
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD AND AMBROS M. GLEIXNER

Undercover Branching

This paper is to appear in the Proceedings of the 12th International Symposium on Experimental Algorithms (SEA 2013) held June 5–7, 2013, in Rome, Italy.

ZIB-Report 13-14 (April 2013)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


Undercover Branching∗

Timo Berthold and Ambros M. Gleixner†

April 2013

Abstract

In this paper, we present a new branching strategy for nonconvex
MINLP that aims at driving the created subproblems towards linearity.
It exploits the structure of a minimum cover of an MINLP, a smallest set
of variables that, when fixed, render the remaining system linear: when-
ever possible, branching candidates in the cover are preferred.

Unlike most branching strategies for MINLP, Undercover branching is
not an extension of an existing MIP branching rule. It explicitly regards
the nonlinearity of the problem while branching on integer variables with
a fractional relaxation solution. Undercover branching can be naturally
combined with any variable-based branching rule.

We present computational results on a test set of general MINLPs from
MINLPLib, using the new strategy in combination with reliability branch-
ing and pseudocost branching. The computational cost of Undercover
branching itself proves negligible. While it turns out that it can influence
the variable selection only on a smaller set of instances, for those that are
affected, significant improvements in performance are achieved.

1 Introduction

State-of-the-art solvers for generic mixed integer linear programs (MIPs) and
mixed integer nonlinear programs (MINLPs) are based on the branch-and-bound
paradigm [23]. The question of how to split a given MIP or MINLP into sub-
problems, commonly referred to as the branching step, lies at the heart of any
branch-and-bound algorithm. Its main purpose is to improve the dual bound
by, e.g., eliminating fractionality of the integer variables and, for MINLP, reduc-
ing the convexification gap between the nonconvex constraint functions and the
relaxation. In MIP solving, typically an LP relaxation is solved for the bound-
ing step. For MINLP, although an NLP relaxation is a natural choice, most
state-of-the-art solvers also rely on an LP relaxation.

The branching rule is one of the components with highest impact on the
overall performance of MIP solvers [12, 2]. Consequently, the literature has seen
many publications on efficient branching rules, which will be reviewed in the next
∗This paper is to appear in the Proceedings of the 12th International Symposium on Ex-

perimental Algorithms (SEA 2013) held June 5–7, 2013, in Rome, Italy.
†Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, berthold,gleixner@zib.de.

The authors gratefully acknowledge the support of the DFG Research Center Matheon Math-
ematics for key technologies in Berlin and the Berlin Mathematical School.

1



paragraphs. For MINLP, up to now, research has mainly focused on adopting
MIP branching rules [29, 7].

In mixed integer programming, the most common methodology is variable-
based branching (an exception being [21]), i.e., considering integer variables with
a fractional LP solution value as branching candidates. State-of-the-art branch-
ing rules, sometimes also called variable selection heuristics, estimate the impact
that splitting a variable’s domain has on the dual bound and the solvability of
the created subproblems. A very prominent approach is the usage of so-called
pseudocosts [8], an estimate of the increase that branching on a variable has on
the optimum of the LP relaxation.

In [25], it is shown that initializing pseudocosts by strong branching [5, 6]
is beneficial, an approach further refined in reliability branching [4]. Hybrid
branching [3] combines reliability branching with VSIDS [26] and inference val-
ues [24], two common branching dichotomies in satisfiability testing and con-
straint programming, respectively. Methods that combine pseudocost and strong
branching information can be considered to be the state-of-the-art for MIP
solvers.

In recent years several publications have investigated new paradigms for
variable-based branching schemes that show superior performance on impor-
tant classes of hard MIPs. Kılınc et. al. [22] suggest to use conflict learning
information for branching on 0-1 integer programs. To this end, they run a sam-
pling phase of 500 branch-and-bound nodes during which they collect conflict
constraints, restart the solution process, and prefer branching on variables that
appear in short conflict constraints during the second phase.

Backdoor branching [15] goes one step further: it applies multiple restarts,
attempting to find a good approximation of a backdoor. Here, a backdoor is
a (preferably small) set of variables such that, whenever these variables get
assigned integer values, solving an LP on the remaining variables gives a proof
of feasibility or infeasibility. After each restart, the approximated backdoor is
computed by solving a set covering problem. Branching is exclusively performed
on backdoor variables until all of them are fixed. Non-chimerical branching [16]
is a criterion to rule out candidates for strong branching which are not promising.

For nonconvex MINLP, it is possible that the LP relaxation is integral and
cannot be strengthened further by gradient cuts (see Footnote 3), while some
of the nonconvex constraints are still violated. In this case, spatial branching
can be applied, i.e., branching on variables contained in violated nonconvex
constraints, including continuous variables. Subsequently, the relaxation can be
tightened in the created subproblems; thereby, the infeasible relaxation solution
is cut off.

To select a branching variable for spatial branching, Tawarmalani and Sahini-
dis [28] suggest performing a so-called violation transfer. This estimates the im-
pact of each variable on the problem by minimizing and maximizing a Lagrangian
function over a neighborhood of the current relaxation solution when holding all
other variables fixed. For a linear relaxation, this is similar to selecting variables
with large reduced cost.

In [7], the concept of pseudocosts has been extended to continuous variables
by investigating suitable counterparts for the violation of integrality, which is
used in pseudocost formulas for MIP. Their computational analysis suggests

2



that pseudocost-based branching is superior for hard MINLPs, while for easy
instances and nonconvex NLPs it is outperformed by violation transfer or even
simpler violation-based rules.

In this paper, we suggest a branching strategy that aims at driving the
subproblems towards linearity. To this end, Undercover branching restricts the
set of branching candidates to a minimum cover [9] of an MINLP, i.e., a smallest
set of variables that, when fixed, linearizes all constraints. It builds on the ideas
of the Undercover heuristic [9, 10], which computes feasible solutions for MINLPs
by solving a sub-MIP defined via a minimum cover.

Whereas many branching rules are history-based and share heuristic compo-
nents, Undercover branching exploits structural information of the problem in an
exact manner. In the spirit of backdoor branching, it features a pre-selection rule
for branching candidates: independent of the current subproblem, Undercover
branching globally separates a set of variables with a certain predicate from
others. Consequently, it can be combined with any variable-based branching
rule.

A major characteristic of Undercover branching is that it respects informa-
tion on the nonlinearity of the problem already in the branching decisions for
fractional integer variables, not only during spatial branching. From a com-
putational point of view, Undercover branching has the benefit that it costs
little additional time. In the way that we suggest, a minimum cover has to be
computed only once in the beginning of the solution process. Our experiments
show this to be computationally cheap in practice. In contrast to backdoor
branching, Undercover branching does not require repeated restarts of the main
solution procedure.

The remainder of the article is organized as follows. Section 2 states a formal
definition of a minimum cover, explains how it can be computed, and analyzes
minimum cover sizes of the test problems in MINLPLib [13]. In Section 3, we
present the general idea and implementational details of the newly proposed
branching strategy. In Section 4, we evaluate the applicability and the impact
of Undercover branching on instances from MINLPLib. Finally, we discuss the
results and give an outlook on future work in Section 5.

2 Covers of mixed integer nonlinear programs

The branching strategy investigated in this paper relies on the concept of a
minimum cover, a structural feature of an MINLP that is a measure for its
“grade of nonlinearity”. This notion has been introduced in [9] and utilized for
the design of a primal heuristic. In the following, we give a brief summary of
the main results from [9, 10].

Definition 1 (cover of an MINLP). Let P be an MINLP of form

min cTx

s.t. gk(x) 6 0 for k = 1, . . . ,m,

`i 6 xi 6 ui for i = 1, . . . , n,

xi ∈ Z for i ∈ I,

(1)

3



where c ∈ Rn, gk : Rn → R, `i ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, `i < ui, and
I ⊆ {1, . . . , n}.1 We call a set of variable indices C ⊆ {1, . . . , n} a cover of the
function gk if and only if for all x∗ ∈ [`, u] the set

{(x, gk(x)) : x ∈ [`, u], xi = x∗i for all i ∈ C} (2)

is an affine set intersected with [`, u]× R. We call C a cover of P if and only if
C is a cover of all constraint functions g1, . . . , gm.

Trivial examples of covers are the set of all variables or the set of all vari-
ables appearing in nonlinear terms. As will be shown at the end of this section,
however, many instances of practical interest allow for significantly smaller cov-
ers. Minimum covers can be computed generically by solving a vertex covering
problem. This is a crucial observation for exploiting them in an MINLP solver.

Definition 2 (co-occurrence graph). Let P be an MINLP of form (1) with
g1, . . . , gm twice continuously differentiable on the interior of [`, u]. We call
GP = (VP , EP ) the co-occurrence graph of P with node set VP = {1, . . . , n}
given by the variable indices of P and edge set

EP =
{
ij : i, j ∈ V,∃k ∈ {1, . . . ,m} : ∂2

∂xi∂xj
gk(x) 6≡ 0

}
,

i.e., an edge connects nodes i and j if and only if the Hessian matrix of some
constraint has a structurally nonzero entry (i, j).

This leads to the following result:

Theorem 1. Let P be an MINLP of form (1) with g1, . . . , gm twice continuously
differentiable on the interior of [`, u]. Then C ⊆ {1, . . . , n} is a cover of P if and
only if it is a vertex cover of the co-occurrence graph GP .

Proof. See [10].

Since vertex covering is NP-hard [18] and any graph can be interpreted as
the co-occurrence graph of a suitably constructed MINLP, we obtain

Corollary 1. Computing a minimum cover of an MINLP is NP-hard.

In practice, however, minimum covers can be computed rapidly by solv-
ing a binary programming formulation of the vertex covering problem with a
state-of-the-art MIP solver as has been argued already in [10]. As an example,
we have computed minimum covers for 255 instances2 from MINLPLib [13] for
the present paper. Using the MINLP solver SCIP 3.0 [27] and the expression
interpreter CppAD 20120101.3 [14] for obtaining the sparsity patterns of the
Hessians, the binary programs were all solved within the root node and took at
most 0.2 seconds on the hardware described in Sec. 4.

1W.l.o.g. we may assume a linear objective, because for a nonlinear objective f(x), we can
always append a constraint f(x) 6 x0 and minimize the auxiliary variable x0.

2This excludes 18 instances that cannot be handled by SCIP 3.0, e.g., because they contain
trigonometric functions: blendgap, deb{6,7,8,9,10}, dosemin{2,3}d, prob10, var_con{5,10},
water{3,ful2,s,sbp,sym1,sym2}, and windfac.

4



2
2

1
9

5
1

3
2

1
6 1
7

1
1

9

6

1
1

1

8

2

8 9

2 3

1
4

1
1

3

20% 40% 60% 80% 100%

85

170

255

in
st
an

ce
s

Figure 1: Distribution of the sizes of a minimum cover relative to the total number of
variables over 255 instances from MINLPLib. Numbers above the bars state how many
instances fall in the corresponding 5% interval. Shaded bars indicate the proportion
of minimum covers with integer variables only. The cumulative distribution function
refers to the right-hand scale.

The distribution of the sizes of minimum covers is depicted in Fig. 1. One
third of the instances allows for covers consisting of less than 14% of the vari-
ables and another third of the instances has covers with less than 36% of the
variables. As indicated by the shaded bars, 65 instances have a minimum cover
with only integer variables. For the vast majority of 163 instances it contains
only continuous variables. The minimum covers for the remaining 27 instances
are formed by continuous variables complemented by a small fraction of less than
1% integer variables.

To summarize, we observe that the majority of problems from MINLPLib
features small covers. Note that this even holds for many instances that have
almost all variables contained in nonlinear terms. The latter underlines that the
size of a minimum cover valuably complements other measures of nonlinearity
such as number of nonlinear nonzeros, constraints, or variables appearing in
nonlinear terms.

3 Using MINLP covers for branching

Although MIP and MINLP are both NP-hard, arguably MIPs are computation-
ally easier than MINLPs. For MIP, it is possible to compute a relaxation solution
in polynomial time that only drops the integrality requirements, but respects all
constraint functions. For MINLP, solving a (nonconvex) NLP relaxation is al-
ready NP-hard. Also, generic cutting plane algorithms, which contribute a lot
to the practical success of MIP solvers, do not have a direct equivalent in MINLP.
Of course, they can be used to strengthen a MIP relaxation, but they do not
yield a finite algorithm. Last, but not least, considering today’s state-of-the-art
in optimization software, MIP codes have reached an impressive maturity and
have become a standard industry tool, whereas MINLP software has just recently
evolved and only few codes are available by now.

From this point of view it is an important observation that a cover of an

5



MINLP presents a structure that turns an MINLP into a MIP for any assignment
of the variables in the cover. Branching shrinks variables’ domains, ideally fixes
them, and therefore, branching on cover variables offers itself as a promising
strategy to drive an MINLP towards linearity. If a pure branch-and-bound algo-
rithm is applied without domain propagation techniques, the size of the cover
corresponds to the minimum number of branching decisions that have to be taken
before obtaining a linear subproblem. In particular, the following observation
holds:

Lemma 1. Let P be an MINLP of form (1) and C ⊆ I a cover of P with
`i, ui ∈ Z for all i ∈ C. Then, P can be solved by solving a sequence of at most∏

i∈C(ui − `i + 1) MIPs.

In the case of variables with infinite domain, i.e., continuous or unbounded
integer variables, branching on cover variables does not necessarily enforce lin-
earity in a bounded number of steps. Nevertheless, branching on such a variable,
and thereby tightening its domain, is likely to produce better underestimators
than, e.g., branching on an integer variable which is not even part of a nonlinear
expression. Better underestimators lead to better relaxation bounds which lead
to earlier pruning (or feasibility) of the created subproblems.

In particular, Undercover branching explicitly regards the nonlinearity of the
problem also when branching on integer variables with a fractional relaxation
solution.

We therefore suggest to use a branching strategy that prefers cover variables
over others as depicted in Fig. 2. The methods branch_int and branch_spat
in lines 7 and 10, respectively, are black box methods for which any standard
variable-based rule for branching on fractional integer variables and for spatial
branching can be used.

input MINLP P as in (1) with cover C1

set of fractional variables F2

set of candidates for spatial branching S3

begin4

if F 6= ∅ then5

if F ∩ C 6= ∅ then F ← F ∩ C6

branch_int (P , F)7

else8

if S ∩ C 6= ∅ then S ← S ∩ C9

branch_spat (P , S)10

end11

Figure 2: Undercover branching algorithm.

To perform Undercover branching, a cover of the MINLP P has to be com-
puted once before the branch-and-bound process starts. This global structure
can be exploited also by other solver components, e.g. an Undercover heuristic
as in [9, 10].

6



As a distinguishing feature, the structure used for branching is computed
exactly, at negligible cost (see previous section), and no sampling phase as,
e.g., in [22] or [15], is required. Furthermore, we do not enforce branching on
cover variables via strict branching priorities: if the candidate set lies completely
outside of the cover, we do not continue branching on unfixed cover variables,
but stick with the candidates proposed by the solver.

4 Experimental results

In this section we investigate the computational impact of Undercover branching
when combined with standard branching rules implemented in the MINLP solver
SCIP 3.0 [2, 27].

SCIP implements a branch-and-bound algorithm based on an LP relaxation
that is constructed via gradient cuts3 for convex constraints and linear over- and
underestimators of the nonconvex terms. Further algorithmic components com-
prise primal heuristics, cutting planes applied to the MIP relaxation, an extensive
presolving and propagation engine, conflict analysis, and several reformulation
steps to detect convex or convexifiable constraints at the beginning. For details,
we refer to [29, 11].

By default, SCIP applies binary branching, i.e., it splits the current node
into two subproblems. Branching on integer variables is prefered, however, not
categorically: if all integer variables have integral value in the LP solution (and
nonlinearities are still violated), SCIP continues with spatial branching even if
not all of the integer variables are fixed.

For branching on integer variables with a fractional LP value, the default
variable selection rule is hybrid reliability branching [3], which uses pseudocosts
that are initialized by multiple strong branches per variable as in reliability
branching [4]. VSIDS [26] and inference values [24, 1], two scores from sat-
isfiability testing and constraint programming, are taken into account for tie
breaking. For spatial branching, SCIP implements the pseudocost strategy “rb-
int-br”4 from [7] weighted by the violations of the constraints in which a variable
appears.

All experiments were conducted on a cluster of 64bit Intel Xeon X5672 CPUs
at 3.2GHz with 12MB cache and 48GB main memory and a time limit of
one hour. Hyperthreading and Turboboost were disabled. For the latter ex-
periment, we ran only one job per node to avoid random noise in the mea-
sured running time that might be caused by cache-misses if multiple processes
share common resources. As subroutines, SCIP was linked to the LP solver
CPLEX 12.4 [20], the expression interpreter CppAD 20120101.3 [14], and the
NLP solver Ipopt 3.10.2 [30]. To avoid interactions, we deactivated the Under-
cover heuristic. To measure tree sizes accurately, we deactivated restarts.

As test set we chose the MINLPLib [13, 17] featuring 273 instances. We
excluded 18 instances that cannot be parsed or handled by SCIP 3.0, see Foot-
note 2. 13 instances were linearized during presolving; 42 further instances could

3If a convex constraint g(x) 6 0, g ∈ C1([`, u],R), is violated at some x∗, then x∗ can be
cut off by the gradient cut ∇g(x∗)T(x− x∗) + g(x∗) 6 0.

4For this strategy, the pseudocosts are multiplied by the distance of the current relaxation
solution to the bounds of a variable when computing the branching score.

7



be solved already during root node processing, hence no branching was applied;
for two instances, branching had not started after one hour. We also removed
three instances for which SCIP 3.0 suffers from numerical inaccuracies which lead
to inconsistent solution values (independent of applying Undercover branching).
All in all, this leaves a test set of 195 instances. Note that in MINLP, even more
than in MIP, standard test sets often decompose into very easy and extremely
difficult instances, with very few medium hard problems. Also, they are typically
not as heterogeneous as, e.g., the MIPLIBs.

How often? As an initial experiment, we analyzed how often the Undercover
pre-selection can be applied to reduce the candidate set. Note that there are
two general cases when Undercover branching does not make a difference. If all
candidates lie outside the cover (e.g., when the cover is entirely continuous, but
there are integer variables with fractional LP solution), the algorithm will select
a non-cover variable; if all candidates lie inside the cover (e.g., when the set of
fractional variables is a subset of the cover), our algorithm does not yield any
impact at that node of the tree.

To this end, we ran SCIP with its default branching rules, and enforced the
pre-selection of cover variables as in Fig. 2 whenever possible. At each branching
decision taken, we recorded whether all candidates were inside the cover, all
candidates were outside, or whether the intersection was nontrivial.

It turned out that on 23 of the instances Undercover branching actually
affected the branching decisions. For a further 26 instances the candidates from
F were always included in the cover; all of these had a cover of at least 40%
of the variables. For the majority of instances, no candidates were contained in
the minimum cover used.5

This result is not overly surprising: it is explained by the fact that we are
employing minimum covers and consequently increase the likelihood that the
branching candidates are all outside the cover. However, since the computa-
tional overhead of Undercover branching is negligible, it does not degrade the
performance on the unaffected instances. It remains to be analyzed whether it is
helpful for the set of instances for which it actually affects branching decisions.

How good? The goal of our second experiment was to compare the performance
impact of Undercover branching on the 23 instances that are affected. Before
discussing the complete results, consider the small instance ex1264a as an illus-
trative example, modelling a nonconvex trim-loss problem from [19]. Figure 3
shows the actual search trees explored by SCIP 3.0 default and SCIP with Under-
cover branching added. As can be seen, both trees have similar structure, but
the number of nodes is reduced significantly because subtrees can be pruned ear-
lier. This instance indeed confirms our hope that Undercover branching helps
to drive the subproblems towards linearity faster: while without, only three
nodes are linear, with Undercover branching eleven nodes become linear. With-
out Undercover branching, linear nodes only appear in depth twelve and below,

5For 6 instances, SCIP did not branch on integer variables at all; for 140 instances, F ∩ C
was always empty. Spatial branching did not get performed for 61 instances, 111 times S ∩ C
was always empty.

8



Figure 3: Search trees explored by SCIP 3.0 for instance ex1264a with default branching
reliability/pseudocost (top, 111 nodes processed) and Undercover branching (bottom,
52 nodes processed). White nodes pruned unprocessed. Linear nodes marked black.

whereas with Undercover branching, linear nodes can be observed from depth
four onwards.

Our main hope is to reduce the number of branch-and-bound nodes processed
by exploiting the global perspective provided by a cover in addition to the local
perspective of a branching rule at a specific node. However, note that if the
base rule employed in the branch_int procedure applies strong branching on
its candidates such as the hybrid reliability rule in SCIP, then the restriction
of the candidate set affects the solving process beyond the branching variable
selection. On the one hand, computation time for solving strong branching LPs
on the excluded candidates is saved; on the other hand, variable fixings that can
be learned from strong branching might be lost.

Hence, we evaluated the impact of Undercover branching w.r.t. two base
rules: SCIP’s default reliability/pseudocost as described above, and pseudocost/
pseudocost, i.e., exchanging the hybrid reliability rule for branching on integer
variables by a pure pseudocost rule without any strong branching. The results
for those instances that could be solved by at least one variant can be seen in
Tab. 1 and Tab. 2, respectively. Using Undercover branching, for both cases two
more instances could be solved as compared to not using it.

On four instances in Tab. 1 solved by both variants, Undercover branching
increases the number of branch-and-bound nodes. This might be due to the side
effect on strong branching described above. For the majority of cases, however, it
reduces the number of branch-and-bound nodes significantly. The impact is even
more visible on the number of performed strong branches, which is decreased ten
times and only increased once. Since the main goal of Undercover branching is to
restrict the set of branching candidates, this could be expected. Finally, consid-
ering computation time, Undercover branching helps nine times, four times the
performance deteriorates. Regarding the shifted geometric means,6 Undercover
branching reduces the computation time by 79% and the number of branch-and-
bound nodes by 45%. Note that also when excluding the two positive outliers
tln4 and tln5 and one negative outlier tltr, Undercover branching still yields
an overall reduction of all considered performance measures.

6We used a shift of 100 nodes, 100 strong branchings, and 10s to compute the means.

9



Table 1: Impact of Undercover branching on number of nodes, time, and strong
branches performed for affected instances solved to optimality within one hour.

reliability/pseudocost with undercover relative [%]

instance nodes strbrs time [s] nodes strbrs time [s] nodes strbrs time

ex1263a 273 292 0.56 132 135 0.17 −52 −54 −70
ex1264a 111 218 0.33 52 120 0.08 −53 −45 −76
ex1265a 135 171 0.18 75 109 0.11 −44 −36 −39
ex1266a 59 220 0.38 101 177 0.35 +71 −20 −8
fac1 5 6 0.04 5 2 0.06 0 −67 +50
fac3 15 54 0.30 9 5 0.24 −40 −91 −20
nvs15 4 5 0.02 4 2 0.02 0 −60 0
pump 509 110 2.96 773 113 3.57 +52 +3 +21
st_e36 206 0 0.79 200 0 0.77 −3 0 −3
st_e40 19 22 0.08 25 22 0.10 +32 0 +25
tln4 2518 291 1.99 171 41 0.55 −93 −86 −72
tln5 500254 2621 373.73 7977 463 5.89 −98 −82 −98
tloss 78 227 0.19 77 166 0.12 −1 −27 −37
tltr 4 57 0.18 17 88 0.20 +325 +54 +11

shifted mean 291 144 3.68 141 79 0.77 −52 −45 −79

timed out:
tln6 4101772 4007 58% gap 17005 471 22.28 −99 −88 ·
tln7 2609508 3946 124% gap 9703667 5296 3156.38 +272 +34 ·

Table 2: Impact of Undercover branching on number of nodes and time for affected
instances solved to optimality within one hour.

pseudocost/pseudocost with undercover relative [%]

instance nodes strbrs time [s] nodes strbrs time [s] nodes strbrs time

ex1263a 166 · 0.20 163 · 0.18 −2 · −10
ex1264a 38 · 0.20 85 · 0.18 +124 · −10
ex1265a 138 · 0.21 104 · 0.40 −25 · +90
ex1266a 70 · 0.08 141 · 0.20 +101 · +150
fac1 7 · 0.05 5 · 0.05 −29 · 0
fac3 23 · 0.52 9 · 0.23 −61 · −56
nvs15 4 · 0.02 4 · 0.03 0 · +50
pump 1007 · 4.38 827 · 3.62 −18 · −17
st_e36 206 · 0.79 200 · 0.73 −3 · −8
st_e40 23 · 0.07 25 · 0.10 +9 · +43
tln4 1454 · 1.49 202 · 0.67 −86 · −55
tln5 622318 · 446.86 11013 · 8.39 −98 · −98
tloss 73 · 0.09 77 · 0.11 +5 · +22
tltr 18 · 0.17 4 · 0.16 −78 · −6

shifted mean 287 · 3.85 159 · 0.91 −45 · −76

timed out:
tln6 4963908 · 79% gap 16382 · 21.54 −99 · ·
tln7 3207274 · 226% gap 468231 · 593.74 −85 · ·

10



For pure pseudocost branching, see Tab. 2, we observe a similar behavior:
Undercover branching shows an improvement in the performance measures sig-
nificantly more often than a deterioration, in shifted geometric mean we see
improvements of 76% w.r.t. computation time and 45% w.r.t. the number of
branch-and-bound nodes.

5 Conclusion and outlook

In this paper, we have introduced Undercover branching, a new branching strat-
egy for MINLP that exploits minimum covers to drive the subproblems created
faster towards linearity. We showed that a combination of Undercover branching
with either hybrid reliability branching or pseudocost branching outperforms the
corresponding branching rules without Undercover information, yielding savings
of 45% w.r.t. the number of branch-and-bound nodes and more than 70% w.r.t.
running time in geometric mean for affected instances. The time consumed by
the branching rule itself proved negligible.

Currently, the main limitation of Undercover branching is that the fraction
of affected instances is relatively small (23 out of 195 instances). Therefore,
the main goals of our future research are to employ alternative (not minimum)
covers and to investigate the trade-off between cover size and number of affected
instances. Furthermore, we work on identifying linear subproblems with large
sub-trees, which could then be solved more efficiently using a pure MIP solver.

References

[1] Tobias Achterberg. Conflict analysis in mixed integer programming. Dis-
crete Optimization, 4(1):4–20, 2007.

[2] Tobias Achterberg. Constraint Integer Programming. PhD thesis, TU
Berlin, 2007.

[3] Tobias Achterberg and Timo Berthold. Hybrid branching. In Willem Jan
van Hoeve and John N. Hooker, editors, Proc. of the 6th CPAIOR, volume
5547 of LNCS, pages 309–311. Springer, 2009.

[4] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules
revisited. Operations Research Letters, 33:42–54, 2005.

[5] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook.
Finding cuts in the TSP (A preliminary report). Technical Report 95-05,
DIMACS, 1995.

[6] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook.
The Traveling Salesman Problem: A Computational Study. Princeton Uni-
versity Press, USA, 2007.

[7] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas
Wächter. Branching and bounds tightening techniques for non-convex
MINLP. Optimization Methods & Software, 24:597–634, 2009.

11



[8] M. Benichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and
O. Vincent. Experiments in mixed-integer programming. Math. Prog., 1:76–
94, 1971.

[9] Timo Berthold and Ambros M. Gleixner. Undercover – a primal heuristic
for MINLP based on sub-MIPs generated by set covering. In Pierre Bonami,
Leo Liberti, Andrew J. Miller, and Annick Sartenaer, editors, Proc. of the
EWMINLP, pages 103–112, April 2010.

[10] Timo Berthold and Ambros M. Gleixner. Undercover: a primal MINLP
heuristic exploring a largest sub-MIP. Math. Prog., 2013. doi:10.1007/
s10107-013-0635-2.

[11] Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP frame-
work to solve MIQCPs. In Jon Lee and Sven Leyffer, editors, Mixed Integer
Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics
and its Applications, pages 427–444. Springer, 2012.

[12] Robert E. Bixby, Mary Fenelon, Zonghao Gu, Edward Rothberg, and
Roland Wunderling. MIP: Theory and practice – closing the gap. In M.J.D.
Powell and S. Scholtes, editors, Systems Modelling and Optimization: Meth-
ods, Theory, and Applications, pages 19–49. Kluwer Academic Publisher,
2000.

[13] Michael R. Bussieck, Arne S. Drud, and Alexander Meeraus. MINLPLib –
a collection of test models for mixed-integer nonlinear programming. IN-
FORMS J. Comput., 15(1):114–119, 2003.

[14] CppAD. A Package for Differentiation of C++ Algorithms. http://www.
coin-or.org/CppAD.

[15] Matteo Fischetti and Michele Monaci. Backdoor branching. In Oktay Gün-
lük and Gerhard J. Woeginger, editors, Proc. of the 15th IPCO, pages 183–
191. Springer, 2011.

[16] Matteo Fischetti and Michele Monaci. Branching on nonchimerical frac-
tionalities. OR Letters, 40(3):159–164, 2012.

[17] GAMS. MINLP Library. http://www.gamsworld.org/minlp/minlplib.
htm.

[18] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1979.

[19] Iiro Harjunkoski, Tapio Westerlund, Ray Pörn, and Hans Skrifvars. Differ-
ent transformations for solving non-convex trim-loss problems by MINLP.
Eur. J. Oper. Res., 105(3):594–603, 1998.

[20] IBM. CPLEX Optimizer. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.

12

http://dx.doi.org/10.1007/s10107-013-0635-2
http://dx.doi.org/10.1007/s10107-013-0635-2
http://www.coin-or.org/CppAD
http://www.coin-or.org/CppAD
http://www.gamsworld.org/minlp/minlplib.htm
http://www.gamsworld.org/minlp/minlplib.htm
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/


[21] Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunc-
tions. Math. Prog., 128(1-2):403–436, 2011.

[22] Fatma Kılınç Karzan, George L. Nemhauser, and Martin W. P. Savelsbergh.
Information-based branching schemes for binary linear mixed-integer pro-
grams. Math. Prog. Computation, 1(4):249–293, 2009.

[23] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960.

[24] Chu Min Li and Anbulagan. Look-ahead versus look-back for satisfiability
problems. In Proc. of CP, pages 342–356, Autriche, 1997. Springer.

[25] Jeffrey T. Linderoth and Martin W.P. Savelsbergh. A computational study
of search strategies for mixed integer programming. INFORMS J. Comput.,
11:173–187, 1999.

[26] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proc. of the
DAC, July 2001.

[27] SCIP. Solving Constraint Integer Programs. http://scip.zib.de.

[28] Mohit Tawarmalani and Nikolaos V. Sahinidis. Global optimization of
mixed-integer nonlinear programs: A theoretical and computational study.
Math. Prog., 99:563–591, 2004.

[29] Stefan Vigerske. Decomposition in Multistage Stochastic Programming and
a Constraint Integer Programming Approach to MINLP. PhD thesis, HU
Berlin, 2012.

[30] Andreas Wächter and Lorenz T. Biegler. On the implementation of a
primal-dual interior point filter line search algorithm for large-scale non-
linear programming. Math. Prog., 106(1):25–57, 2006.

13

http://scip.zib.de

	Introduction
	Covers of mixed integer nonlinear programs
	Using MINLP covers for branching
	Experimental results
	Conclusion and outlook

