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Abstract

We present a game-theoretic approach to optimize the strategies of toll
enforcement on a motorway network. In contrast to previous approaches,
we consider a network with an arbitrary topology, and we handle the
fact that users may choose their Origin-Destination path; in particular
they may take a detour to avoid sections with a high control rate. We
show that a Nash equilibrium can be computed with an LP (although
the game is not zero-sum), and we give a MIP for the computation of a
Stackelberg equilibrium. Experimental results based on an application to
the enforcement of a truck toll on German motorways are presented.

keyword Game Theory; Stackelberg Equilibrium; Mixed Integer Program-
ming

1 Introduction

In 2005 Germany introduced a distance-based toll for trucks weighing twelve
tonnes or more in order to fund growing investments for maintenance and ex-
tensions of motorways. The enforcement of the toll is the responsibility of the
German Federal Office for Goods Transport (BAG), who has the task to carry
out a network-wide control. To this end, 300 vehicles make control tours on
the entire highway network. In this paper, we present some theoretical work
obtained in the framework of our cooperation with the BAG, whose final goal is
to develop an optimization tool to schedule the control tours of the inspectors.
This real-world problem is subject to a variety of legal constraints, which we
handle by mixed integer programming [2]. In a follow-up work, we plan to use
the results of the present article as a target for the real-world problem.

In this paper, the problem of allocating inspectors to spatial locations of
a transportation network in order to enforce the payment of a transit toll is
studied from a game-theoretic point of view. This problem presents several
similarities with recent studies on the application of game theory to a class
of problems where the goal is to randomize different kind of inspections, in a
strategical way; this includes a work on the optimal selection of checkpoints and
patrol routes to protect the LA Airport towards adversaries [5], a study of the
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scheduling and allocation of air marshals to a list of flights in the US [3], or the
problem of optimally scheduling fare inspection patrols in LA Metro [6].

The core of this work is to handle the difficulties arising from the large
number of available paths for the network users, while taking into account the
additional traveling costs when users make a detour. In contrast, previous ap-
proaches used the trivial topology of a single metro line [6], or assumed that
each user takes the shortest path [1]. A similar network security game, where
the defender has an exponential number of actions was studied in [3] with the
help of a branch-and-price algorithm. In this article, we represent user strate-
gies by network flows, which allows us to give a compact LP formulation for the
computation of a Nash equilibrium of the game. We next use some ideas of [5]
to formulate the problem of finding a Stackelberg equilibrium of the game as a
mixed integer program (MIP). Experimental results based on real traffic data
(averaged over time) are given in section 4, and suggest that the Nash equilib-
rium strategy is a good trade-off between computation time and efficiency of
the controls.

2 A Spot-checking game

In this section we extend the game theoretic model presented in [1], which stud-
ies the interaction between the fare inspectors and the users of a transportation
network, to handle the case where every user is free to choose its path in the
network to reach its destination.

We first recall the notion of best strategy in game theory, which is central in
this article, since it is used in the definitions of Nash and Stackelberg equilibria.
Consider a game where each player i = 1, . . . , N can commit to a strategy pi

in a set ∆i, and wishes to maximize his own payoff ui(pi,p−i). We say that
player i’s strategy pi is a best response to the others’ strategies p−i if his payoff
cannot increase when p−i is fixed:

∀p′i ∈ ∆i, ui(p
′
i,p−i) ≤ ui(pi,p−i).

Model settings The transportation network is represented by a weighted
directed graph G(V,E,w), where weight we represents the traveling cost on
edge e ∈ E. We assume that the users of the network are distributed over a set
of commodities K = {k1, . . . , km}, which represent Origin-Destination pairs of
the network k =

(
src(k),dst(k)

)
. We denote by S the set of commodity sources

{s :∃(s, t)∈K} and for s ∈ S we define Ds := {t : (s, t) ∈ K}.
For all k ∈ K, we denote by Rk the set of all paths from src(k) to dst(k).

In particular, R∗k ∈ Rk is the shortest path through k (with respect to weights
we). In addition, we are given the demand xk of commodity k, i.e., the number
of users who make a trip on commodity k during a given period of time.

The users of commodity k are expected to pay a toll fee Tk. If a user evades
the toll, he takes the risk to pay a penalty P >> Tk in case of a control. If an
inspector is present on edge e, we denote by σe the probability that an individual
passing on e is controlled.
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Inspectors’ strategy The set of edges is partitioned as E = Epay ∪ Efree,
where Efree represent some toll-free edges, where users shall not be controlled.
There are κ teams of inspectors over the network, who can each control an edge
e ∈ Epay. Their pure strategies hence correspond to the subsets of Epay of
cardinality κ. A mixed strategy is a probability distribution over those subsets,
but we will see that our model only depends on the marginal probabilities qe
that some inspector is present on e,∑

e∈Epay

qe = κ and ∀e ∈ Epay, 0 ≤ qe ≤ 1. (1)

Conversely, if we are given a vector q satisfying Equation (1), we point out that
we can find a probability distribution over the subsets of cardinality κ whose
marginal equals q. To simplify the notation, we assume hereafter that σe = 0,
and qe = 0 is a constant for every toll-free edge e ∈ Efree.

Network users, fare evasion and path selection We associate the users
of commodity k with a single player (called player k). Player k can either pay
the toll and take the shortest path, or try to evade the toll by taking any path
R ∈ Rk (which might be a detour). His mixed strategy can be interpreted
as the proportion of k−users who pay or evade on a particular path R ∈ Rk.
For the sake of simplicity we create an artificial edge e∗k with weight we∗k :=∑
e∈R∗k

we + Tk which goes directly from the origin to the destination of k, and

we define Ēk := E ∪ {e∗k}; the interpretation is that player k pays the toll if he
takes e∗k. Our model depends only on the probabilities pke that player k uses
edge e, that must form a flow of value one through commodity k:

∀v ∈ V,
∑

{u:(v,u)∈Ēi}

pk(v,u) −
∑

{u:(u,v)∈Ēk}

pk(u,v) =

 1 if v = src(k);
−1 if v = dst(k);
0 otherwise.

(2)

The probability to be controlled on an edge e ∈ R is qeσe, and hence the
expected number of times player k is subjected to a control during his trip is∑
e∈R p

k
eqeσe. We approximate the total expected cost of player k by

Payoffk(p, q) = −

∑
e∈Ēk

pkewe +
∑
e∈E

pkeqeσeP

 , (3)

where the first term accounts for travel and toll costs, while the second is the
expected fine, i.e. we do as if evaders could be fined several times (for a realistic
number of controllers, our results show that the risk of being controlled more
than once is very small; a similar approximation has been used in [6] and [1]).
A consequence of Equation (3) is that the best response of player k to the
inspectors’ strategy q is to take the shortest path for commodity k in the graph
G(V, Ēk,w

′) with modified edge weights w′e = we + qeσeP , where qe∗k and σe∗k
are constants set to 0 for the artificial edge e∗k.

Inspectors’ payoff We introduce two parameters α and β, where α ∈ [0, 1]
indicates the fraction of the revenue from penalties to take into account, and
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βe is a reward for each user who takes edge e. Hence, the total payoff for the
controllers is:

PayoffC(p, q) =
∑
k

xk
∑
e∈Ēk

pke(ασeqeP + βe). (4)

If we set α = 1 (resp. α = 0) and βe = 0 for all edges except the artificial ones,
where βe∗k = Tk, the payoff defined in (4) corresponds to the total revenues from
toll and penalties (resp. the toll revenues only). We denote this setting as MAX-
PROFIT (resp. MAXTOLL). Another interesting case, called MAXPAYERS,
is α = 0 and βe∗k = 1, where the goal is to maximize the number of users who
have an incentive to pay the toll.

3 Computation of Equilibria

The notion of equilibrium is essential in game theory. Depending on the ability
of the players to observe the others’ actions, committing to a Nash or a Stack-
elberg equilibrium may be better suited [4]. We first show that in the case of
MAXPROFIT, our game can be transformed into a zero-sum game which has
the same Nash equilibria. As a consequence, a Nash equilibrium strategy can
be computed by linear programming.

Computation of a Nash equilibrium for MAXPROFIT A Nash equilib-
rium is a collection of mixed strategies (p,q) such that every player plays with
best response to the others’ strategies. As seen in the last section, this means
that λk := −Payoffk(p, q) equals the length of the shortest path for commod-
ity k in the graph G(V, Ēk,w

′), where w′e = we + qeσeP . Now, for a fixed
strategy p of the network users, the goal of the controller is to maximize his
total revenue

∑
k xk(

∑
e∈E p

k
eσeqeP + pke∗k

Tk) with respect to q. Equivalently,

the controller’s goal is to maximize∑
k

xk(
∑
e∈E

pkeσeqeP + pke∗kTk) +
∑
k

xk(
∑
e∈E

pkewe + pke∗k(we∗k − Tk)) =
∑
k

xkλk,

because the term which was added does not depend on q. We can now formulate
a linear program (LP) which computes a Nash equilibrium strategy:

max
q,λ,y

∑
k

xkλk (5a)

s. t. ysv − ysu ≤ w(u,v) + σ(u,v)q(u,v)P, ∀s ∈ S, ∀(u, v) ∈ E; (5b)

yss = 0, ∀s ∈ S; (5c)

λk ≤ y
src(k)
dst(k)

∀k ∈ K (5d)

λk ≤ we∗
k
, ∀k ∈ K; (5e)

0 ≤ qe ≤ 1, ∀e ∈ E; (5f)∑
e∈E

qe = κ. (5g)

4



The constraints (5b)-(5c) are from the classical linear programming formula-
tion of the single-source shortest path problem, and bound ysv from above by the
the shortest path length from s to v in the graph G(V,E,w′). Constraints (5d)
and (5e) further bound λk from above by the shortest path length for commod-
ity k in the augmented graph G(V, Ēi,w

′). Finally the constraints (5f)-(5g)
force q to be a feasible strategy for a set of κ inspectors.

We point out that the optimal dual variables of constraints (5b) and (5e)
define a flow in the graph G(V,∪kĒk), from which a Nash equilibrium strategy
pk for player k can be inferred.

Computation of a Stackelberg equilibrium In a Stackelberg game, it is
assumed that a player is the leader (in our case, the controller), who plays
first, and the other players (called followers) react with a best response to the
leader’s action. Stackelberg games are arguably more adapted to the present
spot-checking game because of the asymmetry between controllers and network
users, and have already been used in several applications [5, 3, 6]. A Stackelberg
equilibrium is a profile of strategies (p, q) which maximizes the leader’s payoff,
among the set of all the profiles where the followers’ strategies pk ∈ p are best
responses to the leader’s action q. Note that the definition implicitly implies that
when a follower has several best response actions available, he will select one that
favors the leader most. This can be justified in our spot-checking game, since
strategies that favor the controller correspond to shorter paths (more penalties,
less travel charges).

Using ideas similar as in [5], a mixed integer program (MIP) can be for-
mulated for the computation of a Stackelberg equilibrium (p, q). We reduce
drastically the number of required variables, by using a single-source multi-sink
flow ρs for each s ∈ S instead of using a flow pk for every commodity. This
however requires attention, since only the users of commodity k are allowed to
take the artificial edge e∗k:

max
q,y,λ,µ,ρ

∑
k

xk
(
αλk + µk(βe∗

k
− αwe∗

k
)
)

+
∑
s∈S

∑
e∈E

ρse(βe − αwe) (6a)

s. t. 0 ≤ w(u,v) + σ(u,v)q(u,v)P − (ysv − ysu) ≤M(u,v)(1− µs(u,v)), ∀s ∈ S, ∀(u, v)∈E;

(6b)

yss = 0, ∀s ∈ S; (6c)

0 ≤ ysrc(k)
dst(k)

− λk ≤Mk
1 µ

k, ∀k ∈ K; (6d)

0 ≤ we∗
k
− λk ≤Mk

2 (1− µk), ∀k ∈ K; (6e)

0 ≤ qe ≤ 1, ∀e ∈ E; (6f)∑
e∈E

qe = κ; (6g)

∑
{u:(v,u)∈E}

ρs(v,u) −
∑

{u:(u,v)∈E}
ρs(u,v) = δsv(µ), ∀s ∈ S, ∀v ∈ V ; (6h)

0 ≤ ρse ≤Msµse, ∀s ∈ S, ∀e ∈ E; (6i)

µse ∈ {0, 1}, µk ∈ {0, 1}, ∀(s, e, k)∈S×E×K.
(6j)
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As in Problem (5), constraints (6b)-(6e) bound λk from above by the shortest
path length for k in the graph G(V, Ēk,w

′) with modified weights, and con-
straints (6f)-(6g) force q to be a feasible strategy for the κ inspectors. We
introduce a binary variable µse which can take the value 1 only if edge e belongs
to a shortest path tree rooted in s (second inequality in (6b)), and a binary
variable µk which indicates whether player k’s best response is to pay the toll

(second inequalities in (6d)-(6e), µk is free when λk = y
src(k)
dst(k) = we∗k). The right

hand side in (6h) is defined as

δsv(µ) =


∑

d∈Ds
x(s,d)(1− µ(s,d)) if s = v;

−x(s,v)(1− µ(s,v)) if v ∈ Ds;
0 otherwise,

so that ρs defines a single-source multi-sink flow rooted in s, whose demand in
d ∈ Ds corresponds to the number of evaders on the commodity (s, d). Con-
straint (6i) ensures that the flow ρs only uses edges from a shortest path tree
rooted in s. Now, ρs can be decomposed as

∑
d∈Ds

x(s,d)p
(s,d), where p(s,d)

is a flow from s to d of value 1 − µ(s,d). If (s, d) is the kth commodity, i.e.,
k = (s, d), we set pke∗k

:= µk, and pk becomes a flow of value one from src(k)

to dst(k) in the augmented graph G(V, Ēk,w
′). By construction, pk is a flow

of minimal cost λk =
∑
e∈Ēk

pke(we + qeσeP ), and it follows that pk is a best
response to q. Finally, the objective function (6a) rewrites to the controller’s
payoff (4) when replacing λk and ρse by their values as a function of pke . We
point out that the big-M constants Me,M

k
1 ,M

k
2 and Ms can all be chosen in

the same order of magnitude as the other coefficients of the problem.
Note that the problem becomes easier for MAXTOLL or MAXPAYERS,

where α = 0 and βe = 0 for all non artificial edges e ∈ E, and the flows of
network users ρs are not involved anymore. In this case, the second inequality
of (6b) vanishes, as well as (6h) and (6i).

4 Experimental results on German motorways

We have solved the models presented in this paper for several instances based on
real data (averaged over time) from the German motorways network.We present
here a brief analysis of our results.

In Figure 1, a near-Stackelberg equilibrium strategy of the inspectors on
the whole German network is represented, for the MAXPROFIT case. Here it
was assumed that κ = 50 controllers are simultaneously present on the network,
which consists of 319 nodes, 2948 edges and 5013 commodities (the dotted edges
on the figure are toll-free edges e ∈ Efree). For this problem, we first computed
a Nash Equilibrium with the LP (5); this took 29s on a PC with 8 processors
at 3.2GHz. Then, we computed the shortest path through k in G(V, Ēk,w

′) for
all k ∈ K, which yields a feasible solution for the MIP (6) that can be used for a
warm start. We used CPLEX, and an optimality gap of 1.5% was reached after
350s. We point out that the Nash Equilibrium strategy differs only with the
MAXPROFIT Strategy on a few edges, and captures 99.7% of the profit from
MAXPROFIT.
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Figure 1: Stackelberg strategy of the controllers q on the German Motorways,
for κ = 50, in the MAXPROFIT setting

Further tests on a smaller network representing the region of Berlin-
Brandenburg (45 nodes, 130 edges, 596 commodities) confirm that the Nash
Equilibrium strategy might be a good trade-off between the computation time
and the efficiency of the controls. Figures 2(a)-2(c) compare 4 strategies in func-
tion of the number of controllers κ: the Stackelberg strategies MAXPROFIT
and MAXTOLL, the Nash equilibrium strategy computed by LP (5), and a
strategy in which the control intensities are proportional to the traffic volume
on each edge. Plot (a) shows the profit collected when committing to one of
these strategies (in the Stackelberg model, i.e. drivers select a best response
which favors the controller most). We see on Plot (b) that the Nash strategy is
always near-optimal in terms of profit; we want to investigate this fact in future
research. However, we point out that the MAXTOLL strategy outperforms the
others in terms of toll enforcement (Plots (c)), at the price of a small loss in
total profit (7% for κ = 2 and 2% for κ = 4). In another experiment, we have
set κ = 3 and we have played with the parameter α, which allows to join MAX-
PROFIT (α = 1) to MAXTOLL (α = 0). We see in Plot (d) that setting a
value of α around 0.75 allows one to find a solution with almost the same total
profit as in MAXPROFIT, but with a much higher fraction coming from the
toll, and hence a lower evasion rate.
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Figure 2: Experimental Results for Berlin-Brandenburg (a)-(d).
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