
Truncated Gröbner Bases for Integer Programming

Rekha R. Thomas Robert Weismantel
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Heilbronner Str. 10, 10711 Berlin, Germany
[last name]@zib-berlin.de

Abstract

In this paper we introduce a multivariate grading of the toric ideal associated with the
integer program min{cx : Ax = b, x ∈ INn}, and a truncated Buchberger algorithm to
solve the program. In the case of max{cx : Ax ≤ b, x ≤ u, x ∈ INn} in which all data are
non-negative, this algebraic method gives rise to a combinatorial algorithm presented in [16].

1 Introduction

We study integer programs of the form min{cx : Ax = b, x ∈ INn}, denoted IPA,b,c,=, where all
data are integral and the program has a bounded feasible region. The cost function c is refined
by the lexicographic order if necessary, to ensure that the objective function value cx creates
a linear order on INn. In [4], Conti and Traverso describe a Gröbner basis algorithm that can
be used to solve all programs IPA,b,c,= as b varies. Their algorithm requires the computation
of the reduced Gröbner basis with respect to the refined cost c, of the toric ideal IA associated
with A. Gröbner basis algorithms for finding non-negative integer solutions to systems of linear
equations were also given by Pottier [8], [9] and Ollivier [10].

A set T ⊆ ZZn is a test set for the family of integer programs {IPA,b,c,=, ∀b} if, for each
non-optimal solution to a program in this family, there exists a vector v ∈ T such that x− v is
again feasible for the same program and has an improved objective function value as compared
to x. See [6], [11] and [12] for finite test sets in integer programming. The special nature of the
algebraic algorithm in [4] allows a geometric interpretation which has been worked out in [15].
This geometric version recognizes the reduced Gröbner basis produced by the Conti-Traverso
algorithm as a minimal test set for the above family of integer programs. These test sets can be
computed in practice by using a computer algebra package like MACAULAY [1], or the software
GRIN [7] which is a specialized implementation of Gröbner bases for integer programming.

It is often the case that the computation of the entire reduced Gröbner basis associated with
the family of programs {IPA,b,c,=, ∀b}, is very expensive or impossible. In practice, one is often
interested in solving IPA,b,c,= for a fixed right hand side vector b which typically requires only a
subset of the entire Gröbner basis. In this paper, we provide a truncated Buchberger algorithm
for toric ideals that finds a sufficient test set for IPA,b,c,=. This set is often a proper subset of
the reduced Gröbner basis of IA with respect to c. The algorithm follows from a multivariate
grading induced by the matrix A, of the toric ideal IA. This generalizes, in the case of toric
ideals, the theory of truncated Gröbner bases for ideals that are homogeneous with respect to
a grading given by a vector of non-negative integers (see Section 10.2 in [2]). We refer to [2]
and [5] for the theory of Gröbner bases and to [13] for toric ideals, their Gröbner bases and
connections to integer programming and convex polytopes.
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This paper is organized as follows. In Section 2 we present the multivariate grading of IA
given by the matrix A and the truncated Buchberger algorithm to solve IPA,b,c,= for fixed b.
We introduce a partial order � on the monoid of all feasible right hand side vectors, and the
truncated Buchberger algorithm, denoted b-Buchberger, produces a minimal test set for all
programs IPA,β,c,= for which β � b. The elements in the test sets obtained by varying the cost
function c are the edge directions in the polytopes conv{x ∈ INn : Ax = β} for β � b.

In Section 3 we apply the above algebraic method to the program max{cx : Ax ≤ b, x ≤
u, x ∈ INn} with non-negative data, which allows for simplifications. In this case, a geometric
interpretation of the truncated Buchberger algorithm gives a combinatorial algorithm in [16].

2 A truncated Buchberger algorithm for integer programs with
a fixed right hand side

Let IPA,b,c,= denote the integer program min{cx : Ax = b , x ∈ INn} where A = (a1, . . . , an) ∈
ZZm×n is a matrix of rank m, b ∈ ZZm and c ∈ IRn. The matrix A, right hand side vector b, and
cost vector c will be fixed throughout this section. The program IPA,b,c,= is feasible if and only
if b lies in the monoid CIN(A) = {∑n

i=1 miai : mi ∈ IN}. We assume that C(A) = {∑n
i=1 riai :

ri ∈ IR+} is a pointed cone and that IPA,b,c,= has a bounded feasible region. The objective
function value cx is assumed to give a total order on INn, possibly after breaking ties using the
lexicographic order.

The matrix A induces a monoid homomorphism πA : INn −→ ZZm given by πA(u) = Au.
This lifts to the homomorphism of monoid algebras π̂A : k[x1, . . . , xn] −→ k[t±1

1 , . . . , t±1
m ] where

xj 	→ taj = t
a1j
1 · · · tamj

m . The toric ideal of A is the prime ideal IA = kernel(π̂A).

Lemma 2.1 The toric ideal IA =
⊕

β∈CIN(A) IA(β) where IA(β) is the k-vector space spanned
by the binomials {xu − xv : Au = Av = β, u, v ∈ INn}.

Proof. The toric ideal IA is spanned as a k-vector space by the set of binomials {xu − xv :
Au = Av , u, v ∈ INn}. The above decomposition is a grading of IA where the component IA(β)
is the k-vector space spanned by all those binomials xu − xv for which Au = Av = β ∈ CIN(A).

We call the polytope PI
β = conv{x ∈ INn : Ax = β}, the β-fiber of πA. Note that xu − xv ∈

IA(β) if and only if u, v ∈ PI
β ∩ INn. Hence, there exists a bijection between the fibers of πA

and the components in the above direct sum. Lemma 2.1 implies that IA = 〈xu − xv : Au =
Av, u, v ∈ INn〉. Hence, IA always has a finite generating set that consists of binomials of the
above form and consequently, every reduced Gröbner basis of IA again consists of such binomials.

The Conti-Traverso algorithm to solve all programs of the form IPA,b,c,= as b varies, involves
the following two main steps:
Step 1. Compute the reduced Gröbner basis Gc of the toric ideal IA with respect to c.
Step 2. For a specified right hand side vector b, compute the normal form modulo Gc (remainder
on division by elements in Gc), of the monomial xu, where u is any feasible solution of IPA,b,c,=.
The exponent vector of this normal form is the unique optimum of IPA,b,c,=.

The reduced Gröbner basis Gc computed in Step 1 is a test set for all integer programs
IPA,b,c,= such that b ∈ CIN(A). For fixed b, the set Gc often contains a number of elements that
are not used in Step 2 of the algorithm. We describe a modification of the Buchberger algorithm
for IA, inspired by Lemma 2.1, to provide a test set for IPA,b,c,=. This set maybe considerably
smaller (depending on b) than the reduced Gröbner basis Gc.

Let M denote the set of all monomials in k[x] = k[x1, . . . , xn] where k is a field. The monoids
M and INn are isomorphic via the usual identification of a monomial xu with its exponent vector.
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Under this identification, the monoid homomorphism πA induces a multivariate grading of M
and hence k[x], where the πA-degree of xu denoted πA(x

u) = πA(u) = Au ∈ CIN(A). Let M(f)
denote the monomials in a polynomial f ∈ k[x].

Definition 2.2 A polynomial 0 
= f ∈ k[x] is said to be πA-homogeneous if πA(s) = πA(t) for
all monomials s, t ∈ M(f). The πA-degree of such a homogeneous polynomial f , denoted πA(f),
equals the πA-degree of any monomial in M(f).

Note that a polynomial f ∈ IA is πA-homogeneous if and only if the exponent vectors of all
monomials in M(f) lie in the same fiber of πA.

Lemma 2.3 The toric ideal IA is homogeneous with respect to the grading πA.

Proof. Every binomial xu−xv ∈ IA is πA-homogeneous since Au = Av. Let fβ denote the sum
of all monomials of πA-degree β, in a non-zero polynomial f ∈ IA. The decomposition of IA in
Lemma 2.1 implies that fβ ∈ IA(β) ⊂ IA for all β ∈ CIN(A). Hence IA is a homogeneous ideal
with respect to this grading.

From now on we use the word homogeneous to mean πA-homogeneous. The above multi-
variate grading induced by the matrix A, generalizes the usual grading of ideals by a vector
of non-negative integers. An ideal that is homogeneous with respect to grading by a vector
allows a natural truncation of the Buchberger algorithm that is compatible with the grading.
We generalize this concept for the toric ideal IA, which has been shown to be homogeneous with
respect to the above multivariate grading. Our exposition follows Section 10.2 in [2].

Associated with the monoid CIN(A) there is a “natural” partial order � such that for b1, b2 ∈
CIN(A), b1 � b2 if and only if b1 − b2 ∈ CIN(A). Notice that when CIN(A) = INm, the partial order
� coincides with the componentwise partial order ≥, where b1 ≥ b2 if b1 − b2 ≥ 0. Let inc(f)
denote the leading monomial of f ∈ k[x] with respect to the refined cost function c.

Lemma 2.4 The following properties hold for the partial order � and the grading πA :
(i) If xu divides xv, then πA(x

u) � πA(x
v).

(ii) Let f, g ∈ IA be homogeneous polynomials such that πA(f) = πA(g) and f, g, f + g 
= 0.
Then f + g is again homogeneous with πA(f + g) = πA(f).
(iii) Let 0 
= f, g ∈ IA be homogeneous polynomials. Then fg is homogeneous with πA(fg) =
πA(f) + πA(g).
(iv) Let 0 
= f, p ∈ IA be homogeneous binomials and g be obtained by reducing f by p with
respect to c. Then πA(f) � πA(p) and g is a homogeneous binomial with πA(g) = πA(f).

Proof. We prove just (i) and (iv) since (ii) and (iii) follow from the definitions.
(i) If xu divides xv then v = u+w for some w ∈ INn. Therefore, Av−Au = Aw ∈ CIN(A) which
implies that πA(x

u) � πA(x
v).

(iv) Since p reduces f , inc(p) divides some term of f . Using (i) and the homogeneity of f and
p, πA(f) � πA(p). The binomial g is again homogeneous with πA(g) = πA(f) since reduction by
a homogeneous binomial keeps the exponent vectors of g on the same fiber as those of f .

We are now ready to describe a truncated Buchberger algorithm for IA called b-Buchberger,
that produces a test set for IPA,β,c,= for all β � b. We denote the normal form of a binomial
g, modulo a set of binomials G and cost function c, as normf{G,c}(g). The S-binomial of two
binomials g1 and g2, with respect to c, is denoted S-binc(g1, g2).
The b-Buchberger algorithm for toric ideals
Input: A finite homogeneous binomial basis F of IA and the refined cost vector c.
Output: A truncated (with respect to b) Gröbner basis of IA with monomial order given by c.
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i = −1
G0 = F
Repeat

i = i+ 1
Gi+1 = Gi ∪ ({normf{Gi,c}(S-binc(g1, g2)) : g1, g2 ∈ Gi, πA(S-binc(g1, g2)) � b)}\{0})

Until Gi+1 = Gi.
The only difference between the usual Buchberger algorithm and the b-Buchberger algorithm
described above is that the latter only considers those S-binomials with πA(S-binc(g1, g2)) � b.
Following this notation, we may denote the usual Buchberger algorithm as ∞-Buchberger. Let
b-Buchberger(F, c) denote the output of the algorithm b-Buchberger with starting basis F and
cost function c. The algorithm terminates in finitely many steps since the Buchberger algorithm
does so. Let IA[b] =

⊕
β�b IA(β). From Lemma 2.4 and the definition of the b-Buchberger

algorithm, we get the following proposition.

Proposition 2.5 Let F be a finite generating set for IA that consists of homogeneous binomials
and Gc(b) = b-Buchberger(F, c). Then the following hold:
(i) Every g ∈ Gc(b) is homogeneous and πA(g) � b for all g ∈ Gc(b)\F .
(ii) For all g1, g2 ∈ Gc(b) with πA(S-binc(g1, g2)) � b, S-binc(g1, g2) reduces to 0 modulo Gc(b).

Let RGc(b) denote the set obtained by performing the following two operations on Gc(b):
(i) remove an element if its initial term is divisible by the initial term of another element in
Gc(b), (ii) reduce the resulting minimal set modulo itself. Both Gc(b) and RGc(b) are called
b-Gröbner bases of IA with respect to c.

Notice that only those binomials in the starting basis F with πA(f) � b play a role in the
algorithm b-Buchberger. If there exists a binomial f ∈ F such that πA(f) is not less than or
equal to b with respect to the partial order �, then it maybe checked that the S-binomial formed
by f and any other binomial will also inherit this property and hence will not be considered by
b-Buchberger. These “passive” elements in F are carried along simply to preserve the generated
ideal. By the same observation, the set RGc(b) defined above is not a unique set associated with
A, c and b. However, a b-Gröbner basis of IA generates IA.

Suppose we now collect those elements in RGc(b) of πA-degree less than or equal to b with
respect to �. Let Tc(b) = {g ∈ RGc(b) : πA(g) � b}. Recall that the reduced Gröbner basis of
IA with respect to c was denoted as Gc.

Proposition 2.6 The set Tc(b) = Gc ∩ IA[b].

Proof. Since RGc(b) generates IA, it follows that ∞-Buchberger(RGc(b), c) is a Gröbner basis
of IA with respect to c, containing the set Tc(b). We first show that during the run of this
algorithm, no binomial g is created such that inc(g) divides either the leading or trailing term
of an element in Tc(b). Suppose such a g is created and it is the first such. By Lemma 2.4 (i),
πA(g) = d � b and hence, g is the normal form of an S-binomial S-binc(g1, g2) of πA-degree d.
This implies that πA(g1), πA(g2) � d � b. Therefore, g1, g2 ∈ Tc(b) by assumption. But then by
Proposition 2.5 (ii) and the definition of RGc(b), S-binc(g1, g2) reduces to zero modulo Tc(b).
Hence, no such g is created. After the operations of making this Gröbner basis minimal and
reduced we obtain the reduced Gröbner basis Gc. By the above argument, no element of Tc(b)
is altered during this process and no new binomial g with πA(g) � b is created.

The above proposition also proves that the set Tc(b) is unique, although it may not be a
generating set for IA. We denote by inc(Tc(b)) the set of all initial terms with respect to c, of
the binomials in Tc(b), and by inc(IA) the initial ideal of IA with respect to c.
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Theorem 2.7 The set Tc(b) = Gc ∩ IA[b] has the following properties:
(i) Every monomial s ∈ inc(IA) such that πA(s) � b is divisible by some t ∈ inc(Tc(b)).
(ii) Every 0 
= f ∈ IA[b] reduces to zero modulo Tc(b).
(iii) Every homogeneous f ∈ k[x] with πA(f) � b has a unique normal form modulo Tc(b).

Proof. (i) Suppose there exists some monomial s ∈ inc(IA) with πA(s) � b that is not divisible
by any t ∈ inc(Tc(b)). By Lemma 2.4 (i) and Proposition 2.6, it follows that there does not exist
any t ∈ inc(Gc) that divides s. This contradicts that Gc is a Gröbner basis of IA with respect to
c. Using (i) and Proposition 2.5, we get (ii) and (iii).

Corollary 2.8 The set Tc(b) is a minimal test set for all integer programs IPA,β,c,= with β � b.

Proof. Let u be a feasible non-optimal solution to IPA,β,c,= for some β � b for which the
optimal solution is v. By Theorem 2.7, the binomial xu − xv ∈ IA[b] reduces to zero modulo
Tc(b) where xv 
∈ inc(Tc(b)). Hence, the unique normal form of xu modulo Tc(b) is x

v . This set
is minimal by Proposition 2.6 since otherwise Gc would not be a minimal test set for the family
of programs {IPA,b,c,=, ∀b}.

The algorithm b-Buchberger described above considers an S-binomial g = xu−xv for reduc-
tion if and only if πA(g) = Au = Av � b. This amounts to checking feasibility of the system
{x ∈ INn : Ax = b − Au} which is as hard as solving the original integer program IPA,b,c,=.
Therefore, in order to implement b-Buchberger in practice, we propose two relaxations of the
above check. Consider the S-binomial g = xu − xv ∈ IA for reduction if:
(i) b−Au ∈ C(A) where C(A) = {Ax : x ∈ IRn

+}. I.e., check feasibility of the linear programming
relaxation of the original check.
(ii) b−Au ∈ C(A)∩ ZZA where ZZA = {Az : z ∈ ZZn}. This is a relaxation of the original check
since in general, CIN(A) is strictly contained in C(A) ∩ ZZA.

Both the above relaxations consider all S-binomials that were considered by the original
algorithm and possibly more. Hence, the output of the algorithm b-Buchberger with these
relaxed checks for S-binomials will still provide a test set (not necessarily minimal) for all
programs IPA,β,c,= with β � b.

The truncated Buchberger algorithm can be sped up by applying Buchberger’s first and
second critera to remove unnecessary S-binomials during the run of the algorithm. The first
criterion allows S-binc(g1, g2) to be discarded if, inc(g1) and inc(g2) are relatively prime. This
condition is not affected by any truncation of the Buchberger algorithm. The second criterion
states that the S-binomial S-binc(g1, g2) can be discarded if there exists a binomial f in the
current partial basis such that S-binc(g1, f) and S-binc(f, g2) have been already considered
by the algorithm and inc(f) divides lcm(inc(g1), inc(g2)). We show that this criterion is also
unaffected by the truncation. If there exists f such that inc(f) divides lcm(inc(g1), inc(g2)),
then lcm(inc(g1), inc(f)) and lcm(inc(f), inc(g2)) both divide lcm(inc(g1), inc(g2)). Therefore,
if πA(S-binc(g1, g2)) � b, by Lemma 2.4 (i), πA(S-binc(g1, f)) � b and πA(S-binc(f, g2)) � b.
Hence, S-binc(g1, f) and S-binc(f, g2) are not victims of the truncation and Buchberger’s second
criterion can also be applied to remove unnecessary S-pairs during the run of the truncated
Buchberger algorithm.

We remark that the theory of a truncated Buchberger algorithm and Gröbner basis in the
context of a multivariate grading induced by an integer matrix A, will hold for any ideal that is
homogeneous with respect to this grading. The above results can be generalized to this situation.

We now examine the geometry of the elements in the set Tc(b). The set UGBA = ∪cGc

is a well defined unique finite set called the universal Gröbner basis of A (see [14]). This is
a universal test set associated with A since it contains a test set for programs of the form
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IPA,b,c,= with any cost function c and right hand side vector b. On similar lines we define the
set UGBA(b) = ∪cTc(b) which we call the universal b-Gröbner basis of A. Clearly, UGBA(b) is
a universal test set for all integer programs IPA,β,c,= with β � b.

Lemma 2.9 The set UGBA(b) = UGBA ∩ IA[b].

Proof. By Proposition 2.6, UGBA(b) = ∪cTc(b) = ∪c(Gc ∩ IA[b]) = UGBA ∩ IA[b].
The above lemma implies that the set UGBA(b) is both unique and finite. Recall that the

b-fiber of πA is the polytope PI
b = conv{x ∈ INn : Ax = b}. The following theorem gives a

geometric characterization of elements in UGBA. A vector v ∈ ZZn is said to be primitive if the
g.c.d. of its components is one.

Theorem 2.10 (Theorem 5.1 in [14]) A binomial xα−xβ ∈ UGBA if and only if the vector
α− β is primitive and the line segment [α, β] is an edge of the Aα-fiber of πA.

Corollary 2.11 A binomial xα − xβ ∈ UGBA(b) if and only if the vector α − β is primitive
and the line segment [α, β] is an edge of the Aα-fiber of πA where Aα � b.

The Graver basis of A, introduced in [6], is a universal test set associated with A that
contains the set UGBA. For the binomial g = xu − xv ∈ IA, we call the Av-fiber of πA, the fiber
of g. By Theorem 2.10, the elements in the Graver basis of A that are in UGBA are precisely
those binomials that are edges in their fibers. Therefore, any algorithm to compute the Graver
basis of A can be extended to compute UGBA.

We briefly describe the algorithm to compute the Graver basis of A presented in [14] and
show how it maybe modified to compute the universal b-Gröbner basis UGBA(b). Consider

the (m + n) × 2n-matrix Λ(A) =

(
A O
In In

)
, called the Lawrence lifting of A, where 0 is

an m × n matrix of zeros and In is the identity matrix of size n. It may be checked that
kernelZZ(Λ(A)) = {(u,−u) : u ∈ kernelZZ(A)} and hence the toric ideal IΛ(A) = 〈xpyq − xqyp :
p, q ∈ INn, Ap = Aq〉 ⊆ k[x1, . . . , xn, y1, . . . , yn]. The Lawrence lifting Λ(A) has the property
that any reduced Gröbner basis of IΛ(A) coincides with the Graver basis of Λ(A) and UGBΛ(A).
See Theorem 4.1 in [14] for a proof. This along with the above discussion gives the following
algorithm (Algorithm 4.3 in [14]) to compute the Graver basis of A.
Algorithm to compute the Graver basis of A.
1. Compute the reduced Gröbner basis G of IΛ(A) with respect to any term order.
2. The Graver basis of A consists of all binomials xp − xq such that xpyq − xqyp appears in G.

Applying the decomposition in Lemma 2.1 to IΛ(A) we see that the component IΛ(A)(β, β
′)

is the k-vector space spanned by all binomials of the form {xpyq − xqyp : Ap = Aq = β, p+ q =
β′, p, q ∈ INn}. This implies that xp − xq ∈ IA(β) if and only if xpyq − xqyp ∈ IΛ(A)(β, β

′) for
some β′ ∈ INn. We define the b-Graver basis of A to be all those elements g in the Graver basis
of A with πA(g) � b. Let (b, ∗)-Buchberger be the truncated Buchberger algorithm on IΛ(A)

that only considers those S-binomials xpyq − xqyp such that Ap � b. Note that πΛ(A)(x
pyq −

xqyp) = (Ap, p+ q) ∈ CIN(A)⊕ INn and (b, ∗)-Buchberger only checks the first m components of
πΛ(A)(x

pyq−xqyp) in order to decide whether this S-binomial should be considered for reduction
or not. An algorithm to compute the b-Graver basis of A is then immediate.
Algorithm 2.12. How to compute the b-Graver basis of A.
1. Compute the test set T�(b, ∗) of Λ(A) with respect to any term order �.
2. The b-Graver basis of A consists of all binomials xp − xq such that xpyq − xqyp ∈ T�(b, ∗).
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Proof of correctness of Algorithm 2.12. By Proposition 2.6, T�(b, ∗) = {xpyq − xqyp ∈
G� : Ap = Aq � b} where G� is the reduced Gröbner basis of IΛ(A) with respect to �. By the
above discussion, G� is also the Graver basis of Λ(A) and a binomial xp − xq is in the b-Graver
basis of A if and only if xpyq − xqyp is in the Graver basis of Λ(A) and Ap = Aq � b.

Algorithm 2.12 and Corollary 2.11 give the following algorithm to compute UGBA(b).
Algorithm 2.13. How to compute the universal b-Gröbner basis UGBA(b).
1. Compute the b-Graver basis of A using Algorithm 2.12.
2. A binomial xp − xq in the b-Graver basis of A is in UGBA(b) if and only if [p, q] is an edge
in the fiber of xp − xq.

3 A special case

In this section we specialize the theory developed in the previous section to integer programs
of the form max{cx : Ax ≤ b, x ≤ u, x ∈ INn}, denoted IPA,b,c,u,≤, where all data are non-
negative and integral. We show that a geometric interpretation of this specialization gives a
combinatorial algorithm for IPA,b,c,u,≤, presented in [16]. As before, we may assume that c
has been refined to create a total order on INn. The non-negativity of the data ensures that
IPA,b,c,u,≤ is bounded with respect to every cost function. The vector of upper bounds u ∈ INn

and as before, A,b,c and u will be fixed throughout this section.
In order to apply the results of the previous section to IPA,b,c,u,≤, we add slack vectors and

transform the problem to max{cx+0s+0r : Ax+ Ims = b, Inx+ Inr = u, x ∈ INn, s ∈ INm, r ∈
INn} which we denote as IPA′,(b,u),c′,=. Here Ip denotes the identity matrix of size p and s and

r are slack vectors of the sizes specified. The matrix A′ =

[
A Im 0
In 0 In

]
is in IN(m+n)×(2n+m),

right hand side vector (b, u) ∈ INm+n and cost vector c′ = (c, 0, 0) ∈ IN2n+m. The monoid
CIN(A

′) = INm+n and the partial order � is just the componentwise partial order ≥ on INm+n.
The associated monoid homomorphism πA′ : IN2n+m −→ INm+n takes (x, s, r) 	→ A′(x, s, r).

The toric ideal IA′ = kernel(π̂A′) where π̂A′ : k[x, s, r] −→ k[t, z] such that xj 	→ tajzj, si 	→ ti
and rj 	→ zj for j = 1, . . . , n and i = 1, . . . , m. Let J denote the polynomial ideal in k[t, z, x, s, r]
given by J = 〈xj − tajzj, si − ti, rj − zj , j = 1, . . . , n, i = 1, . . . , m〉. It follows from Theorem 2
in Section 3.3 of [5] that IA′ = J ∩ k[x, s, r].

Lemma 3.1 The toric ideal IA′ = 〈xj − sajrj, j = 1, . . . , n〉 ⊆ k[x, s, r].

Proof. The set G> = {xj − saj rj, ti − si, zj − rj, j = 1, . . . , n, i = 1, . . . , m} with the underli-
ned terms as leading terms, is the reduced Gröbner basis of J with respect to any elimination
order > such that t, z, x > s, r. Hence IA′ = J ∩ k[x, s, r] = 〈G> ∩ k[x, s, r]〉.

As in [14] and [15], we can think of the binomial yα − yβ in a toric ideal IA ⊆ k[y] =
k[y1, . . . , yn], with no common factors in the two terms, as the vector α−β ∈ ZZn or alternatively
as the line segment [α, β] ⊂ IRn. In the case of the programs IPA′,(b,u),c′,= under consideration,

we modify the usual interpretation so that a binomial xαsβrγ − xδsμrλ in IA′ with no common
factors in the two terms, is identified with the vector α− δ ∈ ZZn or the line segment [α, δ] ⊂ IRn

by ignoring the slack components. Conversely, there exists a unique way in which a vector
in ZZn can be interpreted as a binomial in IA′ . Given v ∈ ZZn, we first write it uniquely as
v = v+−v− where v+, v− ∈ INn. The binomial associated with [v+, v−] is then defined as bin(v)
= xv

+
s(Av)−rv

− − xv
−
s(Av)+rv

+
. It can be seen that the two terms in bin(v) have no common

factors and that the above choice of slack exponents is the smallest possible that will ensure
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bin(v) ∈ IA′ . Given two vectors v, w ∈ ZZn and the refined cost function c, S-binc(bin(v), bin(w))
equals (bin(v− w)) possibly up to sign and multiplication by a monomial.

The (b, u)-fiber of πA′ is the polytope PI
(b,u) = conv{(x, s, r) ∈ IN2n+m : Ax+ Ims = b, Inx+

Inr = u} and let QI
(b,u) = conv{x ∈ INn : Ax ≤ b, x ≤ u}. Under the above interpretation of

binomials in IA′, the generators of IA′ in Lemma 3.1 are the n unit vectors in IRn.

Observation 3.2 There exists a connected undirected graph in every polytope QI
(b,u) for b ∈ INm

and u ∈ INn, where the nodes are the lattice points in QI
(b,u) and edges are translations of the

unit vectors in IRn.

The above observation follows from the non-negativity of the data since one can construct a
path from every lattice point x ∈ QI

(b,u) to the origin by consecutively subtracting unit vectors

and keeping all intermediate points in QI
(b,u). The observation also follows from a general fact

about generating sets for toric ideals: a set of binomials {yαi − yβi , Aαi = Aβi, αi, βi ∈ INn, i =
1, . . . , p} generates the toric ideal IA ⊆ k[y] if and only if in every fiber of πA, we can build a
connected (undirected) graph in which nodes are the lattice points in the fiber and edges are
translations of the segments [αi, βi]. The argument is completed by noting the bijection between
lattice points in PI

(b,u) and QI
(b,u).

We now show that a number of algebraic operations required in Section 2 can be reduced to
easy checks on vectors, for the programs IPA,b,c,u,≤. As in the previous section, πA′ defines a

multivariate grading of IA′ under which the degree of bin(v) is πA′(bin(v)) =

(
Av− + (Av)+

v+ + v−

)
.

However, Av− + (Av)+ = max{Av+, Av−} where max computes the componentwise maximum
of vectors. The (b, u)-Buchberger algorithm considers the S-binomial bin(v) for reduction if and
only if πA′(bin(v))≤ (b, u). This yields the following lemma.

Lemma 3.3 An S-binomial of the form bin(v) will be considered for reduction by the algorithm
(b, u)-Buchberger if and only if Av+ ≤ b, Av− ≤ b and 0 ≤ v+, v− ≤ u.

In this section we will assume that all S-binomials considered are of the form bin(v), i.e., the
common terms in the two monomials have been removed. This is not required for the truncated
Buchberger algorithm described in the previous section. We do this here in order to be able to
store a binomial without ambiguity, as a vector equal to the difference of its exponent vectors.
A vector v ∈ ZZn satisfies Av+ ≤ b, Av− ≤ b and 0 ≤ v+, v− ≤ u if and only if v is the difference
of two feasible solutions of IPA,b,c,u,≤. Therefore, the algorithm (b, u)-Buchberger considers an
S-binomial bin(v) only if, v is the difference of two feasible solutions of IPA,b,c,u,≤. As remarked
earlier, for a general integer matrix A and right hand side vector b, checking whether the πA-
degree of an S-binomial is less than or equal to b with respect to the partial order �, amounts
to checking feasibility of an integer program. In the case of the programs IPA′,(b,u),c′,= studied
here, this check reduces to the above easy check on the vectors v+ and v−. This allows the
algorithm (b, u)-Buchberger to be implemented without relaxations.

Since IPA′,(b,u),c′,= is a maximization problem, if cv > 0, the leading term of the binomial

bin(v) with respect to c is xv
−
s(Av)+rv

+
which is the monomial corresponding to v−. There-

fore, the binomial bin(v) reduces the leading term of the binomial bin(w), where cw > 0, if
xv

−
s(Av)+rv

+
divides xw

−
s(Aw)+rw

+
. We may write this down as an operation between the vec-

tors v and w. For a vector d ∈ ZZn, let dc = d if cd > 0 and dc = −d otherwise. If v is written
without a superscript, we assume cv > 0.
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Definition 3.4 [16] A vector w 
= 0 can be reduced by v if v+ ≤ w+, v− ≤ w− and (Av)+ ≤
(Aw)+. If the above conditions are satisfied, we obtain (w − v)c by reducing w by v.

By the above definition, v reduces w if the leading term of bin(v) divides the leading term of
bin(w). In the usual theory of Gröbner bases, the binomial bin(v) reduces bin(w) if the leading
term of bin(v) divides either term of bin(w). By the above definition, if the leading term of
bin(v) divides the trailing term of bin(w), we would have to say that v reduces −w. If v reduces
w, the following conditions hold:
(1) if x and x+ w are feasible for IPA,b,c,u,≤, then so is x + v.
(2) |v|1 ≤ |w|1, with equality only if v = w and |w − v|1 < |w|1.
(3) c(x+ v) > cx.

On the same lines, we may think of the reduction of a homogeneous binomial in IA′ by a set
of homogeneous binomials in IA′ as an operation on vectors.
Reducing a vector w ∈ ZZn by a set of vectors B ⊆ ZZn. [16]
This algorithm computes the normal form wB of a vector w ∈ ZZn by a set of vectors B ⊆ ZZn.
(1) Input B ⊆ (ZZn)c, w ∈ ZZn.
(2) As long as possible, find v ∈ B such that r ∈ {w,−w} can be reduced by v, and replace r
by r − v.
(3) Output wB := rc.

The specializations of the algebra to the case of IPA′,(b,u),c′,= described above, allow the
algorithm (b, u)-Buchberger to be described combinatorially. This is precisely Algorithm 3.7 in
[16] which we reproduce below. A combinatorial proof of the correctness of this algorithm can
be found in [16].
A combinatorial (b, u)-Buchberger algorithm for IPA,b,c,u,≤
(1) Set Bold := ∅, B := {ei : i = 1, . . . , n}
(2) While Bold 
= B repeat the following :

(2.1) Set Bold := B
(2.2) For all pairs of vectors v, v′ ∈ Bold such that cv < cv′ perform the following steps:

(2.2.1) If Av+ ≤ b, Av− ≤ b, 0 ≤ v+, v− ≤ u, set w = v′ − v.
(2.2.2) Compute r := wB .
(2.2.3) Set B := B ∪ {r}.

Theorem 3.5 The output of the combinatorial (b, u)-Buchberger algorithm is a minimal test
set for all programs IPA,b′,c,u′,≤ for which b′ ≤ b and u′ ≤ u.

The set of generators of the toric ideal IA′ that is used as input to the (b, u)-Buchberger
algorithm is the set {xj − saj rj, j = 1, . . . , n}. The πA′-degree of xj − sajrj is (aj, ej) for
j = 1, . . . , n. We may assume without loss of generality that aj ≤ b and uj ≥ 1 for j = 1, . . . , n
since otherwise, we could have removed column j from the matrix A. Therefore, all generators
of IA′ take part in the algorithm (b, u)-Buchberger.

The following example shows that truncated Gröbner bases can be considerably smaller than
the entire reduced Gröbner basis associated with an integer program.

Example 3.6 Consider the knapsack problem in two variables

max {μx+ λy : μx+ λy ≤ b, x, y ≥ 0 and integral},
where λ > 0 is an odd integer, μ = λ+1

2 and b is some natural number. Then

(−1, 1), (−3, 2), (−5, 3), . . . , (−λ, μ)
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is a set of irreducible vectors with

μ− 1 = −μ + λ > μ − 2 = −3μ+ 2λ > μ− 3 = −5μ+ 3λ > . . . > 0 = −λμ+ μλ.

Hence, this sequence of vectors must be contained in any test set for the family of integer
programs as b varies (see [17] for further details).
Setting b = kλ for a fixed natural number k, it is clear that the b-Gröbner basis contains only
the first k elements in the above sequence of vectors and hence, is of significantly smaller size
than the entire Gröbner basis. It should be clear that for higher dimensional knapsack problems
even more drastic examples can be constructed.

In the remainder of this section we examine the geometry of the elements in the test sets
produced by (b, u)-Buchberger. We denote by UGBA(b, u), the universal (b, u)-Gröbner basis
of IA′ . As before, let QI

(b′,u′) = conv{x ∈ INn : Ax ≤ b′, x ≤ u′} and P I
(b′,u′) = conv{(x, s, r) ∈

IN2n+m : Ax + Ims = b′, Inx + Inr = u′}. If [u, v] is an edge of a polytope P where u and
v are adjacent vertices of P , we say that (u − v) (up to sign) is an edge direction of P . By
Corollary 2.11, we know that the elements in UGBA(b), thought of as vectors in ZZ2n+m, are the
primitive edge directions in the polytopes PI

(b′,u′) for b
′ ≤ b and u′ ≤ u. Since all interpretations

so far were done in n-space, we think of UGBA(b, u) as a subset of ZZn and give an elementary
combinatorial proof of the following fact.

Proposition 3.7 The set UGBA(b, u) consists of all primitive edge directions in the polytopes
QI

(b′,u′) with b′ ≤ b and u′ ≤ u.

Proof. We start by showing that every primitive edge direction among the polytopes QI
(b′,u′),

with b′ ≤ b, u′ ≤ u must be contained in UGBA(b, u). Let e = y−z be a primitive edge direction
where z and y are adjacent vertices of QI

(b′,u′) for some b′ ≤ b and u′ ≤ u. Let c be a cost function

such that cy > cz > cp, for all p ∈ {INn ∩QI
(b′,u′)}\{y, z}. Such a c exists since [z, y] is an edge

of QI
(b′,u′). Therefore, the only vector that can be added to z to get an improved solution is e.

Therefore, Tc(b, u) and hence UGBA(b, u) must contain e = y − z.
Next we consider the reverse inclusion. Let v ∈ UGBA(b, u) and c be a cost function such

that v ∈ Tc(b, u) with cv+ > cv−. Define u′ := v+ + v− and b′ = Av− + (Av)+. Since
(b′, u′) = πA′(bin(v)) ≤ (b, u) we have u′ ≤ u and b′ ≤ b. The vector v = v+ − v− is primitive
since it belongs to UGBA(b, u). We will show that [v+, v−] is an edge of QI

(b′,u′). Notice that

v+ and v− ∈ QI
(b′,u′) ∩ INn since, 0 ≤ v+, v− ≤ v− + v+ = u′, Av− ≤ Av− + (Av)+ = b′, and

Av+ = Av− + (Av+ − Av−) = Av− + Av = Av− + (Av)+ − (Av)− ≤ Av− + (Av)+ = b′.
For any z ∈ QI

(b′,u′) ∩ INn distinct from v+ and v−, we have (z − v−) ≥ −v− since z ≥ 0.

Also, z ≤ v+ + v− implies (z − v−) ≤ v+. Therefore (z − v−)+ ≤ v+ and (z − v−)− ≤ v−.
Moreover, Az ≤ b′ implies that Az = Av− + A(z − v−) = Av− + (A(z − v−))+ − (A(z − v−))−

≤ Av− + (Av)+ = b′. The last relation implies that (A(z − v−))+ ≤ (Av)+ since (A(z − v−))+

and (A(z − v−))− have disjoint supports. Putting these arguments together we see that every
z ∈ QI

(b′,u′) satisfies the conditions (z− v−)+ ≤ v+, (z− v−)− ≤ v− and (A(z− v−))+ ≤ (Av)+.

Therefore, if c(z − v−) > 0 then z − v− reduces v and v cannot be in Tc(b, u) which is a
contradiction. Therefore, cz < cv−. Therefore, cz < cv− < cv+ for every z ∈ QI

(b′,u′) distinct

from v+ and v−.
Now we show that v+ and v− are vertices of QI

(b′,u′). Suppose that v+ is not a vertex

of QI
(b′,u′). Then v+ =

∑
w∈W λww + λ0v

− where W is a subset of vertices in QI
(b′,u′) and
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λ0 +
∑

w∈W λw = 1, λw ≥ 0 for all w ∈ W and λ0 ≥ 0. Clearly, λ0 = 0 since v− and v+ have
disjoint supports. Therefore, v+ =

∑
w∈W λww which is impossible because cw < cv+ for all

w ∈ W . This implies that v+ is a vertex of QI
(b′,u′). Similarly v− is a vertex of QI

(b′,u′).

It remains to be shown that the vertices v+ and v− are adjacent. Suppose the converse is
true, then there exists a point z on the line connecting v+ and v− that can be written as a
convex combination of vertices in QI

(b′,u′) different from v+ and v−. I.e., z = μv+ + σv− with
μ+ σ = 1, μ, σ > 0 has a representation as z =

∑
w∈W λww,

∑
λw = 1, λw ≥ 0, with W being a

subset of vertices in QI
(b′,u′) not containing v+ and v−. Again, we obtain a contradiction, since

cz > cv− > cw for every w ∈ W . This completes the proof.
Acknowledgements. We thank Karin Gatermann and Bernd Sturmfels for helpful discussions
and comments. This work was done while the first author was visiting ZIB.

References

[1] D. Bayer & M. Stillman: MACAULAY: A computer algebra system for algebraic geometry,
Available by anonymous ftp from zariski.harvard.edu.
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