probability P (X ≤ h), that the heuristic value
for a random state is less or equal to h. The higher the h-value, the better the
pruning power of the heuristic. This is because all heuristics are admissible, i.e.
they never overestimate the goal distance. Higher h-values represent therefore
tighter bounds on the true value. As can be seen in Fig. 3, all graphs lie close

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60 70 80 90 100 110

P
(X

 <
=

 h
)

h

6-6-6-6
8-8-8
9-8-7
9-9-6

Fig. 3. Cumulative distribution of h-values of 100,000,000 random samples.

together and their order corresponds to the size and pruning power of the PDBs.
Interestingly, the new PDBs are distinctively better than the 6-6-6-6 PDB (see
the dashed line).

Note that the increased number of small h-values is especially important for
the performance of the heuristic [6]. Fig. 4 shows a magnification of the lower
left corner of the data in Fig. 3. It can be seen that all curves are clearly distinct
and that the large PDBs provide a considerable improvement over the 6-6-6-6
PDB.

PDB size [GB] avg.h min.h max.h

6-6-6-6 0.488 81.85 40 115
8-8-8 122 82.84 40 116
9-8-7 733 83.10 43 116
9-9-6 1381 84.56 44 116

Table 1. Average, minimum and maximum h-values of 100,000,000 random instances.

Table 1 lists the average, minimum, and maximum values. In accordance with
Fig. 3, larger PDBs return on average a higher h-value. Checking the extreme
values reveals an interesting fact: While the minimum value of the 9-9-6 PDB is
4 moves higher than the lowest value of the 6-6-6-6, its maximum value is only
increased by one. Thus, the large PDBs return fewer small values but they do
not provide a significantly higher maximum.

5.2 Empirical Evaluation

For the second set of experiments, we used Korf’s fifty random instances [8] and
solved them optimally. We present data on the breadth-first iterative deepening

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 66 68 70 72 74

P
(X

 <
=

 h
)

h

6-6-6-6
8-8-8
9-8-7
9-9-6

Fig. 4. Magnification of the lower left corner of Fig. 3.

 1

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 20 30 40 50

re
d

u
ct

io
n
 f

a
ct

o
r

instance

8-8-8 9-8-7 9-9-6 6-6-6-6

Fig. 5. Reduction factor to 6-6-6-6 PDB on Korf’s random set (ordered by IDA* nodes)
using BF-IDA*.

A* algorithm (BF-IDA*) [10], a breadth-first variant of IDA* [7]. We chose BF-
IDA* over IDA* because its performance does not depend on the node ordering
and it therefore allows to better assess the performance of the heuristic. We
sorted the 50 instances by the number of expanded nodes with BF-IDA* and
solved all instances optimally.

Fig. 5 shows the reduction of node expansions in comparison to the 6-6-6-6
PDB. For each bar we divided the nodes expanded by the 6-6-6-6 PDB by that
of the other PDBs. In general, larger PDBs tend to perform better than smaller
ones and the gain seems to be independent of the hardness of the problem.
However, there are a number of outliers in both directions.

Fig. 6 summarizes Fig. 5 and groups the reduction factors by PDB. Addi-
tionally, we added max-of which takes the maximum of the 6-6-6-6, 8-8-8, 9-8-7
and 9-9-6 PDBs. The consumed memory is only marginally larger because of the
overlapping partitions. The four PDBs reduce the number of expanded nodes
by a median factor of 2.16, 3.86, 6.81 and 9.36. However, there are some out-

 1
 5

 10
 15
 20

 30

 40

 50

 60

8-8-8 9-8-7 9-9-6 max-of

re
d
u
ct

io
n
 f

a
ct

o
r

PDB

Fig. 6. Reduction factors compared to 6-6-6-6 PDB.

liers towards both ends of the scale. For some instances the number of expanded
nodes was higher compared to the 6-6-6-6 PDB. On the other hand, it could be
reduced by a factor of up to 10 with the 8-8-8 PDB and up to 31 with the 9-8-7
and 9-9-6 PDBs. The standard deviation seems to slightly increase with the size
of the heuristic.

Table 2 shows the full details on each instance and the number of expanded
nodes for each PDB. The first column gives the Id used in [8] and the second
column states the length d of the shortest path. The number of expanded nodes
with the individual PDBs are listed in columns three to seven. Columns eight,
nine, ten and eleven give the reduction factor of the 8-8-8, 9-8-7, 9-9-6 and the
max-of PDB relative to the 6-6-6-6 PDB.

6 Conclusions

We presented an efficient parallel algorithm and a compact data structure that
allowed us to compute for the first time very large compressed PDBs. The par-
allel algorithm utilizes the aggregated memory of multiple parallel computers to
compute and stores the PDB in the main memory.

We computed three additive PDBs for the 24-puzzle, an 8-8-8, 9-8-7 and 9-
9-6 PDB. To the best of our knowledge, these are the largest PDBs reported for
this domain.

The 9-9-6 PDB gives on average an 8-fold node reduction compared to a 6-6-6-
6 PDB on the first 45 of Korf’s random instances of the 24-puzzle. We observed
a high variance on the reduction rate, which ranges from 2x to 37x savings
(Tab. 2). Hence, it is advisable to use the maximum over several additive PDBs
in a practical application. This is feasible, because multiple additive PDBs do
not proportionally increase the memory consumption. This is because the same

PDB can be utilized by multiple additive PDBs. As an example, the same 9
PDB can be used in both of our 9-9-6 PDB and the 9-8-7 PDB.

Acknowledgments

Part of this work was supported by the EU project CONTRAIL ‘Open Com-
puting Infrastructures for Elastic Services’.

Id d 6-6-6-6 8-8-8 9-8-7 9-9-6 max-of r1 r2 r3 r4

40 82 26,320,497 49,291,000 26,655,910 10,486,000 7,166,383 0.53 0.99 2.51 3.67
38 96 58,097,633 9,577,883 3,573,949 1,906,127 1,638,334 6.07 16.26 30.48 35.46
25 81 127,949,696 118,780,897 85,141,009 17,658,986 15,217,162 1.08 1.50 7.25 8.41
44 93 181,555,996 37,853,812 11,869,090 7,686,937 5,547,600 4.80 15.30 23.62 32.73
32 97 399,045,498 281,515,091 232,222,028 117,317,314 67,570,393 1.42 1.72 3.40 5.91
28 98 450,493,295 114,571,662 36,263,727 25,552,985 19,743,793 3.93 12.42 17.63 22.82
22 95 581,539,254 82,503,279 88,652,504 81,038,427 37,858,513 7.05 6.56 7.18 15.36
36 90 603,580,192 408,261,989 252,309,866 133,482,919 95,563,302 1.48 2.39 4.52 6.32
30 92 661,835,606 256,431,250 158,409,200 99,557,684 52,338,447 2.58 4.18 6.65 12.65
1 95 1,059,622,872 199,198,406 163,950,295 133,060,463 63,948,759 5.32 6.46 7.96 16.57

29 88 1,090,385,785 128,886,129 34,814,333 59,609,938 21,223,415 8.46 31.32 18.29 51.38
37 100 1,646,715,005 628,890,120 725,323,664 542,573,720 331,223,844 2.62 2.27 3.04 4.97
16 96 1,783,144,872 1,729,554,795 966,783,772 387,360,939 296,519,726 1.03 1.84 4.60 6.01
5 100 1,859,102,197 3,125,977,623 1,078,990,063 905,861,248 565,263,022 0.59 1.72 2.05 3.27

13 101 1,979,587,555 1,181,771,575 690,327,991 444,476,728 268,475,464 1.68 2.87 4.45 7.37
47 92 4,385,270,986 3,825,636,827 4,520,442,316 1,479,759,728 960,463,883 1.15 0.97 2.96 4.57
3 97 4,805,007,493 5,699,072,723 6,731,407,433 2,146,564,697 1,113,194,453 0.84 0.71 2.24 4.32
4 98 5,154,861,019 1,361,290,863 581,368,420 632,299,449 370,467,747 3.79 8.87 8.15 13.91

26 105 6,039,700,647 4,993,857,550 2,525,926,189 1,337,993,889 955,364,988 1.21 2.39 4.51 6.32
31 99 7,785,405,374 3,653,831,114 2,058,364,161 1,622,465,469 992,726,542 2.13 3.78 4.80 7.84
27 99 7,884,559,441 1,415,859,414 611,960,188 432,345,846 337,466,232 5.57 12.88 18.24 23.23
41 106 8,064,453,928 1,737,010,534 1,123,917,776 561,944,277 455,028,148 4.64 7.18 14.35 17.72
43 104 8,816,151,498 4,378,714,353 3,498,876,258 1,532,474,999 1,090,696,435 2.01 2.52 5.75 8.08
6 101 9,810,208,759 2,397,434,227 1,982,606,973 2,739,184,006 1,053,141,115 4.09 4.95 3.58 9.32

49 100 11,220,738,849 5,526,627,744 4,160,235,910 2,792,736,271 1,587,674,537 2.03 2.70 4.02 7.07
45 101 17,068,061,084 5,614,562,048 2,909,124,921 2,408,543,192 1,339,279,458 3.04 5.87 7.09 12.74
20 92 20,689,215,063 9,014,702,404 4,354,383,611 1,615,310,063 1,378,812,797 2.30 4.75 12.81 15.01
46 100 21,674,806,323 9,872,851,915 10,304,210,129 8,017,940,089 3,402,288,275 2.20 2.10 2.70 6.37
19 106 22,761,173,348 6,759,987,121 4,019,764,127 2,836,304,399 2,125,081,076 3.37 5.66 8.02 10.71
35 98 23,049,423,391 8,584,994,059 4,998,934,055 3,208,321,325 2,369,834,229 2.68 4.61 7.18 9.73
7 104 27,686,193,468 26,781,188,637 19,232,502,973 6,429,879,587 4,395,653,789 1.03 1.44 4.31 6.30
8 108 29,575,219,906 4,318,849,565 4,366,429,730 2,609,051,057 1,727,994,805 6.85 6.77 11.34 17.12

39 104 34,198,605,172 22,810,919,845 6,881,101,921 2,912,577,301 2,428,595,642 1.50 4.97 11.74 14.08
42 108 37,492,323,962 9,339,335,844 7,508,532,598 3,490,897,448 2,697,310,294 4.01 4.99 10.74 13.09
24 107 38,272,741,957 25,802,863,114 15,170,752,402 4,724,091,699 3,837,236,834 1.48 2.52 8.10 9.97
2 96 40,161,477,151 29,318,072,174 28,011,360,591 14,446,211,551 8,963,348,921 1.37 1.43 2.78 4.48

15 103 52,178,879,610 26,951,022,561 18,771,225,751 9,741,418,794 8,075,823,446 1.94 2.78 5.36 6.46
23 104 54,281,904,788 36,611,741,317 32,729,241,923 11,103,574,065 8,930,804,356 1.48 1.66 4.89 6.08
48 107 58,365,224,981 99,614,525,233 68,013,167,519 19,890,964,633 12,563,246,704 0.59 0.86 2.93 4.65
34 102 59,225,710,222 49,923,377,951 24,336,781,035 7,384,409,074 5,346,161,078 1.19 2.43 8.02 11.08
12 109 76,476,143,041 43,132,155,298 14,260,876,794 5,820,163,959 4,265,458,902 1.77 5.36 13.14 17.93
21 103 98,083,647,769 25,411,173,479 18,746,227,139 13,731,206,789 8,402,416,300 3.86 5.23 7.14 11.67
18 110 126,470,260,027 18,375,847,744 18,999,810,842 15,070,620,942 7,809,249,544 6.88 6.66 8.39 16,19
9 113 132,599,245,368 82,839,919,151 33,749,539,711 22,489,080,304 16,927,179,096 1.60 3.93 5.90 7.83

33 106 134,103,676,989 77,163,409,262 57,402,766,270 42,219,474,099 25,271,466,707 1.74 2.34 3.18 5.31
17 109 143,972,316,747 49,516,974,145 25,000,824,805 20,405,484,237 15,304,298,302 2.91 5.76 7.06 9.41
11 106 309,253,017,124 22,602,670,676 7,683,989,291 8,343,197,181 4,678,739,173 13.68 40.25 37.07 66.10
14 111 312,885,453,572 419,699,251,120 360,169,788,945 74,779,904,961 63,056,188,490 0.75 0.87 4.18 4.96
10 114 525,907,193,133 207,752,246,775 192,243,603,386 105,311,763,457 63,629,118,230 2.53 2.74 4.99 8.27
50 113 1,067,321,687,213 334,283,260,227 168,384,195,109 152,720,707,871 100,026,128,248 3.19 6.34 6.99 10.67

average 71,004,578,707.12 33,908,766,050.50 23,611,990,572.06 11,599,129,942.46 7,794,424,738.66 3.00 5.74 8.37 12.85
median 14,144,399,966.50 5,570,594,896.00 4,257,309,760.50 2,508,797,124.50 1,359,046,127.50 2.16 3.86 6.81 9.36

Table 2. Expanded nodes of all 50 random instances (r1: 6-6-6-6 / 8-8-8, r2: 6-6-6-
6 / 9-8-7 , r3: 6-6-6-6 / 9-9-6, r4: 6-6-6-6 / max-of).

References

1. Gene Cooperman and Larry Finkelstein. New Methods for Using Cayley Graphs
in Interconnection Networks. Discrete Applied Mathemetics, 37:95–118, 1992.

2. Joseph C. Culberson and Jonathan Schaeffer. Pattern Databases. Computational
Intelligence, 14(3):318–334, August 1998.

3. Ariel Felner and Amir Adler. Solving the 24 Puzzle with Instance Dependent
Pattern Databases. Abstraction, Reformulation and Approximation, pages 248–
260, 2005.

4. Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive Pattern Database Heuris-
tics. Journal of Artificial Intelligence Research, 22:279–318, 2004.

5. Ariel Felner, Ram Meshulam, Robert C. Holte, and Richard E. Korf. Compressing
Pattern Databases. In AAAI, pages 638–643, 2004.

6. Robert C. Holte, Jack Newton, Ariel Felner, Ram Meshulam, and David Furcy.
Multiple pattern databases. In Proceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling (ICAPS-04), pages 122–131, 2004.

7. Richard E. Korf. Depth-first iterative-deepening An optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, September 1985.

8. Richard E. Korf and Peter Schultze. Large-scale parallel breadth-first search. In
Proceedings of the National Conference on Artificial Intelligence, volume 20, pages
1380–1385. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2005.

9. Rong Zhou and Eric A. Hansen. Space-efficient memory-based heuristics. In Pro-
ceedings of the National Conference on Artificial Intelligence, pages 677–682. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2004.

10. Rong Zhou and Eric A. Hansen. Breadth-first heuristic search. Artificial Intelli-
gence, 170(4-5):385–408, April 2006.

