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Abstract

Two fundamental mathematical formulations for railway timetabling
are compared on a common set of sample problems, representing both
multiple track high density services in Europe and single track bidi-
rectional operations in North America. One formulation, ACP, en-
forces against conflicts by constraining time intervals between trains,
while the other formulation, RCHF, monitors physical occupation of
controlled track segments. The results demonstrate that both ACP
and RCHF return comparable solutions in the aggregate, with some
significant differences in select instances, and a pattern of significant
differences in performance and constraint enforcement overall.

1 Introduction

The railway timetabling literature contains many distinct mathematical for-
mulations for the problem of scheduling multiple trains within a limited ca-
pacity railway line or network of lines. Some of this literature is twenty,
thirty, and even forty years old. The majority of these models remain aca-
demic novelties, and only a few have seen any commercial application. A
frequently cited obstacle to the application of mathematical programming
to railway timetabling is that computing power is insufficient to resolve com-
mercially relevant problems in an acceptable time frame.

A number of publications and case studies in the last decade demonstrate
that this obstacle is falling away, particularly due to the stunning increase
in addressable memory in common office computers, and the general im-
provement in algorithms and heuristics (Bixby 2002). As the application of
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mathematical programming to train scheduling is imminent, it is appropri-
ate to evaluate in greater detail how various formulations differ from each
other in objective, operating rule enforcement, and performance. Most of
the prior literature on train timetabling is problem or scenario specific. That
is, the typical paper focuses on solving a particular scheduling problem.

This paper contributes to the literature a direct comparison of two dis-
tinct mathematical formulations for train timetabling that have both previ-
ously appeared in the literature independently. These two formulations are
representative of two fundamental alternatives in operating rule constraint
formulation. One general class of train timetabling formulation enforces a
timed separation between scheduled trains, and the other class enforces a
physical separation between trains. Under many scenarios and at an aggre-
gate level, these two formulations return comparable results in twenty-six
out of forty-one problem instances. However, as scenarios are evaluated
in closer detail, differences in calculation speed and operating rule enforce-
ment are revealed in the majority of problem instances. In addition, this
paper demonstrates feasible methods by which two popular timetable data
structures may be compared.

The evaluation consists of a two by two experimental control consisting
of the above described formulations and two distinct groups of scheduling
problems. The first problem group consists of a classical high density “Eu-
ropean” passenger network, and the second problem group consists of a low
density “North American” single track line. The characteristic European
scheduling problem consists of hundreds of individual train schedules dis-
tributed over a high capacity network of multiple track lines (each track
designated for a single direction of flow). In addition to operating and
safety rules, these problems also frequently contain requirements of specific
stopping times for individual trains at stations. In contrast, the character-
istic North American scheduling problem considers a smaller set of trains
distributed over a significantly more limited set of tracks. In the North
American problem, tracks are bidirectional, and operating rule enforcement
must consider the arbitration between conflicting, opposing direction trains.

The paper is organized as follows: § [2] gives a literature overview on
railway capacity studies, § [3] describes a problem formulation for the train
pathing problem, and § [ presents two distinct integer programming formu-
lations for consideration. Section [l describes two alternative data formats,
how to convert between these data formats, and provides one example of
each. Finally, the strengths and weaknesses of each formulation as exhib-
ited by trials on these data sets are reviewed in § 0.6l



2 Literature

Very few reports known to the authors compare formulations under iden-
tical data sets or problem scenarios. [Kraft (1988) compares three analyti-
cal capacity formulas and two simulation models upon common data sets,
but these are not mathematical programming formulations for scheduling.
Mills et al. (1991) compares a discrete time interval scheduling formulation
to a nonlinear, real valued time formulation within the same data set, and
finds the nonlinear formulation offers very small improvement over the dis-
crete time formulation, and requires a much greater solution time.

A number of surveys are available which describe the formulations of
published models and organize them by selected characteristics. [Harrod
(2012) reviews formulations specifically relevant to timetable generation and
optimization, and groups formulations according to their decision variable
and constraint structure. [Lusby et all (2011) categorizes formulations ac-
cording to the track structure they represent (single, double, or station
tracks). |Cacchiani and Toth (2012) provide a detailed review of a number
of formulations for both deterministic scheduling and for robust scheduling
(stochastic programming). [Térnquist (2006) reviews 48 published formu-
lations and includes detailed comparisons by network constraints, objec-
tive, solution method, and problem size. |(Cordeau et all (1998) conducts a
broader detailed survey of railroad optimization in all aspects: blocking,
strategic planning, and dispatching. Bussieck et all (1997) evaluates formu-
lations particularly relevant to passenger railways in Europe, and periodic
scheduling in particular. |Assad (1980) provides an excellent reference for
timetabling literature prior to 1980.

3 Problem Description

The scheduling problems evaluated in this paper are variously labeled “mas-
ter scheduling”, “track allocation” or “timetabling”, but to be very specific
this paper considers the train pathing problem. This is the scheduling pro-
cess that determines the route or path of a train upon the railway network
such that departure and arrival constraints, limits on available track, and
conflicts with other trains are observed. It is not to be confused with var-
ious aggregate scheduling problems that defer the pathing and arbitration
between conflicting trains to a later time period or authority. In particular,
in North America a timetable rarely asserts a previously assigned train path.
Instead, in North America the routing of a train on the track structure is left
to the decision of dispatchers on the day of operation, as a tactical operat-
ing decision, even though schedule commitments may exist. Thus to avoid
confusion, the equivalent term Train Timetabling Problem (TTP), which
originates with |Caprara et all (2002), is not used in this paper.



Pass. km./ Max. Train Coal Total Freight

Region Ton-km  Length m. Traffic Share
Europe 0.15 750 23% 39%
North America 0.004 2,290 1% 17%
Table 1: Comparison of FEuropean and North American Net-

works (Vassallo and Fagan 12007, [International Union of Railways [2008,
Bureau of Transportation Statistics 2009, (CER 2008)

Train pathing occurs at multiple planning events on the railway. It occurs
at an early strategic time when service timetables are composed and public
service commitments made. It occurs again closer to the day of operation
when additional “extra” trains are included, such as maintenance trains
and extra trains for random traffic increases, see e.g., [Flier et al. (2009) and
Cacchiani et all (2010D).

Finally, train pathing occurs in response to delays and disruptions such
as weather, equipment failure, and network emergencies. This is a tactical
operating decision. The majority of this train pathing is still performed
manually.

This paper considers two train pathing problem classes, one based upon
a European scheduling problem and the other based upon a North American
scheduling problems. Together these two scenarios represent the extremes
of the full range of railway operating patterns and densities worldwide. The
FEuropean railway network is characterized by multiple track lines carrying
dense, high frequency traffic dominated by passenger trains. In contrast,
70% of the North American route network is single track (Richards 2006).
Table [l provides key network statistics for comparison.

The European and North American rail networks are both congested and
busy in their own way. The European network is recognized for its dense
traffic on multiple track lines at very close headways. The North American
network is also congested on a different scale, because although the gross
train frequency is not comparable, the underlying track infrastructure is
severely restricted.

On an abstract level all problem formulations for the Train Pathing
Problem (TPP) can be defined as follows:

Definition 1. (Train Pathing Problem (TPP)) Let G be a (railway infras-
tructure) graph and I a set of trains, then define TPP as the problem of
choosing conflict-free paths through G for each train i € I with maximal

profit.

The definition of “conflicts” is always related to the occupation of in-
frastructure resources in space and time. Due to the various safety systems
there are many different ways of enforcing and specifying operational con-



flicts and defining the discrete resources, e.g. set of blocks B or tracks J.
Safety separation between trains is enforced by constraints that limit the
simultaneous occupation of adjoining track segments. In North American
practice these track segments are called blocks and are defined by the discrete
control limits of the signal system. The same principle is used in Europe with
the difference that in the planning stage an aggregation of serveral physical
succeeding blocks called tracks is considered and hence the physical safety
distance between trains is aggregated to time separation at the departure of
the track. Basically, all problem formulations of the train pathing problem
have one thing in common: a solution to TPP must specify the complete
route of each train ¢ through a network G and on the departure and arrival
times at each control point of that route. Table 2] lists the used symbols for
the TPP.

Table 2: Sets or Parameters for problem TPP

Symbol Description

1 The set of requested trains

Jor B The set of network resources, e.g.
tracks or blocks

G The railway infrastructure graph

4 IP Formulations

Two formulations are compared in this paper, one originating with [Borndorfer and Schlechte
(2007) and another originating with [Harrod (2011). The first one, the Arc
Configuration Problem (ACP), is an extended formulation of classical pack-
ing formulations introduced by Brannlund et all (1998) and |Caprara et al.
(2006). See also|Cacchiani et all (2010a) for a detailed analysis of alternative
packing formulations for timetabling under timed intervals between trains.
This formulation enforces against conflicts between arcs that represent dis-
crete train moves by using artificial graphs for each block or track. The
second formulation aggregates points of conflict by modeling each arc as a
hyperarc on a hypergraph. Conflicts are then indexed not by pairs of arcs,
but by unique conflict nodes shared by two or more arcs. Each hyperarc
represents a train move from an origin node to a destination node and the
arc also contains all other potential conflicting nodes. A major difference
between both models is that the hyperarc model is very flexible with respect
to the definition of conflicts, i.e., an almost arbitrary (but in some resource
sense connected) set of hyperarcs can be restricted. In contrast, model
ACP assumes an a priori decomposition of conflicts with respect to tracks



and utilizes the structure of given minimal headway times for all potential
combinations of trains.

4.1 ACP formulation

The classical way of formulating the train pathing problem is by using sin-
gle flow formulations for the trains which are coupled by additional packing
constraints to exclude conflicts between those trains, see Brannlund et al.
(1998) or (Caprara et al. (2006). Borndorfer and Schlechtd (2007) proposes
an alternative formulation for the train pathing problem that handles con-
flicts by additional variables. This arc coupling formulation (ACP) is based
on the concept of feasible arc configurations, i.e., sets of time-expanded arcs
on a track without occupation conflicts. Given is a standard time expanded
scheduling graph D, in which time expanded paths represent train routes
and departure and arrival times for the individual train requests ¢ € I in the
subgraph D; C D. Operational feasiblilty with respect to headway times
between two consecutive trains is handled by artificial digraphs D; for each
j € J. Each two train moves on track j which respect the minimal headway
time are connected by artificial arcs in D;. Section [5.3] shows how physical
block separation rules are transformed to headway times. Table [3 lists all
relevant objects for the ACP formulation.

Figure [ shows the construction of a track digraph respecting headway
times for successions of trains. On the left hand side the requested train
moves on track j = (u,v) are shown in a time expanded setting, i.e. six
trains belonging to set A7, with three different running times. Note that
all of these arcs are binary variables x,. On the right hand side introduce
artificial dotted arcs which determine the first or last departure of a train
on track j. In addition, each feasible consecutive succession of two trains
are connected by an artificial dashed arc, i.e., if the difference between both
departure times is larger or equal to the given headway time of that train
combination. Hence, graph D; models all potential orderings of the depar-
tures of trains on track j. Note that all arcs of D; use binary variables y,. In
case of a transitive headway matrix, paths in D; represent valid consecutive
successions of discrete train moves on track j. Note that each arc repre-
senting a train move is contained in exactly one D; and D; and induces two
variables x, and y,. More details on the construction of D; and D; can be
found in [Schlechte (2012).

Variables x4, a € A;, i € I control the use of arc a in D; and y, b € A,
7 € J in Dy, respectively. Note that only arcs which represent track usage,
i.e., Ag = AN Ay, have to be coupled in that formulation by two variables
o and yp. Finally, the ACP formulation reads as:



Table 3: Sets or Parameters of formulation ACP for problem TPP

Symbol Description

D; = (V;, A) The time expanded graph of train i

S; The artificial source node of train
digraph D;

t; The artificial sink node of train di-
graph D;

D; = (V;, Aj) The artificial track digraph of track
J

5§ The artificial source node of track
digraph D;

t; The artificial sink node of track di-
graph D;

We The profit weight of arc a

C The set of all station conflict sets

A, The set of arcs belonging to station
conflict c € C

Ke The upper limit or capacity of sta-

tion conflict ¢ € C'
Ag The set of arcs (representing train
moves) to couple

(ACP)
max Z WqLaq, (1)
acA
s.t. Yoo xa— Y, xg =0, Viel,ve Vi\{s;,t;} (i)
a€sl  (v) a€él (v)
ooz, <1, Viel (i)
ae(séut(si)
Z Ya — Z Yo =0, vieJveVi\{s;,t;}  (iv)
a€d? , (v) a€d? (v)
> Ya <1, vied (v)
ae&éut(sj)
To —Ya =0, Vae Ag  (vi)
oz < Ke, Vee C  (vii)
acA.
Za,Ya € {0,1}, Vae Ar,ae Ay, (viii)

The objective, denoted in ACP (i), is to maximize the weight of the
track allocation, which can be expressed as the sum of the arc weights w,.



time

Figure 1: Example for the Construction of a Track Digraph.

Equalities (ii) and (iv) are well-known flow conservation constraints at in-
termediate nodes for all trains flows ¢ € I and for all flows on tracks j € J,
(iii) and (v) state that at most one flow, i.e., train and track, unit is realized.
Equalities (vi) link arcs used by train routes and track configurations to en-
sure a conflict-free allocation on each track individually. Packing constraints
(vii) ensures that no station capacity is violated in its most general form.
Finally, (viii) states that all variables are binary.

4.2 Hypergraph Formulation

The hypergraph model represents train movements as decision variables of
sequential occupancy, or transition, between two controlled track segments,
over an interval of one or more discrete time units. The controlled track
segments are individually indexed by discrete time unit over the planning
horizon, and form nodes within a time expanded graph. Additional nodes
define zones of transition conflict between adjacent track segments. Let R
denote the set of resource nodes either from occupation or transition of an
hypergraph.

A hypergraph is a graph in which the definition of an edge is expanded to
include any non-empty subset of nodes (see |Gallo et all (1993) for a formal
definition). In contrast to most of the hypergraph literature, it is convenient
in this setting to conceive a hyperarc a = (u,v) as a set of tail nodes T'(a)
with distinct entry tail u € T'(a) and exactly one head node v.

Definition 2. (TPP hypergraph) Let R be a set of resource nodes and



A C 28 x R a set called hyperarcs, then the TPP hypergraph is denoted by
H = (R,A).

In the case of a railway line, a track segment has frequently been mod-
eled as an arc with nodes at the endpoints of the track segment. However,
occupation of a track segment in practice may conflict other adjacent track
segments. A discrete time graph model of the network likely will also require
a train movement decision variable to register the occupation of multiple
graph nodes each representing a labeled network resource for a discrete time
unit. Thus a hypergraph provides the flexibility to encapsulate all of the
variety of implied conflicts of a train movement variable. The binary deci-
sion variables are hyperarcs on this graph that potentially enclose multiple
nodes.

The TPP can be seen as a resource constrained hyperflow (RCHF) in H.
The resources basically limit the block occupation, the transitions between
track segments, and the physical headways between trains. All of these
features are presented in detail in/Harrod (2011). For comparison here, all of
these conflict categories are consolidated to a corresponding set of conflicting
hyperarcs A, for each conflict ¢ € C'. Note that, parallel segments such as
sidings or multiple through track are defined as a single block with a total
capacity and hence an upper bound on the conflict set k. > 1. A detailed
variant of the model and the sets A. can be found in the Appendix [Al

A hypergraph with its representative network of blocks is shown in Fig-
ure 2l Hollow nodes are track segment or block occupancies, while solid
nodes represent potential transition conflicts between blocks, and are only
defined where paths represent separate trains. Note how the transition con-
flict between the two labeled hyperarcs is indicated. A sample conflict is
depicted by the highlighted hyperarc representing a starting occupancy of
block 2 from time t 4 4 and reaching block 3 at time t 4 6, and the hyperarc
from block 3 at time t 4+ 5 to block 2 at time t + 6, working exactly in the
opposite direction. The conflicting part is the resource node representing
the (undirected) transition between block 2 and 3 at time ¢ 4+ 5(4€). In
addition, denote by s; € R and t; € R an artificial source and sink node for
train 7.

The (RCHF) formulation is presented below. It differs from Harrod
(2011) in that the objective and coefficients have been revised to correspond
with those of the [Borndorfer et al! formulation.
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Figure 2: An example hypergraph of train paths with highlighted hyperarc
variables %23 ;14+46 and 32:45¢+6 which do not conflict in block occu-
pancy, but do conflict in transition node (2,¢ + 5).

(RCHF)
max Z WqZq
acA
s.t. Yo g
aeéci)ut(si)
Y. Ta— ), T4
a€8} ¢ (v) a€d}, (v)
Y. Ta
aEéiin(ti)
> Za
CLEAC
Lq

< Ke,

€ {0,1},

(i)
Viel (i)

VieI,Vve R\{s;,t;} (iii)

Viel (iv)
VeeC (v)
Vae A (vi)

Objective (RCHF) (i) and constraints (ii)-(iv) define a set of indepen-
dent single commodity flows. Resource constraints (RCHF) (iv) bind these
flows together and regulate them as a multicommodity flow respecting the

10



limited resource. Note that constraints (RCHF) (ii) enforces a single depar-
ture for each train, and because it is an inequality also offers the option of
removing the train from the schedule if it is not productive, while constraints
(RCHF) (iii) enforces conservation of mass at the nodes (enforcing a single
train path) and sinking constraints (RCHF) (iv) ensures a single terminal
arrival. Resource constraints (RCHF) (v) enforces a conflict-free allocation
of the resources, i.e., the block occupancy limit, the limits on transitions
between track segments, and the limitation due to thea headways or follow
on spacing of trains. Finally, (RCHF) (vi) states that all hyperarc variables
x4 have to be binary.

5 Sample Problems

Two sample data sets are considered, representing two typical, yet very dif-
ferent, operating problems. In each data set individual problems are com-
posed by specifying requests for, possibly conflicting, train paths. Individual
problems vary in size by the number of train paths requested and the por-
tion of the network evaluated. The hypergraph formulation is solved in IBM
ILOG CPLEX Optimization Studio 12.4.

The first data set originates with [Borndorfer et all (2006) and covers
the network of lines connecting Fulda and Kassel to Hanover, Germany,
and its suburbs. This Deutsche Bahn network consists of 1,460 km of route
segments including a 250 km /h high speed line, various alternate lower speed
routes, and suburban and terminal trackage. The data set presumes that all
routes are double track and designated for one direction of flow. The train
path requests in this data set are dominated by passenger traffic, but a wide
variety of speeds and stopping patterns are represented.

The second data set originates with Harrod (2011) and describes an ex-
perimental bi-directional, single track line with equally spaced sidings. Doc-
umentation of a comparable service instance may be found in[Holowaty et al.
(2004) where a corridor from Richmond, Virginia to Charlotte, North Car-
olina is specified with sidings 7.5 miles (12 km) long spaced 15 miles (24 km)
from center to center, or a block length of 7.5 miles where every alternate
block contains a siding for its full length. The train path requests in this
data set consist of two train types, a moderate speed freight train and a
higher speed passenger train.

The primary challenge faced in comparing these data sets across formu-
lations is how to translate the data format. Each data set originates with its
respective formulation, and supporting data for the alternative formulation
is not available. For example, data is not available for the Deutsche Bahn
network to specify the physical track blocks, which are required for the hy-
pergraph formulation. In each case, a reasonable plan of data translation
has been specified and is described in the following sections.
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5.1 European Sample Data

A map of the Fulda-Hannover network is displayed in Figure Bl As can
be seen, alternate routes exist between many points. Close parallel lines
represent that in some cases tracks in one direction between two endpoints
have different timing characteristics than the matching track in the opposing
direction. Track segments in the data set range from terminal tracks of 300
m. to a dedicated high speed rail segment between Fulda and Kassel of 93
km.

Two questions arise in converting the data set for solution under the
hypergraph formulation. First, the hypergraph model requires as input data

Kassel

—

250 kmlh‘_J

W

Fulda | -
~

Figure 3: Map of Fulda-Hannover Region Rail Network
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specification of all possible routes for a given train. In some cases path
requests on the Fulda-Hannover network may take alternative routes. To
limit problem complexity, each path request is assigned its minimum time
route during pre-processing.

Second, the track segments must be divided into controlled blocks to sup-
port the train separation constraints of the hypergraph model. No detailed
information on the true track block dimensions is available from Deutsche
Bahn, so track segments are uniformly divided into blocks according to the
following rule: tracks less than 3 km long are a single block, longer tracks
less than 6 km are two equal blocks, tracks greater than 6 km are divided
into equal blocks approximately 3.5 km long, and high speed (250 km/h)
tracks are divided into equal blocks approximately 7 km long. All train
paths in the hypergraph model enforce a two block physical separation be-
tween trains. In case of model formulation ACP the network consists of 37
stations and 120 track arcs. This translates to 870 track blocks in model

RCHF.

5.2 North American Sample Data

A track diagram for representative single track problem 1400 is displayed
in Figure @l The experimental network is a single track line with long
passing sidings at even numbered blocks, on which there is a dense flow of
moderate speed traffic and a pair of mandatory higher speed trains which
have priority dispatch. Nine network lengths, from |B| = 3 to |B| = 19
blocks long, provide nine trials.

The characteristics of the dense flow are given in Table[dl Any coefficient
not displayed is zero. In addition, one roundtrip of a higher speed (3 time
units per block) train, with no utility value (cj, = 0), is mandated by setting
the corresponding source outflow constraint to an equality and has absolute
priority over all other traffic. In each trial the total input train set is greater
than the network capacity, and the solution will contain a subset of the
available trains.

The last dispatched base flow train in each data set is priced such that
any dispatch beyond the standard planning horizon pays a penalty that
represents consumption of additional network time. This data set asserts
traffic volume within the given planning horizon is the dominant objective.

5.3 On Block Separation and Headways

This section presents a transformation of railway systems operated with
fixed block separation to a time separation formulation using headway times.
The result is a formulation of the TPP in the format of the free available
problem library TTPlib, see [Erol et al. (2008) for the definition of the data
structures.

13
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Figure 4: Seven Block Single Track Line With Sidings.

Visualize a single track line such as in Figured], where each track segment
allows bidirectional movement and parallel tracks or sidings may exist. The
numbered track segments represent specific limits of control for each track
segment, called blocks. Generally, under traditional train control technology,
locations of trains are defined by the block(s) they occupy, but no additional
information clarifies the specific location of a train within the block. In order
to translate a physical block separation constraint between pairs of trains
into timed event separation between trains (in this case at “station” nodes),
the network is segmented as follows:

Introduce for each block b two nodes to represent the entering and leav-
ing of that block, denoted by I, and 7. Note for any adjoining, sequentially
numbered blocks that r, = lp11. Due to the fact that each block may be trav-
eled in either direction, define for each block a bidirectional track e = (u,v)
which consists of two directed arcs (u,v) and (v,u) with u =l and u = ry.
In Figure M blocks two, four, and six contain two parallel tracks which in
this case are a main line and a siding. The term multiplicity denotes the
capacity of such a block, equivalent to the number of parallel, interchange-
able tracks and the number of allowed simultaneous train occupancies. Of
course, this value must be a natural number. To avoid overuse of the term
“track”, individual tracks in a block are referred to as lanes.

The network equivalent of Figure d is shown in Figure Bl The marked
or indicated seven blocks induce eight station nodes and twenty track arcs,
ie., A=0 and |E| = 10. From the left, node 11 marks the left end of block
one, and node ry the right end. The labels a ij ™ denote arcs representing
movement in the direction from block ¢ to block j and occupying lane m of
block b. Block two begins at node r; and ends at node ly. It supports two
lanes (multiplicity is two), and so there are two arcs in the direction of block
three, {a2 '35 03 3} and two arcs in the direction of block one, {a3 9: 03 2} In
addition the order of trains can only change “in” blocks with multipllclty
larger than one, i.e., block 2.4, and 6.

The mapping of the running times for leaving a block and entering a
successive block is straight-forward, i.e., for au v "» define the running time for
leaving the block associated with node 1 and entering the block associated
with node j. Modeling the block separation by reasonable headways is more
complex. Assuming a block headway of 2 intervening blocks, it is necessary
to make sure that the next two blocks the train will enter are not allocated.

14



Figure 5: Network after transformation.

For example in Figure B the situation is as follows: Assume train p wants
to run from I to node r3 (from block 1 to block 3) as well as train ¢. Then

the minimal headway time h, , for arc aié is the running time for train p

1,1 2 .
on track a;’; and on the next track a2’gn and vice versa. The same holds

for aé:gb and his successor aé:T with m = 1,2. In case of various successor
blocks, chose the maximum time to enforce conservative headway times, to
enforce two block separation in any case. Due to the fact that the running
times of all lanes are the same and the order in which a train traverses the
blocks is also fixed, it is possible to compute k), , for each track arc a priori.

This formulation is intended to enforce locally conflict free scheduling of
running trains on blocks without specific knowledge of the physical geogra-
phy of track blocks. In enforcing overtaking moves for trains, it is necessary
to make sure that the number of trains on a block does not succeed the
capacity. For example, in [ the capacity of the block is one or two and
therefore the capacity of the nodes is one or two with respect to their adja-
cent blocks, respectively. This will also avoid potential dead-lock situations
in which two trains are facing each other. However, due to the splitting
of each block into two stations with the same capacity situations can oc-
cur where the origin block capacity is violated. That is, note in Figure
that each node displayed represents two overlapping nodes, [ and r, which
are not simultaneously constrained in the formulation. The reason is that
capacity constraints concerning both stations are missing in model ACP.
The interested reader may find the transformed instances of Harrod (2011)
accessible for download via [TTPIlil (2008).
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5.4 Effects Due to Translation of Data

Note that the transformation of data sets from one format to another may
lead to different solution spaces. The translation from headway times to
physical blocks, from ACP to RCHF, leads to changes in the upper bound of
flow capacity of the routes. The original European network source data, the
native format data for ACP, contains elaborate matrices of timed headway
limits between all types of trains on each track segment. When converted
to RCHF, these limits are considerably simplified and consolidated to the
rule of a physical two block separation.

For example, track segment “71-1” in the Fulda-Hannover network is 44
km long, and has a matrix of 36 specified timed separation limits between
pairs of train types. These timed separations range from three to thirty-two
minutes. After conversion to RCHF, this track segment has thirteen defined
blocks (dispatch track segments) of 3.38 km length each. In the same native
data set, the running time on this track segment varies by train type from
22 to 33 minutes.

This leads to fundamental upper bound limits on the flow capacity of this
track segment. For example, for two trains of type Inter-City, the timed sep-
aration is four minutes, and the running time is 22 minutes. Consequently,
a maximum of five Inter-City trains that may occupy track segment 71-1
under ACP. However under RCHF and a two block separation between oc-
cupied blocks, the theoretical occupancy is four trains (13/3), regardless of
train type or speed. Whether RCHF has more or less capacity than ACP
is a function of the combination of train type paths requested and whether
the two block separation rule is more or less favorable to that train type
than the timed separation rule.

In practice, the physical block separation model correctly emulates the
reality of train dispatching with current technology. An alternative dispatch-
ing scheme based on timed separation is in force on a very limited number
of advanced technology railway networks. Timed separation is also a feature
of a proposed new dispatching technology called “positive train control” (see
Hansen (2001), Kraft and Smith (2001), Transportation Research Forum (2004),
Emery (2008), or Wendlex (2009)).

5.5 Results

The computational results for both models begin with the comparison of
the results for the European data sets of § B.Il A selection of sixteen sets
of train path requests are evaluated under each formulation. These range in
dimension from the smallest, at 20 train path requests, to the largest, at 1140
train path requests. Results for the first general comparison are presented in
Table 5l Capacity limits are not enforced within stations (platform tracks)
in these solutions. Specifically in formulation ACP the station set C' is
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empty, and in formulation RCHF the capacity of the station blocks are set
at nine (effectively larger than any expected demand). This is a frequent
assumption in the literature (Caprara et all (2002) asserts this condition),
reflecting the large station facilities typical in Europe.

The table contains for both models ACP and RCHF the model sizes
(columns |I| (= number of train requests), ROWS and COLUMNS), the op-
timal solution value denoted by w, and the computation time in seconds
(columns sec.). Furthermore, the last column A shows the objective differ-
ence between the optimal solutions found for model ACP and model RCHF
in %.

On average in this first data set, the hypergraph model returns solutions
3% lower than the ACP model, but this average difference is the result of
large differences in a few select problem instances. Nearly half of the problem
instances demonstrate no or insignificant difference (0.1%) in solution value.
One of the questions to consider is whether the modeling of blocks with a
single direction of travel is too restrictive and unrealistic for dispatching.
In Table [6] the data set is revised so that the hypergraph model allows bi-
directional dispatching on all routes. Under this relaxation, the hypergraph
model returns solutions on average 5% greater than the ACP model, but
again this is because of a few select large differences, with a large number
of insignificant differences.

The results for the North American data sets are presented in Table [7
Figure [6] presents graphical views of the ACP input data and the ACP so-
lution of scenario 1399. These views were created with the 3D-visualization
tool TRAVIS. On the left hand side the train request bounds on that line of
five blocks (six nodes) can be seen. Note that crossing is allowed on even
numbered track segments, which represents a block with capacity two. On
the right hand side the solution schedule from ACP is shown with time
increasing on the vertical axes.

5.6 Comparison of Formulation Capabilities

A few interesting characteristics of the performance of these two formu-
lations should be noted. Generally, the RCHF formulation requires less
computation time and computing resources (size of rows and columns array)
than the ACP formulation. However, in very resource constrained problems
such as the single track scenarios of Table[7] the RCHF formulation exhibits
exponential increases in computation time, as displayed in Figure[ll Indeed,
larger single track scenarios were not presented in this paper because they
quickly exceed available memory and/or reasonable computing time under
formulation RCHF.

The ACP formulation has difficulty enforcing safety rules at the mi-
croscopic level (at the level of individual signal protected blocks of track).
Figure [§ displays the stringline diagram of train movements from the RCHF
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Figure 6: Screenshots for scenario 1399.

solution of scenario 1405. The diagram is drawn with proprietary software
from the authors. Time is on the horizontal axis and the vertical axis is
labeled with block identification numbers. Dark line train paths represent
the faster priority traffic, and fine line paths represent the baseline traffic.
Note how meets and passes between trains only occur on even numbered
blocks, where sidings or double track are provided.

In spite of multiple attempts, variations, and adjustments, it was not
possible to obtain the same precision of meet/pass enforcement under the
ACP formulation. As described in § 53] the transformation of the micro-
scopic network to a macropscopic network tends to overestimate the capacity
of the blocks. Figure [ displays the related solution stringline for the ACP
formulation. Even numbered blocks are highlighted, and meets/passes that
occur in odd numbered blocks (single track blocks) or that exceed block ca-
pacity are circled. These diagrams display a reordering of the trains asserted
by ACP which does not violate the individual station node capacities. A
full resolution of these solutions would require capacity pooling constraints
that would modify the ACP model such that it might resemble the RCHF
model.

The structure of RCHF is significantly different than ACP in the role
that the side constraints play in the formulation. Side constraints are those
constraints other than the pure network flow constraints. In formulation
ACP these are referred to as coupling constraints, and in RCHF' these are
constraints (v). For the North American data set (Table [7), for example,
23% of the total rows in ACP are coupling constraints, and 55% of the
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Figure 7: Comparison of Computation Times for Single Track Scenarios

rows in RCHF are side constraints (v). Surprisingly, these ratios are nearly
constant for all nine problem instances, and thus detailed row counts are
not presented.

5.7 Comment on Timed Separation Versus Physical Separa-
tion

The decision to model train separation by timed intervals or physical separa-
tion carries with it a fundamental set of operating rule enforcement protocols
and an accompanying mathematical relationship amongst sets of trains. In
g5.4] it was described how the choice of timed separation or physical sepa-
ration may affect the theoretical flow capacity, and here is discussed how
fundamental safety rules may be affected by this choice of rule enforcement.
The value of explicitly modeling track infrastructure in a timetabling or
dispatching formulation is best understood by examining typical train path
interactions. The difficulty is that the true timed headway between two
trains is frequently a function of the dispatch pattern of additional prox-
imate train paths and the routing of the train path, both of which are
frequently decision variables.

Figure [I0l displays an example where three trains are traveling in the
same direction along a signaled line with a typical red/yellow two block
separation between any two trains. In the figure, two passenger trains, RE
103 and IC 208, are caught behind a slower freight train, GV 09. The timed
headway between trains RE 103 and IC 208 would normally be a function
of their track speed, but in this case their headway must be lengthened
because train RE 103 is forced to travel at the slower speed of train GV 09.
Thus, the time separation between any two trains is not only a function of
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their joint performance, but the performance of any preceding train. This
limiting function in fleets of trains is called “signal wake”, and is documented
in (Welch and Gussow (1986).

Signal wake is a significant concern in North American railways, but
perhaps less of a concern in traditional European conditions. The reason for
this is the structural design of many European networks where “stations”
define all siding, signal, and meeting points, stations have relatively large
(more than three) counts of tracks, and are located closely together. In such
an environment, delaying a fleet of trains by a leading slower train is less
likely, because there are more frequent opportunities to hold the delaying
train in the clear. Many of the track segments in the native ACP data
set (the European data set) contain long (more than 30 km) track segments
without defined intermediate stations or sidings (although in reality satellite
photos show that many stations do in fact exist). When converted to phys-
ical separation data sets for RCHF', these track segments would be subject
to signal wake.

A second example is displayed in Figure [[Il where train IC 208 is fol-
lowing GV 09. The question is, will IC 208 take the siding, or continue
to follow GV 097 Or perhaps GV 09 should instead take the siding (the
curved track), and allow IC 208 to overtake. That path choice is one or
more decision variables, but the setting of those variables in turn affects the
running time of these trains. Whichever train takes the siding must slow
down to negotiate the points and curve at a slower speed than is necessary if
the straight path through the switch is selected. For the timetabling model,
this means that the headway time is not fixed, but is instead a function of
the ultimate train path solution. In this paper, no attempt was made in the
North American data set to model the diverging sidings as separate tracks
with slower running times, so although this specific example is a general
concern, it does not apply to these results.

80 km/h capable, 80 km/h capable,
restricted to 45 km/h restricted to 45 km/h 45 km/h

ey ool

I I Ui v \4

All track segments support 80 km/h

Figure 10: Train Headway Times Defined by Leading Train
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Table 4: Baseline Flow Train Parameters

Characteristic Value
number of roundtrips (|1B|—1)/2
time per block (speed) 4
optimal dispatch headway 16
minimum train separation in physical number of blocks 2
schedule slack time 25
utility value for scheduling a train (cj)) $1
stop cost per time unit (c},) $0.01
penalty for network consumption

beyond the planning horizon (c,;) $0.0625

Table 5: Fulda-Hannover Solution Comparison, Uni-directional Dispatching
in Hypergraph

ACP RCHF
SCENARIO |1 ROWS COLUMNS w sec. ROWS COLUMNS w sec. A
RO7 184 45115 76534 1568737 153.14 72666 43069 1456059 20 -7.2
RO9 114 2880 3759 798230 7.67 1869 1569 541347 2 -32.2
R11 98 23129 36658 777049 10.26 35504 21433 749448 11 -3.6
R13 28 704 765 284510 4.14 812 728 276103 1 -3.0
R14 33 4762 6568 299333 3.28 6462 4084 299111 2 -0.1
R15 31 8002 11922 220517 1.23 10865 6742 220225 4 -0.1
R16 30 16676 27300 195527 8.65 21402 12664 195324 8 -0.1
R25 117 2297 2968 840050 15.28 2532 2130 823799 3 -1.9
R26 118 15265 23677 917484 11.31 18358 10488 816047 7 -11.1
R27 118 25940 43903 887419 27.02 35147 19495 858140 11 -3.3
R28 102 61953 121007 915468 211.87 66822 36057 825526 18 -9.8
R29 20 295 323 175260 3.35 382 361 175179 0 0
R30 31 3150 4206 159589 2.62 4724 2777 159429 2 -0.1
R32 1140 82849 132400 919907 59.03 109739 63126 1113752 36 21.1
R47 25 5106 7250 208788 6.88 7543 4254 208614 4 -0.1
R48 41 23314 39927 312937 19.18 24793 13629 312667 9 -0.1
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Table 6: Fulda-Hannover Solution Comparison, Bi-directional Dispatching
with model RCHF

ACP RCHF
SCENARIO | 1] ROWS COLUMNS w sec. ROWS COLUMNS w sec. A
RO7 184 45115 76534 1568737 153.14 46108 43069 1629481 18 3.9
RO9 114 2880 3759 798230 7.67 1727 1569 605919 2 -24.1
R11 98 23129 36658 777049 10.26 21211 21449 796695 10 2.5
R13 28 704 765 284510 4.14 622 587 253044 1 -11.1
R14 33 4762 6568 299333 3.28 3822 4084 299111 3 -0.1
R15 31 8002 11922 220517 1.23 6208 6758 220370 4 -0.1
R16 30 16676 27300 195527 8.65 12335 12682 195467 7 -
R25 117 2297 2968 840050 15.28 2266 2130 1010978 3 20.3
R26 118 15265 23677 917484 11.31 11054 10488 924276 7 0.7
R27 118 25940 43903 887419 27.02 20711 19495 947560 10 6.8
R28 102 61953 121007 915468 211.87 39812 36057 915264 17 -
R29 20 295 323 175260 3.35 382 361 175179 0 -
R30 31 3150 4206 159589 2.62 2672 2777 159443 2 -0.1
R32 1140 82849 132400 919907 59.03 82620 65870 1526555 32 65.9
R47 25 5106 7250 208788 6.88 4070 4254 208618 2 -0.1
R48 41 23314 39927 312937 19.18 13386 13629 312719 7 -0.1
Table 7: Single Track Solution Comparison
ACP RCHF
SCENARIO | 1] ROWS COLUMNS w sec. ROWS COLUMNS w sec. A
1398 4 624 940 0.88 0.14 180 133 0.8750 0 -0.6
1399 6 2686 5272 2.21 0.50 792 591 2.6875 2 21.6
1400 8 6100 14186 3.70 5.51 1875 1357 4.8750 1 31.8
1401 10 10866 29490 5.82 56.26 3404 2431 6.0000 1 3.1
1402 12 16984 51938 7.40 42.85 5403 3813 8.0000 4 8.1
1403 14 24454 83845 9.10 118.25 7864 5503 10.0000 3 9.9
1404 16 33276 125442 10.92 134.67 10784 7501 11.9800 11 9.7
1405 18 43450 179575 12.45 172.97 14166 9807 12.8475 128 3.2
1406 20 54976 245934 14.16 264.59 18008 12421 13.8900 1541 -1.9
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6 Conclusion

The solution of railway timetables is a crucial task at many management
levels of railway systems. Timetable solutions must be determined repeat-
edly at strategic and tactical stages of network management. Most of these
tasks continue to be performed manually, but advances in computer power
and algorithms make automation of these tasks feasible. In addition, auto-
mated (mathematical programming) methods for timetable generation make
possible wider exploratory analysis of network alternatives.

This paper directly compares two widely published mathematical struc-
tures for timetable optimization over a common set of sample problems.
The first formulation, ACP, is characterized by enforcing train separation
through a minimum time separation constraint at the entrance to a capac-
ity limited track segment. The second formulation, RCHF, instead enforces
train separation by enumeration of all individually controlled track segments
and enumerating constraints that monitor the count of trains occupying each
time expanded instance of a track segment. Sample problem sets represent
both multiple track high density services in Europe and single track bidirec-
tional operations in North America.

The contributions of this paper to the literature are that it establishes
a relevant baseline comparison of these two formulations over practical, ap-
plication relevant, sized problems, and that specific, tangible strengths and
weaknesses may be identified for each formulation. The results demonstrate
that both ACP and RCHF return comparable solutions in the aggregate. In
nearly half the scenarios the solution train flow value is identical, and in total
the average difference is less than five percent, but in some select instances
the differences are severe. Where the solutions differ, there is no discernable
pattern, and the differences are attributed to the unique specifications of
the problem instances. In the majority of scenarios the RCHF formulation
requires less computing resources, however, in some instances RCHF' re-
quires more resources than ACP and some classes of problem are not even
tractable in RCHF. The ACP formulation experiences difficulty enforcing
train separation on bidirectional single track lines. Neither formulation is
absolutely superior over all scenarios and applications, but the results sug-
gest that formulation RCHF should be attempted first if possible, that is if
microscopic data is available and the infrastructure is limited such that oper-
ational feasibility must be established early in the timetable design process.
Alternately, formulation ACP should be pursued if the RCHF formulation
becomes intractable, or if only macroscopic network data is available.

This research was funded in part by a University of Dayton Research
Council Seed Grant.
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A  Detailed Formulation of RCHF

An example of a hypergraph formulation is presented below. It differs from
Harrod (2011) in that the objective and coefficients have been revised to
correspond with those of the [Borndorfer et all formulation.

The variables, parameters, and sets of the formulation are provided in
Table [§ and Table
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Table 8: Variables, Parameters, and Nodes of Problem (P)

Component ‘ Type ‘ Description

:E:juv binary variable | Occupancy arc representing the possession of node ¢ at time u and the
exit into node j at time v of train r

p parameter Fixed value (or “profit”) of train r completing its journey

cry parameter Cost per unit time of enroute waiting (delay, other than requested
stops) of train r

Py parameter Origin of train r

Do parameter Earliest allowed origination time of train r

p;o parameter Preferred origination time of train r

Dlo parameter Latest allowed origination time of train r

Coo parameter Penalty per time unit of early deviation from preferred origination time
of train r

cly parameter Penalty per time unit of late deviation from preferred origination time
of train r

Dy parameter Destination of train r

DLy parameter Earliest allowed terminating time of train r

p;d parameter Preferred terminating time of train r

Dia parameter Latest allowed terminating time of train r

Coa parameter Penalty per time unit of early deviation from preferred terminating
time of train r

Clq parameter Penalty per time unit of late deviation from preferred terminating time
of train r

S parameter Specified service stop of train r from set ®"

Seco parameter Earliest allowed arrival time at stop s

Spo parameter Preferred arrival time at stop s

Slo parameter Latest allowed arrival time at stop s

c, parameter Penalty per time unit of early deviation from preferred arrival time at
stop s

i, parameter Penalty per time unit of late deviation from preferred arrival time at
stop s

Sed parameter Earliest allowed departure time at stop s

Spd parameter Preferred departure time at stop s

S1d parameter Latest allowed departure time at stop s

cia parameter Penalty per time unit of early deviation from preferred departure time
at stop s

Ciq parameter Penalty per time unit of late deviation from preferred departure time
at stop s

e’ artificial node Artificial sink node designating train r is off the network

¢ parameter Multiplicity (capacity, count of trains) of block ¢ at time ¢

vl parameter Multiplicity (capacity, count of trains) of cell ¢ at time ¢

€ parameter Dimension of leading transition window

1) parameter Dimension of lagging transition window
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Table 9: Sets of Problem (P)

Set  Description

The discrete time horizon, ordered with starting value t=1

The set of all trains

The set of all track blocks, ordered by a common reference direction

of travel, such as “north” or “south”

RN The set of trains, RV C R, traveling in the direction defined by
increasing track block index

R%  The set of trains, R® C R, traveling in the opposite direction of
trains in set RN, RNUR® =R

®"  The set of requested (required) timetable stops for train r

U”  The set of feasible path arcs (i,7,u,v) for train r supplied from
pre-processing

A the set feasible hyper arcs (u,v,t,t + d) for train i (supplied from
pre-processing)

T The set of transition nodes between track segments

W= N

Side Constraints
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Objective and constraints (I]) define a set of independent single commod-
ity flows. Side constraints (2)) bind these flows together and regulate them
as a multicommodity flow. Constraint (Ih]) enforces a single departure for
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each train, and because it is an inequality also offers the option of removing
the train from the schedule if it is not productive, while constraint (Id) en-
forces conservation of mass at the nodes (enforcing a single train path) and
sinking constraint (Id) ensures a single terminal arrival.

Side constraint (2al) enforces a common block occupancy limit, but in-
stead of enumerating every track segment with a capacity of 1, parallel
segments such as sidings or multiple through track are defined as a single
block with capacity bi > 0. Other variations of this constraint, such as
enumerating every track segment, are possible. Constraint (2h]) enforces the
limits on transitions between track segments. The sensitivity of these limits
are adjustable through the “window” parameters. Finally, constraints (2d)
and (2d) limit the headways or follow on spacing of trains. All of these
features are presented in detail in [Harrod (2011)).
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