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Abstract

In modern MIP solvers, primal heuristics play a major role in finding and improving feasible
solutions early in the solution process. However, classical performance measures such as time
to optimality or number of branch-and-bound nodes reflect the impact of primal heuristics
on the overall solving process badly. This article discusses the question of how to evaluate
the effect of primal heuristics.

Therefore, we introduce a new performance measure, the “primal integral” which depends
on the quality of solutions found during the solving process as well as on the points in
time when they are found. Our computational results reveal that heuristics improve the
performance of MIP solvers in terms of the primal bound by around 80%. Further, we
compare five state-of-the-art MIP solvers w.r.t. the newly proposed measure.

Keywords: primal heuristic, mixed integer programming, performance measure

Mathematics Subject Classification: 90C11, 90C59

1 Introduction

When implementing optimization software, two questions naturally arise: how does the new code
perform with respect to existent codes and which are the best settings for a particular algorithm?
This goes back to the early days of operations research: Hoffman et al. reported a first compu-
tational experiment to compare different implementations of linear programming algorithms in
1953 [4]. Just as researchers and software vendors want to distinguish their code on general test
sets, a user wants to tune an optimization software for a particular set of problems. However,
all parties require suitable criteria for measuring the performance of a software implementation.

With the rise of computational research, standards and guidelines for conducting computa-
tional experiments were proposed [2, 6, 9]. One key issue of the cited articles is the choice of
suitable performance indicators. In mathematical programming, the running time to optimality
is the “gold standard” for performance comparisons. For branch-and-bound based algorithms,
the number of branch-and-bound nodes is another typical measure. Similarly, when using a
simplex or an interior point based solver, the number of iterations is commonly used. Both,
iterations and nodes attempt to estimate the running time by a measure that is less dependant
on the hardware and at the same time better reflects the sheer computational complexity.

The setting In this article, we will use mixed integer (linear) programming as a showcase for
our computational experiments. Mixed integer programming (MIP) is to solve the optimization
problem

x̃opt = argmin{cTx | Ax ≤ b, xj ∈ Z for all j ∈ J},

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and J ⊆ {1, . . . , n}. Mixed integer programs are a typical
example for optimization problems that can be efficiently solved by branch-and-bound.

One advantage of branch-and-bound based algorithms, as opposed to, e.g., pure cutting
plane algorithms, is that sub-optimal (though feasible) solutions, so called incumbents, often are
available early during the course of the algorithm. Primal heuristics1 boost this characteristic
even further. As a consequence, sufficiently good solutions might be available long before the
branch-and-bound search terminates.

1A primal heuristic is, roughly speaking, an incomplete algorithm that aims at finding high-quality feasible
solutions quickly. In general, it is neither guaranteed to be successful, nor does it provide dual information on the
quality of the solution by itself.
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Existing measures The time needed to find a first feasible solution, an optimal solution,
or a solution within a certain gap to optimality (see, e.g., [5]) are performance criteria that
concentrate on the primal part of the solution process. Each of these has its individual strengths
and weaknesses. The time to first solution entirely disregards the solution quality: for about one
quarter of the Miplib 2010 [8] benchmark instances, a trivial solution of all variables set to their
lower bound (or all to their upper bound) is feasible, but most of the times useless. Particularly
when analyzing heuristics embedded in a complete solver, the time to the first solution mainly
measures the time needed for preprocessing and solving the root node relaxation: the MIP
solvers Cplex, Gurobi and Xpress find solutions for 72, 70, and 64 of the 84 feasible Miplib
2010 benchmark instances during root node processing. The time to optimal solution, however,
ignores that slightly sub-optimal but practically sufficient solutions might have been found long
before. Finally, taking the time to a certain gap is an attempt to balance this, but the choice of
the threshold is arbitrary by design.

Altogether, the important consideration for primal heuristics should be the trade-off between
speed and solution quality. None of the above measures entirely meets this requirement. In
marked contrast, two of the named measures, time to first solution and time to optimality,
rather represent extreme points. It is the goal of this paper to introduce a new performance
measure that reflects the development of the solution quality over the complete optimization
process.

The challenge We argue that standard performance criteria are not well-suited to describe
the impact that primal heuristics have within a solver. Take the following observation: On the
one hand, for state-of-the-art MIP solvers, the impact of primal heuristics on the overall running
time and the number of branch-and-bound nodes is typically minor to negligible2 whereas other
components such as cutting planes or branching rules change these numbers by a factor of two
or three.

On the other hand, the solver vendors, such as Cplex, Gurobi or Xpress, seem to consider
primal heuristics to be a “trade secret”. It stays unrevealed, which heuristics they use, when
those are called, or just how many of them a solver features – whereas for other components,
there are plenty of user parameters and statistical output available. One interpretation of this
discrepancy might be that primal heuristics are considered a – if not the – crucial part of the
software and their value is simply not reflected by the performance measures that we commonly
use.

2 The primal integral

In this article, we introduce a new performance measure, in particular for benchmarking primal
heuristics, that takes into account the whole solution process. The goal is to measure the progress
of the primal bound’s convergence towards the optimal solution over the entire solving time.
Therefore, we make use of the primal gap of a feasible solution, consider this as a function over
time and compute the integral of that function.

Definition 2.1. Let x̃ be a solution for a MIP, and x̃opt be an optimal (or best known) solution

2Recent presentations by software vendors mention values in the range of five to fifteen percent.
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for that MIP. We define the primal gap γ ∈ [0, 1] of x̃ as:

γ(x̃) :=


0, if |cT x̃opt| = |cT x̃| = 0,

1, if cT x̃opt · cT x̃ < 0,
|cT x̃opt−cT x̃|

max{|cT x̃opt|, |cT x̃|} , else.

Note that for two feasible MIP solutions x̃1, x̃2 with cT x̃1 < cT x̃2 and sgn(cT x̃2) = sgn(cT x̃opt)
it holds that γ(x̃1) < γ(x̃2). Now assume that we have available the objective function values
of intermediate incumbent solutions and the points in time when those have been found – for a
given MIP solver, a certain problem instance and a fixed computational environment.

Definition 2.2. Let tmax ∈ R≥0 be a limit on the solution time of a MIP solver. Its primal gap
function p : [0, tmax] 7→ [0, 1] is defined as:

p(t) :=


1, if no incumbent until point t,

γ(x̃(t)),
with x̃(t) being the
incumbent solution at point
t, else.

The primal gap function p(t) is a step function that changes whenever a new incumbent is
found. It is monotonically decreasing and zero from the point on at which the optimal solution
is found.

Definition 2.3. Let T ∈ [0, tmax] and let ti ∈ [0, T ] for i ∈ 1, . . . , I − 1 be the points in time
when a new incumbent solution is found, t0 = 0, tI = T . We define the primal integral P (T ) of
a run as:

P (T ) :=

T∫
t=0

p(t) dt =

I∑
i=1

p(ti−1) · (ti − ti−1).

We suggest to use P (tmax) for measuring the quality of primal heuristics. It features two
simple, but important attributes: First, whenever a better solution is found at the same point
in time, P (tmax) decreases. Second, whenever the same solution is found at an earlier point in
time, P (tmax) decreases. Briefly: the primal integral favors finding good solutions early. For the
performance measures discussed in the introduction, at most one of these two attributes holds
in general.

The fraction P (tmax)/tmax can be seen as the average solution quality during the search process.
Spoken differently, the smaller P (tmax) is, the better is the expected quality of the incumbent
solution if we stop the solver at an arbitrary point in time. The primal integral is an absolute
measure in the sense that it is only defined by a single solver – unlike, for instance, a performance
profile3 which compares relative performance and is defined by a set of solvers.

Note that for pure feasibility problems (instances with a zero objective function), the primal
integral and the overall running time will give the same measure, up to a constant scaling factor.
This follows from the simple observation, that for feasibility instances, the primal gap is one,
before the solution is found (and the solution process thereby terminates) and zero afterwards.

3 Performance profiles [3] represent the relative performance of a set of algorithms compared to a virtually
best solver as a curve in a graph. A performance profile shows how many percent of the instances, which is the
ordinate, in a given test set a given solver could solve within a time factor, which is the abscissa, of the best
solver.
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Hence when for two different runs the running time differs by a factor of k, the primal integral
p(t) will also differ by a factor of k.

In a recent work on rounding heuristics for MINLP, Nannicini and Belotti [11] used the
percentage of total running time for which one given algorithm gave rise to a strictly better
solution than another one to compare two solution processes. This can be formulated in terms
of our notation as

1

T

T∫
t=0

χ{p1>p2}(t) dt

with p1 and p2 the primal gap functions of two runs of a solver (with different settings) and
χ{p1>p2}(t) a characteristic function, being one if p1(t) > p2(t) and zero otherwise. Main differ-
ences to the primal integral are that this does neither take the actual objective function values
of the solutions into account, nor is it an absolute measure since it compares the relative perfor-
mance of two algorithms.

3 Computational experiments

We conducted experiments with five state-of-the-art MIP solvers: Cbc 2.7.0 [12], FICO Xpress
23.01.06 [13], Gurobi 5.1.0 [14], IBM ILOG Cplex 12.5.0 [15], and Scip 3.0.1 [1] compiled with
SoPlex 1.7.1 [16] as LP solver. Cplex, Gurobi, and Xpress are among the fastest commercial
MIP solvers, Cbc and Scip among the fastest open-source MIP solvers [10]. Further, these are
the five codes that have been used to compile the Miplib 2010 [8] benchmark set which we chose
as a test set for our computational experiments. We excluded the three infeasible instances
ash608gpia-3col, enlight14, and ns1766074. Additionally, we excluded the instance mspp16

because Scip and Cbc ran out of memory. This leaves 83 instances in the test set.
The results for running the solvers in default mode are taken from the benchmarks for opti-

mization software webpage of Hans Mittelmann [10], as of 20. February 2013. Additional results
with disabled primal heuristics were obtained on the same computer, a 64bit Intel Xeon X5680
CPU at 3.20GHz with 12 MB cache and 32 GB main memory, running an openSUSE 12.1 with
a gcc 4.6.2 compiler. Turboboost was disabled. In all experiments, there was only one job at a
time to avoid random noise in the measured running time that might be caused by cache-misses
if multiple processes share common resources.

As a first test, we compare the performance of Scip and Cplex when running with and
without primal heuristics. We show the evolution of the primal gap in Figures 1 and 2. The
dashed line corresponds to the average (taken over 83 instances) primal gap function, when
running the solver in default mode. The dark area corresponds to the average primal integral.
Accordingly, the dotted line and the light shaded (plus the dark shaded) area correspond to the
average primal gap function and the average primal integral when running the solver without
heuristics.

For Scip, the average value of P (tmax)/tmax was 9.05% when using primal heuristics and 16.18%
without. For Cplex, it was 1.92% and 3.58%, respectively. This indicates, that on this test set,
for these two solvers, primal heuristics lead to an improvement of 78.8% and 86.5% in the primal
bound, on average. As a comparison, the running time to optimality was 819.0 seconds with and
910.5 seconds without primal heuristics for Scip (+11%); 181.1 seconds and 239.9 seconds for
Cplex (+32%). Both solvers solved four instances less when not using primal heuristics. Note
that for both solvers the “default” function is strictly smaller than the “no heur” function. This
implies that, independent of the chosen time limit, using primal heuristics is superior in terms
of the primal integral.
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Figure 1: Course of the primal gap when running Scip with and without primal heuristics

0 1,000 2,000 3,000
0

10

20

30

40

t in sec.

p
(t
)
in

%

no heur
default

0 1,000 2,000 3,000
0

10

20

30

40

t in sec.

p
(t
)
in

%

Figure 2: Course of the primal gap when running Cplex with and without primal heuristics
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Figure 3: Course of the primal gap for five different MIP solvers plus a virtual best solver

Of course, we can use the primal integral as another metric to compare the performance of
solvers against each other. It has been argued in [8] (and previously in [6]) that more than one
performance indicator should be used for evaluating mathematical programming software, ideally
based on different aspects of the optimization process. Figure 3 shows the course of the average
primal gap function for Cbc, Scip, Xpress, Gurobi, Cplex and a virtual best solver (VBS).
VBS takes for each instance the minimum of the primal bounds of the five solvers at each point
in time. The results for the average primal integral, in particular the order of the solvers, are
clearly different from those for the mean time to optimality as it is shown at [10], which shows
that different solvers have different strengths.

Even more important, averages tell you little about a single instance. The primal integral
of the virtual best solver in Figure 3 is a factor 3.8 smaller than the primal integral of the best
individual solver, meaning that the portfolio of solvers is significantly better than any single
solver. For 82 of the 83 instances, at least one solver found an optimal4 solution within 800
seconds. In contrast, for each individual solver, there are at least four instances for which the
solver did not find an optimal solution after one hour. Each solver contributes to VBS, meaning
that each solver has the single best primal bound for some instances for some time. Altogether
this shows once again (compare [8]), that having a portfolio of MIP solvers is beneficial.

4 Variants and Extensions

Two main directions for modifications of the primal integral are (i) using a different base measure
p(t) and (ii) extending the integral function P (T ).

Concerning (i), this article suggested to take the integral over a primal gap function defined
by the current incumbent and a best known feasible solution. Analogously, we can define a
dual integral by considering a dual gap function between the current and a best known dual

4Here, we consider a solution x̃ optimal when γ(x̃) ≤ 10−6.
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bound. Using the “gap closed” (one of the first appearances was in 1985 [7]) as a measure for the
performance of a cutting plane algorithm has the same pitfall as using the objective function of
the best found solution for primal heuristics: it only considers the final state, ignoring the path
that led there.

Taking the integral over the primal-dual gap as reported by most general purpose MIP solvers
can serve as a measure of their convergence speed. Again, this might be particularly worthwhile
when a testset contains many instances which hit an imposed time limit. Reporting the gap
at termination is prone to variations caused by bound changes around the time limit. Using a
primal-dual integral instead reduces the impact of events that happen around the time limit: if as
an extreme example one solver improves the bound after 3599 seconds and the other after 3601,
the primal-dual integral will differ by less than 0.1%, the gap after one hour can be arbitrarily
different. Unlike the primal integral, a primal-dual integral does not even require the value of an
optimal or best known solution as an input.

Concerning (ii), logarithmic scales are often used to put the focus on the factor between
measured values rather than on their absolute difference. It can be argued for the time axis as
well as for the gap axis that it makes sense to rather use a logarithmic scale – and incorporate
the logarithm into the definition of P (T ).

We used primal heuristics for mixed integer linear programming as a showcase in this article,
but never exploited specific structures of this problem class. The suggested measures can be
used for any class of optimization problem which features a meaningful primal or dual bound
and any algorithm that produces a monotonic sequence of bound values. Similarly, instead of a
gap function, any performance measure which evolves monotonic over time could be used.

5 Conclusion

In this article, we introduced a new performance measure to evaluate mathematical program-
ming software. The primal integral takes the development of the incumbent solution over time
into account, thereby favoring finding good solutions early. It is less prone, though not im-
mune, to common weaknesses of standard performance measures, notably the dependence on an
(arbitrarily chosen) time limit.

We argued that the primal integral is particularly useful to measure the impact of primal
heuristics. To this end, we showed that for two state-of-the-art MIP solvers, the primal inte-
gral changes by a factor of nearly two when disabling primal heuristics. The running time to
optimality only increased moderately in the same experiment.

We conclude that the primal integral and its variants (e.g., a primal-dual integral) are a
valuable extension of the portfolio of available performance measures. We suggest to take it into
account whenever analyzing algorithms that work particularly on the primal bound within an
optimization procedure.
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