
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

BENJAMIN HILLER TORSTEN KLUG
JAKOB WITZIG

Reoptimization in branch-and-bound
algorithms with an application to

elevator control

ZIB-Report 13-15 (March 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Reoptimization in branch-and-bound algorithms

with an application to elevator control

Benjamin Hiller, Torsten Klug, Jakob Witzig
Zuse Institute Berlin

Takustraße 7
D–14195 Berlin, Germany.

hiller,klug,witzig@zib.de

March 21, 2013

Abstract

We consider reoptimization (i.e., the solution of a problem based on in-
formation available from solving a similar problem) for branch-and-bound
algorithms and propose a generic framework to construct a reoptimizing
branch-and-bound algorithm. We apply this to an elevator scheduling
algorithm solving similar subproblems to generate columns using branch-
and-bound. Our results indicate that reoptimization techniques can sub-
stantially reduce the running times of the overall algorithm.

1 Introduction

Many powerful solution methods for hard optimization problems, e.g., La-
grangian relaxation and column generation, are based on decomposing a problem
into a master problem and one or more subproblems. The subproblems are then
repeatedly solved to update the master problem that will eventually be solved
to optimality. Usually, the subproblems solved in successive rounds are rather
similar; typically, only the cost vector changes reflecting updated information
from the master problem (i.e., Lagrangian multipliers in the case of Lagrangian
relaxation approaches and dual prices in column generation methods). It is ob-
vious that this similarity in subproblems should be exploited by “warmstarting”
the solving process of a subproblem using information from the last round in
order to reduce the running time. Methods to achieve this are known as reopti-
mization techniques and have been investigated in the context of decomposition
methods for some time now, see e.g., [12] as an example for reoptimization in
the context of Lagrangian methods and [2] as an example for column generation
methods.

There is much literature on reoptimization of polynomially solvable opti-
mization problems like the (standard) shortest path problems, see e.g. [13] and
the references therein. However, for theoretical reasons the decomposition is
usually done such that the resulting subproblems are NP-hard, though solvable
effectively in practice. Recently, there is also growing theoretical interest in re-
optimization methods focusing on the case that only the optimal solution from
the last problem is known, see e.g. [1] for a survey.

1

Usually, specialized combinatorial algorithms are used to solve the subprob-
lems, but there are also cases in which the subproblems may be solved using
branch-and-bound algorithms, see e.g., [11, 4, 10]. Moreover, there is a re-
cent interest to automatically reformulate mixed-integer programs (MIPs) and
then apply decomposition techniques [6, 7, 8, 5, 3]. The subproblems in these
reformulated models are solved by standard MIP solvers, which are very sophis-
ticated branch-and-bound algorithms. Thus there is a need for reoptimization
techniques for branch-and-bound-type algorithms.

In this paper, we propose a generic way to implement a reoptimizing branch-
and-bound algorithm using the typical ingredients of a branch-and-bound algo-
rithm. The essential idea is to “continue” the branch-and-bound search; in order
to do that correctly, we do not only have to keep the search frontier, but also
the set of pruned nodes and all solutions found so far. The intuition is that once
the cost vector has converged to some extent, the branch-and-bound trees gen-
erated in successive rounds are basically the same in the higher levels. Thus the
effort for creating this part again may be saved by reoptimization. In contrast
to e.g., [2], our approach does not require any assumption on the structure of
the change of the cost function, although we propose a way to exploit a special
common structure. The details of our approach are presented in Section 2.

The main part of the paper is devoted to an application to elevator control,
where reoptimization allows to substantially improve the running times of the
column generation algorithm ExactReplan presented in [9, 10]. In addition
to the extensions suggested by the generic reoptimization scheme, we also ad-
just the branching rule to facilitate reoptimization. This is necessary to take
advantage of additional pruning possibilities that arise from properties of the
lower bound used in ExactReplan.

2 Construction of a reoptimizing branch-and-
bound algorithm

To formally introduce our concept of a reoptimizing branch-and-bound algo-
rithm, we consider the following abstract setting. The aim is to solve the com-
binatorial optimization problem

min{c(x) | x ∈ S}, (1)

given by a finite set of feasible solutions S and a cost function c : S → R,
successively for a sequence of cost functions (ci : S → R)i∈I , I ⊆ N. For the
applications we have in mind, ci+1 depends on the solutions obtained for ci, but
this is not used in the following.

Consider a branch-and-bound algorithm A that solves (1). We could just
invoke A as-is once for every ci to solve the sequence of optimization problems.
We now design a branch-and-bound algorithm A′ that allows to benefit from
computations done for ci when solving (1) with cost function ci+1. To do that,
we denote by v a node in A’s search tree corresponding to a subproblem of (1)
and think of A as being specified by the following subalgorithms:

lb(v) A function to compute a lower bound for node v in the search tree.

branch(v) A branching rule that partitions the search space corresponding to v
into smaller regions, creating nodes v1, . . . , vk, k ≥ 2, of the search tree.

2

heu(v) A function to compute a heuristic solution for node v in the search tree;
this function may also fail in the sense that no solution is produced. If,
however, v corresponds to a single solution x (i.e., v is a leaf in the search
tree), heu(v) returns x.

feas(v) A function to check whether the search tree rooted at node v still con-
tains feasible solutions.

Using these subalgorithms, A basically divides the search space S into

• the set Σ ⊆ S of feasible solutions found so far,

• a set of subproblems Pf that have been pruned since the corresponding
regions do not contain elements of S (i.e., for v ⊆ S feas(v) is false),

• a set of subproblems Pc that have been pruned since the corresponding
regions do not contain elements with cost less than some upper bound U
(i.e., for v ⊆ S we have lb(v) > U),

• and a set O of as-yet unexplored subproblems,

such that we have S ⊆ Σ∪S(Pc)∪S(O), where S(V) ⊆ S denotes the solutions
represented by the search tree nodes V .

As an example, consider the well-known LP-based branch-and-bound algo-
rithm to solve mixed-integer programs. In this case, lb(v) is just the value of
the LP relaxation at node v and branch(v) is a (possibly quite sophisticated)
branching rule that selects a fractional variable and creates two child nodes with
integer bounds for that variable excluding its current fractional value. heu(v)
corresponds to the set of heuristics applied at v, including the trivial heuristic
that returns the current LP solution if it is integer. Finally, feas(v) is the check
whether the LP relaxation at node v is still feasible.

Assuming that (Σ,Pf ,Pc,O) are the corresponding sets after running A for
cost function ci, we may observe the following:

• The nodes in Pf do not have to be considered for cost function ci+1.

• An optimal solution for cost function ci+1 is contained in Σ∪S(Pc)∪S(O).

• Any solution x ∈ Σ may be optimal for ci+1.

• A node v ∈ Pc might be attractive for cost function ci+1, i.e., lb(v) ≤ U
for some given upper bound U .

• A node v ∈ O might be pruned due to cost for cost function ci+1, i.e.,
lb(v) > U .

Based on these observations it is straightforward to construct a branch-
and-bound algorithm A′ that uses the subalgorithms of A and exploits the
computations done in the last round. To this end, A′ maintains the sets Σ and
Pc in addition toO1 for use in the next round and initializes them properly based
on the sets from the last round. A pseudo-code for this reoptimizing branch-
and-bound algorithm is shown in Figure 1. This version computes the set Σ∗

1O may not be empty in case the branch-and-bound search is stopped early, which is useful
when applied to subproblems as a part of a decomposition scheme.

3

Input: cost function c : S → R; upper bound U ; sets Σ′, P ′c, O′
Output: sets Σ, Pc, O; set of solutions Σ∗ costing at most U
1: Σ← Σ′, Pc ← ∅, O ← ∅, Σ∗ ← ∅ . Initialization
2: for all x ∈ Σ do
3: Put x in Σ∗ if c(x) ≤ U .

4: for all v ∈ P ′c ∪ O′ do
5: Put v in O if lb(v) ≤ U and in Pc otherwise.

6: while O 6= ∅ do . Standard branch-and-bound
7: Choose v ∈ O.
8: if heu(v) is successful and returns solution x then
9: Put x in Σ.

10: Put x in Σ∗ if c(x) ≤ U .

11: v1, . . . , vk ← branch(v)
12: for i = 1, . . . , k do
13: if feas(v) then
14: Put v in O if lb(v) ≤ U and in Pc otherwise.

Figure 1: Pseudocode for reoptimizing branch-and-bound algorithm A′.

of all feasible solutions with cost at most that of a given upper bound U . This
formulation of the optimization is due to our application, where (1) corresponds
to a pricing problem in a column generation context and U is some small negative
constant, i.e., we look for any columns with negative reduced cost. We may as
well consider all truely optimal solutions only.

From the preceding discussion and the logic of standard branch-and-bound,
we have the following result.

Theorem 1 Assuming that S = Σ′ ∪ S(P ′c) ∪ S(O′), algorithm A′ defined in
Figure 1 correctly computes the set Σ∗ and upon termination we have S =
Σ ∪ S(Pc) ∪ S(O).

Proof Consider a solution x ∈ S. In the case that x is in Σ′, by Step 1 it
will be in Σ, too. Moreover, it will also be in Σ∗ iff its cost are at most U . If
x is represented by a search tree node v′ ∈ P ′c ∪ O′, i.e., x ∈ S(P ′c) ∪ S(O′) =
S(P ′c ∪ O′), after Step 4 node v′ is either in O (if lb(v′) ≤ U) or in Pc (if
c(x) ≥ lb(v′) > U).

Assume now that v′ ∈ O after the initialization phase. The remaining steps
of A′ maintain the invariant x ∈ Σ ∪ S(Pc ∪ O). To see this, let v be the node
representing x at the beginning of the while loop. In case x is found by heu(v),
it is put in Σ (and in Σ∗ if necessary). Otherwise, it will be represented by at
least one of the nodes v1, . . . , vk created by branch(v), say v1. By definition,
feas(v1) is true, so v1 is either put in O or Pc. Moreover, v1 is only put in Pc if
c(x) ≥ lb(v1) > U . Thus in case c(x) ≤ U it will eventually be found by heu(),
and thus be contained in Σ∗.

As for the running time, initializing Σ∗ in Step 2 takes |Σ′| evaluations of c,
which is usually cheap. To initialize O and Pc in Step 4 requires |P ′c ∪ O|
evaluations of lb(), which may be rather expensive. It is, however, possible to
avoid the recomputation of the lower bounds if the cost functions ci and ci+1

4

and the lower bound method exhibit special structure. Assume that the cost
functions ci and ci+1 have the same (separable) structure of the form

c(x) = c0(x) +

m∑
j=1

cj(x)πj , (2)

where only the coefficients πj change from i to i+1. Denote by c(v) the minimum
cost of a solution represented by node v. If lb(v) actually provides (additionally)
lower bounds cj(v) for cj(x), 0 ≤ j ≤ m, for any x ∈ S represented by v, we
can compute a lower bound for v as

c(v) ≥ c0(v) +

m∑
j=1

cj(v)πj , (3)

which takes time O(m) for each node v if cj(v), 0 ≤ j ≤ m, are stored with v. A
cost structure like (2) arises in the contexts of column generation and Lagrangian
relaxation, where the πj are dual prices or Lagrangian multipliers, respectively.

3 Elevator control as an application of a reopti-
mizing branch-and-bound algorithm

We now apply our framework for reoptimizing branch-and-bound algorithms
to the column-generation-based elevator scheduling algorithm ExactReplan
from [9, 10]. The ExactReplan algorithm is designed to schedule elevators in
destination call systems, where a passenger registers his destination floor upon
his arrival at the start floor. Let E be the set of elevators. A (destination) call is
a triple of the release time, the start floor and the destination floor corresponding
to this registration. Note that the elevator control knows only calls, not about
passengers. At any point in time we can build a snapshot problem describing
the current system state. ExactReplan determines an optimal solution for
each snapshot problem, giving the schedule to follow until new information
becomes available. In a snapshot problem, the calls are grouped to requests
according to certain rules reflecting the communication between the passenger
and the elevator control. A request has a start floor and a set of destinations
floors. We distinguish between assigned requests R(e) for each elevator, for
which it has already been decided that elevator e is going to serve them, and
unassigned requests Ru, which still may be assigned to any elevator. In fact,
determining the elevator serving each request ρ ∈ Ru is the main task of an
elevator control algorithm. Solving a snapshot problem requires to schedule the
elevators such that each request is served, i.e., there is an elevator traveling
to the corresponding start floor (to pick up the calls/passengers) and visiting
its destination floors (to drop the calls/passengers) afterwards. In particular, a
feasible schedule for elevator e needs to serve all assigned requests R(e) and may
serve any subset of the unassigned requests Ru. We call a selection of feasible
schedules, one for each elevator, that together serve all requests, a dispatch.

3.1 The original ExactReplan algorithm

Let S(e) be the set of all feasible schedules for elevator e and define S :=⋃
e∈E S(e). For each S ∈ S we introduce a decision variable xS ∈ {0, 1} for

5

including a schedule in the current dispatch or not. Denoting by c(S) the cost
of schedule S, the following set partitioning model describes the problem:

min
∑
S∈S

c(S)xS (4)

s.t.
∑

S∈S : ρ∈S
xS = 1 ∀ρ ∈ Ru (5)

∑
S∈S(e)

xS = 1 ∀e ∈ E (6)

xS ∈ {0, 1} ∀S ∈ S (7)

Equations (5) and (6) ensure that each request is served by exactly one elevator
and each elevator has exactly one schedule, respectively. Note that the model
only decides assignment for the unassigned requests and the assigned requests
are treated implicitly by the sets S(e). The number of variables of this Integer
Programming (IP) problem is very large, because each permutation serving
a request subset R ⊆ Ru corresponds to a feasible schedule. We therefore
use column generation to solve the LP relaxation of the model above using a
branch-and-bound algorithm to solve the following pricing problem.

For all requests ρ ∈ R and e ∈ E we denote the dual prices associated with
constraints (5) and (6) by πρ and πe , respectively. Moreover, let Ru(S) be the
unassigned requests served by schedule S. For each elevator e we have to find
S ∈ S(e) with negative reduced cost

c̃(S) := c(S)−
∑

ρ∈Ru(S)

πρ − πe (8)

or to decide that no such schedule exists. The cost of S is the sum of the
cost c(ρ) for serving each request ρ, i.e.,

c(S) =
∑

ρ∈R(e)∪Ru(S)

c(ρ). (9)

Pricing via branch-and-bound

A schedule S is a sequence of stops (s0, . . . , sk) describing future visits to floors.
We enumerate all feasible schedules for elevator e by constructing a schedule
stop by stop, branching if there is more than one possibility for the next stop.
Thus each search tree node v corresponds to a feasible schedule Sv and one of
its stops sv ; the schedule up to sv is fixed and the later stops correspond to
dropping off passengers. Moreover, we maintain for each v the set Av ⊆ R(e)
of not yet picked up assigned requests and the set Ov ⊆ Ru of not yet picked up
optional requests. At v there are the following branching possibilities: Either
the next stop is the one following sv (if there is one) or the next stop is at a
starting floor of a request in Av ∪Ov , which is then picked up there. We create
a child node for any of these possibilities.

Our branch-and-bound pricing algorithm computes for each node v a lower
bound of the reduced costs by

c̃(v) = c(Sv) +
∑
ρ∈Av

c(ρ) +
∑

ρ∈Ov : c(ρ)−πρ<0

(c(ρ)− πρ) − πe , (10)

6

Ti 1 2 3 4 5 6 7

1 1.0000 0.2581 0.1048 0.1044 0.1069 0.1030 0.1039
2 1.0000 0.2591 0.2637 0.2658 0.2604 0.2626
3 1.0000 0.5706 0.5105 0.5537 0.5629
4 1.0000 0.8484 0.9098 0.9286
5 1.0000 0.9187 0.8965
6 1.0000 0.9778
7 1.0000

Table 1: Example for similarity of rooted trees. Entry (i, j), i ≥ j, represents
the similarity between the rooted search tree Ti at the end of pricing round i and
the rooted search tree Tj at the end of pricing round j. For instance, 91.87 %
of all nodes from the rooted search trees T5 and T6 are part of both trees.

where c(ρ) is a lower bound on the primal-costs of requests ρ. An important
observation is that we can prune all optional requests with c(ρ)−πρ ≥ 0, leading
to a much smaller search tree.

Proposition 1 Consider a node v of the search tree corresponding to an eleva-
tor e and dual prices (πρ)ρ∈Ov . If the search tree rooted at v contains a schedule
with negative reduced cost, then it also contains one with negative reduced cost
that does not serve the requests in O≥v := {ρ ∈ Ov | c(ρ)− πρ ≥ 0}.

An important feature of our pricing algorithm is that we do not solve the
pricing problem to optimality, but stop as soon as k schedules with negative
reduced cost are found. These schedules are then added to the set partitioning
master problem, whose LP relaxation is then resolved to obtain new dual prices.
The rationale for this is to avoid to spend too much time due to bad dual prices.

Similarity of search trees

In our computations we observed that the sets of generated nodes in successively
generated search trees get more and more similar. To quantify this, we use the
following similarity measure for rooted trees [14]. We denote by T the set of all
rooted trees and define for two rooted trees T , T ′ ∈ T the number

α(T , T ′) := |{v ∈ T | the unique (r, v)-path in T is contained in T ′|},

where r is the root of T . The similarity Λ(T , T ′) ∈ [0, 1] between T and T ′ is
then given by

Λ : T× T→ [0, 1], (T , T ′) 7→

{
α(T ,T ′)

|V |+|V ′|−α(T ,T ′) , V 6= ∅, V ′ 6= ∅
0, otherwise.

(11)

An example of the evolution of this similarity measure from pricing round to
pricing round is shown in Table 1.

3.2 The reoptimizing ExactReplan algorithm

In Section 2 we presented a straightforward way to transform a standard branch-
and-bound algorithm to a reoptimizing one. Now we aim to apply this scheme to

7

the ExactReplan algorithm. Recall that an upper bound is given by U , the set
of solutions found so far is denoted by Σ, Pc is the set of nodes v that have been
pruned since c̃(v) > U and finally, O is the the set of as-yet unexplored nodes.
The implementation of these basic structures and the initialization procedure
in Algorithm 1 is straightforward.

We already mentioned that, assuming that the cost function has the struc-
ture (2) and the lower bound method “is compatible” with this structure,
the updates of the lower bounds for all nodes v ∈ Pc ∪ O can be done in
time O(m). Observe that the schedule cost function (9) is exactly of type (2)
and also the lower bound (10) matches this structure. We can thus use For-
mula (3) to update the lower bounds for each node v, which only requires storing
c0(v) := c(Sv) +

∑
ρ∈Av c(ρ) and c(ρ) for ρ ∈ Ov with v. Our computational

experiments show [14] that using this fast update of the lower bounds reduces
the time spent in the initialization phase by 60–85 %.

A disadvantage of the straightforward reoptimizing branch-and-bound algo-
rithm is that we cannot exploit Proposition 1: It might happen that a request ρ
with c(ρ) − πρ ≥ 0 at iteration i will have c(ρ) − πρ < 0 at iteration j > i,
which we would not detect if we just remove ρ from Ov in iteration i. An
immediate consequence is an unnecessarily high number of generated nodes in
the reoptimizing branch-and-bound algorithm. To avoid that, we use a different
branching procedure when reoptimizing that records pruning due to Proposi-
tion 1 explicitly. It is thus equivalent to the original one in the sense that it
generates the same search tree when used without reoptimization. To describe
this, we introduce the following notation.

• The set of all floors which are branching possibilities at node v is denoted
by B(v).

• O<v := {ρ ∈ Ov | the start floor of ρ is in B(v) and c(ρ)− πρ < 0} ⊆ Ov

• O≥v := {ρ ∈ Ov | the start floor of ρ is in B(v) and c(ρ)− πρ ≥ 0} ⊆ Ov

• A node v is called branched, if O≥v = O<v = ∅.

• A node v is called pseudo-branched, if O≥v 6= ∅ and O<v = ∅.

In each branching step we branch only on the start floors corresponding to
optional requests in O<v . If O≥v = ∅, v is branched and can be deleted as in
the non-reoptimizing branch-and-bound algorithm. Otherwise we store v in Pc.
Additionally, we extend the initialization phase: If a node v from Pc is not yet
branched, we compute the new sets O≥v and O<v from the set O≥v of the last
iteration, creating child nodes for each start floor of an request in O<v . These
child nodes are stored in O for further processing. Moreover, the requests in O<v
are removed from O≥v , recording the fact that the corresponding branches have
been created. We call this modified branching method Pseudo-Branching.

The Pseudo-Branching technique has a positive side effect, namely a re-
duction of schedules which have to be stored, because we are generating fewer
nodes. Thus the time needed for the initialization phases decreases, too. Our
computational experiments show that on average, the number of generated
nodes decreases by 60 %, the initialization time by 25 % and the number of
stored schedules by 24 % due to Pseudo-Branching.

8

3.3 Computational results

In our simulations we consider two buildings and six traffic patterns with three
different traffic intensities [10]. Building A has a population of 1400 people,
23 floors and 6 elevators; building B has a population of 3300 people, 12 floors
and 8 elevators. The traffic patterns are standard for assessing elevator control
algorithms and mimic traffic arising in a typical office building. In the morning,
passengers enter the building from the ground floor, causing up peak traffic.
Then there is some interfloor traffic where the passengers travel roughly evenly
between the floors. During lunch traffic, people leave and reenter the building
via the ground floor. Finally, there is down peak traffic when people leave the
building in the afternoon. In addition, we also consider real up peak traffic and
real down peak traffic, which mix the up peak and down peak traffic which 5%
of interfloor and 5% of down peak and up peak traffic, respectively. These two
patterns are supposed to model the real traffic conditions more closely than
the pure ones. One hour of each traffic pattern is simulated for three different
intensities: 80 %, 100 % and 144 % of the population arriving in one hour.

We compare the original ExactReplan algorithm to its reoptimizing ver-
sion ExactReplan-reopt with fast updating of lower bounds and Pseudo-
Branching. Both variants of the ExactReplan algorithm solve the LP re-
laxation of any snapshot problem in the root node to optimality and then solve
the resulting IP to optimality without generating further columns. All compu-
tations ran under Linux on a system with an Intel Core 2 Extreme CPU X9650
with 3.0 GHz and 16 GB of RAM. We did not use the 64bit facility on this
machine. Results are shown in Tables 2 and 3. The number of generated nodes
is at least halved on the average. A comparison between the total time and
the initialization time shows that the initialization of the reoptimizing branch-
and-bound algorithm is cheap compared to the branching procedure. Moreover,
the column time ratio shows that it is possible to save up to 85 % of computa-
tion time (Up Peak 144 % on building A) when using the reoptimizing variant.
Since the branching rules are equivalent w. r. t. generated search trees without
reoptimization, the speedup is entirely due to our reoptimization techniques.

4 Conclusion

We proposed a general scheme to use reoptimization in a branch-and-bound
algorithm and applied this scheme to the elevator scheduling algorithm Exac-
tReplan based on column generation. Moreover, we adjusted the branching
rule of our reoptimizing version of ExactReplan to take advantage of addi-
tional pruning possibilities also when using reoptimization. This reoptimizing
version of ExactReplan outperforms ExactReplan substanstially up to a
factor of 6. As a next step, we want to employ reoptimization also to the branch-
and-price version of ExactReplan, which also uses column generation to solve
the LP relaxation of nodes below the root. Moreover, we will study reoptimiza-
tion for LP-based branch-and-bound used in state-of-the-art MIP solvers to
improve the performance of automatic decomposition frameworks like GCG [8].

9

tr
affi

c
p

at
te

rn
E
x
a
c
t
R
e
p
l
a
n

E
x
a
c
t
R
e
p
l
a
n
-r
e
o
p
t

n
am

e
#

sn
ap

sh
ot

s
∅

ge
n

.
n

o
d

es
to

ta
l

ti
m

e
∅

g
en

.
n

o
d

es
Σ

in
it

.
ti

m
e

to
ta

l
ti

m
e

ti
m

e
ra

ti
o

D
ow

n
P

ea
k

80
%

96
3

3
9
.5

7
6
8

1
7
.1
3

2
4
4

0
.6

4
2

D
ow

n
P

ea
k

10
0

%
11

33
7
3
.9

2
1
3
4

3
2
.4
5

5
8
6

0
.6

4
0

D
ow

n
P

ea
k

14
4

%
15

44
3
9
1
.1

8
8
2
4

1
6
8
.1
3

6
4

5
1
4

0
.6

2
4

In
te

rfl
o
or

80
%

98
0

7
1
.1

4
1
1
7

3
0
.3
5

5
7
6

0
.6

5
0

In
te

rfl
o
or

10
0

%
11

74
2
9
6
.4

5
5
1
5

1
2
9
.7
8

4
3

3
2
8

0
.6

3
7

In
te

rfl
o
or

14
4

%
15

71
1
0
4
2
6
.0

6
2
6
6
2
1

2
7
7
2
.9
6

3
1
1
0

1
2
1
2
4

0
.4

5
5

L
u

n
ch

P
ea

k
80

%
98

0
2
6
.2

8
5
2

1
1
.3
3

1
3
6

0
.6

9
0

L
u

n
ch

P
ea

k
10

0
%

11
72

7
5
.4

7
1
4
6

3
1
.9
2

6
9
4

0
.6

4
1

L
u

n
ch

P
ea

k
14

4
%

15
68

2
7
7
4
.9

3
6
7
6
4

7
4
8
.9
8

5
9
8

2
8
2
7

0
.4

1
8

R
ea

l
D

ow
n

P
ea

k
80

%
97

9
2
7
.7

7
5
5

1
2
.0
6

1
3
8

0
.6

8
9

R
ea

l
D

ow
n

P
ea

k
10

0
%

11
71

6
1
.8

0
1
1
9

2
7
.7
5

4
7
9

0
.6

6
9

R
ea

l
D

ow
n

P
ea

k
14

4
%

15
65

3
3
7
.5

9
7
3
8

1
4
6
.3
8

6
1

4
7
1

0
.6

3
9

R
ea

l
U

p
P

ea
k

80
%

96
4

1
2
5
.2

6
2
0
3

3
0
.6
7

6
7
4

0
.3

6
4

R
ea

l
U

p
P

ea
k

10
0

%
11

64
3
0
8
.5

9
5
8
5

7
3
.6
5

1
9

1
9
9

0
.3

4
0

R
ea

l
U

p
P

ea
k

14
4

%
17

14
3
9
1
4
.4

8
1
2
6
9
0

5
5
3
.0
4

3
9
2

2
4
0
1

0
.1

8
9

U
p

P
ea

k
80

%
96

6
9
6
6

6
5
.5

4
1
0
5

1
6
.9
1

2
4
5

0
.4

2
6

U
p

P
ea

k
10

0
%

11
59

1
3
0
5
.9

2
2
7
0
2

2
5
9
.0
6

7
0

6
7
0

0
.2

4
8

U
p

P
ea

k
14

4
%

16
56

2
9
0
6
4
.2

0
1
0
6
5
9
7

3
5
6
4
.7
3

2
6
5
2

1
6
0
0
4

0
.1

5
0

T
ab

le
2:

B
u

il
d

in
g

A
,

co
m

p
u

ta
ti

on
al

re
su

lt
s.

T
h

e
se

co
n

d
a
n

d
fo

u
rt

h
co

lu
m

n
sh

ow
s

th
e

av
er

a
g
e

o
f

g
en

er
a
te

d
n

o
d
es

p
er

sn
a
p

sh
o
t

p
ro

b
le

m
an

d
p

er
el

ev
at

or
.

T
h

e
to

ta
l

ti
m

e
in

th
e

th
ir

d
an

d
si

x
th

co
lu

m
n

is
th

e
su

m
ov

er
a
ll

sn
a
p

sh
o
t

p
ro

b
le

m
s.

A
n

a
lo

g
th

e
ti

m
e

n
ee

d
ed

fo
r

th
e

in
it

ia
li

za
ti

on
at

th
e

b
eg

in
n

in
g

of
ea

ch
p

ri
ci

n
g

ro
u

n
d

(fi
ft

h
co

lu
m

n
).

A
ll

ti
m

es
a
re

re
p

re
se

n
te

d
in

se
co

n
d
s.

T
h

e
ti

m
e

ra
ti

o
is

th
e

q
u
o
ti

en
t

of
(t

ot
al

ti
m

e
E
x
a
c
t
R
e
p
l
a
n
-r
e
o
p
t

)/
(t

ot
al

ti
m

e
E
x
a
c
t
R
e
p
l
a
n

).

10

tr
affi

c
p

at
te

rn
E
x
a
c
t
R
e
p
l
a
n

E
x
a
c
t
R
e
p
l
a
n
-r
e
o
p
t

n
am

e
#

sn
ap

sh
ot

s
∅

ge
n

.
n

o
d

es
to

ta
l

ti
m

e
∅

g
en

.
n

o
d

es
Σ

in
it

.
ti

m
e

to
ta

l
ti

m
e

ti
m

e
ra

ti
o

D
ow

n
P

ea
k

80
%

18
30

1
9
.1

1
1
0
5

8
.3
6

1
6
7

0
.6

4
1

D
ow

n
P

ea
k

10
0

%
21

31
2
5
.2

7
1
4
7

1
0
.9
7

3
9
2

0
.6

2
6

D
ow

n
P

ea
k

14
4

%
28

71
4
2
.2

2
2
9
3

1
8
.3
5

8
1
8
1

0
.6

1
8

In
te

rfl
o
or

80
%

18
68

1
0
0
.2

7
4
0
3

4
8
.5
8

2
3

2
8
6

0
.7

1
0

In
te

rfl
o
or

10
0

%
21

82
2
4
6
.0

1
1
0
7
8

1
3
6
.2
3

1
0
6

8
8
7

0
.8

2
3

In
te

rfl
o
or

14
4

%
27

52
4
6
3
7
.0

7
2
6
5
0
7

1
6
8
1
.6
2

3
4
3
2

1
6
2
2
5

0
.6

1
2

L
u

n
ch

P
ea

k
80

%
18

44
4
8
.4

0
2
1
7

2
3
.0
9

7
1
4
7

0
.6

8
0

L
u

n
ch

P
ea

k
10

0
%

21
83

2
4
7
.5

2
1
0
8
7

1
3
3
.7
7

1
0
5

8
7
5

0
.8

0
5

L
u

n
ch

P
ea

k
14

4
%

27
72

4
4
1
.7

9
2
4
1
7

2
4
9
.3
3

2
6
7

1
9
9
1

0
.8

2
4

R
ea

l
D

ow
n

P
ea

k
80

%
18

68
2
1
.2

9
1
1
6

9
.1
6

2
7
4

0
.6

4
2

R
ea

l
D

ow
n

P
ea

k
10

0
%

21
82

3
4
.2

2
1
9
5

1
4
.7
7

5
1
2
5

0
.6

4
0

R
ea

l
D

ow
n

P
ea

k
14

4
%

28
09

8
1
.1

7
4
9
9

3
5
.9
3

2
0

3
1
7

0
.6

3
7

R
ea

l
U

p
P

ea
k

80
%

18
93

4
6
.1

9
2
1
1

1
4
.8
6

4
1
1
0

0
.5

2
2

R
ea

l
U

p
P

ea
k

10
0

%
22

26
8
9
.9

8
4
4
7

2
6
.1
4

1
1

1
9
9

0
.4

4
5

R
ea

l
U

p
P

ea
k

14
4

%
11

65
8

1
2
1
8
.4

5
3
7
3
0
9

2
5
7
.8
6

1
1
8
0

1
0
5
3
9

0
.2

8
2

U
p

P
ea

k
80

%
18

29
4
6
.6

8
2
0
1

1
4
.2
8

3
9
9

0
.4

9
5

U
p

P
ea

k
10

0
%

22
64

8
1
.7

5
4
2
7

2
2
.0
1

8
1
7
1

0
.4

0
2

U
p

P
ea

k
14

4
%

13
26

8
6
1
4
.2

3
2
7
8
5
7

1
2
1
.0
3

4
6
7

6
8
3
4

0
.2

4
5

T
ab

le
3:

B
u

il
d

in
g

B
,

co
m

p
u
ta

ti
on

al
re

su
lt

s.
T

h
e

se
co

n
d

a
n

d
fo

u
rt

h
co

lu
m

n
sh

ow
s

th
e

av
er

a
g
e

o
f

g
en

er
a
te

d
n

o
d
es

p
er

sn
a
p

sh
o
t

p
ro

b
le

m
an

d
p

er
el

ev
at

or
.

T
h

e
to

ta
l

ti
m

e
in

th
e

th
ir

d
an

d
si

x
th

co
lu

m
n

is
th

e
su

m
ov

er
a
ll

sn
a
p

sh
o
t

p
ro

b
le

m
s.

A
n

a
lo

g
th

e
ti

m
e

n
ee

d
ed

fo
r

th
e

in
it

ia
li

za
ti

on
at

th
e

b
eg

in
n

in
g

of
ea

ch
p

ri
ci

n
g

ro
u

n
d

(fi
ft

h
co

lu
m

n
).

A
ll

ti
m

es
a
re

re
p

re
se

n
te

d
in

se
co

n
d
s.

T
h

e
ti

m
e

ra
ti

o
is

th
e

q
u
o
ti

en
t

of
(t

ot
al

ti
m

e
E
x
a
c
t
R
e
p
l
a
n
-r
e
o
p
t

)/
(t

ot
al

ti
m

e
E
x
a
c
t
R
e
p
l
a
n

).

11

References

[1] G. Ausiello, V. Bonifaci, and B. Escoffier. Computability in Context: Com-
putation and Logic in the Real World, chapter Complexity and Approxi-
mation in Reoptimization. Imperial College Press/World Scientific, 2011.

[2] M. Desrochers and F. Soumis. A reoptimization algorithm for the shortest
path problem with time windows. European J. Oper. Res., 35:242–254,
1988.

[3] DIP – Decomposition for Integer Programming. https://projects.

coin-or.org/Dip.

[4] P. Friese and J. Rambau. Online-optimization of a multi-elevator transport
system with reoptimization algorithms based on set-partitioning models.
Discrete Appl. Math., 154(13):1908–1931, 2006.

[5] M. Galati. Decomposition in Integer Linear Programming. PhD thesis,
Lehigh University, 2009.

[6] G. Gamrath. Generic branch-cut-and-price. Diploma thesis, TU Berlin,
2010.

[7] G. Gamrath and M. E. Lübbecke. Experiments with a generic Dantzig-
Wolfe decomposition for integer programs. In Symposium on Experimental
Algorithms (SEA 2010), volume 6049 of LNCS, pages 239–252. Springer,
2010.

[8] GCG – Generic Column Generation. http://www.or.rwth-aachen.de/

gcg/.

[9] B. Hiller. Online Optimization: Probabilistic Analysis and Algorithm En-
gineering. PhD thesis, TU Berlin, 2009.

[10] B. Hiller, T. Klug, and A. Tuchscherer. An exact reoptimization algorithm
for the scheduling of elevator groups. Flexible Services and Manufacturing
Journal, to appear.

[11] S. O. Krumke, J. Rambau, and L. M. Torres. Realtime-dispatching of
guided and unguided automobile service units with soft time windows. In
Proceedings of ESA 2002, volume 2461 of LNCS, pages 637–648. Springer,
2002.

[12] L. Létocart, A. Nagih, and G. Plateau. Reoptimization in Lagrangian meth-
ods for the quadratic knapsack problem. Comput. Oper. Res., 39(1):12–18,
2012.

[13] E. Miller-Hooks and B. Yang. Updating paths in time-varying networks
with arc weight changes. Transportation Sci., 39(4):451–464, 2005.

[14] J. Witzig. Effiziente Reoptimierung in Branch&Bound-Verfahren für die
Steuerung von Aufzügen. Bachelor thesis, TU Berlin, 2013.

12

