

Guillaume Sagnol

On the semidefinite representations of real functions applied to symmetric matrices

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125
e-mail: bibliothek@zib.de
URL: http://www.zib.de
ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

On the semidefinite representations of real functions applied to symmetric matrices

Guillaume Sagnol

December 21, 2012

Abstract

We present a new semidefinite representation for the trace of a real function f applied to symmetric matrices, when a semidefinite representation of the convex function f is known. Our construction is intuitive, and yields a representation that is more compact than the previously known one. We also show with the help of matrix geometric means and a Riemannian metric over the set of positive definite matrices that for a rational exponent p in the interval $(0,1]$, the matrix X raised to p is the largest element of a set represented by linear matrix inequalities. We give numerical results for a problem inspired from the theory of experimental designs, which show that the new semidefinite programming formulation can yield a speed-up factor in the order of 10 .

Keywords semidefinite representability, optimal experimental designs, SDP, matrix geometric mean

1 Introduction

In this article we discuss semidefinite representations of scalar functions applied to symmetric matrices. We recall that it is possible to extend the definition of a function $f: I \mapsto \mathbb{R}, x \rightarrow f(x)$, where I is a real interval, to the set \mathbb{S}_{m}^{I} of $m \times m$-symmetric matrices whose spectrum lies in I as follows: if $X=U \operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right) U^{T}$ is an eigenvalue decomposition of X, then we define $f(X):=U \operatorname{Diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{m}\right)\right) U^{T}$. Throughout this article we denote by \mathbb{S}_{m} (resp. $\mathbb{S}_{m}^{+}, \mathbb{S}_{m}^{++}$) the set of $m \times m$ symmetric (resp. positive semidefinite, positive definite) matrices.

If the scalar function f is semidefinite representable, then a result of Ben-Tal and Nemirovski can be used to construct a semidefinite representation of $X \rightarrow$ trace $f(X)$. Indeed, trace $f(X)$ can be rewritten as $\sum_{i} f\left(\lambda_{i}\right)$, which is a symmetric and semidefinite representable function of the eigenvalues of X, so that Proposition 4.2.1. in [BTN87] applies.

In this article, we show that the semidefinite representation of $x \rightarrow f(x)$ can be lifted to the matrix case $X \rightarrow$ trace $f(X)$ by an intuitive transformation which involves Kronecker products (Theorem 3.1). The resulting semidefinite representation of the epigraph

$$
E=\left\{(t, X) \in \mathbb{R} \times \mathbb{S}_{m}: \operatorname{trace} f(X) \leq t\right\}
$$

is more compact than the one obtained from the general construction of BenTal and Nemirovski, in which the Ky-Fan k-norms of M must be bounded for $k=1, \ldots, m$. Our numerical results of Section 5 moreover show that the semidefinite programs (SDP) based on the present representation are solved in a shorter time than the former SDP formulations, and that they are numerically more stable.

For the case where $f(x)=x^{p}: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$, where p is a rational number in $(0,1]$, we shall see that our construction yields a stronger result. Namely, we show in Theorem 4.2 that X^{p} has an extremal representation of the form

$$
X^{p}=\max _{\preceq}\left\{T \in \mathbb{S}_{m}: T \in S\right\}
$$

where the set S is semidefinite representable and $\max _{\preceq}$ denotes the largest element with respect to the Löwner ordering, which is defined over \mathbb{S}_{m} as follows:

$$
A \preceq B \Longleftrightarrow(B-A) \in \mathbb{S}_{m}^{+} .
$$

The proof of this result uses the notion of matrix geometric mean, and the Banach fixed point theorem in the space \mathbb{S}_{m}^{++}equipped with a Riemannian metric.

Our study is motivated by the theory of optimal experimental designs, where the general problem to solve takes the form

$$
\begin{align*}
\max _{\boldsymbol{w} \in \mathbb{R}^{s}} & \Phi_{p}\left(\sum_{i=1}^{s} w_{i} M_{i}\right) \tag{1}\\
\text { s.t. } & \sum_{i=1}^{s} w_{i}=1, \quad \boldsymbol{w} \geq \mathbf{0}
\end{align*}
$$

where M_{1}, \ldots, M_{s} are given positive semidefinite matrices, and for $p \in[-\infty, 1]$ the Φ_{p}-criterion is defined over the set of positive definite matrices $M \in \mathbb{S}_{m}^{++}$ as

$$
\Phi_{p}(M)= \begin{cases}\lambda_{\min }(M) & \text { for } p=-\infty \tag{2}\\ \left(\frac{1}{m} \operatorname{trace} M^{p}\right)^{\frac{1}{p}} & \text { for } p \in(-\infty, 1], p \neq 0 \\ (\operatorname{det}(M))^{\frac{1}{m}} & \text { for } p=0\end{cases}
$$

The definition of Φ_{p} is extended by continuity to singular matrices $M \in \mathbb{S}_{m}^{+}$, so that $\Phi_{p}(M)=0$ if M is singular and $p \leq 0$. We refer the reader to Pukelsheim [Puk93] for more background on optimal experimental designs.

Note that any semidefinite representation of the function $M \rightarrow$ trace M^{p} yields a semidefinite programming (SDP) formulation of Problem (1). The cases $p=-\infty, p=-1$, and $p=0$, known as $E-, A-$ and D-optimal design problems have been extensively studied in the literature, and SDP formulations are known for these problems [BV04]. We also point out that lighter Second Order Cone Programming (SOCP) formulations exist for $p=-1$ and $p=0$ [Sag11]. The general case $(p \in[-\infty, 1])$ deserved less attention. However, it was recently noticed by Papp [Pap12] that the a SDP formulation can be obtained by using Proposition 4.2.1. in [BTN87]. Our numerical results (cf. Section 5) show that the new SDP formulation from this paper can improve the computation time by a factor in the order of 10 .

2 Preliminaries

In this section, we briefly recall some basic notion about semidefinite representability and matrix geometric means. We first recall the definition of a Semidefinite Program (SDP). The latter is an optimization problem in which a linear function $\boldsymbol{c}^{T} \boldsymbol{x}$ must be maximized, among the vectors \boldsymbol{x} belonging to a set S defined by linear matrix inequalities (LMI):

$$
S=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: F_{0}+\sum_{i} x_{i} F_{i} \succeq 0\right\}
$$

We now recall the definition of a semidefinite representable set, which was introduced by Ben-Tal and Nemirovski [BTN87]:
Definition 2.1 (Semidefinite representability). A convex set $S \subset \mathbb{R}^{n}$ is said to be semidefinite representable, abbreviated $S D r$, if S is the projection of a set in a higher dimensional space which can be described by LMIs. In other words, S is $S D r$ if and only if there exists symmetric matrices $F_{0}, \ldots, F_{n}, F_{1}^{\prime}, \ldots, F_{n^{\prime}}^{\prime}$ such that

$$
\boldsymbol{x} \in S \Longleftrightarrow \exists \boldsymbol{y} \in \mathbb{R}^{n^{\prime}}: \quad F_{0}+\sum_{i=1}^{n} x_{i} F_{i}+\sum_{i=1}^{n^{\prime}} y_{i} F_{i}^{\prime} \succeq 0
$$

Such an LMI is called a semidefinite representation (SDR) of the set S.
Definition 2.2 (SDR of a function). A convex (resp. concave) function f is said $S D r$ if and only if the epigraph of $f,\{(t, x): f(x) \leq t\}$ (resp. the hypograph $\{(t, x): t \leq f(x)\})$, is $S D r$.

It follows immediately from these two definitions that the problem of maximizing a concave $S D r$ function (or minimizing a convex one) over a $S D r$ set can be cast as an SDP.

We now give a short insight on the theory of matrix geometric means and the Riemannian metric of the set of positive definite matrices \mathbb{S}_{m}^{++}. We refer the reader to the book of Bhatia [Bha08] and the references therein for more details on this subject. The Geometric mean of two positive definite matrices $A, B \in \mathbb{S}_{m}^{++}$was introduced by Ando [And79]:

$$
A \sharp B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

In the latter paper, Ando shows that $A \sharp B$ satisfies the following extremal property:

$$
A \sharp B=\max _{\preceq}\left\{X \in \mathbb{S}_{m}:\left(\begin{array}{cc}
A & X \tag{3}\\
X & B
\end{array}\right) \succeq 0\right\}
$$

The space of positive definite matrices is equipped with the Riemannian metric

$$
\delta_{2}(A, B)=\left\|\log A^{-1 / 2} B A^{-1 / 2}\right\|_{F},
$$

where $\|M\|_{F}=\operatorname{trace}\left(M^{T} M\right)$ denotes the Frobenius norm of M. In this space, there exists a unique geodesic $[A, B]$ between two matrices A and B, which can be parametrized as follows:

$$
\gamma(t)=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, \quad 0 \leq t \leq 1
$$

Note that $A \sharp B$ is the midpoint of this geodesic. The geometric mean of two matrices is commutative, i.e. $A \sharp B=B \sharp A$, and the map $X \rightarrow A \sharp X$ is operator monotone, i.e. $Y \succeq X \Longrightarrow A \sharp Y \succeq A \sharp X$.

We also point out that the metric δ_{2} enjoys an important convexity property, which will be useful in the proof of Theorem 4.2:

$$
\begin{equation*}
\forall A, B, C, D \in \mathbb{S}_{m}^{++}, \delta_{2}(A \sharp B, C \sharp D) \leq \frac{1}{2} \delta_{2}(A, C)+\frac{1}{2} \delta_{2}(B, D) . \tag{4}
\end{equation*}
$$

3 Lifting the SDR of a scalar function

In this section, we show that the $S D R$ of a function $f: I \mapsto \mathbb{R}$ can be transformed in a simple way to a $S D R$ of trace $f: \mathbb{S}_{m}^{I} \rightarrow \mathbb{R}$:

Theorem 3.1. Let $f: I \mapsto \mathbb{R}$ be a scalar function, where I is a real interval. Assume that f admits the following $S D R$: for all $x \in I$,

$$
f(x) \leq t \Longleftrightarrow \exists \boldsymbol{y} \in \mathbb{R}^{n}: F_{0}+x F_{X}+t F_{T}+\sum_{i=1}^{n} y_{i} F_{i} \succeq 0
$$

where the symmetric matrices $F_{0}, \ldots, F_{n}, F_{X}, F_{T}$ are given. Then, a $S D R$ of the function $g: \mathbb{S}_{m}^{I} \mapsto \mathbb{R}, X \rightarrow$ trace $f(X)$ is given by: for all $X \in \mathbb{S}_{m}^{I}$,

$$
\begin{aligned}
\operatorname{trace} f(X) \leq t \Longleftrightarrow & \exists T, Y_{1}, \ldots, Y_{n} \in \mathbb{S}_{m}: \\
& \text { (i) } F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes T+\sum_{i=1}^{n} F_{i} \otimes Y_{i} \succeq 0 \\
& \text { (ii) } \operatorname{trace} T \leq t
\end{aligned}
$$

where I_{m} denotes the $m \times m$ identity matrix and \otimes is the Kronecker product. In other words, the $S D R$ is lifted from scalar to matrices by replacing each scalar by a corresponding matrix block of size $m \times m$.

Proof. Let X be an arbitrary matrix in \mathbb{S}_{m}^{I}, and $X=U \operatorname{Diag}(\boldsymbol{\lambda}) U^{T}$ be an eigenvalue decomposition of X. For $k=1, \ldots, m$, define $t_{k}=f\left(\lambda_{k}\right)$. By assumption there exists a vector $\boldsymbol{y}^{(k)}$ such that

$$
B_{k}:=F_{0}+\lambda_{k} F_{X}+t_{k} F_{T}+\sum_{i=1}^{n} y_{i}^{(k)} F_{i} \succeq 0
$$

Denote by \mathcal{B} the block diagonal matrix with blocks B_{1}, \ldots, B_{m} on the diagonal, and by $\boldsymbol{y}_{\boldsymbol{i}}$ the vector of \mathbb{R}^{m} with components $y_{i}^{(1)}, \ldots, y_{i}^{(m)}$. We may write

$$
\mathcal{B}=I_{m} \otimes F_{0}+\operatorname{Diag}(\boldsymbol{\lambda}) \otimes F_{X}+\operatorname{Diag}(\boldsymbol{t}) \otimes F_{T}+\sum_{i=1}^{n} \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) \otimes F_{i} \succeq 0
$$

In the previous expression, we may commute the Kronecker products, which is equivalent to pre- and post-multiplying by a permutation matrix:

$$
F_{0} \otimes I_{m}+F_{X} \otimes \operatorname{Diag}(\boldsymbol{\lambda})+F_{T} \otimes \operatorname{Diag}(\boldsymbol{t})+\sum_{i=1}^{n} F_{i} \otimes \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) \succeq 0
$$

Now, we multiply this expression to the left by the block diagonal matrix $\operatorname{Diag}(U, \ldots, U)=I \otimes U$, and to the right by its transpose. This gives:

$$
F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes T+\sum_{i=1}^{n} F_{i} \otimes Y_{i} \succeq 0
$$

where we have set $T=U \operatorname{Diag}(\boldsymbol{t}) U^{T}$ and $Y_{i}=U \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) U^{T}$. By construction, we have $T=f(X)$, and thus we have proved the " \Rightarrow " part of the theorem.

For the converse part, consider some matrices $T^{\prime}, Y_{1}^{\prime}, \ldots Y_{n}^{\prime} \in \mathbb{S}_{m}$ such that the LMI (i) of the theorem is satisfied. Define $H_{T}=T^{\prime}-T$ and $H_{i}=Y_{i}^{\prime}-Y_{i}$, where $T=f(X)$ and $Y_{i}=U \operatorname{Diag}\left(\boldsymbol{y}_{\boldsymbol{i}}\right) U^{T}$ are defined as in the first part of this proof. We will show that trace $H_{T} \geq 0$, which implies trace $T^{\prime} \geq \operatorname{trace} f(X)$, and the proof will be complete.

So from (i) we have:

$$
F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes\left(T+H_{T}\right)+\sum_{i=1}^{n} F_{i} \otimes\left(Y_{i}+H_{i}\right) \succeq 0
$$

Again, we multiply this expression to the left by $I \otimes U^{T}$ and to the right by $I \otimes U$, and then we commute the Kronecker products. This gives:

$$
\operatorname{Diag}\left(B_{1}, \ldots, B_{m}\right)+U^{T} H_{T} U \otimes F_{T}+\sum_{i=1}^{n} U^{T} H_{i} U \otimes F_{i} \succeq 0
$$

For all $k=1, \ldots, m$, this implies that the k th diagonal block is positive semidefinite:

$$
B_{k}+\left(U^{T} H_{T} U\right)_{k, k} F_{T}+\sum_{i=1}^{n}\left(U^{T} H_{i} U\right)_{k, k} F_{i} \succeq 0
$$

According to the SDR of the scalar function f, it means that

$$
f\left(\lambda_{k}\right) \leq t_{k}+\left(U^{T} H_{T} U\right)_{k, k},
$$

and since $f\left(\lambda_{k}\right) \leq t_{k}$ we obtain $\left(U^{T} H_{T} U\right)_{k, k} \geq 0$. From there, it is easy to conclude:

$$
\operatorname{trace} H_{T}=\operatorname{trace} H_{T} U U^{T}=\operatorname{trace} U^{T} H_{T} U=\sum_{k=1}^{m}\left(U^{T} H_{T} U\right)_{k, k} \geq 0
$$

Example 3.2. A SDR of the function $x \rightarrow x^{p}$, where $p \in \mathbb{Q}$ is briefly sketched in [BTN87] and given with more details in [AG03] (note that this function is concave for $p \in[0,1]$ and convex for other values of p). For example, the epigraph of the convex function $x \rightarrow x^{-4 / 3}$ mapping $(0, \infty)$ onto itself, may be represented as follows: for all $t \geq 0, x>0$:

$$
\begin{aligned}
x^{-4 / 3} \leq t & \Longleftrightarrow 1 \leq x^{4} t^{3} \\
& \Longleftrightarrow \exists u \geq 0, v \geq 0: 1 \leq x u, u^{2} \leq t v, v^{2} \leq t \\
& \Longleftrightarrow \exists u \in \mathbb{R}, v \in \mathbb{R}:\left(\begin{array}{cc}
x & 1 \\
1 & u
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t & u \\
u & v
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t & v \\
v & 1
\end{array}\right) \succeq 0
\end{aligned}
$$

By using Theorem 3.1, we obtain a SDR of the function $X \rightarrow$ trace $X^{-4 / 3}$:

$$
\operatorname{trace} X^{-4 / 3} \leq t \Longleftrightarrow \exists U, V, T \in \mathbb{S}_{m}:\left\{\begin{array}{l}
\left(\begin{array}{cc}
X & I_{m} \\
I_{m} & U
\end{array}\right) \succeq 0 \\
\left(\begin{array}{cc}
T & U \\
U & V
\end{array}\right) \succeq 0 \\
\left(\begin{array}{cc}
T & V \\
V & I_{m} \\
\operatorname{trace} T \leq t
\end{array}\right.
\end{array}\right.
$$

Note however that LMI (i) of Theorem 3.1 does not imply the stronger property $f(X) \preceq T$. As a counter-example, consider the function $f(x)=x^{4}$, which admits the SDR

$$
x^{4} \leq t \Longleftrightarrow \exists u \in \mathbb{R}:\left(\begin{array}{cc}
u & x \\
x & 1
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t & u \\
u & 1
\end{array}\right) \succeq 0 .
$$

If we set $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), U=\left(\begin{array}{ll}8 & 8 \\ 8 & 3\end{array}\right)$ and $X=\left(\begin{array}{cc}73 & 39 \\ 39 & 34\end{array}\right)$, the reader can check that the LMI (i) of Theorem 3.1 holds:

$$
\left(\begin{array}{cc}
U & X \\
X & I_{2}
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
T & U \\
U & I_{2}
\end{array}\right) \succeq 0
$$

but $X^{4} \npreceq T$. In the next section, we show that this stronger property holds for $f: x \rightarrow x^{p}$ when $p \in \mathbb{Q} \cap(0,1]$.

4 Semidefinite representation of concave matrix powers

Throughout this section, p denotes a rational number in $(0,1]$, and we assume that $p=\frac{\alpha}{\beta}$, with $0<\alpha \leq \beta$. We are going to show that the lifted SDR of the function f_{p} mapping \mathbb{R}_{+}onto itself and defined by $f(x)=x^{p}$, also provides an extremal representation of X^{p}. In other words, there is a $S D r$ set $S \in \mathbb{S}_{m}^{+}$for which X^{p} is the largest element with respect to Löwner ordering.

To do this, we first present the construction of the SDR of f_{p}. As explained in [AG03], this SDR is based on binary trees whose nodes contain variables. Note that in a perfect binary tree, every node of depth k can be index by an element of $\Gamma_{k}:=\{L, R\}^{k}$, which indicates the sequence of left or right turns needed to reach this node from the root of the tree. For example, a perfect binary tree B of depth 2 is index as follows:

We denote by $\mathcal{T}_{n}(m)$ the set of perfect binary trees of depth n, whose nodes are matrices of \mathbb{S}_{m}. The concatenation of tree indices is denoted by \sqcup, so
that for example, $L R \sqcup L=L R L \in \Gamma_{3}$. We define n as the integer such that $2^{n-1}<\beta \leq 2^{n}$. Let $\sigma(X, T)$ denote a sequence of length 2^{n} that is a permutation of the sequence

$$
\begin{equation*}
\chi_{\alpha, \beta}(X, T):=(\underbrace{X, \ldots, X}_{\alpha \text { times }}, \underbrace{T, \ldots, T}_{\left(2^{n}-\beta\right) \text { times }}, \underbrace{I_{m}, \ldots, I_{m}}_{(\beta-\alpha) \text { times }}) . \tag{5}
\end{equation*}
$$

The elements of $\sigma(X, T)$ are indexed by $\gamma \in \Gamma_{n}$, in the order corresponding to the leaves of a tree of depth n from left to right. For example, if $\sigma(X, T)=\left(X, I_{m}, T, I_{m}\right)$, we have $\sigma(X, T)_{L L}=X, \sigma(X, T)_{R L}=T$, and $\sigma(X, T)_{L R}=\sigma(X, T)_{R R}=I_{m}$. We can now construct the SDR of f_{p} (already lifted to \mathbb{S}_{m}^{+}by considering matrix blocks instead of scalar variables). It involves a tree whose root is T, leaves are defined by $\sigma(X, T)$, and a LMI related to the matrix geometric mean must be satisfied at each node:
$\mathcal{S}(\sigma)=\left\{X, T \in \mathbb{S}_{m}^{+}: \exists B \in \mathcal{T}_{n}(m):\right.$
(i) $B_{\varnothing}=T$;
(ii) $\forall \gamma \in \Gamma_{n}, B_{\gamma}=\sigma(X, T)_{\gamma}$;
(iii) $\left.\forall k=0, \ldots, n-1, \forall \gamma \in \Gamma_{k},\left(\begin{array}{cc}B_{\gamma \sqcup L} & B_{\gamma} \\ B_{\gamma} & B_{\gamma \sqcup R}\end{array}\right) \succeq 0\right\}$

Example 4.1. If $p=1 / 3$, we have $\alpha=1, \beta=3, n=2$, and $\sigma(X, T)$ must contain respectively $\alpha=1,\left(2^{n}-\beta\right)=1$ and $(\beta-\alpha)=2$ copies of X, T, and I_{m}. If $\sigma(X, T)=\left(X, T, I_{m}, I_{m}\right)$, the set $\mathcal{S}(\sigma)$ is defined through a tree of the form

The property (iii) in the definition of $\mathcal{S}(\sigma)$ implies that B_{R} satisfies

$$
\left(\begin{array}{cc}
I_{m} & B_{R} \\
B_{R} & I_{m}
\end{array}\right) \succeq 0
$$

So by Equation (3) we have $B_{R} \preceq I_{m}$, and the definition of $\mathcal{S}(\sigma)$ simplifies to:

$$
(X, T) \in \mathcal{S}(\sigma) \Longleftrightarrow \exists B_{L} \in \mathbb{S}_{m}:\left(\begin{array}{cc}
B_{L} & T \\
T & I_{m}
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
X & B_{L} \\
B_{L} & T
\end{array}\right) \succeq 0
$$

Generally speaking, we point out that the order of the elements in the permutation σ can be chosen such that the definition of $\mathcal{S}(\sigma)$ involves no more than $2(n-1)=O(\log \beta)$ LMIs of size $2 m \times 2 m$.

Now, as a consequence of Equation (3), observe that property (iii) in the definition of $\mathcal{S}(\sigma)$ implies $B_{\gamma} \preceq B_{\gamma \sqcup L} \sharp B_{\gamma \sqcup R}$ (if the geometric mean is well defined, i.e. $B_{\gamma \sqcup L}, B_{\gamma \sqcup R} \in \mathbb{S}_{m}^{++}$). By operator monotonicity of the matrix geometric mean, we see that if the matrices X, T, B_{L} and B_{R} of Tree (6) are positive definite, then:

$$
T \preceq B_{L} \sharp B_{R} \preceq(X \sharp T) \sharp\left(I_{m} \sharp I_{m}\right) .
$$

In the general case, a simple induction shows that for all positive definite matrices X, T,

$$
\begin{equation*}
(X, T) \in \mathcal{S}(\sigma) \Longrightarrow T \preceq \#_{\sigma}(X, T) \tag{7}
\end{equation*}
$$

where $\#_{\sigma}(X, T)$ represents the expression with nested " \sharp-operations" in the binary tree whose leaves are defined through $\sigma(X, T)$. We can finally give the main result of this section:

Theorem 4.2 (Extremal representation of X^{p}). Let $p=\frac{\alpha}{\beta}, 0<\alpha \leq \beta$, and let $\sigma(X, T)$ be a permutation of $\chi_{\alpha, \beta}(X, T)$. Then, X^{p} satisfies the following extremal property

$$
\forall X \in \mathbb{S}_{m}^{+}, \quad X^{p}=\max _{\preceq}\left\{T \in \mathbb{S}_{m}^{+}:(X, T) \in \mathcal{S}(\sigma)\right\}
$$

Proof. Let $X \in \mathbb{S}_{m}^{++}$be an arbitrary positive definite matrix. We are first going to show that $X^{p}=\max _{\preceq}\left\{T \in \mathbb{S}_{m}^{++}:(X, T) \in \mathcal{S}(\sigma)\right\}$. The general statement for all $X \in \mathbb{S}_{m}^{+}$will be obtained at the end of this proof by continuity.

We first handle the case where $\beta=2^{n}$. In this case, the matrix T does not appear in the sequence $\sigma(X, T)$, so every leaf of the tree B involved in the definition of $\mathcal{S}(\sigma)$ is either X or I_{m}. Define successively

$$
\forall \gamma \in \Gamma_{k}, B_{\gamma}=B_{\gamma \sqcup L} \sharp B_{\gamma \sqcup R}
$$

for $k=(n-1),(n-2), \ldots, 0$. By construction, we have $B_{\varnothing}=\#_{\sigma}(X, T)$, and a simple induction shows that $\#_{\sigma}(X, T)=X^{\frac{\alpha}{2^{n}}}=X^{p}$ (the geometric means are easy to compute because X and I_{m} commute). This shows that (X, X^{p}) belongs to $\mathcal{S}(\sigma)$. Conversely, if $T \in \mathbb{S}_{m}^{++}$, Equation (7) shows that $(X, T) \in \mathcal{S}(\sigma) \Rightarrow T \preceq X^{p}$.

The case $\beta<2^{n}$ is more complicated. Let $T \in \mathbb{S}_{m}^{++}$such that $(X, T) \in \mathcal{S}(\sigma)$, and let $B \in \mathcal{T}_{n}(m)$ be a tree satisfying properties $(i)-(i i i)$. Define a new tree B^{\prime} as follows:

$$
\forall \gamma \in \Gamma_{n-1}, \quad B_{\gamma}^{\prime}:=B_{\gamma \sqcup L} \sharp B_{\gamma \sqcup R} \succeq B_{\gamma},
$$

and

$$
\forall \gamma \in \Gamma_{k}, B_{\gamma}^{\prime}:=B_{\gamma \sqcup L}^{\prime} \sharp B_{\gamma \sqcup R}^{\prime} \succeq B_{\gamma}
$$

for $k=(n-2), \ldots, 0$. In particular, the root of B^{\prime} is $T^{\prime}:=B_{\varnothing}^{\prime}=\#_{\sigma}(X, T) \succeq T$. It remains to define the leaves of B^{\prime}, which we do according to $\sigma\left(X, T^{\prime}\right)$:

$$
\forall \gamma \in \Gamma_{n}, B_{\gamma}^{\prime}:=\sigma\left(X, T^{\prime}\right)_{\gamma} \succeq B_{\gamma}
$$

By construction, it is clear that B^{\prime} satisfies the property (iii) for the depth levels $k=0, \ldots, n-2$. For a $\gamma \in \Gamma_{n-1},($ iii $)$ also holds, because

$$
\left(\begin{array}{cc}
B_{\gamma \sqcup L}^{\prime} & B_{\gamma}^{\prime} \\
B_{\gamma}^{\prime} & B_{\gamma \sqcup R}^{\prime}
\end{array}\right) \succeq\left(\begin{array}{cc}
B_{\gamma \sqcup L} & B_{\gamma}^{\prime} \\
B_{\gamma}^{\prime} & B_{\gamma \sqcup R}
\end{array}\right) \succeq 0,
$$

where the first inequality follows from $B_{\gamma \sqcup L}^{\prime} \succeq B_{\gamma \sqcup L}, B_{\gamma \sqcup R}^{\prime} \succeq B_{\gamma \sqcup R}$, and the second inequality is a consequence of $B_{\gamma}^{\prime}=B_{\gamma \sqcup L} \sharp B_{\gamma \sqcup R}$. This shows that (X, T^{\prime}) belongs to $\mathcal{S}(\sigma)$.

Define $h: \mathbb{S}_{m}^{++} \mapsto \mathbb{S}_{m}^{++}, T \rightarrow \#_{\sigma}(X, T)$. So far, we have shown that $h(T) \succeq T$, and $(X, T) \in \mathcal{S}(\sigma) \Longrightarrow(X, h(T)) \in \mathcal{S}(\sigma)$. By using the convexity property of the Riemannian metric (Equation (4)), a simple induction shows
that h is a contraction mapping with a contraction equal to the fraction of the number of leaves of B that take the value T :

$$
\forall T, T^{\prime} \in \mathbb{S}_{m}^{++}, \delta_{2}\left(h(T), h\left(T^{\prime}\right)\right) \leq \frac{2^{n}-\beta}{2^{n}} \delta_{2}\left(T, T^{\prime}\right)<\delta_{2}\left(T, T^{\prime}\right)
$$

Hence, the mapping $T \rightarrow h(T)$ is contractive in the space \mathbb{S}_{m}^{++}equipped with the Riemannian metric δ_{2}. It is known that this space is complete (see e.g. [MZ11]), and hence we can apply the Banach fixed point theorem: the fixed point equation $T=h(T)$ has a unique solution $T^{*} \in \mathbb{S}_{m}^{++}$. Moreover for all $T \in \mathbb{S}_{m}^{++}$the sequence defined by $T_{0}=T, T_{i+1}=h\left(T_{i}\right)$ converges to T^{*}. In particular, if $(X, T) \in \mathcal{S}(\sigma)$, our previous discussion shows that $T \preceq T^{*}$ and $\left(X, T^{*}\right) \in \mathcal{S}(\sigma)$. This shows that T^{*} is the right candidate to be the largest element T such that $(X, T) \in \mathcal{S}(\sigma)$, and since X, X^{p} and I_{m} commute it is easy to verify that $X^{p}=h\left(X^{p}\right)$, i.e. $T^{*}=X^{p}$.

It remains to show that the statement of the theorem remains valid when the matrix $X \in \mathbb{S}_{m}^{+}$is singular. To do this, chose a sequence $X_{i} \in \mathbb{S}_{m}^{++}$such that $X_{i} \rightarrow X$ as $i \rightarrow \infty$, as well as a sequence $\epsilon_{i}>0$ such that $\epsilon_{i} \rightarrow 0$. We know that $\left(X_{i}, X_{i}^{p}\right) \in \mathcal{S}(\sigma)$ for all i. Let $T \in \mathbb{S}_{m}^{+}$such that $(X, T) \in \mathcal{S}(\sigma)$ and define $X_{i}^{\prime}:=\left(1-\epsilon_{i}\right) X+\epsilon_{i} X_{i}, T_{i}^{\prime}:=\left(1-\epsilon_{i}\right) T+\epsilon_{i} X_{i}^{p}$. By convexity of $\mathcal{S}(\sigma)$, we have $\left(X_{i}^{\prime}, T_{i}^{\prime}\right) \in \mathcal{S}(\sigma)$. Moreover, since the matrices T_{i}^{\prime} and X_{i}^{\prime} are positive definite, we know that $T_{i}^{\prime} \preceq X_{i}^{\prime p}$. By taking the limit, we obtain $T \preceq X^{p}$. Finally, we must show that $\left(X, X^{p}\right) \in \mathcal{S}(\sigma)$. Consider the tree B with leaves $\sigma\left(X, X^{p}\right)$, and whose non-leaf nodes are defined by the relation: if $B_{\gamma \sqcup L}=X^{k_{1}}$ and $B_{\gamma \sqcup L}=X^{k_{2}}$, then $B_{\gamma}:=X^{\left(k_{1}+k_{2}\right) / 2}$. A simple induction shows that the root of this tree is $B_{\varnothing}=X^{\frac{n_{X}(\sigma)+n_{T}(\sigma)}{2^{n}}}$, where $n_{X}(\sigma) n_{T}(\sigma)$ represent the number of times that X and T appear in $\sigma(X, T)$. Replacing $n_{X}(\sigma)$ by α and $n_{T}(\sigma)$ by $2^{n}-\beta$, we find $B_{\varnothing}=X^{p}$. Hence, $\left(X, X^{p}\right) \in \mathcal{S}(\sigma)$, and the proof is complete.

Corollary 4.3. Let $p \in \mathbb{Q} \cap(0,1]$ and σ satisfy the assumptions of Theorem 4.2. If K is a $m \times r$-matrix, then the concave function $X \rightarrow \operatorname{trace} K^{T} X^{p} K$, which maps \mathbb{S}_{m}^{+}to \mathbb{R}^{+}, has the following $S D R$ representation: for all $X \in \mathbb{S}_{m}^{+}$,

$$
t \leq \operatorname{trace} K^{T} X^{p} K \Longleftrightarrow \exists T \in \mathbb{S}_{m}^{+}:(X, T) \in \mathcal{S}(\sigma), t \leq \operatorname{trace} K^{T} T K
$$

Proof. If $t \leq \operatorname{trace} K^{T} X^{p} K$, we set $T=X^{p}$, so that $t \leq \operatorname{trace} K^{T} T K$ and by Theorem $4.2(X, T) \in \mathcal{S}(\sigma)$. Conversely, assume that $(X, T) \in \mathcal{S}(\sigma)$. We know from previous theorem that $T \preceq X^{p}$. Hence, we have $\langle M, T\rangle \leq\left\langle M, X^{p}\right\rangle$ for all positive semidefinite matrix M. In particular,

$$
\operatorname{trace} K^{T} T K=\left\langle K K^{T}, T\right\rangle \leq\left\langle K K^{T}, X^{p}\right\rangle=\operatorname{trace} K^{T} X^{p} K
$$

from which the conclusion follows.

5 Numerical Results

In this section, we compare the CPU time required to solve problems of the form

$$
\begin{equation*}
\min _{\substack{\boldsymbol{w} \geq \mathbf{0} \\ \sum_{i} w_{i}=1}} \operatorname{trace} f\left(\sum_{k=1}^{s} w_{k} M_{k}\right) \tag{f}
\end{equation*}
$$

by using the semidefinite representation of Theorem 3.1, and the one of BenTal and Nemirovski [BTN87]. This problem is inspired from the application to optimal experimental design that is presented in the introduction. For the sake of variety, we do not limit ourselves to power functions $x \rightarrow x^{p}$ with $p<1$. More precisely, assume that $f: I \rightarrow \mathbb{R}$ is a convex real valued function defined on the interval I, an $S D R$ of f is known:

$$
\forall x \in I, f(x) \leq t \Longleftrightarrow \exists \boldsymbol{y} \in \mathbb{R}^{n}: F_{0}+x F_{X}+t F_{T}+\sum_{i=1}^{n} y_{i} F_{i} \succeq 0
$$

and the matrices $M_{1}, \ldots, M_{s} \in \mathbb{S}_{m}^{I}$ are given. We compare the efficiency of the following two SDP formulations of Problem $\left(P_{f}\right)$: the one with block matrices resulting from Theorem 3.1,

$$
\begin{array}{cl}
\min _{X, T,\left\{Y_{i}\right\}, \boldsymbol{w}} & \operatorname{trace} T \\
\text { s.t. } & F_{0} \otimes I_{m}+F_{X} \otimes X+F_{T} \otimes T+\sum_{i=1}^{n} F_{i} \otimes Y_{i} \succeq 0 ; \\
& X=\sum_{k=1}^{s} w_{k} M_{k}, \quad \boldsymbol{w} \geq \mathbf{0}, \quad \sum_{k=1}^{s} w_{k}=1,
\end{array}
$$

and the SDP from [BTN87] that bounds each Ky-Fan Norm of X :

$$
\begin{array}{cl}
\min _{X, \boldsymbol{t}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\sigma},\left\{Z_{j}\right\}} & \sum_{j=1}^{m} t_{j} \\
\text { s.t. } & F_{0}+x_{j} F_{X}+t_{j} F_{T}+\sum_{i=1}^{n} y_{i}^{(j)} F_{i} \succeq 0, \quad(j=1, \ldots, m) ; \\
& x_{1} \geq x_{2} \geq \ldots \geq x_{m} ; \\
& \sum_{k=1}^{j} x_{k}-j \sigma_{j}-\operatorname{trace}\left(Z_{j}\right) \geq 0, \quad(j=1, \ldots, m-1) ; \\
& Z_{j} \succeq 0, \\
& Z_{j}-X+\sigma_{j} I_{m} \succeq 0, \\
& \operatorname{trace} X=\sum_{j=1}^{m} x_{j} ; \\
& (j=1, \ldots, m-1) ; \\
& X=\sum_{k=1}^{s} w_{k} M_{k}, \quad \boldsymbol{w} \geq \mathbf{0}, \quad \sum_{k=1}^{s} w_{k}=1 .
\end{array}
$$

Our computational results are summarized in Table 1. Besides rational power functions, we have also consider the function $f:(0,1) \mapsto \mathbb{R}, x \rightarrow \frac{1}{x(x-1)}$, which has the $S D R$

$$
\begin{aligned}
\forall x \in(0,1), \quad f(x) \leq t & \Longleftrightarrow \exists u \in \mathbb{R}: 1 \leq u(1-x), 1 \leq(t-u) x \\
& \Longleftrightarrow \exists u \in \mathbb{R}:\left(\begin{array}{cc}
u & 1 \\
1 & 1-x
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
t-u & 1 \\
1 & x
\end{array}\right) \succeq 0
\end{aligned}
$$

$f(x)$	I	m	CPU time (s)	
			$\left(S D P_{f}-1\right)$	$\left(S D P_{f}-2\right)$
$-x^{\frac{1}{3}}$	$[0, \infty)$	10	0.40	0.80
		25	5.16	40.85
		40	59.19	$706.43{ }^{\dagger}$
$-x^{\frac{2}{5}}$	$[0, \infty)$	10	0.58	1.28
		25	20.38	39.57
		40	298.90	$799.77{ }^{\dagger}$
$x^{\frac{-8}{7}}$	$(0, \infty)$	10	0.49	0.90
		25	22.38	$40.07{ }^{\dagger}$
		40	357.22	$691.75{ }^{\dagger}$
$x^{\frac{7}{4}}$	$[0, \infty)$	10	0.41	1.23
		25	8.71	39.95
		40	120.16	741.15^{\dagger}
$\frac{1}{x(1-x)}$	$(0,1)$	10	0.30	0.76
		25	4.31	37.21
		40	51.79	607.57^{\dagger}
convex-env $\left(\frac{x^{6}}{6}-3 \frac{x^{4}}{2}+4 x^{2}+x\right)$	\mathbb{R}	10	0.75	1.50
		25	63.62	43.08^{\dagger}
		40	1019.70	903.55^{\dagger}

Table 1: CPU time of two SDP formulations for Problem $\left(P_{f}\right)$. The second column indicates the interval I where the function f is defined, and the third column specifies the size of the matrices $M_{i} \in \mathbb{S}_{m}^{I}$. ${ }^{\dagger}$ The numbers displayed in italics indicate that the SDP solver stopped before reaching the optimality tolerance, because of numerical problems.
as well as the convex envelope of a polynomial of degree 6 . The fact that convex envelopes of univariate rational functions are $S D r$ was proved by Laraki and Lasserre [LL08]. For the function $f: \mathbb{R} \mapsto \mathbb{R}$, $x \rightarrow$ convex-env $\left(\frac{x^{6}}{6}-3 \frac{x^{4}}{2}+4 x^{2}+x\right)$, the $S D R$ of [LL08] is:

$$
\begin{aligned}
f(x) \leq t \Longleftrightarrow \exists y_{2}, \ldots, y_{6} \in \mathbb{R}: & \left(\begin{array}{cccc}
1 & x & y_{2} & y_{3} \\
x & y_{2} & y_{3} & y_{4} \\
y_{2} & y_{3} & y_{4} & y_{5} \\
y_{3} & y_{4} & y_{5} & y_{6}
\end{array}\right) \succeq 0, \\
& t \geq \frac{y_{6}}{6}-3 \frac{y_{4}}{2}+4 y_{2}+x .
\end{aligned}
$$

For all our instances, we have generated $s=25$ random matrices $M_{i} \in \mathbb{S}_{m}^{I}$. We solved the SDPs by using SeDuMi [Stu99] on a PC with 8 processors at 2.2 GHz . Our experiments show that the block matrix formulation $\left(S D P_{f}-1\right)$ improves the CPU time by a factor between 2 and 12 , except for the case where f is the convex envelope of a polynomial of degree 6 ; but in this case, SeDuMi encountered numerical problems with $\left(S D P_{f}-2\right)$ and stopped the computation before reaching the optimality tolerance. Also note that the SDP solver was always able to compute an optimal solution with $\left(S D P_{f}-1\right)$, which suggests that the formulation from this paper is numerically more stable.

References

[AG03] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming, 95(1):3-51, 2003.
[And79] T. Ando. Concavity of certain maps on positive definite matrices and applications to hadamard products. Linear Algebra and its Applications, 26:203-241, 1979.
[Bha08] R. Bhatia. Positive definite matrices. Princeton University Press, 2008.
[BTN87] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering applications, volume 2. Society For Industrial Mathematics, 1987.
[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[LL08] R. Laraki and J.B. Lasserre. Computing uniform convex approximations for convex envelopes and convex hulls. Journal of Convex Analysis, 15(3):635-654, 2008.
[MZ11] M. Moakher and M. Zéraï. The riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. Journal of Mathematical Imaging and Vision, 40(2):171-187, 2011.
[Pap12] D. Papp. Optimal designs for rational function regression. Journal of the American Statistical Association, 107(497):400-411, 2012.
[Puk93] F. Pukelsheim. Optimal Design of Experiments. Wiley, 1993.
[Sag11] G. Sagnol. Computing optimal designs of multiresponse experiments reduces to second-order cone programming. Journal of Statistical Planning and Inference, 141(5):1684-1708, 2011.
[Stu99] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.

