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Abstract

In this paper we describe VisiTrace, a novel technique to
draw 3D lines in 3D volume rendered images. It allows to
draw strokes in the 2D space of the screen to produce 3D
lines that run on top or in the center of structures actually
visible in the volume rendering. It can handle structures
that only shortly occlude the structure that has been visi-
ble at the starting point of the stroke and is able to ignore
such structures. For this purpose a shortest path algorithm
finding the optimal curve in a specially designed graph
data structure is employed. We demonstrate the useful-
ness of the technique by applying it to MRI data from
medicine and engineering, and show how the method can
be used to mark or analyze structures in the example data
sets, and to automatically obtain good views toward the
selected structures.

1 Introduction

Painting-type tools [LSS09] belong to the standard tools
in image editing. Strokes and curves are used to directly
draw in the image and, even more interestingly, to mark
or select locations where certain image processing tech-
niques are intended to be applied. Occasionally, the drawn
lines are also used measure area or length of certain im-

age structures. All these and even more applications of the
painted strokes or points are also of interest for the direct
visualization and analysis of volumetric data: drawing
translates to changing the transfer function [GMY 11]), se-
lecting can be translated to 3D segmentation [ONIO05]),
and measurement is eventually translated into obtaining
characteristics of a 3D segmentation.

In the 2D setting of image editing, obtaining the strokes
and points from user interactions is straight forward: the
pixel coordinates belonging to the interactions can be eas-
ily transformed into coordinates relative to the image.
When dealing with volumetric data the transformation is
complicated because of the additional third dimension. If
a user draws a stroke in the 2D screen space it is usually
not obvious at which depth this line should run through
the volume. This problem is further complicated by the
application of a transfer function: should the depth of the
line be determined by considering the original data or the
optical properties assigned by the transfer function?

For single points, solutions for both variants, i.e. us-
ing the original data respectively using the visible ren-
dering, have been conceived recently, e.g. [KBKG09] re-
spectively [WVFH12]. For lines or strokes, the previous
work has mainly focused on considering the original data,
e.g. [ONIO5] [DR12].

In this paper, we introduce an effective approach to ob-
tain 3D lines from 2D strokes by considering the render-



ing instead of the original data. In other words, the pre-
sented technique allows to draw 3D lines on visible struc-
tures in direct volume rendering (DVR). If desired by the
user, the technique is optionally able the loosen the visible
constraint in order to ignore shortly occluding structures
in favor of a smoother resulting 3D curve. We refer to the
overall method as VisiTrace because the 3D curves can be
used to trace visible structures.

2 Related Work

As our approach is designed to select 3D structures from
2D screen locations it is slightly related to volume pick-
ing. However, most volume picking techniques select
only single points whereas VisiTrace aims at line struc-
tures. Thus we do not discuss the single point vol-
ume picking approaches here and refer the interested
reader to the references in the papers that inspired our
work [WVFH12], [AA09].

Owada et al. [ONIO5] present a volume segmentation
technique that uses 2D strokes on direct volume render-
ing images to generate 3D constraints for a segmenta-
tion algorithm. The step from the 2D stroke to the con-
straints is carried out by converting the 2D stroke into a
3D path that fits best to silhouettes in the data behind the
2D stroke. The constraints are then generated as offset
points from the 3D path. In a later publication [ONI*08],
Owada et al. add 2D preprocessing for improving the
expressiveness of the strokes but they stick to the same
technique for approximating the 3D path. The main dif-
ferences of their approach and our work in the present
paper is that their 3D path is not tailored to lie on the
most visible structures but rather at borders of structures
in the data. Furthermore, where the volume rendering
alters the opacity using transfer functions, they do not
consider the local contribution to the final pixel color
but the local opacity which does not necessarily corre-
spond to “visually distinct structures” [ONI*08]. Another
technique aiming at segmenting structures in volumetric
data by painting brushes in 2D has been introduced by
Wan et al. [WOCHI12]. Their approach is specifically
designed for confocal microscopy data where interesting
structures are highlighted by staining. The approach is
not universally applicable for other types of data. Chen et
al. [CSS08] for interactive volume sculpting using stroke

input. However, the paper demonstrates the technique
only for volume renderings exhibiting only completely
opaque surface structures. The Volume Cutout technique
by Yuan et al. [YZNCO5] also segments 3D structures us-
ing 2D sketches, but the sketches remain completely 2D
in their approach. Yu et al. [YEII12] introduce a tech-
nique selecting regions in 3D point clouds using sketched
lassos.

In the context of vessel segmentation, Diepenbrock and
Ropinski [DR12] described a technique to trace a cen-
terline in a rendering of a vessel by simply drawing a
line on top of the vessel. Parts of their approach are in-
spired by Owada et al. [ONIO5]. They use a path with
lowest cost together with an active contour approach to
detect the correct intended 3D line of interest. Unfortu-
nately, the description of the weights (or costs) used for
the lowest cost path remains vague. Another technique
using a lowest cost paths to obtain skeletons of 3D struc-
tures has been presented by Abeysinghe and Ju [AJ09].
Their method however is completely data-based (In their
case this means intensity-based). They do not consider
any volume rendering.

Kohlmann et al. [KBKGO09] use their contextual 3D
picking technique also to allow the user to draw lines
in or on top of volumetric structures. Their technique is
not based on visibility consideration but on meta-data and
thus can yield completely invisible paths. They cope with
shortly occluded objects using the available meta data and
following only the type of the structure that has been se-
lected by the contextual picking where the stroke started.

Strokes and other interaction metaphors known from
2D image editors have not only been used to select and/or
segment structures in 3D rendering but also to change
the transfer function and thus the rendering itself. The
most recent approach in this direction, called WYSI-
WYG Volume rendering, has been conceived by Guo et
al. [GMY11].

3 Motivation

The work presented in this paper is motivated by two
different types of interaction techniques that we al-
ready mentioned in the introduction: picking visible
structures in images generated by direct volume render-
ing [WVFH12] and selecting line structures in volumetric
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Figure 1: Volume rendering of CT data set. (a) Line, as drawn onto the DVR image in two dimensions. (b)-(d) Other
perspective showing the 3D nature of the resulting line. (b) 3D line using WYSIWYP directly. (c) 3D line using

WYSIWYP with median filter. (d) 3D line using VisiTrace.

data [ONIO5] [DR12]. Both techniques are well justified
and good implementations exist. Yet there is no literature
describing a combination of both techniques, i.e. a tech-
nique for tracing lines lying in or on top of or in 3D struc-
tures visible in a direct volume rendering. The present
paper aims at filling this gap by introducing such a tech-
nique (“VisiTrace®) in Section 4.

One could be tempted to simply apply visibility ori-
ented picking [WVFH12] for each of the positions along a
stroke drawn by the user. However, this can result in very
jaggy lines (see Figure 1(b)) because structures touched
by neighboring pixels might exhibit a very similar vis-
ibility. In such a case, the picked position will repeat-
edly jump between the two (or more) similarly visible
structures. Application of a median filter to the 3D curve
does not resolve this problem entirely (see Figure 1(c)).
To avoid such jumping the presented technique considers
more than one visible location for each pixel and tries to
find the most plausible path along these locations.

When working with VisiTrace it becomes evident that
in some cases, like shown in Figure 6, it is undesirable to
strictly stick to the request for visibility. For these cases a
modified version relaxing the visibility constraint, while
still considering only the rendered image, is introduced in
Section 5.

4 VisiTrace

In the following, we first give an overview of the Visi-
Trace method and describe the underlying algorithmic de-
tails afterwards. The overall approach consists of six main
phases and one optional step:

1. The user draws a stroke on the DVR image using the
mouse (Figures 1(a) and 6 top left). For all pixels
hit by this drawing action a ray is cast in viewing
direction.

2. For each ray the WYSIWYP algorithm [WVFHI12]
is executed. The algorithm is modified in two re-
gards:

(a) Instead of only the highest jump of accumu-
lated opacity, all detected intervals are consid-
ered (Figure 2(b)).

(b) The locations corresponding to all jumps are
stored.

3. A graph containing all stored locations is built: the
locations are the nodes of the graph and the edges
connect all locations belonging to one viewing ray
with all locations belonging to the neighboring ray
(Figure 2(c)).

4. Weights derived from the locations of the jumps and
the corresponding opacity are assigned to the edges.



(a) Step 1 (b) Step 2

(c) Steps 3&4

(d) Steps 5&6

Figure 2: The steps of the VisiTrace algorithm. See Section 4 for a detailed description of the algorithm and its steps.

5. Dijkstra’s algorithm [Dij59] is executed on the graph
to find the shortest path that consists of exactly one
node on each viewing ray.

6. The locations contained in the shortest path are con-
nected to form a three-dimensional line strip (Fig-
ure 2(d)).

7. Optional: Global filters are applied as post-
processing for the line strip.

We dedicate a separate subsection to each step of the
algorithm steps.

4.1 Drawing

In this first step the only user interaction, namely the
user drawing on top of the direct volume rendering im-
age, is performed and recorded. The stroke generated
by the user is recorded as array of 2D pixel coordinates
returned by mouse events. Because the events coming
of the mouse are not equidistant and continuous in the
sense that the pixels form a connected line, we resample
the line strip obtained by connecting the positions from
the mouse events. The resulting pixel locations are ei-
ther connected or equidistant (depending on an optional
user-defined parameter). These 2D coordinates are trans-
formed to world coordinates (3D). The resulting points
Pii€{0,...,N—1} are stored for further processing. For
each point P’ a viewing ray R’ is traced through the vol-
ume (Figure 2(a)).

4.2 Detecting Visible Structures

With the viewing rays R; at hand we extract the most vis-
ible volumetric structures along each ray. For this pur-
pose we employ the visibility oriented picking approach
described by Wiebel et al. [WVFH12]. While their algo-
rithm extracts only the single most visible structure along
the ray, we aim at having a relatively smooth 3D curve
and thus are interested in considering also less visible
structures. Hence, the locations vi.k € {1,...,J} of the
J highest jumps of accumulated opacity along the ray R’
are stored (dots in Figure 2(b)). The locations are consid-
ered candidates for being members of the final 3D curve.

Together, steps 1 and 2 simply collect and store the lo-
cation information needed for the following steps.

4.3 Graph Generation

Steps 3 to 6 try to find the best 3D line that runs through
exactly one location v}'( of each ray and contains as
many “most visible” locations as possible without cre-
ating many spikes due to negligible noise in the volume
rendering. The optimization is carried out by a shortest
path algorithm on the specially defined graph. This graph
is created in step 3 of the algorithm.

The graph consist of the v}'C as nodes and directed edges
¢, connecting nodes v/ from ray R’ and vir! from R
(see Figure 2(c)). The direction of the edges corresponds
to the direction of the originally drawn stroke. A path
along the directed edges will represent the final 3D curve.
To provide an equally probable origin and target for the
shortest path we add an artificial start node as well as
an artificial end node. The start node is connected to all

nodes vg of the first ray, and all nodes viv ~1 of the last ray



have edges connecting them to the artificial end node.

The size of the graph depends on the number of rays N
and on the average number of jumps per ray J. Thus the
number of nodes is N -J 42 and the number of edges is
2-J+ (N —1)-J% The overall complexity of the graph
thus is O(NJ?). As the number of steps along the longest
ray in the DVR is a sensible constant limit for J, the com-
plexity of the graph for a certain rendering can be consid-
ered to be O(N).

4.4 Edge Weights

To obtain the final 3D curve from the graph described in
Section 4.3 we employ a shortest path algorithm which
we describe in Section 4.5. A clever choice of the weights
assigned to the edges in step 4 is crucial for the shortest
path algorithm’s result. After thorough investigation we
decided for weights that are a combination of the spatial
location of the selected nodes and the magnitude of the
corresponding jump in accumulated opacity. The actual
weight function and the reasoning for its design are de-
scribed in the following.

Our reasoning is based on a number of requirements
for the behavior of the final 3D curve. We derive these
requirements from the abstract yet basic application sce-
narios show in Figures 3(a)-(d).

Requirement 1 If two path variants, differ in the mag-
nitude of their opacity jumps, but are equivalent other-
wise, the one with the higher jumps should be chosen (it
is more visible and thus probably intended by the user).
(Figure 3(a))

There is no reason to change the structure early or late
apart from the varying opacity jump magnitude.

Requirement 2 If the opacity jumps mentioned in Re-
quirement 1 are similar, both path variants should be
equally likely.

Requirement 3 Avoidable changes of the structure the
path runs on should only be performed if the opacity jump
of the continued structure is much smaller than the one of
the newly appearing structure. (Figure 3(b))

Here we assume that a user usually wants to select con-
tinuous structures.

Requirement 4 Changing the structure should be less
likely than staying on it (when opacity values are equal).
For this reason, the spatial position of the nodes must be
considered.

Thus, two structures having the same opacity jumps can
be weighted differently in order to achieve a “smoother”
path.

Requirement 5 The weight of straight structures should
be very low to avoid devaluating the cost of a structure
change.

Requirement 6 If a structure change is unambiguous, it
should not be weighted depending on the depth difference
of the two structures. (Figure 3(c))

It would be desirable that the selected structure in Fig-
ure 3(c) only depends on the opacity jumps because it un-
ambiguously specifies what is visible here.

Requirement 7 The weight of slightly bent structures
should not be much higher than that of a straight structure
because a followed structure might be oblique in space
and might thus cause a longer path without an actual
structure change. (Figure 3(d))

4.4.1 Opacity Weighting

Above, we mentioned that it is desirable to let the mag-
nitude of opacity jumps for candidate locations have an
influence on the final weight of an edge (Requirements 1-
3). For an increasing opacity jump magnitude, the goal is
an increased probability for an edge to be in the shortest
path and thus a decreasing edge weight. Therefore, and
because the magnitude of opacity jumps is in [0, 1], we set
wa(v;, V;:Ll) := 1 — (magnitude of opacity jump vfjl).
The opacity of the previous jump v;» has already been
incorporated in the weight of the preceding edge and is
thus neglected here. A further modification of the weight
does not seem necessary because the opacity influence of
WYSIWYP working in the same way has proven to be
effective.
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Figure 4: Tllustration of distance types for edge weighting.

4.4.2 Distance Weighting

Requirements 4-7 imply that the edge weights should also
depend on the relative positions of the the graph nodes.
We identified two possible ways to incorporate the rela-
tive positions into the weight function. Both can be de-
scribed best by using Figure 4. The first way is simply
using the Euclidean distance between the nodes, i.e. the
length of the geometric representation of the edge con-
necting the nodes. In Figure 4 this corresponds to the
lengths of SA=a, SB=b or SC=c. The second way is
to use changes in the distance between the node and the
camera. This correspond to the distances TA, TBor TC
in Figure 4.

We choose the Euclidean distance because its rate of
growth (when stepping away from T') is smaller in the
beginning (Requirement 7). Furthermore, it assigns suffi-
ciently small weights to very small distances. As the rays
are very close because of the resampling, the fact that the
Euclidean distance also depends on the distance between
the rays does not violate Requirement 5.

To obtain the weights from the Euclidean distances, we
normalize all distances to lie in [0, 1] by dividing by the
overall maximum distance:

v, v

Wy =

~ max vyt
rs,t

The weight function w, has been devised in an effort to
fulfill most requirements related to distance. However, in
favor of an intuitive weight function we decided to violate
Requirement 6. Functions fulfilling Requirement 6 by the
introduction of special cases appeared to be unreliable.

4.4.3 Combined Weight

The partial weights incorporating spatial distance and
opacity jumps have been described above. They can be
combined to form the final weight function w(v;,v;;“)
now. In summary, the combined function should have the

following properties:

e Increasing opacity jump magnitude should imply in-
creased probability for the jump location to be in the
final path. Thus

— w is strictly increasing with wq,

- wg =~ 0= w =0, so that completely opaque
structures are selected with very high probabil-
ity

e Large distances between jump locations should in-
crease w
— w is monotonically increasing with wy

- wg = 0= w=0, so that close jump locations
are chosen with very high probability



Figure 5: Plots of combined weight functions. Small dif-
ferences in distance (which might result from an oblique
structure) produce a smaller weight in w,.

A straight forward choice fulfilling these criteria would be
Wi 1= W - Wy.

This function works well in many cases but leaves room
for improvements regarding Requirements 5 and 7. In
order to give very small differences in distance (which
might result from an oblique structure) an even lower in-
fluence on the final path we use

wp 1= W(X-Wd2.

In our experiments this function yielded the best results.
A visual comparison of w; and w = w» is provided in Fig-
ure 5.

4.5 Shortest Path

In the fifth step Dijkstra’s shortest path algorithm [Dij59]
is applied to the graph equipped with edge weights de-
scribed above. The algorithm searches for a path between
the artificial start node and the artificial end node. Be-
cause the graph contains O(N) edges, a time complexity
of O(NlogN) can be achieved using an implementation
based on a Fibonacci heap [FT84].

4.6 3D Curve

The shortest path obtained in the previous step is easily
translated into the final 3D curve. The artificial start and
end nodes are removed from the obtained path as they

do not correspond to any spatial location. The spatial
locations, that is, the jump locations, of the remaining
nodes form the final 3D curve. We simply connect them
by straight lines. However, one could also fit a smooth
curve through these positions to beautify the curve ren-
dering. The latter should, however, be performed after the
optional 7th step.

4.7 Optional Filtering

Step six already establishes the desired 3D curve. If users,
however, would like to have a smoother curve than can be
obtained by the previous steps, we provide the possibility
to filter the 3D curve. We use a nine point median filter
moving along the curve. This will result in a smoother
curve but can deviate from the actually rendered struc-
tures to some extent.

5 VisiTrace Extended

The algorithm as described up to this point achieves the
goal of tracing lines on top of visible structures (Figure 6,
top). In some cases, however, the user might be interested
in tracing a line that stays on the object where it started as
long as possible (Figure 6, lower right) and ignore cross-
ing objects. This is definitely not possible when applying
WYSIWYP to each ray separately because a crossing ob-
ject, as in the top right image of Figure 6, might be the
most visible object and would thus always be selected by
WYSIWYP. VisiTrace, using the shortest path approach,
has similar problems when the crossing object is com-
pletely opaque. Only one candidate will be found along
the ray in this case (see Figure 7 upper right). The desired
result, shown in the lower right image of Figure 6 and
the lower row of Figure 7, can be achieved by using Vis-
iTrace with down-scaled opacities along the viewing ray.
This down-scaling, achieved by dividing the opacity val-
ues of all samples by the maximum number of samples,
makes all structures transparent to some degree, leading to
candidate points also behind originally opaque structures.
In other words the down-scaling allows the picking algo-
rithm to look through the originally completely opaque
crossing structure (see Figure 8 and Figure 7 lower right).
The resulting opacities do not correspond to the actually
perceived opacities anymore, but lead to the desired 3D



Figure 6: From top left to bottom right: View at 3D line
from direction from which 2D line was drawn on screen;
other perspectives showing 3D lines resulting from 2D
line by direct picking, VisiTrace, and VisiTrace with alpha
scaling.

curve which intentionally does not run only on the visible
structures. Figure 7 illustrates the generated graphs for
VisiTrace with and without opacity scaling. It is obvious
that the relatively smooth line in the lower left image is
not achievable using the graph for the unscaled opacities
in the upper right image.

We expect the user to point intentionally on visible
structure first. Thus we deactivate down-scaling for the
first position to get the actually visible depth there. In
practice, this ensures that we obtain the desired 3D curve.

We note that we also evaluated the opacity peeling tech-
nique by Rezk-Salama [RSKO06] to handle the shortly oc-
cluding structures. While opacity peeling is very useful
for making non-visible parts of volume renderings visi-
ble, employing it for VisiTrace failed because it was not
possible to choose a generally appropriate value for the
technique’s lower bound T_1ow.

The usual result of VisiTrace is a 3D line running on
top of certain structures of the direct volume rendering.

Figure 7: Left column selected curve, right column corre-
sponding graph representation (weights color coded). Top
row without opacity scaling, lower row with opacity scal-
ing.

If the center of the jump intervals is used instead of the
first position, VisiTrace also allows to trace lines in visible
volumetric structures. This can be especially interesting
for tubular structures.

6 VisiTrace Applications

The 3D curve resulting from the VisiTrace algorithm can
be used in various ways. In general, its use only depends
on the application context of the direct volume rendering
it is applied to. We picked out some applications which
can be of interest for a wide range of scientific and medi-
cal visualization tasks and describe them in the following.

The simplest and most obvious application is to mark
visible structures in the rendering. This can be useful for
exploring the data as well as for discussions between users
working together. Due to this application’s simplicity we
will not provide a deeper discussion here. More elaborate
applications will be discussed instead.
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Figure 8: Illustration of the effect of opacity scaling on
the accumulated opacity. Original on the left, scaled on
the right. In the scaled case both peaks of the local opacity
are reflected in the accumulated opacity.

6.1 Automatic Viewpoint Selection Using
VisiTrace

An automatic selection of good view points on specific
structures in DVRs can aid fast navigation and data ex-
ploration. A number of different techniques to deter-
mine good views has been presented in the past. Such
techniques use different measures to determine the view
points. Examples of the used measures are

e a single 3D location together with context informa-
tion [KBKGO7],

¢ information theoretic measures for viewpoint “good-
ness” [BS05], [VMNOS],

e high-dimensional feature clusters based on gradient
variation [ZAM11],

e high-intensity features and their distribution (using
principal component analysis, PCA) [KUBS12],

e and topological features of the original scalar
field [TFTNOS].

In contrast to these methods, we propose to use the 3D
curve obtained by VisiTrace to mark the desired features
in the volume rendering and then compute a viewpoint
providing the best view toward the 3D curve. We design
this best view to have two balanced properties: the curve
should be occluded by the DVR as little as possible, and
the structure of the curve should be perceivable as good
as possible.

In order to determine how strongly the curve is oc-
cluded if viewed from possible view points, we perform
the following procedure for candidate points can;, i €

4

Figure 9: Upper row: Original perspective when stroke
was drawn. Lower row: Corresponding reoriented per-
spective providing best view. In left column a line on top
of the structure is selected, in right column a line in the
center of the structure is selected. The dashed line shows
the approximate shape of 3D curve that is hidden because
it is in the center of the structure. In the corresponding
reoriented view the curve is visible because it is viewed
from the side and thus less occluded.

{0,...,C — 1} equally distributed on a sphere ! surround-
ing the whole 3D curve. A ray canR; is cast from the cur-
rent candidate point can; to every point on the curve. For
each of these rays the opacity is accumulated using the
same sampling distance as the direct volume rendering.
The accumulated opacities for all these rays is summed
up. The sum represents the visibility of the curve.
Choosing the candidate point with the lowest sum of
accumulated opacities, satisfying results can be achieved
in most cases. However, in some cases the direction yield-
ing least occlusion may not be optimal. Consider a rela-
tively straight curve. If the best viewing direction would
be nearly parallel to this curve than the selected view
would not provide much insight because the curve would
cover only a very small part of the screen space. In or-
der to avoid this, we weight the summed opacities of the
view points using the overall shape of the curves. The
shape of a curve can be characterized by the eigenvalues

'We choose the radius of the sphere to be two times the diagonal of
the bounding box of the curve and the center of the sphere to lie in the
center of the bounding box.



e] > ey > ez and eigen vectors eg, e, e3 obtained using a
PCA of the positions representing the curve. The relations
of the eigenvalues can be used to differentiate between
three different shapes [WPG*97]: linear, planar (e.g. a
spiralling 3D curve lying on a flat surface) or spherical
(e.g. circular jumpy 3D curve). Three parameters ¢;, ¢,
and ¢, can be obtained. The largest of these parameters
indicates the approximate shape of the curve. For each of
the three shape types a different weighting is used:

Linear The summed opacities of the candidate directions
can; are weighted by the dot product? can; - e;. This
disqualifies viewing directions (nearly) parallel to
the curve.

Planar The summed opacities of candidate directions
can; are weighted by (1 — (can; - e3)). This pro-
motes directions pointing toward the “flat* part of
the shape.

Spherical All directions are weighted equally.

Note that low weights promote the corresponding direc-
tion because the direction with lowest summed opacities
is chosen as best viewing direction. For the final view the
camera is located at the candidate position on the sphere
corresponding to the best viewing direction and is looking
toward the center of the sphere.

As an alternative to using the best viewing angle, one
can choose the viewing angle (out of the best, e.g., 5 view-
ing angles) lying closest to the initial viewing direction.
This maintains a certain kind of view coherence.

6.2 Distance Measurements Using VisiTrace

The standard interaction mode of VisiTrace is free-hand
sketching. In this this mode it is easy to trace structures of
arbitrary shape. In contrast, drawing straight lines is very
tedious in this mode. Nevertheless, straight lines have
an important application. They can be used to measure
straight distances on top of or in visible 3D structures.

In order to allow users to measure such distances we
provide a second interaction mode. In this mode the user
specifies two points in screen space and the system inter-
polates samples P’ on a straight line between these points.

20nly normalized vectors are considered and the norm of the dot
product is used. Thus the weights lie in [0, 1].
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The samples P’ are then processed by the usual VisiTrace
pipeline. The resulting 3D curve is straight in the origi-
nal perspective but follows the visible 3D object. Sum-
ming up the lengths of the line segments making up the
3D curve, or fitting a spline through the 3D positions and
computing its length, the desired straight distance mea-
surements can be achieved.

6.3 Further Applications

As mentioned in the beginning of this section more appli-
cations can be envisioned. Examples of such applications,
which we might address in future work, are the selection
of cutting planes best fitting the curve or even a curved
planar reformation [KFW™*02] based on the VisiTrace re-
sult.

7 Results

In this section, we summarize the types of interaction and
selection in volume renderings that can be achieved by
VisiTrace, its extension using opacity scaling, and the pro-
posed automatic view selection.

Using the shortest path search in the VisiTrace graph,
one can achieve plausible 3D curves running on top of rel-
atively transparent volumetric regions. This can be shown
by applying the algorithm to the human computed tomog-
raphy data mentioned as being problematic in the Moti-
vation section. The result is depicted in Figure 1(d). In-
stead of repeatedly jumping between the organ in the fore-
ground and the bone in the background as in Figures 1(b)
and (c), the 3D curve stays on top of the organ structure.
More examples for this effect are shown during the dis-
cussion of the extensions below and in the video accom-
panying this article.

VisiTrace alone can only achieve the just described ef-
fect. If users are interested in ignoring some foreground
structures they need to activate opacity scaling. Figures 6
and 7 illustrate how the scaling enables the user to select
continuous structures shortly being in the background. In
Figure 6 a synthetic test data set is used to highlight the
effect. The volume rendering of a real world magnetic
resonance data set shown in Figure 7 support the findings
of Figure 6.



Figure 10: Top: Original perspective and opacity-based
reorientation of DVR of engine data set. Bottom: Reori-
entation based on opacity and direction weighting.

Figure 9 demonstrates the usefulness of the view selec-
tion approach. In the left column the front of a visible
structure has been selected by a stroke and the view has
been reoriented to provide a view toward the structure and
the 3D curve on top of it. The reorientation of the view
is even more useful when selecting curves inside, i.e. in
the center, of visible structures. This has been done in
the upper image of the right column. The original stroke
is illustrated using the dashed line. The 3D curve itself
is not visible from this view point because it lies inside
the relatively opaque structure. Reorienting the view as
in the lower image of the same column, reveals the the
location of the 3D curve. From this automatically found
view point, the curve is visible because it is seen from the
side of the structure where only a very thin layer covers
the curve.

The effect of the shape-based weighting is shown in
Figure 10. Although the curve is least occluded when
looking into the tube like engine part (top right image),
our method chooses a different viewing direction (lower
image). In the upper right image, where only the opacity
is considered, the shape of the curve is hardly perceiv-
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able because the viewing direction is nearly parallel to the
curve. Using the direction weighting the lower image can
be obtained. In this image the shape of the curve as well
as the curve itself are visible.

7.1 Timings

In the video accompanying this article, we demonstrate
the interactive nature of our approach. If we use VisiTrace
without opacity scaling the final 3D curve is always avail-
able almost instantly, that is in less than a second. With
activated opacity scaling producing more candidate points
per ray, long strokes can lead to a comparatively large
graph and thus to a longer computation for obtaining the
shortest path through the graph. Nevertheless, comput-
ing the 3D curve is still faster than carefully drawing the
original stroke, that is in the order of a few seconds.

8 Conclusion

In this paper, we have introduced a new way of interact-
ing with direct volume rendering. The presented approach
allows to draw lines and obtain corresponding 3D curves
based on features visible in the rendering. The 3D curves
are extracted in soft real-time and can thus be integrated
into an every-day work-flow dealing with DVR. We dis-
cussed a number of applications of the 3D curves. In this
course we described a way to automatically generate good
view points for observing the curves and the correspond-
ing structures. As the presented method is focused on vis-
ible structures it is naturally and intentionally dependent
on what is visible, i.e. on the chosen transfer function and
the viewing direction when drawing the initial 2D stroke.
A short video accompanying this paper demonstrates the
method in action.

8.1 Future Work

This work extends an approach by Wiebel et
al. [WVFHI2] by allowing to draw strokes, i.e. one-
dimensional structures, instead of selecting points, i.e.
zero-dimensional structures, on visible features of direct
volume renderings. We plan to increase the dimension
even further and obtain surfaces adapting to the visible
3D structures like a plaster cast. This will probably lead



to a formulation similar to work by Grady [Gra06]. We
are currently working on creating such surfaces from
closed strokes or user drawn brushes in the screen space.

Drawing lines with the mouse can be imprecise and
cause fatigue. We plan to extend our implementation to
support touch screens and digital table input devices as is
done other work [YEII12], [WOCH12]. This extension
is straight forward because VisiTrace only takes the pixel
positions as input and is thus independent from the actual
input device.
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