
0/1–Integer Programming:

Optimization and Augmentation are Equivalent

Andreas S. Schulz∗ Robert Weismantel† Günter M. Ziegler‡

March 1995

Abstract

For every fixed set F ⊆ {0, 1}n the following problems are strongly polynomial time
equivalent: given a feasible point x ∈ F and a linear objective function c ∈ ZZn,

• find a feasible point x∗ ∈ F that maximizes cx (Optimization),

• find a feasible point xnew ∈ F with cxnew > cx (Augmentation), and

• find a feasible point xnew ∈ F with cxnew > cx such that xnew − x is “irreducible”
(Irreducible Augmentation).

This generalizes results and techniques that are well known for 0/1–integer programming
problems that arise from various classes of combinatorial optimization problems.

1 Introduction

For any fixed set F ⊆ {0, 1}n of feasible 0/1–points, we show that optimization and (irredu-
cible) augmentation with respect to linear objective functions are strongly polynomial time
equivalent. For example, F can be given as F = {x ∈ {0, 1}n : Ax ≤ b} for a fixed matrix
A ∈ ZZm×n and a fixed vector b ∈ ZZm, but such an explicit representation need not be given
for the following. However, we assume throughout that some feasible solution x ∈ F is known
in advance. The optimization problem for F is the following task.

The Optimization Problem (OPT)
Given a vector c ∈ ZZn, find a vector x∗ ∈ F that maximizes cx
on F .

∗Technische Universität Berlin, Fachbereich Mathematik (MA 6–1), Straße des 17. Juni 136, D–10623
Berlin, Germany, schulz@math.tu–berlin.de

†Konrad–Zuse–Zentrum für Informationstechnik Berlin, Heilbronner Straße 10, D–10711 Berlin, Germany,
weismantel@zib–berlin.de

‡Technische Universität Berlin, Fachbereich Mathematik (MA 6–1), Straße des 17. Juni 136, D–10623
Berlin, Germany, ziegler@math.tu–berlin.de

1

Many combinatorial optimization problems, such as unit capacity network flow and matching
problems, can be described in this form. One can also model linear optimization problems
for integral points x ∈ ZZn in this way, as long as there are bounds 0 ≤ xj ≤ uj for the
variables x ∈ ZZn that are polynomially bounded in the input size. For this, just replace xj
by xj1 + xj2 + · · ·+ xjuj , where the xji are 0/1–variables.

Several known polynomial time algorithms for solving 0/1–optimization problems are of pri-
mal nature. That is, given a feasible solution, i. e., a point x0 ∈ F , one successively produces
new feasible solutions x1, x2, . . . with cx0 < cx1 < cx2 < · · · until an optimal solution is
reached. From an abstract point of view an augmentation problem is solved in each iteration:
for given xk find an augmentation vector z such that cz > 0, and xk + z is feasible.

The Augmentation Problem (AUG)
Given a vector c ∈ ZZn and a point xold ∈ F , find a point xnew ∈ F
such that cxnew > cxold, or assert that no such xnew exists.

Most primal algorithms, however, need to make a special choice of the augmentation vector
xnew−xold in each iteration, in order to come up with a polynomial number of overall iterations.
In cycle–canceling algorithms for the min cost flow problem, for instance (see, e.g., [AMO93]),
in each iteration flow has to be augmented along a negative cycle with minimum (mean) cost.

Somehow surprisingly, we show that (OPT) can be solved by calling a strongly polynomial
number of times an oracle that solves (AUG). The surprise is certainly not only due to the
fact that this holds for arbitrary 0/1–programs but also that it is sufficient to be able to find
an arbitrary augmentation vector, for any integral objective function. We do not need the
best one with respect to a certain measure.

Observe that there is another difference to cycle–canceling algorithms. In these algorithms
we restrict to simple cycles (irreducible augmentation vectors), while in (AUG) arbitrary
augmentation vectors are allowed for. We call an augmentation vector z reducible if there
exist two vectors v, w �= 0 such that

• v + w = z,

• v+, w+ ≤ z+,

• v−, w− ≤ z−, and

• xold + v, xold + w ∈ F .

In this situation v or w is a “smaller” augmentation vector that can be applied instead of z
at the point xold. Here, for a vector y we denote by y+ and y− its positive and negative parts,
respectively, i. e., y+j := max{0, yj}, and y−

j := −min{0, yj}. Thus, y = y+ − y−. In case z is
not reducible, it is called irreducible. Notice that v, w, and z are augmentation vectors with
respect to the same point xold.

2

The Irreducible Augmentation Problem (IRR–AUG)
Given a vector c ∈ ZZn and a point xold ∈ F , find a point xnew ∈ F
such that xnew−xold is irreducible and cxnew > cxold, or assert that
no such xnew exists.

The restriction to irreducible augmentation vectors does not affect the existence of a strongly
oracle–polynomial time algorithm solving (OPT) when F is given by an oracle for (IRR–
AUG). In fact, whereas (AUG) and (IRR–AUG) have the same input, each solution of (IRR–
AUG) is a solution of (AUG), but not vice versa. It is by no means trivial to solve the
irreducible augmentation problem given an oracle for solving (OPT), or, equivalently, (AUG).

Theorem 1.1
Any one of the following three problems:

• optimization (OPT),

• augmentation (AUG),

• irreducible augmentation (IRR–AUG),

can be solved in strongly oracle–polynomial time for any set F ⊆ {0, 1}n given by an oracle
for any of the other two problems.

AUG IRR–AUG

OPT

�

�
�
�
�� �

�
�
�� J

J
J
J�

Figure 1

Figure 1 indicates the trivial relations between the three problems by thin arrows. Here,
an arrow means that the problem at the head of the arrow can be solved in strongly oracle–
polynomial time given an oracle for the problem at the tail of the arrow. The two thick arrows
represent our main results that are presented in Sections 2 and 3, respectively. In both cases
we first derive a polynomial time algorithm, and then use the “preprocessing algorithm” of
Frank and Tardos [FT87] to turn it into a strongly polynomial procedure.

For a thorough introduction to oracles and oracle–polynomial time algorithms as well as
strongly polynomial time algorithms we refer to Grötschel, Lovász, and Schrijver [GLS88],
see also Lovász [Lov86].

3

2 An Oracle–Polynomial Time Algorithm for Optimization

In this section we state and analyze an oracle–polynomial time algorithm that solves (OPT),
assuming an oracle for (AUG) is given. We first concentrate on nonnegative objective function
vectors but shall conclude with a discussion of the transformation needed to allow arbitrary
objectives. Finally, we point out how to turn this into a strongly polynomial time algorithm.

The essential idea underlying our algorithm is bit–scaling (see [EK72]). Thus we have to
represent data by binary numbers. For α ∈ IN and a given number K that is at least as
big as the number of bits needed to encode α, i. e., K ≥ �log(α + 1)�, we represent α as
a K–bit binary number, adding leading zeros if necessary. We denote by α(k) the number
obtained by considering the k leading bits only. With kα we refer to the k–th bit of α. Thus,
α(k) = (1α, 2α, . . . , kα) =

∑k
i=1

iα2k−i, and α(K) = α.

Scaling methods have extensively been used to derive polynomial time algorithms for a wide
variety of network and combinatorial optimization problems (see, e.g., [AMO93]). In this
section we use bit–scaling of costs to derive an oracle–polynomial time algorithm for optimi-
zing 0/1–integer programs. This technique has been used earlier by Röck [Rö80] and Gabow
[Gab85] for solving minimum cost flow and shortest path problems, respectively.

As already mentioned we assume first that all coefficients of the objective function vector are
nonnegative.

The Optimization Problem (OPT)≥�

Given a vector c ∈ INn, find a vector x∗ ∈ F that maximizes cx
on F .

Restricting the optimization problem in this way, it seems to be reasonable to do the same
with the augmentation problem. That is, we restrict it to nonnegative input vectors c, too.

The Augmentation Problem (AUG)≥�

Given a vector c ∈ INn and a point xold ∈ F , find a point xnew ∈ F
such that cxnew > cxold, or assert that no such xnew exists.

Theorem 2.1 There exists an algorithm that solves (OPT)≥0 by O(n logC) calls of an oracle
that solves (AUG)≥0, for C = max{cj : j = 1, . . . , n}+ 1.

Proof. Let K = �logC�. We present a bit–scaling algorithm solving a sequence of problems
(P1), (P2), . . . , (PK). The objective of (P1) consists of the most significant bit only, the one
of (P2) of the first two most significant bits, and so on. Problem (PK) will be the original
problem to be solved.

For k = 1, . . . , K we define (Pk) as

max c(k)x

s. t. x ∈ F

4

Here, c(k) ∈ INn denotes the vector obtained from c by restricting each component to the k
leading bits, c(k) = (c1(k), . . . , cn(k)).

Algorithm 2.2 (Bit–scaling algorithm for solving (OPT)≥�)

1. let x0 be a feasible solution;

2. k := 1;

3. while k ≤ K do

4. solve (Pk) by iterated use of

(AUG)≥0, with initial solution xk−1;

5. let xk be the optimal solution of (Pk);

6. k := k + 1;

7. end.

Step 4 of Algorithm 2.2 needs further explanation. The general idea is to start with a feasible
solution y0, say, to call the augmentation oracle with y0, and to obtain a better solution y1

that serves as the new input, and so forth. Since (Pk) is bounded, the procedure is finite. To
keep the number of these inner iterations small it is important to use xk−1 as the starting
solution.

Since (PK) coincides with the original optimization problem Algorithm 2.2 is correct. It
remains to be shown that the number of calls of (AUG)≥0 in Step 4 to determine xk starting
from xk−1 is polynomially bounded in the input size. The following calculation shows that in
Step 4 for each problem (Pk) the oracle for (AUG)≥0 is called at most n times:

c(k)(xk − xk−1) = 2c(k − 1)(xk − xk−1) + kc (xk − xk−1) ≤ 0 + n.

The inequality follows from the optimality of xk−1 for (Pk−1), from
kc ∈ {0, 1}n, and from

xk, xk−1 ∈ {0, 1}n. (We define c(0) to be zero.) �

The last obstacle on our way to an oracle–polynomial time algorithm for 0/1–programming
is to get rid of the assumption on the objective function vectors. We made this nonnegativity
assumption in order to simplify the bit–scaling. We shall present an easy transformation from
(OPT) to (OPT)≥0 as well as from (AUG) to (AUG)≥0. Given an instance of (OPT),

max cx
s. t. x ∈ F

with c ∈ ZZn, we define an instance of (OPT)≥0 as follows. Let c̃ ∈ INn be the vector with
coefficients

c̃j =

{
cj, if cj ≥ 0,
−cj, otherwise,

and let for x ∈ F
x̃j =

{
xj, if cj ≥ 0,
1− xj, otherwise.

5

With F̃ := {x̃ : x ∈ F} the following defines an instance of (OPT)≥0:

max c̃ x̃

s. t. x̃ ∈ F̃

Then x ∈ F is optimal with respect to c if and only if x̃ ∈F̃ is optimal with respect to c̃.

From the discussion above, we know that (OPT)≥0 can be solved in polynomial time assuming
an oracle for solving (AUG)≥0 is given. Since (AUG)≥0 for F̃ can be solved by calling the
(AUG) oracle for F , we obtain a polynomial time algorithm for optimization in terms of an
augmentation oracle, as follows.

Corollary 2.3 There exists an algorithm that solves (OPT) by O(n logC) calls of an oracle
that solves (AUG), for C = max{|cj| : j = 1, . . . , n}+ 1.

Using the “preprocessing algorithm” of Frank and Tardos [FT87], we turn this into a strongly
polynomial algorithm. Namely, in time polynomial in n we replace the original objective
function c by a new integral objective function c whose size is polynomially bounded in n,
such that sign(cv) = sign(cv) holds for all vectors v ∈ {+1, 0,−1}n, and thus for all possible
augmentation vectors (differences of feasible points). Then the algorithm just described is
run for the new objective function c.

This completes the proof of the implication (AUG)−→(OPT) of Theorem 1.1.

3 An Oracle–Polynomial Time Algorithm for the Irreducible

Augmentation Problem

This section is devoted to showing that (IRR–AUG) can be solved in (strongly) polynomial
time, assuming an oracle that solves (OPT) is given. We divide this problem into two parts.
First, we show how to determine a maximum mean augmentation vector, i. e., an augmen-
tation vector with the maximum ratio of improvement to cardinality of support. Since there
exists an irreducible augmentation vector attaining this optimum value, we shall then provide
an algorithm to determine such an augmentation vector. Finally, we use again the preproces-
sing algorithm of Frank and Tardos to turn this into a strongly polynomial time algorithm.

One remark shall be given in advance. In the formulation of (OPT) we assumed the objective
function vector c to be integer valued since (starting from rational numbers) this can always
be achieved by appropriate scaling. In the following we will construct objective functions
that are not integer valued. This is only done for simplifying the presentation. In these cases
we always assume the scaling to be performed implicitly. One should observe, however, that
this scaling can indeed be done without affecting the magnitude of the size of the objective
function.

3.1 The Maximum Mean Augmentation Problem

One step towards solving the irreducible augmentation problem via a polynomial number of
calls of the optimization oracle is to find the maximum mean augmentation vector. This

6

question is addressed in this section. The technique that we use is quite similar to the one
used for the minimum cost–to–time ratio cycle problem (see [AMO93, pp. 150–152]).

The Maximum Mean Augmentation Problem (MMA)
Given a vector c ∈ ZZn and a point xold ∈ F , find a point xnew ∈ F
such that cxnew > cxold and xnew maximizes cx−cxold

|x−xold|1
over F\{xold},

or assert that no such xnew exists.

Here, |z|1 denotes the L1–norm of z, which coincides with the cardinality of the support of
an augmentation vector. Throughout this section we assume that c ∈ ZZn and xold ∈ F are
given. By Sold we denote the support of the vector xold, i. e., Sold := {j ∈ N : xold

j = 1}.
In order to find a maximum mean augmentation vector we proceed as follows. We first call
(OPT) with the linear functional c. In case that xold is optimal, there does not exist an
augmentation vector. Thus, in the following we assume that xold is not optimal with respect
to c. Let μ∗ denote the optimal objective function value of (MMA). For any arbitrary value
0 < μ ≤ 2

∑
j∈N |cj| we define an objective function cµ as follows:

cµj :=

{
cj + μ, if j ∈ Sold,
cj − μ, otherwise.

Calling (OPT) with cµ as input, we distinguish three different situations. Let xµ denote the
output of (OPT).

Case 1. xµ = xold.

In this case, cµx ≤ cµxold for every x ∈ F \ {xold}. Alternatively,
c(x− xold)

|x− xold|1 ≤ μ.

Therefore, μ is an upper bound on μ∗.

Case 2. xµ �= xold and cµxµ = cµxold.

As in the previous case we obtain

c(x− xold)

|x− xold|1 ≤ μ, for all x ∈ F \ {xold}.

Since xµ satisfies this inequality with equality, μ = μ∗.

Case 3. xµ �= xold and cµxµ > cµxold.

In this case,

μ∗ ≥ c(xµ − xold)

|xµ − xold|1 > μ.

7

Consequently, μ is a strict lower bound on μ∗.

Based on the preceding case analysis we can determine μ∗ by binary search. Observe that μ∗

lies in the interval (0, 2
∑

j∈N |cj|]. Thus, we start with the lower bound μ = 0 and the upper
bound μ = 2

∑
j∈N |cj|. At every iteration we consider μ = (μ + μ)/2 and call (OPT) with

input cµ. If we encounter Case 1 or 3 we reset μ = μ and μ = μ, respectively, whereas in
Case 2 we are done. At every iteration, we halve the length of the search interval. Given any
two augmentation vectors with distinct ratios the absolute difference between their ratios is
at least 1/n2. Hence, if μ − μ < 1/n2, the current interval [μ, μ] contains at most one ratio
of the form cz

|z|1 where z is an augmentation vector. Consequently, calling (OPT) again with

μ we either obtain μ∗ = μ but xµ
∗
= xold (Case 1), or we obtain μ∗ = μ and xµ

∗
immediately

(Case 2), or, in Case 3, we obtain xµ
∗
from which we can also compute μ∗. In the first case,

we still have to determine xnew �= xold such that

c(xnew − xold)

|xnew − xold|1 = μ∗.

This can be done as follows. Set M := 2(2n+ 1)
∑

j∈N |cj| + 1. For every i ∈ N , we define
an objective function di by setting

dij :=

{
cµ

∗

j + (−1)kM, if i = j,

cµ
∗

j , otherwise,

with k = 1 if i ∈ Sold, and k = 2, otherwise. For every i ∈ N , we call (OPT) with objective
function di, and denote by yi the point that is returned by (OPT). Among all these points

yi, i ∈ N , there is one y∗, say, such that y∗ �= xold and cy∗−cxold

|y∗−xold|1
= μ∗, because there exists

y �= xold such that cy−cxold

|y−xold|1
= μ∗, and y �= xold implies that there exists an index i∗ ∈ N with

yi∗ �= xold
i∗ .

Corollary 3.1 There exists an algorithm that solves (MMA) by O(n+ log(nC)) calls of an
oracle that solves (OPT).

3.2 Determining an Irreducible Augmentation Vector

In the preceding section we showed how to determine a maximum mean augmentation vector,
assuming an optimization oracle is given. We shall now show that there exists an irreducible
augmentation vector sharing this property. This will enable us to determine such a vector.
This completes the proof that (IRR–AUG) can be solved by calling an oracle for (OPT)
a polynomial number of times. We continue using the notation introduced in the previous
section.

Proposition 3.2 Assume that x ∈ F\{xold} is a point such that cx−cxold

|x−xold|1
= μ∗. If z := x−xold

is reducible, z = v + w, say, then cv
|v|1 = cw

|w|1 = μ∗.

Proof. Since z is reducible by v and w, we obtain |v + w|1 = |v|1 + |w|1. Together with
c(v+w)
|v+w|1 ≥ cv

|v|1 and c(v+w)
|v+w|1 ≥ cw

|w|1 , this implies cv
|v|1 = cw

|w|1 . We conclude that c(v+w)
|v+w|1 = cv

|v|1 = cw
|w|1 .

�

8

We use Proposition 3.2 to compute an irreducible maximum mean augmentation vector: if z
is reducible by v and w, the support of both v and w is properly contained in the support of
z. We exploit this by appropriate perturbation of the objective function.

Let xµ
∗
still denote the output of (MMA), and let z := xµ

∗ − xold be the associated augmen-
tation vector. Observe that there always exists an index i∗ ∈ N such that zi∗ = (−1)k for
some k ∈ {1, 2}, and xµ

∗
is optimal with respect to the objective function di

∗
whereas xold is

not. If z is reducible, z = v+w, we may assume that vi∗ = (−1)k. Therefore, Proposition 3.2
implies that xold + v is also optimal with respect to di

∗
. We now describe the appropriate

perturbation of di
∗
in order to end up (by calling (OPT) with the perturbed function) with

an irreducible augmentation vector. For two points y, y′ ∈ F that have two different objective
function values the difference |di∗y−di

∗
y′| is at least 1

n because μ∗ has denominator at most n.

Setting ε := 1
1+2n2 , we define the perturbed objective function d̃i

∗
as follows:

d̃i
∗
j :=

{
di

∗
j − ε if j ∈ N \ Sold,

di
∗
j + ε if j ∈ Sold.

For every point y ∈ F we have

d̃i
∗
y = di

∗
y + ε(|Sold| − |{j ∈ Sold : yj = 0}| − |{j ∈ N \ Sold : yj = 1}|)

= di
∗
y + ε|Sold| − ε|y − xold|1

= cµ
∗
y + (−1)kMyi∗ + ε|Sold| − ε|y − xold|1.

Now, observe that by the choice of ε every point y ∈ F that is optimal with respect to d̃i
∗
is

also optimal with respect to di
∗
. Therefore, (OPT) will return a vector xold +v with cv

|v|1 = μ∗

and vi∗ = (−1)k. The vector v is irreducible, for if not, then there would exist a vector w
such that xold + w ∈ F , cw

|w|1 = μ∗, wi∗ = (−1)k, and |w|1 < |v|1. The latter fact would imply

that d̃i
∗
w > d̃i

∗
v, a contradiction.

The following theorem summarizes what we have obtained so far.

Theorem 3.3 There exists an algorithm that solves (IRR–AUG) by O(n+ log(nC)) calls of
an oracle that solves (OPT).

Again, using the “preprocessing algorithm” of Frank and Tardos [FT87], we turn this into a
strongly polynomial time algorithm.

This time, the “quality” of the preprocessing is chosen to be good enough to guarantee that
sign(cv) = sign(cv) holds for all vectors v ∈ ZZn with |vj| ≤ n. This implies that not only
a vector v ∈ {+1, 0,−1}n is an augmentation vector with respect to the original objective
function c if and only if it is an augmentation vector with respect to c, but also that the
maximum mean augmentation vectors with respect to c coincide with those for c. Namely, x
provides a better mean augmentation than x′ if and only if

c
(
(x− xold) |x′ − xold|1

)
> c

(
(x′ − xold) |x− xold|1

)
,

and by Frank and Tardos this is equivalent to

c
(
(x− xold) |x′ − xold|1

)
> c

(
(x′ − xold) |x− xold|1

)
.

9

Now we can run the polynomial time algorithm described above on the objective function c,
and obtain a strongly polynomial time procedure for the implication (OPT)−→(IRR–AUG)
of Theorem 1.1. The output is, in particular, a maximum mean augmentation vector with
respect to the original objective function c.

4 Concluding Remarks

We have established the equivalence between the optimization and the augmentation problem
for F with respect to strongly polynomial time solvability. The algorithm presented for solving
(OPT) given an oracle for (AUG) does not only generalize some known algorithms for special
combinatorial problems, but is also a new one for treating some of them. Its essence is that
a problem is polynomially tractable if and only if for any objective function we are efficiently
able to find always a new feasible solution that improves upon the current one.

On the other hand, we cannot expect to solve (AUG) in polynomial time if the corresponding
optimization problem is NP–hard, unless P=NP . We may hope however, to be able to solve
(AUG) efficiently if we restrict ourselves to special augmentation vectors. Then, of course, by
the algorithm described above we will not necessarily obtain an optimal solution, but maybe
a good one. The equivalence of (AUG) and (IRR–AUG) suggests to search for irreducible
augmentation vectors.

Finally, let us point out the relation to test sets in integer programming (see, e.g., [Sch86]).
Given an oracle that solves (AUG) we have access to a test set for the given integer program.
Similarly, given an oracle for (IRR–AUG) we are implicitly given aminimal test set. From this
point of view, the results presented in this paper imply in particular that for 0/1–programming
problems optimization and augmentation by use of (minimal) test sets are equivalent in terms
of computational complexity.

Acknowledgements

Thanks to Lex Schrijver for an important augmentation vector for this paper.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Network Flows:
Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs NJ, 1993.

[EK72] Jack Edmonds and Richard M. Karp: Theoretical improvements in algorithmic
efficiency for network flow problems, Journal of the Association for Computing
Machinery 19 (1972), 248–264.

[FT87] András Frank and Éva Tardos: An application of simultaneous Diophantine appro-
ximation in combinatorial optimization, Combinatorica 7 (1987), 49–65.

[Gab85] Harold N. Gabow: Scaling algorithms for network problems, Journal of Computer
and System Sciences 31 (1985), 148–168.

10

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver: Geometric Algorithms
and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer, Ber-
lin, 1988; Second edition 1993.

[Lov86] László Lovász: An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-
NSF Regional Conference Series in Applied Mathematics 50, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia 1986.

[Rö80] Hans Röck: Scaling techniques for minimal cost network flows, in: V. Page (ed.),
Discrete Structures and Algorithms, Carl Hanser, Munich, 1980, pp. 181–191.

[Sch86] Alexander Schrijver: Theory of Linear and Integer Programming, John Wiley &
Sons, Chichester, 1986.

11

