

Guillaume Sagnol

On the semidefinite representation of real functions applied to symmetric matrices

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125
e-mail: bibliothek@zib.de
URL: http://www.zib.de
ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

On the semidefinite representation of real functions applied to symmetric matrices

Guillaume Sagnol
Revised version: July 2013

Abstract

We present a new semidefinite representation for the trace of a real function f applied to symmetric matrices, when a semidefinite representation of the convex (or concave) function f is known. Our construction is intuitive, and yields a representation that is more compact than the previously known one. We also show with the help of matrix geometric means and a Riemannian metric over the set of positive definite matrices that for a rational exponent p in the interval $(0,1]$, the matrix X raised to p is the largest element of a set represented by linear matrix inequalities. This result further generalizes to the case of the matrix $A \not \sharp_{p} B$, which is the point of coordinate p on the geodesic from A to B. We give numerical results for a problem inspired from the theory of experimental designs, which show that the new semidefinite programming formulation can yield an important speed-up factor.

Keywords: semidefinite representability, optimal experimental designs, SDP, matrix geometric mean

AMS Classification: $90 \mathrm{C} 22,62 \mathrm{~K} 05$

1 Introduction

In this article we discuss semidefinite representations of scalar functions applied to symmetric matrices. We recall that it is possible to extend the definition of a function $f: I \mapsto \mathbb{R}, x \rightarrow f(x)$, where I is a real interval, to the set \mathbb{S}_{m}^{I} of $m \times m$-symmetric matrices whose spectrum lies in I as follows: if $X=U \operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right) U^{T}$ is an eigenvalue decomposition of X, then we define $f(X):=U \operatorname{Diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{m}\right)\right) U^{T}$. Throughout this article we denote by \mathbb{S}_{m} (resp. $\mathbb{S}_{m}^{+}, \mathbb{S}_{m}^{++}$) the set of $m \times m$ symmetric (resp. positive semidefinite, positive definite) matrices.

If the scalar function f is semidefinite representable, then a result of Ben-Tal and Nemirovski can be used to construct a semidefinite representation of $X \rightarrow$ trace $f(X)$. Indeed, trace $f(X)$ can be rewritten as $\sum_{i} f\left(\lambda_{i}\right)$, which is a symmetric and semidefinite representable function of the eigenvalues of X, so that Proposition 4.2.1. in [5] applies.

In this article, we show that the semidefinite representation of $x \rightarrow f(x)$ can be lifted to the matrix case $X \rightarrow$ trace $f(X)$ by an intuitive transformation
which involves Kronecker products (Theorem 3.1). For a convex (resp. concave) function, the resulting semidefinite representation of the epigraph (resp. hypograph)

$$
\left.\left.\begin{array}{rl}
E & \left.=\left\{(t, X) \in \mathbb{R} \times \mathbb{S}_{m}: \operatorname{trace} f(X) \leq t\right)\right\} \\
(\text { resp. } & H
\end{array}=\left\{(t, X) \in \mathbb{R} \times \mathbb{S}_{m}: \operatorname{trace} f(X) \geq t\right)\right\}\right)
$$

is more compact than the one obtained from the general construction of BenTal and Nemirovski, in which the Ky-Fan k-norms of M must be bounded for $k=1, \ldots, m$. Our numerical results of Section 5 moreover show that the semidefinite programs (SDP) based on the present representation are solved in a shorter time than the former SDP formulations, and they are numerically more stable.

For the case where $f(x)=x^{p}: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$, where p is a rational number in $(0,1]$, we shall see that our construction yields a stronger result. Namely, we show in Theorem 4.4 that X^{p} has an extremal representation of the form

$$
X^{p}=\max _{\preceq}\left\{T \in \mathbb{S}_{m}: T \in \mathcal{S}\right\}
$$

where the set \mathcal{S} is semidefinite representable and $\max _{\preceq}$ denotes the largest element with respect to the Löwner ordering, which is defined over \mathbb{S}_{m} as follows:

$$
A \preceq B \Longleftrightarrow(B-A) \in \mathbb{S}_{m}^{+} .
$$

More generally, our result shows that the matrix $B \sharp_{p} A:=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{p} B^{\frac{1}{2}}$ has an extremal representation. The proof of this result uses the notion of matrix geometric mean, and the Banach fixed point theorem in the space \mathbb{S}_{m}^{++} equipped with a Riemannian metric.

Our study is motivated by the theory of optimal experimental designs, where the general problem to solve takes the form

$$
\begin{align*}
\max _{\boldsymbol{w} \in \mathbb{R}^{s}} & \Phi_{p}\left(\sum_{i=1}^{s} w_{i} M_{i}\right) \tag{1}\\
\text { s.t. } & \sum_{i=1}^{s} w_{i}=1, \quad \boldsymbol{w} \geq \mathbf{0}
\end{align*}
$$

where M_{1}, \ldots, M_{s} are given positive semidefinite matrices, and for $p \in[-\infty, 1]$ the Φ_{p}-criterion is defined over the set of positive definite matrices $M \in \mathbb{S}_{m}^{++}$ as

$$
\Phi_{p}(M)= \begin{cases}\lambda_{\min }(M) & \text { for } p=-\infty ; \tag{2}\\ \left(\frac{1}{m} \operatorname{trace} M^{p}\right)^{\frac{1}{p}} & \text { for } p \in(-\infty, 1], p \neq 0 ; \\ (\operatorname{det}(M))^{\frac{1}{m}} & \text { for } p=0 .\end{cases}
$$

The definition of Φ_{p} is extended by continuity to singular matrices $M \in \mathbb{S}_{m}^{+}$, so that $\Phi_{p}(M)=0$ if M is singular and $p \leq 0$. This design problem arises when an experimenter must select a subset of trials to perform among a set of available experiments, and has many applications in various domains, such as dose-finding in clinical studies [11] or measurements in telecommunication networks [21]. We refer the reader to Pukelsheim [17] for more background on optimal experimental designs.

Note that any semidefinite representation of the function $M \rightarrow$ trace M^{p} yields a semidefinite programming (SDP) formulation of Problem (1). The cases $p=-\infty, p=-1$, and $p=0$, known as $E-, A-$ and D-optimal design problems have been extensively studied in the literature, and SDP formulations are known for these problems [10]. We also point out that lighter Second Order Cone Programming (SOCP) formulations exist for $p=-1$ and $p=0[19,18]$. The general case ($p \in[-\infty, 1]$) deserved less attention. However, it was recently noticed by Papp [16] that the SDP formulation can be obtained by using Proposition 4.2.1. in [5]. Our numerical results (cf. Section 5) show that the new SDP formulation from this paper can improve the computation time by several orders of magnitude.

2 Preliminaries

In this section, we briefly recall some basic notion about semidefinite representability and matrix geometric means. A Semidefinite Program (SDP) is an optimization problem where a linear function $\boldsymbol{c}^{T} \boldsymbol{x}$ must be maximized, among the vectors \boldsymbol{x} belonging to a set S defined by linear matrix inequalities (LMI):

$$
S=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: F_{0}+\sum_{i} x_{i} F_{i} \succeq 0\right\}
$$

We now recall the definition of a semidefinite representable set, which was introduced by Ben-Tal and Nemirovski [5]:

Definition 2.1 (Semidefinite representability). A convex set $S \subset \mathbb{R}^{n}$ is said to be semidefinite representable, abbreviated $S D r$, if S is the projection of a set in a higher dimensional space which can be described by LMIs. In other words, S is $S D r$ if and only if there exists symmetric matrices $F_{0}, \ldots, F_{n}, F_{1}^{\prime}, \ldots, F_{n^{\prime}}^{\prime}$ such that

$$
\boldsymbol{x} \in S \Longleftrightarrow \exists \boldsymbol{y} \in \mathbb{R}^{n^{\prime}}: \quad F_{0}+\sum_{i=1}^{n} x_{i} F_{i}+\sum_{i=1}^{n^{\prime}} y_{i} F_{i}^{\prime} \succeq 0
$$

Such an LMI is called a semidefinite representation (SDR) of the set S.
Definition 2.2 (SDR of a function). A convex (resp. concave) function $f: S \subset \mathbb{R}^{n} \mapsto \mathbb{R}$ is said $S D r$ if and only if the epigraph of $f,\{(t, \boldsymbol{x}): f(\boldsymbol{x}) \leq t\}$ (resp. the hypograph $\{(t, \boldsymbol{x}): t \leq f(\boldsymbol{x})\}$), is $S D r$.

It follows immediately from these two definitions that the problem of maximizing a concave $S D r$ function (or minimizing a convex one) over a $S D r$ set can be cast as an SDP.

We now give a short insight on the theory of matrix geometric means and the Riemannian metric of the set of positive definite matrices \mathbb{S}_{m}^{++}. We refer the reader to the book of Bhatia [6] and the references therein for more details on this subject. The Geometric mean of two positive definite matrices $A, B \in \mathbb{S}_{m}^{++}$ was introduced by Ando [3]:

$$
A \sharp B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

In the latter paper, Ando shows that $A \sharp B$ satisfies the following extremal property:

$$
A \sharp B=\max _{\preceq}\left\{X \in \mathbb{S}_{m}:\left(\begin{array}{cc}
A & X \tag{3}\\
X & B
\end{array}\right) \succeq 0\right\} .
$$

The space of positive definite matrices is equipped with the Riemannian metric

$$
\delta_{2}(A, B)=\left\|\log A^{-1 / 2} B A^{-1 / 2}\right\|_{F},
$$

where $\|M\|_{F}=\sqrt{\operatorname{trace}\left(M^{T} M\right)}$ denotes the Frobenius norm of M. In this space, there exists a unique geodesic $[A, B]$ between two matrices A and B, which can be parametrized as follows (using the common \sharp_{t}-notation):

$$
\gamma_{A \rightarrow B}(t)=A \sharp_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, \quad 0 \leq t \leq 1 .
$$

Note that $A \sharp B=A \not \sharp_{\frac{1}{2}} B$ is the midpoint of this geodesic. The geometric mean of two matrices has the following properties:

- it is commutative:

$$
\begin{equation*}
A \sharp B=B \sharp A ; \tag{4}
\end{equation*}
$$

- if A, and B commute, then

$$
\begin{equation*}
A \sharp B=A^{1 / 2} B^{1 / 2} ; \tag{5}
\end{equation*}
$$

- the map $X \rightarrow A \sharp X$ is operator monotone, i.e.

$$
\begin{equation*}
Y \succeq X \Longrightarrow A \sharp Y \succeq A \sharp X ; \tag{6}
\end{equation*}
$$

- the \sharp-operator is invariant under congruent transformation: for all invertible matrix U of size m,

$$
\begin{equation*}
U^{T}(A \sharp B) U=\left(U^{T} A U\right) \sharp\left(U^{T} B U\right) . \tag{7}
\end{equation*}
$$

We also point out that the metric δ_{2} enjoys an important convexity property, which will be useful in the proof of Theorem 4.4:

$$
\begin{equation*}
\forall A, B, C, D \in \mathbb{S}_{m}^{++}, \quad \delta_{2}(A \sharp B, C \sharp D) \leq \frac{1}{2} \delta_{2}(A, C)+\frac{1}{2} \delta_{2}(B, D) . \tag{8}
\end{equation*}
$$

3 Lifting the SDR of a scalar function

In this section, we show that the $S D R$ of a function $f: I \mapsto \mathbb{R}$ can be transformed in a simple way to a $S D R$ of trace $f: \mathbb{S}_{m}^{I} \rightarrow \mathbb{R}$:

Theorem 3.1. Let $f: I \mapsto \mathbb{R}$ be a scalar function, where I is a real interval. Assume that f admits the following $S D R$: for all $x \in I$,

$$
f(x) \leq t \Longleftrightarrow \exists \boldsymbol{y} \in \mathbb{R}^{n}: F_{0}+x F_{X}+t F_{T}+\sum_{i=1}^{n} y_{i} F_{i} \succeq 0
$$

where the symmetric matrices $F_{0}, \ldots, F_{n}, F_{X}, F_{T}$ are given. Then, a $S D R$ of the function $g: \mathbb{S}_{m}^{I} \mapsto \mathbb{R}, X \rightarrow \operatorname{trace} f(X)$ is given by: for all $X \in \mathbb{S}_{m}^{I}$,

$$
\begin{aligned}
\operatorname{trace} f(X) \leq t \Longleftrightarrow & \exists T, Y_{1}, \ldots, Y_{n} \in \mathbb{S}_{m}: \\
& \text { (i) } F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes T+\sum_{i=1}^{n} F_{i} \otimes Y_{i} \succeq 0
\end{aligned}
$$

(ii) $\operatorname{trace} T \leq t$,
where I_{m} denotes the $m \times m$ identity matrix and \otimes is the Kronecker product. In other words, the $S D R$ is lifted from scalar to matrices by replacing each scalar by a corresponding matrix block of size $m \times m$.

Proof. Let X be an arbitrary matrix in \mathbb{S}_{m}^{I}, and $X=U \operatorname{Diag}(\boldsymbol{\lambda}) U^{T}$ be an eigenvalue decomposition of X.

We first assume that trace $f(X) \leq t$. For $k=1, \ldots, m$, define $t_{k}=f\left(\lambda_{k}\right)$. By assumption there exists a vector $\boldsymbol{y}^{(\boldsymbol{k})}$ such that

$$
B_{k}:=F_{0}+\lambda_{k} F_{X}+t_{k} F_{T}+\sum_{i=1}^{n} y_{i}^{(k)} F_{i} \succeq 0
$$

Denote by \mathcal{B} the block diagonal matrix with blocks B_{1}, \ldots, B_{m} on the diagonal, and by $\boldsymbol{y}_{\boldsymbol{i}}$ the vector of \mathbb{R}^{m} with components $y_{i}^{(1)}, \ldots, y_{i}^{(m)}$. We may write

$$
\mathcal{B}=I_{m} \otimes F_{0}+\operatorname{Diag}(\boldsymbol{\lambda}) \otimes F_{X}+\operatorname{Diag}(\boldsymbol{t}) \otimes F_{T}+\sum_{i=1}^{n} \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) \otimes F_{i} \succeq 0
$$

In the previous expression, we may commute the Kronecker products, which is equivalent to pre- and post-multiplying by a permutation matrix:

$$
F_{0} \otimes I_{m}+F_{X} \otimes \operatorname{Diag}(\boldsymbol{\lambda})+F_{T} \otimes \operatorname{Diag}(\boldsymbol{t})+\sum_{i=1}^{n} F_{i} \otimes \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) \succeq 0
$$

Now, we multiply this expression to the left by the block diagonal matrix $\operatorname{Diag}(U, \ldots, U)=I \otimes U$, and to the right by its transpose. This gives:

$$
F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes T+\sum_{i=1}^{n} F_{i} \otimes Y_{i} \succeq 0
$$

where we have set $T=U \operatorname{Diag}(\boldsymbol{t}) U^{T}$ and $Y_{i}=U \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) U^{T}$. By construction, we have $T=f(X)$, so (ii) holds and we have proved the " \Rightarrow " part of the theorem.

For the converse part, consider some matrices $T^{\prime}, Y_{1}^{\prime}, \ldots Y_{n}^{\prime} \in \mathbb{S}_{m}$ such that the LMI (i) of the theorem is satisfied. Define $H_{T}=T^{\prime}-T$ and $H_{i}=Y_{i}^{\prime}-Y_{i}$, where $T=f(X)$ and $Y_{i}=U \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) U^{T}$ are defined as in the first part of this proof. We will show that trace $H_{T} \geq 0$, which implies trace $T^{\prime} \geq$ trace $f(X)$, and the proof will be complete.

So from (i) we have:

$$
F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes\left(T+H_{T}\right)+\sum_{i=1}^{n} F_{i} \otimes\left(Y_{i}+H_{i}\right) \succeq 0
$$

Again, we multiply this expression to the left by $I \otimes U^{T}$ and to the right by $I \otimes U$, and then we commute the Kronecker products. This gives:

$$
\operatorname{Diag}\left(B_{1}, \ldots, B_{m}\right)+U^{T} H_{T} U \otimes F_{T}+\sum_{i=1}^{n} U^{T} H_{i} U \otimes F_{i} \succeq 0
$$

For all $k=1, \ldots, m$, this implies that the k th diagonal block is positive semidefinite:

$$
B_{k}+\left(U^{T} H_{T} U\right)_{k, k} F_{T}+\sum_{i=1}^{n}\left(U^{T} H_{i} U\right)_{k, k} F_{i} \succeq 0
$$

According to the $S D R$ of the scalar function f, it means that

$$
f\left(\lambda_{k}\right) \leq t_{k}+\left(U^{T} H_{T} U\right)_{k, k},
$$

and since $f\left(\lambda_{k}\right)=t_{k}$ we obtain $\left(U^{T} H_{T} U\right)_{k, k} \geq 0$. From there, it is easy to conclude:

$$
\operatorname{trace} H_{T}=\operatorname{trace} H_{T} U U^{T}=\operatorname{trace} U^{T} H_{T} U=\sum_{k=1}^{m}\left(U^{T} H_{T} U\right)_{k, k} \geq 0
$$

Example 3.2. A $S D R$ of the function $x \rightarrow x^{p}$, where $p \in \mathbb{Q}$ is briefly sketched in [5] (§3.3.1., examples 12 to 15) and given with more details in [1] (§2.3.h). (Note that this function is concave for $p \in[0,1]$ and convex for other values of p.) For example, the epigraph of the convex function $x \rightarrow x^{-4 / 3}$ mapping $(0, \infty)$ onto itself, may be represented as follows: for all $t \geq 0, x>0$:

$$
\begin{aligned}
x^{-4 / 3} \leq t & \Longleftrightarrow 1 \leq x^{4} t^{3} \\
& \Longleftrightarrow \exists u \geq 0, v \geq 0: 1 \leq x u, u^{2} \leq t v, v^{2} \leq t \\
& \Longleftrightarrow \exists u \in \mathbb{R}, v \in \mathbb{R}:\left(\begin{array}{cc}
x & 1 \\
1 & u
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t & u \\
u & v
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t & v \\
v & 1
\end{array}\right) \succeq 0
\end{aligned}
$$

For the second equivalence, the " \Leftarrow " part is clear and the " \Rightarrow " part is obtained by setting $u=t^{3 / 4}$ and $v=t^{1 / 2}$. The third equivalence is a standard use of the Schur complement lemma. By using Theorem 3.1, we obtain a $S D R$ of the function $X \rightarrow$ trace $X^{-4 / 3}$:

$$
\operatorname{trace} X^{-4 / 3} \leq t \Longleftrightarrow \exists U, V, T \in \mathbb{S}_{m}:\left\{\begin{array}{l}
\left(\begin{array}{cc}
X & I_{m} \\
I_{m} & U
\end{array}\right) \succeq 0 \\
\left(\begin{array}{cc}
T & U \\
U & V
\end{array}\right) \succeq 0 \\
\left(\begin{array}{cc}
T & V \\
V & I_{m} \\
\operatorname{trace} T \leq t
\end{array}\right.
\end{array}\right.
$$

Note however that LMI (i) of Theorem 3.1 does not imply the stronger property $f(X) \preceq T$. As a counter-example, consider the function $f(x)=x^{4}$, which admits the $S D R$

$$
x^{4} \leq t \Longleftrightarrow \exists u \in \mathbb{R}:\left(\begin{array}{cc}
u & x \\
x & 1
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t & u \\
u & 1
\end{array}\right) \succeq 0 .
$$

If we set $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), U=\left(\begin{array}{ll}8 & 8 \\ 8 & 3\end{array}\right)$ and $X=\left(\begin{array}{cc}73 & 39 \\ 39 & 34\end{array}\right)$, the reader can check that the LMI (i) of Theorem 3.1 holds:

$$
\left(\begin{array}{cc}
U & X \\
X & I_{2}
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
T & U \\
U & I_{2}
\end{array}\right) \succeq 0
$$

but $X^{4} \npreceq T$. In the next section, we show that this stronger property holds for $f: x \rightarrow x^{p}$ when $p \in \mathbb{Q} \cap(0,1]$.

4 Semidefinite representation of $A \sharp_{p} B$

Throughout this section, p denotes a rational number in (0,1], and we choose two integers α and β such that $p=\frac{\alpha}{\beta}$ and $0<\alpha \leq \beta$. We are going to show that the lifted $S D R$ of the function f_{p} mapping \mathbb{R}_{+}onto itself and defined by $f(x)=x^{p}$, also provides an extremal representation of X^{p}. In other words, there is a $S D r$ set $\mathcal{S} \subset \mathbb{S}_{m}^{+}$for which X^{p} is the largest element with respect to Löwner ordering. In fact, we will prove a stronger statement: for any $A \in \mathbb{S}_{m}^{+}$ and $B \in \mathbb{S}_{m}^{++}$, the matrix $B \sharp_{p} A=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{p} B^{\frac{1}{2}}$, which is the point of coordinate p on the geodesic from B to A, is the largest element of a $S D r$ set. The matrix power A^{p} arises as the particular case $B=I_{m}$.

To do this, we first present the construction of the $S D R$ of $\tilde{f}_{p}:(a, b) \rightarrow a^{p} b^{1-p}$. As explained in [1], this $S D R$ is based on binary trees whose nodes contain variables. Note that in a perfect binary tree, every node of depth k can be index by an element of $\Gamma_{k}:=\{L, R\}^{k}$, which indicates the sequence of left or right turns needed to reach this node from the root of the tree. For example, a perfect binary tree T of depth 2 is indexed as follows:

We denote by $\mathcal{T}_{n}=\Gamma_{0} \cup \ldots \cup \Gamma_{n}$ the set of node indices in a perfect binary trees of depth n, so that $\left(\mathbb{S}_{m}\right)^{\mathcal{T}_{n}}$ represents the set of binary trees of depth n, whose nodes are matrices of \mathbb{S}_{m}. The concatenation of tree indices is denoted by \sqcup, so that for example, $L R \sqcup L=L R L \in \Gamma_{3}$. We define n as the integer such that $2^{n-1}<\beta \leq 2^{n}$, and $\chi_{\alpha, \beta}$ as the following formal sequence of length 2^{n}, which is formed with characters in the alphabet $\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}$:

$$
\chi_{\alpha, \beta}:=(\underbrace{\mathrm{A}, \ldots, \mathrm{~A}}_{\alpha \text { times }}, \underbrace{\mathrm{B}, \ldots, \mathrm{~B}}_{(\beta-\alpha) \text { times }}, \underbrace{\mathrm{X}, \ldots, \mathrm{X}}_{\left(2^{n}-\beta\right) \text { times }}) .
$$

Now, let σ be any one of the permutations of $\chi_{\alpha, \beta}$, and let A, B be two arbitrary matrices (respectively in \mathbb{S}_{m}^{+}and \mathbb{S}_{m}^{++}). The elements of σ are indexed by $\gamma \in \Gamma_{n}$, in the order corresponding to the leaves of a tree of depth n from left to right. For example, if $\sigma=(\mathrm{A}, \mathrm{B}, \mathrm{X}, \mathrm{B})$, we have $\sigma_{L L}=\mathrm{A}, \sigma_{R L}=\mathrm{X}$, and $\sigma_{L R}=\sigma_{R R}=\mathrm{B}$. Let us now define for all $\gamma \in \Gamma_{n}$ the function $\hat{\sigma}_{\gamma}$, mapping \mathbb{S}_{m}^{+}to either A, B, or
X as follows:

$$
\forall X \in \mathbb{S}_{m}^{+}, \hat{\sigma}_{\gamma}(X)= \begin{cases}A & \text { if } \sigma_{\gamma}=\mathrm{A} \tag{9}\\ B & \text { if } \sigma_{\gamma}=\mathrm{B} \\ X & \text { if } \sigma_{\gamma}=\mathrm{X}\end{cases}
$$

With a slight abuse of notation, we will write $\sigma_{\gamma}(X)$ instead of $\hat{\sigma}_{\gamma}(X)$ in the remaining of this paper. (So σ_{γ} denotes a character in $\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}$, while $\sigma_{\gamma}(X)$ denotes the corresponding matrix in \mathbb{S}_{m}^{+}.) Similarly, we will simply write $\sigma(X)$ to denote the sequence $\left(\hat{\sigma}_{\gamma}(X)\right)_{\gamma \in \Gamma_{n}}$.

We can now construct the $S D R$ of \tilde{f}_{p} (already lifted to \mathbb{S}_{m}^{+}by considering matrix blocks instead of scalar variables). It involves a tree whose root is X, leaves are defined by σ, and a LMI related to the matrix geometric mean must be satisfied at each node:

$$
\begin{aligned}
\mathcal{S}(\sigma)=\left\{X \in \mathbb{S}_{m}^{+}:\right. & \exists T \in\left(\mathbb{S}_{m}\right)^{\mathcal{T}_{n}}: \\
& \text { (i) } T_{\varnothing}=X ; \\
& \left(\text { ii) } \forall \gamma \in \Gamma_{n}, T_{\gamma}=\sigma_{\gamma}(X) ;\right. \\
& \left(\text { iii } \forall k=0, \ldots, n-1, \forall \gamma \in \Gamma_{k},\left(\begin{array}{cc}
T_{\gamma \sqcup L} & T_{\gamma} \\
T_{\gamma} & T_{\gamma \sqcup R}
\end{array}\right) \succeq 0\right\}
\end{aligned}
$$

Example 4.1. If $p=1 / 3$, we have $\alpha=1, \beta=3, n=2$, and σ must contain respectively $\alpha=1,(\beta-\alpha)=2$, and $\left(2^{n}-\beta\right)=1$ copies of A, B, and X . If $\sigma=(\mathrm{A}, \mathrm{X}, \mathrm{B}, \mathrm{B})$, the set $\mathcal{S}(\sigma)$ is defined through a tree of the form

The property (iii) in the definition of $\mathcal{S}(\sigma)$ implies that T_{R} satisfies

$$
\left(\begin{array}{cc}
B & T_{R} \\
T_{R} & B
\end{array}\right) \succeq 0
$$

So by Equation (3) we have $T_{R} \preceq B$, and the definition of $\mathcal{S}(\sigma)$ simplifies to:

$$
X \in \mathcal{S}(\sigma) \Longleftrightarrow \exists T_{L} \in \mathbb{S}_{m}:\left(\begin{array}{cc}
T_{L} & X \\
X & B
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
A & T_{L} \\
T_{L} & X
\end{array}\right) \succeq 0
$$

Generally speaking, we point out that the order of the elements in the permutation σ can be chosen such that the definition of $\mathcal{S}(\sigma)$ involves no more than $2(n-1)=O(\log \beta)$ LMIs of size $2 m \times 2 m$:

Proposition 4.2. The permutation σ of $\chi_{\alpha, \beta}$ can always be chosen such that $\mathcal{S}(\sigma)$ admits an $S D R$ involving no more than $2(n-1)=O(\log \beta)$ LMIs of size $2 m \times 2 m$, and no more than $2 n-3=O(\log \beta)$ additional variables $T_{\gamma} \in \mathbb{S}_{m}$.

A constructive proof of this result is presented in appendix.

Now, as a consequence of Equation (3), observe that property (iii) in the definition of $\mathcal{S}(\sigma)$ implies $T_{\gamma} \preceq T_{\gamma \sqcup L} \sharp T_{\gamma \sqcup R}$ (if the geometric mean is well defined, i.e. $\left.T_{\gamma \sqcup L}, T_{\gamma \sqcup R} \in \mathbb{S}_{m}^{++}\right)$. By operator monotonicity of the matrix geometric mean (see (6)), we see that if the matrices A, B, X, T_{L} and T_{R} of Tree (10) are positive definite, then:

$$
X \preceq T_{L} \sharp T_{R} \preceq(A \sharp X) \sharp(B \sharp B) .
$$

In the general case, we can bound X from above (with respect to Löwner ordering) by an expression with nested " $\#$-operations" in the binary tree whose leaves are defined through σ. Formally, for any two collections $\varsigma, \varsigma^{\prime} \in\left(\mathbb{S}_{m}^{+}\right)^{\Gamma_{n}}$ of 2^{n} positive definite matrices indexed by tree indices, i.e.

$$
\forall \gamma \in \Gamma_{n}, \quad \varsigma_{\gamma} \in \mathbb{S}_{m}^{+}, \varsigma_{\gamma}^{\prime} \in \mathbb{S}_{m}^{+}
$$

we define the juxtaposition $\varsigma \sqcap \varsigma^{\prime} \in\left(\mathbb{S}_{m}^{+}\right)^{\Gamma_{n+1}}$ as follows:

$$
\forall \gamma \in \Gamma_{n}, \quad\left(\varsigma \sqcap \varsigma^{\prime}\right)_{L \sqcup \gamma}=\varsigma_{\gamma}, \quad\left(\varsigma \sqcap \varsigma^{\prime}\right)_{R \sqcup \gamma}=\varsigma_{\gamma}^{\prime} .
$$

Note that if $n \geq 1$, any sequence $\varsigma \in\left(\mathbb{S}_{m}^{+}\right)^{\Gamma_{n}}$ can be uniquely decomposed as $\varsigma=\varsigma^{[L]} \sqcap \varsigma^{[R]}$, where the subsequences $\varsigma^{[L]}$ and $\varsigma^{[R]}$ are elements of $\left(\mathbb{S}_{m}^{+}\right)^{\Gamma_{n-1}}$. This allows us to define inductively the nested sharp operator $\#$, which acts from $\left(\mathbb{S}_{m}^{++}\right)^{\Gamma_{n}}$ onto \mathbb{S}_{m}^{++}as follows:

$$
\left\{\begin{aligned}
\forall \varsigma \in\left(\mathbb{S}_{m}^{++}\right)^{\Gamma_{0}}, & \#(\varsigma):=\varsigma \varnothing \\
\forall \varsigma=\varsigma^{[L]} \sqcap \varsigma^{[R]} \in\left(\mathbb{S}_{m}^{++}\right)^{\Gamma_{n}}, n \geq 1, & \#(\varsigma):=\left(\#\left(\varsigma^{[L]}\right)\right) \sharp\left(\#\left(\varsigma^{[R]}\right)\right) .
\end{aligned}\right.
$$

With a straightforward induction, we can now obtain the following lemma:
Lemma 4.3. If A and B are positive definite, then

$$
X \in \mathcal{S}(\sigma) \Longrightarrow X \preceq \#(\sigma(X))
$$

We can finally give the main result of this section:
Theorem 4.4 (Extremal representation of $B \not \sharp_{p} A$). Let $p=\frac{\alpha}{\beta}, 0<\alpha \leq \beta$, $\alpha \in \mathbb{N}, \beta \in \mathbb{N}, A \in \mathbb{S}_{m}^{+}, B \in \mathbb{S}_{m}^{++}$, and let σ be an arbitrary permutation of $\chi_{\alpha, \beta}$. Then, $B \sharp_{p} A$ satisfies the following extremal property

$$
B \not \sharp_{p} A=\max _{\preceq}\left\{X \in \mathbb{S}_{m}^{+}: X \in \mathcal{S}(\sigma)\right\} .
$$

Proof. Let $A \in \mathbb{S}_{m}^{++}$be an arbitrary positive definite matrix. We are first going to show that $B \not \sharp_{p} A=\max _{\preceq}\left\{X \in \mathbb{S}_{m}^{++}: X \in \mathcal{S}(\sigma)\right\}$. The general statement where $A \in \mathbb{S}_{m}^{+}$may be singular will be obtained at the end of this proof by continuity. Our proof relies on the following lemma:

Lemma 4.5. If A and B are positive definite, then $X=B \not \sharp_{p} A$ is a solution of the equation

$$
X=\#(\sigma(X)) .
$$

Proof of the lemma.
Define a sequence $\sigma^{\prime}(X)$, such that for all $\gamma \in \Gamma_{n}$,

$$
\sigma_{\gamma}^{\prime}(X)=B^{-\frac{1}{2}} \sigma_{\gamma}(X) B^{-\frac{1}{2}}
$$

Set $Y=B^{-\frac{1}{2}} A B^{-\frac{1}{2}}$, so that the elements of $\sigma^{\prime}(B \sharp p A)$ are all in $\left\{Y, I_{m}, Y^{p}\right\}$, and hence they commute. A simple induction shows that $\#\left(\sigma^{\prime}\left(B \sharp_{p} A\right)\right)=Y^{p}$ (the geometric means are easy to compute when the matrices commute, see (5)). By congruence invariance (see (7)),

$$
\begin{aligned}
\#\left(\sigma\left(B \not \sharp_{p} A\right)\right) & =B^{\frac{1}{2}} \#\left(\sigma^{\prime}\left(B \not \sharp_{p} A\right)\right) B^{\frac{1}{2}} \\
& =B^{\frac{1}{2}} Y^{p} B^{\frac{1}{2}} \\
& =B \not \sharp_{p} A .
\end{aligned}
$$

Proof of Theorem 4.4 (continued). Let $X \in \mathbb{S}_{m}^{++}$such that $X \in \mathcal{S}(\sigma)$, and let $T \in\left(\mathbb{S}_{m}\right)^{\mathcal{T}_{n}}$ be a tree satisfying properties $(i)-(i i i)$ of the definition of $\mathcal{S}(\sigma)$. Define a new tree T^{\prime} as follows:

$$
\forall \gamma \in \Gamma_{n-1}, T_{\gamma}^{\prime}:=T_{\gamma \sqcup L} \sharp T_{\gamma \sqcup R} \succeq T_{\gamma},
$$

and

$$
\forall \gamma \in \Gamma_{k}, T_{\gamma}^{\prime}:=T_{\gamma \sqcup L}^{\prime} \sharp T_{\gamma \sqcup R}^{\prime} \succeq T_{\gamma}
$$

for $k=(n-2), \ldots, 0$. By construction, the root of T^{\prime} is $X^{\prime}:=T_{\varnothing}^{\prime}=\#(\sigma(X)) \succeq X$. It remains to define the leaves of T^{\prime}, which we do according to $\sigma\left(X^{\prime}\right)$:

$$
\forall \gamma \in \Gamma_{n}, T_{\gamma}^{\prime}:=\sigma_{\gamma}\left(X^{\prime}\right) \succeq T_{\gamma}
$$

By construction, it is clear that T^{\prime} satisfies the property (iii) of the definition of $\mathcal{S}(\sigma)$ for the depth levels $k=0, \ldots, n-2$. For a $\gamma \in \Gamma_{n-1},(i i i)$ also holds, because

$$
\left(\begin{array}{cc}
T_{\gamma \sqcup L}^{\prime} & T_{\gamma}^{\prime} \\
T_{\gamma}^{\prime} & T_{\gamma \sqcup R}^{\prime}
\end{array}\right) \succeq\left(\begin{array}{cc}
T_{\gamma \sqcup L} & T_{\gamma}^{\prime} \\
T_{\gamma}^{\prime} & T_{\gamma \sqcup R}
\end{array}\right) \succeq 0,
$$

where the first inequality follows from $T_{\gamma \sqcup L}^{\prime} \succeq T_{\gamma \sqcup L}, T_{\gamma \sqcup R}^{\prime} \succeq T_{\gamma \sqcup R}$, and the second inequality is a consequence of $T_{\gamma}^{\prime}=T_{\gamma \sqcup L} \sharp T_{\gamma \sqcup R}$. This shows that X^{\prime} belongs to $\mathcal{S}(\sigma)$, too.

Define $h: \mathbb{S}_{m}^{++} \mapsto \mathbb{S}_{m}^{++}, X \rightarrow \#(\sigma(X))$. So far, we have shown that $X \in \mathcal{S}(\sigma) \Longrightarrow[h(X) \succeq X$ and $h(X) \in \mathcal{S}(\sigma)]$. By using the convexity property of the Riemannian metric (Equation (8)), a simple induction shows that h is a contraction mapping with a contraction factor equal to the fraction of the number of elements of σ that take the value X:

$$
\forall X, X^{\prime} \in \mathbb{S}_{m}^{++}, \delta_{2}\left(h(X), h\left(X^{\prime}\right)\right) \leq \frac{2^{n}-\beta}{2^{n}} \delta_{2}\left(X, X^{\prime}\right)<\delta_{2}\left(X, X^{\prime}\right)
$$

Hence, the mapping $X \rightarrow h(X)$ is contractive in the space \mathbb{S}_{m}^{++}equipped with the Riemannian metric δ_{2}. It is known that this space is complete (see e.g. [15]), and hence we can apply the Banach fixed point theorem: the fixed point equation $X=h(X)$ has a unique solution $X^{*} \in \mathbb{S}_{m}^{++}$. Moreover for all $X \in \mathbb{S}_{m}^{++}$the sequence defined by $X_{0}=X, X_{i+1}=h\left(X_{i}\right)$ converges to X^{*}. In particular, if $X \in \mathcal{S}(\sigma)$, our previous discussion shows that $X \preceq X^{*}$. Moreover, we can construct a tree with leaves defined by $\sigma\left(X^{*}\right)$, and such that all non-leaf node is the geometric mean of its two children, so that the root will be $h\left(X^{*}\right)=X^{*}$.

So, $X^{*} \in \mathcal{S}(\sigma)$ is the largest element of $\mathcal{S}(\sigma)$. Finally, we know from Lemma 4.5 that $X^{*}=B \sharp p A$.

It remains to show that the statement of the theorem remains valid when the matrix $A \in \mathbb{S}_{m}^{+}$is singular. We will first show that $B \sharp_{p} A \in \mathcal{S}(\sigma)$. Consider a tree T with leaves $\sigma\left(B \sharp_{p} A\right)$. Since the matrix $B \sharp_{p} A=B^{\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{p} B^{\frac{1}{2}}$ is singular, we may not define the non-leaf nodes of this tree using geometric means. However, observe that every leaf is of the form $B \sharp_{k} A$, with $k \in\{0, p, 1\}$. Hence, we define the non-leaf nodes of T by the following relation: if $T_{\gamma \sqcup L}=B \sharp_{k_{1}} A$ and $T_{\gamma \sqcup R}=B \sharp_{k_{2}} A$, then $T_{\gamma}:=B \sharp_{\frac{k_{1}+k_{2}}{2}} A$. It is easy to check that the property (iii) of the definition of $\mathcal{S}(\sigma)$ is satisfied for the resulting tree T. A simple induction shows that the root of this tree is

$$
T_{\varnothing}=B \sharp \sharp_{\frac{n_{A}(\sigma)+p p_{X}(\sigma)}{2^{n}}} A,
$$

where $n_{\mathrm{A}}(\sigma)$ and $n_{\mathbf{X}}(\sigma)$ represent the number of times that A and X appear in the sequence σ. Replacing $n_{\mathrm{A}}(\sigma)$ by α and $n_{\mathbf{X}}(\sigma)$ by $2^{n}-\beta$, we find $T_{\varnothing}=B \not \sharp_{p} A$. This shows that $B \sharp_{p} A \in \mathcal{S}(\sigma)$.

Until now the matrices A and B were fixed, but now we need to let A vary so we introduce the notation $\bar{\sigma}_{A^{\prime}}(X)$ to represent the sequence of length 2^{n} which is identical to $\sigma(X)$, except for the elements A that are replaced by A^{\prime} :

$$
\left(\bar{\sigma}_{A^{\prime}}(X)\right)_{\gamma}:= \begin{cases}A^{\prime} & \text { if } \sigma_{\gamma}=\mathrm{A} \\ B & \text { if } \sigma_{\gamma}=\mathrm{B} \\ X & \text { if } \sigma_{\gamma}=\mathrm{X}\end{cases}
$$

In particular, $\bar{\sigma}_{A}(X)=\sigma(X)$ for all $X \in \mathbb{S}_{m}^{+}$. We also define the set

$$
\overline{\mathcal{S}}(\sigma):=\left\{\left(A^{\prime}, X\right) \in \mathbb{S}_{m}^{+} \times \mathbb{S}_{m}^{+}: X \in \mathcal{S}\left(\bar{\sigma}_{A^{\prime}}\right)\right\}
$$

Note that $\overline{\mathcal{S}}(\sigma)$ is $S D r$ by construction, and hence convex.
Now, choose a sequence $A_{i} \in \mathbb{S}_{m}^{++}$such that $A_{i} \rightarrow A$ as $i \rightarrow \infty$, as well as a sequence $\epsilon_{i}>0$ such that $\epsilon_{i} \rightarrow 0$. We know that $\left(A_{i}, B \not \sharp_{p} A_{i}\right) \in \overline{\mathcal{S}}(\sigma)$ for all i. Let $X \in \mathcal{S}(\sigma)$, so that $(A, X) \in \overline{\mathcal{S}}(\sigma)$ and define $A_{i}^{\prime}:=\left(1-\epsilon_{i}\right) A+\epsilon_{i} A_{i}$, $X_{i}^{\prime}:=\left(1-\epsilon_{i}\right) X+\epsilon_{i} B \sharp_{p} A_{i}$. By convexity of $\overline{\mathcal{S}}(\sigma)$, we have $\left(A_{i}^{\prime}, X_{i}^{\prime}\right) \in \overline{\mathcal{S}}(\sigma)$. Moreover, since the matrices A_{i}^{\prime} and X_{i}^{\prime} are positive definite, we know that $X_{i}^{\prime} \preceq B \sharp_{p} A_{i}^{\prime}$. By taking the limit, we obtain $X \preceq B \sharp_{p} A$. This completes the proof.

Corollary 4.6. Let $p=\frac{\alpha}{\beta}, 0<\alpha \leq \beta$, and for all $U, X \in \mathbb{S}_{m}^{+}$let $\sigma_{X}(U)$ be a permutation of $\chi_{\alpha, \beta}\left(X, I_{m}, U\right)$ (the order of the elements in $\sigma_{X}(U)$ does not depend on X and U). If K is a $m \times r$-matrix, then the concave function $X \rightarrow \operatorname{trace} K^{T} X^{p} K$, which maps \mathbb{S}_{m}^{+}to \mathbb{R}^{+}, has the following semidefinite representation: for all $X \in \mathbb{S}_{m}^{+}$,

$$
t \leq \operatorname{trace} K^{T} X^{p} K \Longleftrightarrow \exists U \in \mathcal{S}\left(\sigma_{X}\right), t \leq \operatorname{trace} K^{T} U K
$$

Proof. If $t \leq \operatorname{trace} K^{T} X^{p} K$, we set $U=X^{p}$, so that $t \leq \operatorname{trace} K^{T} U K$ and by Theorem 4.4 $U \in \mathcal{S}\left(\sigma_{X}\right)$. Conversely, assume that $U \in \mathcal{S}\left(\sigma_{X}\right)$. We know from previous theorem that $U \preceq X^{p}$. Hence, we have $\langle M, U\rangle \leq\left\langle M, X^{p}\right\rangle$ for all positive semidefinite matrix M. In particular,

$$
\operatorname{trace} K^{T} U K=\left\langle K K^{T}, U\right\rangle \leq\left\langle K K^{T}, X^{p}\right\rangle=\operatorname{trace} K^{T} X^{p} K
$$

from which the conclusion follows.

Remark 4.7. In the recent years, many authors have proposed to generalize the definition of matrix geometric means for three or more matrices $[4,7,9,8]$. In a seminal work, Ando, Li and Mathias [4] have given a list of 10 properties that a "good" geometric mean should satisfy. A natural question arising from this paper is the following: is there a matrix geometric mean satisfying the ten properties of [4], that coincides with the largest element of a SDR set ? Interestingly, our result can be generalized in a straightforward way to give an extremal representation of the unique fixed point $F\left(A_{1}, \ldots, A_{N}\right)$ of the map

$$
X \rightarrow \#((A_{1}, A_{2}, \ldots, A_{N}, \underbrace{X, \ldots, X}_{2^{n}-N}))
$$

where the operand of $\#$ is a sequence of $\left(\mathbb{S}_{m}^{++}\right)^{\Gamma_{n}}$, with $n \in \mathbb{N}$ such that $2^{n-1}<N \leq 2^{n}$. We claim that this fixed point satisfies most of the Ando-Li-Mathias properties, but the permutation invariance is not fulfilled: for a permutation $\sigma, F\left(A_{1}, \ldots, A_{N}\right) \neq F\left(A_{\sigma(1)}, \ldots, A_{\sigma(N)}\right)$ in general.

5 Numerical Results

In this section, we compare the CPU time required to solve problems of the form

$$
\begin{equation*}
\min _{\substack{\boldsymbol{w} \geq \mathbf{0} \\ \sum_{i} w_{i}=1}} \operatorname{trace} f\left(\sum_{k=1}^{s} w_{k} M_{k}\right) \tag{f}
\end{equation*}
$$

by using the semidefinite representation of Theorem 3.1, and the one of Ben-Tal and Nemirovski [5]. This problem is inspired from the application to optimal experimental design that is presented in the introduction. For the sake of variety, we do not limit ourselves to power functions $x \rightarrow x^{p}$ with $p<1$. More precisely, assume that $f: I \rightarrow \mathbb{R}$ is a convex real valued function defined on the interval I, an $S D R$ of f is known:

$$
\forall x \in I, f(x) \leq t \Longleftrightarrow \exists \boldsymbol{y} \in \mathbb{R}^{n}: F_{0}+x F_{X}+t F_{T}+\sum_{i=1}^{n} y_{i} F_{i} \succeq 0
$$

and the matrices $M_{1}, \ldots, M_{s} \in \mathbb{S}_{m}^{I}$ are given. We compare the efficiency of the following two SDP formulations of Problem $\left(P_{f}\right)$: the one with block matrices resulting from Theorem 3.1,

$$
\begin{array}{cl}
\min _{X, T,\left\{Y_{i}\right\}, \boldsymbol{w}} & \operatorname{trace} T \\
\text { s.t. } & F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes T+\sum_{i=1}^{n} F_{i} \otimes Y_{i} \succeq 0 ; \\
& X=\sum_{k=1}^{s} w_{k} M_{k}, \quad \boldsymbol{w} \geq \mathbf{0}, \quad \sum_{k=1}^{s} w_{k}=1,
\end{array}
$$

$f(x)$	I	m	CPU time (s) [SeDuMi]		CPU time (s) [MOSEK]	
$-x^{\frac{1}{3}}$	$[0, \infty)$	10	0.40	0.80	0.05	0.18
		25	5.16	40.85	0.72	6.92
		40	59.19	$706.43{ }^{\dagger}$	3.47	$71.25{ }^{\text {b }}$
$-x^{\frac{2}{5}}$	$[0, \infty)$	10	0.58	1.28	0.08	0.22
		25	20.38	39.57	1.68	5.88
		40	298.90	$799.77{ }^{\dagger}$	$19.33^{\text {b }}$	$66.69^{\text {b }}$
$x^{\frac{-8}{7}}$	$(0, \infty)$	10	0.49	0.90	0.10	0.19
		25	22.38	40.07^{\dagger}	1.65	4.96
		40	357.22	$691.75{ }^{\dagger}$	14.65	61.87
$x^{\frac{7}{4}}$	$[0, \infty)$	10	0.41	1.23	0.07	0.17
		25	8.71	39.95	$1.19^{\text {b }}$	$5.90^{\text {b }}$
		40	120.16	741.15^{\dagger}	$6.38{ }^{\text {b }}$	$68.63^{\text {b }}$
$\frac{1}{x(1-x)}$	$(0,1)$	10	0.30	0.76	0.05	0.15
		25	4.31	37.21	0.37	4.97
		40	51.79	607.57^{\dagger}	2.27	$61.44{ }^{\text {b }}$
$g_{\text {conv }}(x)$	\mathbb{R}	10	0.75	1.50	0.12	0.24
		25	63.62	43.08^{\dagger}	2.94	4.37
		40	1019.70	$903.55{ }^{\dagger}$	31.06	$58.46{ }^{\text {b }}$

Table 1: CPU time of two SDP formulations for Problem (P_{f}) with SeDuMi and MOSEK. The second column indicates the interval I where the function f is defined, and the third column specifies the size of the matrices $M_{i} \in \mathbb{S}_{m}^{I}$. The function $g_{\text {conv }}$ in the last raw is defined in (11). ${ }^{\dagger}$ The numbers displayed in italics for SeDuMi indicate that the solver stopped before reaching the optimality tolerance, because of numerical problems. ${ }^{\text {b }}$ The numbers displayed in italics for MOSEK indicate that the solver returned the near-optimal status.
and the SDP from [5] that bounds each Ky-Fan Norm of X :

$$
\begin{array}{cl}
\min _{X, \boldsymbol{t}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\sigma},\left\{Z_{j}\right\}} & \sum_{j=1}^{m} t_{j} \\
\text { s.t. } \quad & F_{0}+x_{j} F_{X}+t_{j} F_{T}+\sum_{i=1}^{n} y_{i}^{(j)} F_{i} \succeq 0, \quad(j=1, \ldots, m) ; \\
& x_{1} \geq x_{2} \geq \ldots \geq x_{m} ; \\
& \sum_{k=1}^{j} x_{k}-j \sigma_{j}-\operatorname{trace}\left(Z_{j}\right) \geq 0, \quad(j=1, \ldots, m-1) ; \\
& Z_{j} \succeq 0, \\
& Z_{j}-X+\sigma_{j} I_{m} \succeq 0, \\
& \operatorname{trace} X=\sum_{j=1}^{m} x_{j} ; \\
& (j=1, \ldots, m-1) ; \\
& X=\sum_{k=1}^{s} w_{k} M_{k}, \quad \boldsymbol{w} \geq \mathbf{0}, \quad \sum_{k=1}^{s} w_{k}=1 .
\end{array}
$$

Our computational results are summarized in Table 1. Besides rational power functions, we have also consider the function $f:(0,1) \mapsto \mathbb{R}, x \rightarrow \frac{1}{x(x-1)}$,
which has the $S D R$

$$
\begin{aligned}
\forall x \in(0,1), \quad f(x) \leq t & \Longleftrightarrow \exists u \in \mathbb{R}: 1 \leq u(1-x), 1 \leq(t-u) x \\
& \Longleftrightarrow \exists u \in \mathbb{R}:\left(\begin{array}{cc}
u & 1 \\
1 & 1-x
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t-u & 1 \\
1 & x
\end{array}\right) \succeq 0
\end{aligned}
$$

as well as the convex envelope of a polynomial of degree 6 . The fact that convex envelopes of univariate rational functions are $S D r$ was proved by Laraki and Lasserre [13]. For the function

$$
\begin{equation*}
g_{\mathrm{conv}}: \mathbb{R} \mapsto \mathbb{R}, x \rightarrow \text { convex-envelope }\left(\frac{x^{6}}{6}-3 \frac{x^{4}}{2}+4 x^{2}+x\right), \tag{11}
\end{equation*}
$$

the $S D R$ given in [13] is:

$$
\begin{aligned}
g_{\text {conv }}(x) \leq t \Longleftrightarrow \exists y_{2}, \ldots, y_{6} \in \mathbb{R}: & \left(\begin{array}{cccc}
1 & x & y_{2} & y_{3} \\
x & y_{2} & y_{3} & y_{4} \\
y_{2} & y_{3} & y_{4} & y_{5} \\
y_{3} & y_{4} & y_{5} & y_{6}
\end{array}\right) \succeq 0, \\
& t \geq \frac{y_{6}}{6}-3 \frac{y_{4}}{2}+4 y_{2}+x .
\end{aligned}
$$

For all our instances, we have generated $s=25$ random matrices $M_{i} \in \mathbb{S}_{m}^{I}$. We solved the SDPs by using SeDuMi [22] interfaced by YALMIP [14], and MOSEK 7.0 [2] interfaced by PICOS [20], with the default settings on a PC with 8 processors at 2.2 GHz . Our experiments show that the block matrix formulation $\left(S D P_{f}-1\right)$ improves the CPU time by a factor that vary between 2 and 12 for SeDuMi , and between 1.5 and 27 with MOSEK. An exception is the case $f=g_{\text {conv }}$ with SeDuMi , but in this case the solver encountered numerical problems with $\left(S D P_{f}-2\right)$ and stopped the computation before reaching the optimality tolerance.

Also note that SeDuMi was always able to compute an optimal solution with $\left(S D P_{f}-1\right)$ but not with $\left(S D P_{f}-2\right)$, and that MOSEK returned the near-optimal status twice more often with the formulation $\left(S D P_{f}-2\right)$. This suggests that the formulation from this paper is numerically more stable.

To confirm this fact, we have computed the behavioural measures studied in [12], for the two SDP formulations of several of the above instances. The authors of this article evidence a positive correlation between the number of interior point method iterations and some measures of the SDP instances, such as the Renegar condition number C and some geometry measures $D_{p}^{\epsilon}, g_{p}, D_{d}^{\epsilon}, g_{d}$ related to the primal and dual feasible regions and the norm of the solutions. We used a matlab code written by an author of [12] to compute these behavioural measures and compare them. For all the instances we considered, the Renegar condition number C was infinite, as well as the geometric measures D_{p}^{ϵ} and g_{d}. However, g_{p} and D_{d}^{ϵ} had finite values for most instances, see Table 2. These quantities are always orders of magnitude smaller for the formulation $\left(S D P_{f}-1\right)$, which suggests that the formulation of this paper has better numerical properties indeed.

$f(x)$	D_{d}^{ϵ}		g_{p}	
$-x^{1 / 3}$	$\left(S D P_{f}-1\right)$	$\left(S D P_{f}-2\right)$	$\left(S D P_{f}-1\right)$	$\left(S D P_{f}-2\right)$
$-x^{2 / 5}$	319.2	2438.4	639.0	38292
$x^{-8 / 7}$	463.5	2115.7	1143.0	38420
$x^{7 / 4}$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
$\frac{x}{1-x}$	674.4	2087.8	297.4	8117.7
$g_{\text {conv }}(x)$	167.7	215.2	128.9	4867.8
	1506.8	2582.4	5522.8	12472

Table 2: Behavioural measures D_{d}^{ϵ} and g_{p} of [12], computed for the same instances as in Table 1, for $m=25$.

6 Acknowledgement

The author warmly thanks Stéphane Gaubert for his suggestion to generalize the second result of this paper, which was originally reduced to the case $B=I_{m}$. His thanks also go to Fernando Ordóñez, who has provided the matlab code to compute the behavioural measures of [12], and to an anonymous referee, whose contribution helped to improve the clarity of this paper.

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming, 95(1):3-51, 2003.
[2] E.D. Andersen, B. Jensen, J. Jensen, R. Sandvik, and U. Worsøe. Mosek version 6. Technical report, Technical Report TR-2009-3, MOSEK, 2009.
[3] T. Ando. Concavity of certain maps on positive definite matrices and applications to hadamard products. Linear Algebra and its Applications, 26:203-241, 1979.
[4] T. Ando, C. Li, and R. Mathias. Geometric means. Linear algebra and its applications, 385:305-334, 2004.
[5] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering applications, volume 2. Society For Industrial Mathematics, 1987.
[6] R. Bhatia. Positive definite matrices. Princeton University Press, 2008.
[7] R. Bhatia and J. Holbrook. Riemannian geometry and matrix geometric means. Linear algebra and its applications, 413(2):594-618, 2006.
[8] D. Bini and B. Iannazzo. Computing the karcher mean of symmetric positive definite matrices. Linear Algebra and its Applications, 438(4):17001710, 2013.
[9] D. Bini, B. Meini, and F. Poloni. An effective matrix geometric mean satisfying the ando-li-mathias properties. Mathematics of Computation, 79(269):437-452, 2010.
[10] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[11] V. Fedorov, Y. Wu, and R. Zhang. Optimal dose-finding designs with correlated continuous and discrete responses. Statistics in Medicine, 2012.
[12] R.M. Freund, F. Ordóñez, and K. Toh. Behavioral measures and their correlation with ipm iteration counts on semi-definite programming problems. Mathematical programming, 109(2-3):445-475, 2007.
[13] R. Laraki and J.B. Lasserre. Computing uniform convex approximations for convex envelopes and convex hulls. Journal of Convex Analysis, 15(3):635654, 2008.
[14] J. Löfberg. Yalmip: A toolbox for modeling and optimization in matlab. In Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284-289. IEEE, 2004.
[15] M. Moakher and M. Zéraï. The riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. Journal of Mathematical Imaging and Vision, 40(2):171-187, 2011.
[16] D. Papp. Optimal designs for rational function regression. Journal of the American Statistical Association, 107(497):400-411, 2012.
[17] F. Pukelsheim. Optimal Design of Experiments. Wiley, 1993.
[18] G. Sagnol. A class of semidefinite programs with a rank-one solution. Linear Algebra and its Applications, 435(6):1446-1463, 2011.
[19] G. Sagnol. Computing optimal designs of multiresponse experiments reduces to second-order cone programming. Journal of Statistical Planning and Inference, 141(5):1684-1708, 2011.
[20] G. Sagnol. Picos, a python interface to conic optimization solvers. Technical Report 12-48, ZIB, 2012. http://picos.zib.de.
[21] G. Sagnol, S. Gaubert, and M. Bouhtou. Optimal monitoring on large networks by successive c-optimal designs. In 22nd international teletraffic congress (ITC22), Amsterdam, The Netherlands, September 2010.
[22] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.

Appendix

Proof of Proposition 4.2. To prove this result, we need to present an alternative construction of $\mathcal{S}(\sigma)$ which relies on the concept of proper binary trees rather than perfect binary trees. In contrast to the latters, all the leaves of a proper binary tree do not necessarily have the same depth, but every non-leaf node must still have exactly two children. In other words, in a proper binary tree every node has either 0 or 2 children.

Now, let $\boldsymbol{v} \in \mathbb{N}^{n}$. It is easy to see that there exists a proper binary tree with v_{k} leaves of depth k only if

$$
\begin{equation*}
\sum_{k=1}^{n} v_{k} 2^{n-k}=2^{n} \tag{12}
\end{equation*}
$$

Let us denote by $T_{\boldsymbol{v}}$ the proper binary tree where the v_{k} leaves of depth k are as far left as possible. We denote by $\Gamma_{\boldsymbol{v}}$ the set of indices of all nodes in $T_{\boldsymbol{v}}$. This set can be partitioned as $\Gamma_{\boldsymbol{v}}=\Gamma_{\boldsymbol{v}}^{\Delta} \uplus \Gamma_{\boldsymbol{v}}^{\odot}$, where $\Gamma_{\boldsymbol{v}}^{\Delta}\left(\right.$ resp. $\left.\Gamma_{\boldsymbol{v}}^{\odot}\right)$ denotes the set of indices of the leaves (resp. non-leaf nodes). For example, the leftmost proper binary tree associated to the vector $\boldsymbol{v}=[0,3,1,2]$ is

So the set of leaves and non-leaf nodes indices are

$$
\begin{aligned}
\Gamma_{\boldsymbol{v}}^{\Delta}= & \left\{L L, L R, R L, R R L, R^{3} L, R^{4}\right\} \\
& \Gamma_{\boldsymbol{v}}^{\odot}=\left\{\emptyset, L, R, R R, R^{3}\right\}
\end{aligned}
$$

Now let $\sigma \in\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}^{\Gamma_{v}^{\Delta}}$ be a sequence of characters indexed in $\Gamma_{\boldsymbol{v}}^{\Delta}$. As before we make a slight abuse of notation and we write $\sigma_{\gamma}(X)$ for the matrix $\hat{\sigma}_{\gamma}(X)$ corresponding to the character σ_{γ} (see (9)). We can now define a new set $\mathcal{S}_{\boldsymbol{v}}(\sigma)$ based on proper binary trees:

$$
\begin{aligned}
\mathcal{S}_{\boldsymbol{v}}(\sigma)=\left\{X \in \mathbb{S}_{m}^{+}:\right. & \exists T \in\left(\mathbb{S}_{m}^{+}\right)^{\Gamma_{v}} \\
& \left(\text { i) } T_{\varnothing}=X ;\right. \\
& \left(\text { ii) } \forall \gamma \in \Gamma_{\boldsymbol{v}}^{\triangle}, T_{\gamma}=\sigma_{\gamma}(X) ;\right. \\
& \left(\text { iii) } \forall \gamma \in \Gamma_{\boldsymbol{v}}^{\odot},\left(\begin{array}{cc}
T_{\gamma \sqcup L} & T_{\gamma} \\
T_{\gamma} & T_{\gamma \sqcup R}
\end{array}\right) \succeq 0\right\}
\end{aligned}
$$

The sets \mathcal{S}_{v} and \mathcal{S} are related by the following lemma:
Lemma 6.1. Let \boldsymbol{v} be a vector of \mathbb{N}^{n} satisfying Equation (12), and $\sigma \in\{A, B, X\}^{\Gamma_{v}^{\Delta}}$ be a sequence of characters indexed by the leaves of $T_{\boldsymbol{v}}$. Define a new character sequence $\varsigma \in\{A, B, X\}^{\Gamma_{n}}$, such that for every descendant $\gamma=\gamma^{\prime} \sqcup \gamma^{\prime \prime} \in \Gamma_{n}$ of a node $\gamma^{\prime} \in \Gamma_{\boldsymbol{v}}^{\Delta}, \varsigma_{\gamma}:=\sigma_{\gamma^{\prime}}$. Then,

$$
\mathcal{S}_{\boldsymbol{v}}(\sigma)=\mathcal{S}(\varsigma)
$$

Proof of the lemma. First note that by definition, $\mathcal{S}(\varsigma)=\mathcal{S}_{\left[0, \ldots, 0,2^{n}\right]}(\varsigma)$ for all $\varsigma \in \Gamma_{n}$.

Now, let σ^{\prime} and \boldsymbol{v}^{\prime} be as in the lemma, i.e. \boldsymbol{v}^{\prime} satisfies (12) and $\sigma^{\prime} \in\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}^{\Gamma^{\Delta}}{ }^{\Delta}$. Assume that σ^{\prime} assigns the same character to the two leftmost sibling leaves of depth $k>1$. In other words, the leftmost non-leaf node γ_{0} of $\Gamma_{\boldsymbol{v}^{\prime}}^{\odot} \cap \Gamma_{k-1}$ is such that

$$
\left(\gamma_{0} \sqcup L\right) \in \Gamma_{\boldsymbol{v}^{\prime}}^{\Delta}, \quad\left(\gamma_{0} \sqcup R\right) \in \Gamma_{\boldsymbol{v}^{\prime}}^{\Delta}, \quad \sigma_{\gamma_{0} \sqcup L}^{\prime}=\sigma_{\gamma_{0} \sqcup R}^{\prime} .
$$

Define $\boldsymbol{v}^{\prime \prime}:=\left[v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k-1}^{\prime}+1, v_{k}^{\prime}-2, \ldots, v_{n}^{\prime}\right]$. Note that by construction, $\Gamma_{\boldsymbol{v}^{\prime \prime}}^{\Delta}=\Gamma_{\boldsymbol{v}^{\prime}}^{\Delta} \cup\left\{\gamma_{0}\right\} \backslash\left\{\gamma_{0} \sqcup L, \gamma_{0} \sqcup R\right\}$, and define $\sigma^{\prime \prime} \in\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}^{\Gamma_{v^{\prime \prime}}}$ as follows:

$$
\forall \gamma \in \Gamma_{\boldsymbol{v}^{\prime \prime}}^{\Delta}, \quad \sigma_{\gamma}^{\prime \prime}= \begin{cases}\sigma_{\gamma_{0}}^{\prime} \sqcup L & \text { if } \gamma=\gamma_{0} \\ \sigma_{\gamma}^{\prime} & \text { otherwise }\end{cases}
$$

We are next going to show that $\mathcal{S}_{\boldsymbol{v}^{\prime}}\left(\sigma^{\prime}\right)=\mathcal{S}_{\boldsymbol{v}^{\prime \prime}}\left(\sigma^{\prime \prime}\right)$. Then, by applying this transformation several times starting from $\mathcal{S}(\varsigma)=\mathcal{S}_{\left[0, \ldots, 0,2^{n}\right]}(\varsigma)$, we will be able to remove successively all identical siblings in ς until we get the set $\mathcal{S}_{\boldsymbol{v}}(\sigma)$ from the lemma.

Denote by $\bar{\gamma}$ the parent node of γ_{0}, and by γ_{1} the sibling node of γ_{0} (i.e., $\gamma_{0}=\bar{\gamma} \sqcup L$ and $\left.\gamma_{1}=\bar{\gamma} \sqcup R\right)$. Let $X \in \mathcal{S}_{\boldsymbol{v}^{\prime}}\left(\sigma^{\prime}\right)$, and let T be a tree satisfying the conditions $(i),(i i),(i i i)$ of the definition of $\mathcal{S}_{\boldsymbol{v}^{\prime}}$. In particular, T must satisfy

$$
\left(\begin{array}{cc}
\sigma_{\gamma_{0} \sqcup L}^{\prime}(X) & T_{\gamma_{0}} \tag{13}\\
T_{\gamma_{0}} & \sigma_{\gamma_{0} \sqcup L}^{\prime}(X)
\end{array}\right) \succeq 0 \text { and }\left(\begin{array}{cc}
T_{\gamma_{0}} & T_{\bar{\gamma}} \\
T_{\bar{\gamma}} & T_{\gamma_{1}}
\end{array}\right) \succeq 0
$$

(recall that $\sigma_{\gamma_{0} \sqcup L}^{\prime}=\sigma_{\gamma_{0} \sqcup R}^{\prime}$). The first LMI implies $T_{\gamma_{0}} \preceq \sigma_{\gamma_{0} \sqcup L}^{\prime}(X)$, (see (3)), and so the second LMI is still satisfied if we replace the block $T_{\gamma_{0}}$ by $\sigma_{\gamma_{0} \sqcup L}^{\prime}(X)$. No other LMI involves $T_{\gamma_{0}}$ in the definition of $\mathcal{S}_{\boldsymbol{v}^{\prime}}\left(\sigma^{\prime}\right)$. Hence we can replace these two LMIs by

$$
\left(\begin{array}{cc}
\sigma_{\gamma_{0} \sqcup L}^{\prime}(X) & T_{\bar{\gamma}} \\
T_{\bar{\gamma}} & T_{\gamma_{1}}
\end{array}\right) \succeq 0,
$$

which results in the set of conditions that T must satisfy to guarantee $X \in \mathcal{S}_{v^{\prime \prime}}\left(\sigma^{\prime \prime}\right)$, because $\sigma_{\gamma_{0} \sqcup L}^{\prime}=\sigma_{\gamma_{0}}^{\prime \prime}$. So $\mathcal{S}_{v^{\prime}}\left(\sigma^{\prime}\right) \subseteq \mathcal{S}_{v^{\prime \prime}}\left(\sigma^{\prime \prime}\right)$.

Conversely if $X \in \mathcal{S}_{\boldsymbol{v}^{\prime \prime}}\left(\sigma^{\prime \prime}\right)$ and T satisfies $(i),(i i),(i i i)$ of the definition of $\mathcal{S}_{v^{\prime \prime}}$, then we have $T_{\gamma_{0}}=\sigma_{\gamma_{0}}^{\prime \prime}(X)=\sigma_{\gamma_{0} \sqcup L}^{\prime}(X)$. So the two LMIs of Equation (13) are satisfied, and $X \in \mathcal{S}_{\boldsymbol{v}^{\prime}}\left(\sigma^{\prime}\right)$. This shows $\mathcal{S}_{\boldsymbol{v}^{\prime \prime}}\left(\sigma^{\prime \prime}\right) \subseteq \mathcal{S}_{\boldsymbol{v}^{\prime}}\left(\sigma^{\prime}\right)$ and the proof of the lemma is complete.

Proof of Proposition 4.2 (continued).

Let $n_{\mathrm{A}}:=\alpha, n_{\mathrm{B}}:=\beta-\alpha$ and $n_{\mathrm{X}}:=2^{n}-\beta$ represent the number of occurrences of A, B and X in $\chi_{\alpha, \beta}$ (Recall that n is the largest integer such that $2^{n-1}<\beta \leq$ 2^{n}). Let the binary representation of these numbers be

$$
n_{\mathrm{A}}=\sum_{k \in K_{\mathrm{A}}} 2^{k}, n_{\mathrm{B}}=\sum_{k \in K_{\mathrm{B}}} 2^{k}, \text { and } n_{\mathrm{x}}=\sum_{k \in K_{\mathrm{x}}} 2^{k},
$$

where $K_{\mathrm{A}}, K_{\mathrm{B}}$ and K_{x} are (finite) subsets of \mathbb{N}. We define $\boldsymbol{v} \in \mathbb{N}^{n}$ as follows:

$$
\forall n \in\{1, \ldots, n\}, \quad v_{k}=\left|\left\{\mathrm{Z} \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{X}\}:(n-k) \in K_{\mathrm{z}}\right\}\right|
$$

where $|\cdot|$ denotes the cardinality of a set. By construction, the vector \boldsymbol{v} satisfies (12). Let $\sigma \in\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}^{\Gamma_{v}^{\Delta}}$ be a sequence of characters such that the following sets coincide:

$$
\forall k \in\{1, \ldots, n\}, \quad\left\{\mathrm{Z} \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{X}\}:(n-k) \in K_{\mathrm{z}}\right\}=\left\{\sigma_{\gamma}: \gamma \in \Gamma_{\boldsymbol{v}}^{\Delta} \cap \Gamma_{k}\right\} .
$$

In other words, there is a leaf $\gamma \in \Gamma_{\boldsymbol{v}}^{\Delta}$ of depth k such that σ_{γ} takes the value $\mathrm{Z} \in\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}$ if and only if $(n-k) \in K_{\mathrm{Z}}$. It is easy to see that every leaf γ of depth k yields 2^{n-k} leaves with the value σ_{γ} in the expanded sequence ς of Lemma 6.1. So by construction, ς contains $\sum_{(n-k) \in K_{\mathrm{Z}}} 2^{n-k}=\sum_{k \in K_{\mathrm{Z}}} 2^{k}=n_{\mathrm{Z}}$ times the character Z , i.e. ς is a permutation of $\chi_{\alpha, \beta}$. By Lemma 6.1 $\mathcal{S}(\varsigma)$ admits the $S D R$ provided in the definition of $\mathcal{S}_{\boldsymbol{v}}(\sigma)$, and it remains to show that it involves no more than $2(n-1)$ LMIs and $2 n-3$ additional variables $T_{\gamma} \in \mathbb{S}_{m}$.

It is only necessary to add a new variable T_{γ} in the $S D R$ when $\gamma \in \Gamma_{\boldsymbol{v}}^{\odot} \backslash\{\varnothing\}$, i.e., every non-leaf node at the exception of the root (for the other nodes $\gamma \in$ $\Gamma_{\boldsymbol{v}}^{\Delta} \cup\{\varnothing\}$, by property $(i)-(i i)$ the variable T_{γ} can be replaced by the constant A or B, or by the variable X). So the number of LMIs required to define $\mathcal{S}_{\boldsymbol{v}}(\sigma)$ is $\left|\Gamma_{\boldsymbol{v}}^{\odot}\right|$ and the number of additional variables $T_{\gamma} \in \mathbb{S}_{m}$ involved in the $S D R$ is $\left|\Gamma_{\boldsymbol{v}}^{\odot}\right|-1$.

Let us now bound the number of non-leaf nodes in $\Gamma_{\boldsymbol{v}}$. Let $k \in\{1, \ldots, n\}$. By construction the characters of depth k, i.e. $\left\{\sigma_{\gamma}: \gamma \in \Gamma_{\boldsymbol{v}}^{\Delta} \cap \Gamma_{k}\right\}$, are all distinct, so they are no more than 3 . Since the leaves are as far left as possible, if $v_{k} \geq 2$ then two of the leaves must be siblings, and this implies that there are at most 2 non-leaf nodes at depth $k-1$. For the depth levels $k=0$ and $k=n-1$, we can even bound the number of non-leaf-nodes by 1 (this is trivial for $k=0$). Assume ad absurbium that $v_{n}=3$. Then $n_{\mathrm{A}}, n_{\mathrm{B}}$ and n_{X} are odd numbers, so their sum is an odd number. But $n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{X}}=2^{n}$ must be even, which is a contradiction. So the number of leaves of depth n is $v_{n} \leq 2$, and the number of non-leave nodes of depth $n-1$ is at most 1 . To sum up, there is at most 1 non-leaf node at levels $k=0$ and $k=n-1$, and at most 2 such nodes at levels $k=1, \ldots, n-2$, so we obtain $\left|\Gamma_{\dot{v}}^{\odot}\right| \leq 2(n-1)$.

Before concluding the proof, we point out that this bound can be attained. For example, take $\alpha=3, \beta=5$, so that $n=3, n_{\mathrm{A}}=n_{\mathrm{X}}=3$ and $n_{\mathrm{B}}=2$. This yields $\boldsymbol{v}=[0,3,2]$, and $\left|\Gamma_{\boldsymbol{v}}\right|=4=2(n-1)$.

