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Abstract:

In this article we present new results for families of orthogonal polynomials and special functions,
that are determined by algorithmical approaches.

In the first section, we present new results, especially for discrete families of orthogonal polyno-
mials, obtained by an application of the celebrated Zeilberger algorithm.

Next, we present algorithms for holonomic families f(n, x) of special functions which possess a
derivative rule. We call those families admissible. A family f(n, x) is holonomic if it satisfies
a holonomic recurrence equation with respect to n, and a holonomic differential equation with
respect to x, i. e. linear homogeneous equations with polynomial coefficients.

The rather rigid property of admissibility has many interesting consequences, that can be used
to generate and verify identities for these functions by linear algebra techniques. On the other
hand, many families of special functions, in particular families of orthogonal polynomials, are
admissible. We moreover present a method that generates the derivative rule from the holonomic
representation of a holonomic family.

As examples, we find new identities for the Jacobi polynomials and for the Whittaker functions,
and for families of discrete orthogonal polynomials by the given approach.

Finally, we present representations for the parameter derivatives of the Gegenbauer and the

generalized Laguerre polynomials.

� Holonomic Functions

Let IK[n, x] denote the polynomial ring over IK in the variables n and x, and IK(n, x) the field
of rational functions over IK where IK is one of Q, IR, or C.
Many special functions can be looked at from the following point of view: They represent
functions f(n, x) of one “discrete” variable n ∈ ZZ, and one “continuous” variable x ∈ I where
I represents a real interval, either finite I = [a, b], infinite (I = [a,∞), I = (−∞, a], or I = IR),
or a subset of the complex plane C. In the given situation we may speak of the family (fn)n∈ZZ
of functions fn(x) := f(n, x).
Such a family is called a holonomic system if fn(x) satisfies a holonomic recurrence equation
with respect to n, i. e. a linear homogeneous recurrence equation

m∑
k=0

pk(n, x) fn−k(x) = 0 (1)

with polynomial coefficients pk ∈ IK[n, x], and if it furthermore satisfies a holonomic differential
equation with respect to x, i. e. a linear homogeneous differential equation

m∑
k=0

qk(n, x) f
(k)
n (x) = 0
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with polynomial coefficients qk ∈ IK[n, x].
As an example, the Legendre polynomials fn(x) = Pn(x) satisfy the holonomic recurrence
equation

nfn(x) + (1− 2n)xfn−1(x) + (n− 1) fn−2(x) = 0 , (2)

and the holonomic differential equation

(x2 − 1)f ′′n(x) + 2xf ′n(x)− n(1 + n)fn(x) = 0 . (3)

Therefore they represent a holonomic system completely determined by the two holonomic
equations, and the initial values

f0(0) = 1 , f1(0) = 0 , f ′0(0) = 0 , f ′1(0) = 1 .

In recent work, Zeilberger [32] introduced holonomic systems (in a more general setting) and
showed how by an elimination process the holonomic equations can be used to verify identities
for holonomic systems. We will give a rigorous introduction to this approach in § 8.
In [33]–[34], Zeilberger published an algorithm which calculates the holonomic recurrence
equation for functions Σ(n) given as infinite sums

Σ(n) :=
∑
k∈ZZ

F (n, k)

for which F (n, k) is a hypergeometric term with respect to both n and k, i. e.

F (n, k)

F (n− 1, k)
,

F (n, k)

F (n, k − 1)
∈ IK(n, k)

are rational functions with respect to both n and k, n is assumed to be an integer, and the
sum is to be taken over all integers k ∈ ZZ. For a rigorous description of Zeilberger’s algorithm,
see [18].
Typical examples to which Zeilberger’s algorithm applies are given by generalized hypergeo-
metric functions pFq

pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣∣ x
)
:=

∞∑
k=0

Ak x
k =

∞∑
k=0

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!x

k ,

(a)k = Γ(a+k)
Γ(k) denoting the Pochhammer symbol or shifted factorial, with upper and lower

parameters ak, and bk that are integer-linear in n.
In [13], an extension of Zeilberger’s algorithm was given covering generalized hypergeometric
functions with rational-linear parameters. Many examples are considered in [13].
An application of Zeilberger’s algorithm to the hypergeometric representation

Pn(x) = 2F1

( −n , n+ 1

1

∣∣∣∣∣ 1− x

2

)
=

∞∑
k=0

(−n)k (n+ 1)k
k!2

(
1− x

2

)k

of the Legendre polynomials ([1], (22.5.48)) yields (2), again.
As soon as a hypergeometric representation is known, the holonomic recurrence equation—
often being a three term recurrence equation, see e. g. [1]—of any family of special functions
can be obtained.
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In some instances, however, those holonomic recurrence equations are not known. This is
the case, e. g., for the Whittaker functions Mn,m(x) and Wn,m(x) (see e. g. [1], § 13.4) with
respect to their second parameter m, and for some families of discrete orthogonal polynomials

(see [22]): the Krawtchouk polynomials k
(p)
n (x,N ), the Hahn type polynomials h

(α,β)
n (x,N ),

the discrete Chebyshev polynomials tn(x,N ), the Meixner polynomials m
(γ,μ)
n (x), the discrete

Laguerre polynomials l
(ρ,α)
n (x) ([19]–[20], see e. g. [6], § 3.1) and the Charlier polynomials

c
(μ)
n (x). The next theorem states these results, and we give fn+1 in terms of fn and fn−1.

Theorem 1 The Whittaker functions Mn,m(x) satisfy the holonomic recurrence equation

Mn,m+1(x) = 16
(1 + 2m)m(4m2 − 1− 2nx)(m+ 1)

x(2m− 1)(2n+ 1 + 2m)(2n− 1− 2m)
Mn,m(x)−

16
(m+ 1)m(1+ 2m)2

(2n+ 1+ 2m)(2n− 1− 2m)
Mn,m−1(x)

with respect to the parameter m.
The Whittaker functions Wn,m(x) satisfy the holonomic recurrence equation

Wn,m+1(x) =
4m(4m2 − 2nx− 1)

(2m− 1)(2m+ 1− 2n)
Wn,m(x) +

(1 + 2m)(2m+ 2n− 1)x

(2m− 1)(2m+ 1− 2n)
Wn,m−1(x) (4)

with respect to the parameter m.

The Krawtchouk polynomials k
(p)
n (x,N ) satisfy the holonomic recurrence equations

k
(p)
n+1(x,N ) =

(1− n+N )(p− 1)p

1 + n
k
(p)
n−1(x,N ) +

−n+ 2np− Np+ x

1 + n
k(p)n (x,N ) ,

k(p)n (x,N + 1) =
N − x

(1−n+N )(p− 1)
k(p)n (x,N − 1) +

n−1−2N+p+Np+x

(1− n+ N )(p− 1)
k(p)n (x,N ) ,

k(p)n (x+ 1, N ) =
(p− 1)x

p(N − x)
k(p)n (x− 1, N ) +

n−Np− x+ 2px

p(x− N )
k(p)n (x,N )

with respect to the parameters n,N , and x, respectively.

The Hahn type polynomials h
(α,β)
n (x,N ) satisfy the holonomic recurrence equations

h
(α,β)
n+1 (x,N ) =

(−N + n)(n+ α)(β + n)(α+ 2n+ 2 + β)(n+ α + β + N )

(n+ 1)(n+ 1 + α+ β)(α+ 2n+ β)
h
(α,β)
n−1 (x,N ) +(

2n+4nxβ+4xnα+β+α−αNβ−2nNβ+xα2−nα2+β2−Nβ−2Nn+2xβ+4xn+3nβ+

2n2− 2Nn2+4xn2+n2β−αn2−Nβ2+xβ2+nβ2+nα−2αNn+2αxβ+αβ+2xα−αN
)
·

(1+2n+β+α)

(n+ 1)(n+ 1+ α+ β)(α+ 2n+ β)
h(α,β)n (x,N ), (5)

h(α+1,β)
n (x,N ) =

(α+ n)(α+ β + n+N )

(1 + α+ β + n)(−α −N + x)
h(α−1,β)
n (x,N )−

α+2α2+2αβ+3αn+βn+n2+N+2αN+βN+2nN−(1+α+β+2n)x

(1 + α + β + n)(−α− N + x)
h(α,β)n (x,N ),
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h(α,β+1)
n (x,N ) = − (β + n)(α+ β + n+ N )

(1 + α + β + n)(1 + β + x)
h(α,β−1)
n (x,N ) +

1+α+2β+2αβ+2β2+2n+αn+3βn+n2+βN+(1+α+β+2n)x

(1 + α + β + n)(1 + β + x)
h(α,βn (x,N ),

h(α,β)n (x,N + 1) =
(α+ β + n+ N )(N − 1− x)

(N − n)(−α− N + x)
h(α,β)n (x,N − 1) +

(α+β+n+αn+βn+n2+N−2αN−βN−2N2+ (α+β+2N )x

(N − n)(−α −N + x)
h(α,β)n (x,N ),

h(α,β)n (x+ 1, N ) =
x(−α−N + x)

(N − 1− x)(1 + β + x)
h(α,β)n (x− 1, N )− (6)

1 + β + n+ αn+ βn+ n2 −N − βN + (2− α + β − 2N )x+ 2x2

(N − 1− x)(1 + β + x)
h(α,β)n (x,N )

with respect to the parameters n, α, β, N , and x, respectively.

The Meixner polynomials m
(γ,μ)
n (x) satisfy the holonomic recurrence equations

m
(γ,μ)
n+1 (x) =

(1− γ − n)n

μ
m

(γ,μ)
n−1 (x) +

γμ+ n+ μn− x+ μx

μ
m(γ,μ)

n (x) ,

m(γ+1,μ)
n (x) =

−1 + γ + n

(μ− 1)(γ + x)
m(γ−1,μ)

n (x) +
1− 2γ + γμ− n+ μn− x+ μx

(μ− 1)(γ + x)
m(γ,μ)

n (x) ,

m(γ,μ)
n (x+ 1) = − x

μ(γ + x)
m(γ,μ)

n (x− 1) +
γμ− n+ μn+ x+ μx

μ(γ + x)
m(γ,μ)

n (x)

with respect to the parameters n, γ, and x, respectively.

The discrete Laguerre polynomials l
(ρ,α)
n (x) satisfy the holonomic recurrence equations

l
(ρ,α)
n+1 (x) = −α + n

1 + n
l
(ρ,α)
n−1 (x) +

1 + n+ αρ+ nρ− x + ρx

1 + n
l(ρ,α)n (x) ,

l(ρ,α+1)
n (x) =

α+ n

(ρ− 1)(α+ x)
l(ρ,α−1)
n (x) +

−2α− n+ αρ+ nρ− x+ ρx

(ρ− 1)(α+ x)
l(ρ,α)n (x) ,

l(ρ,α)n (x+ 1) =
1− x

ρ(α+ x)
l(ρ,α)n (x− 1) +

−1− n+ αρ+ nρ+ x+ ρx

ρ(α+ x)
l(ρ,α)n (x)

with respect to the parameters n, α, and x, respectively.

The Charlier polynomials c
(μ)
n (x) satisfy the holonomic recurrence equations

c
(μ)
n+1(x) = −n

μ
c
(μ)
n−1(x) +

μ+ n− x

μ
c(μ)n (x) ,

c(μ)n (x+ 1) = −x
μ
c(μ)n (x− 1) +

μ − n+ x

μ
c(μ)n (x)

with respect to the parameters n, and x, respectively.

Proof: Zeilberger’s algorithm generates the results when applied to the hypergeometric rep-
resentations

Mn,m(x) = e−x/2 x1/2+m
1F1

(
1/2 +m− n

1 + 2m

∣∣∣∣∣ x
)
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([1], (13.1.32)),

k(p)n (x,N ) = (−1)n pn
(
N
n

)
2F1

( −n , −x
−N

∣∣∣∣∣ 1p
)

(7)

([22], (2.7.11a)),

h(α,β)n (x,N ) =
(−1)n (N − x− n)n (β + x+ 1)n

n!
3F2

( −n , −x , α+ N − x

N − x− n , −β − x− n

∣∣∣∣∣ 1
)

=
(−1)n (N − n)n (β + 1)n

n!
3F2

( −n , −x , α + β + n+ 1

β + 1 , 1− N

∣∣∣∣∣ 1
)
, (8)

(compare [22], (2.7.19)),

m(γ,μ)
n (x) = (γ)n · 2F1

( −n , −x
γ

∣∣∣∣∣ 1− 1

μ

)
, (9)

(see e. g. [7], 10.24 (9), [22], (2.7.13)),

l(ρ,α)n (x) =
ρn

n!
m(1+α,ρ)

n (x− 1) =
ρn

n!
(1 + α)n · 2F1

( −n , −x+ 1

α+1

∣∣∣∣∣ 1− 1

ρ

)
, (10)

(see e. g. [31], (2.18)–(2.20)), and

c(μ)n (x) = 2F0

(
−n , −x

∣∣∣− 1/μ
)
=

(−1)n

μn
(x− n+ 1)n · 1F1

( −n
−x − n+ 1

∣∣∣∣∣μ
)
, (11)

([22], (2.7.9)).
For the Whittaker functions Wn,m(x) the recurrence equation is obtained by a different
method. Since by

Wn,m(x) =
Γ(−2m)

Γ(1/2−m− n)
Mn,m(x) +

Γ(2m)

Γ(1/2 +m− n)
Mn,−m(x)

([1], (13.1.32)) Wn,m(x) is represented as sum of products, the recurrence equation can be
obtained from (4), and the recurrence equation of the Γ function (see e. g. [25], [32], [17],
[24]). �

We note that similarly, one can obtain holonomic recurrence equations for the Hahn type

polynomials h̃
(μ,ν)
n (x,N ) (see [22], §2.4), and pn(x, β, γ, δ) (see [7], § 10.23).

Note further that some of the above recurrence equations have appeared in the literature. Re-
lation (5), e. g., for α = β = 0 is a recurrence equation for the discrete Chebyshev polynomials

tn(x,N ) = h
(0,0)
n (x,N ) (compare [7], 10.23 (10), and [22], § 2.4), and can be found in ([7],

§ 10.23, (6)).
However, these relations nowhere appeared systematically. The important issue of our presen-
tation is its algorithmic content: All given representations can be calculated by a computer
algebra system, e. g. by implementations in Mathematica ([23] and [15]), Reduce [14], and
Maple [13]. Note that in our Mathematica implementation [15] all the partial algorithms
mentioned are applied completely automatically.
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� Application to Feynman diagrams

Zeilberger’s algorithm can be applied to find hypergeometric identities (see e. g. [15]), and as
shown in the last section, to find three-term recurrence equations for families of orthogonal
polynomials.
Here, we give another application: In ([8], see Equation (31)) the hypergeometric function

V (α, β, γ) := (−1)α+β+γ · Γ(α+β+γ−d/2)Γ(d/2−γ)Γ(α+γ−d/2)Γ(β+γ−d/2)
Γ(α)Γ(β)Γ(d/2)Γ(α+ β + 2γ − d)Mα+β+γ−d

· 2F1

(
α+ β + γ − d , α + γ − d/2

α+ β + 2γ − d

∣∣∣∣∣ z
)

(12)

plays an important role for the calculation of certain Feynman diagrams. It is of both the-
oretical and practical interest that V (α, β, γ) satisfies three-term recurrence equations with
respect to α, β, and γ. Zeilberger’s algorithm yields

Theorem 2 For the function V (α, β, γ), given by (12), the recurrence equations

0 = (2α− d+ 2 γ) (2α+ 2 β − d+ 2 γ) (2 + 2α+ 2 β − d+ 2 γ) V (α, β, γ)

−2α (2+2α+2β−d+2γ)M (−2α−2β+2d− 4γ+2z+4αz+2βz−3dz+4γz)V (1+α, β, γ)

+8α (1 + α) (1 + α+ β − d+ γ) M2 (−1 + z) z V (2 + α, β, γ) ,

0 = (2 β − d+ 2 γ) (2α+ 2 β − d+ 2 γ) (2 + 2α+ 2 β − d+ 2 γ) V (α, β, γ)

−2 β (2 + 2α+ 2 β − d+ 2 γ) M (−2α− 2 β + 2 d− 4 γ − 2 z − 2 β z + d z) V (α, 1+β, γ)

+8 β (1 + β) (1 + α+ β − d+ γ) M2 z V (α, 2 + β, γ) ,

and

0 = (2α−d+2γ)(2+α+β−d+2γ)(2β−d+2γ)(2α+2β−d+2γ)(2+2α+2β−d+2γ)V (α, β, γ)

+2 (2−d+2γ)(1+α+β−d+2γ)(2+2α+2β−d+2γ)M

·
(
−4α−2α2−4β−4αβ−2β2+4d+4αd+4βd−2d2−8γ−8αγ−8βγ+8dγ−8γ2+2αz+2βz

+2αβz+2β2z−2dz−αdz−3βdz+d2z+4γz+4αγz+4βγz−4dγz+4γ2z
)
V (α, β, 1+γ)

+4 (1+γ) (1+α+β−d+γ)(2−d+2γ)(4−d+2γ)(α+β−d+2γ)M2z2V (α, β, 2+γ)

are valid.

� Admissible Families

In this section, we present yet another approach for holonomic systems of a special type, which
gives us the opportunity to generate identities other than holonomic recurrence equations by
linear algebra techniques.
We assume that a holonomic system satisfies a derivative rule of the form

f ′n(x) =
∂

∂x
fn(x) =

m−1∑
k=0

rk(n, x) fn−k(x) or f ′n(x) =
m−1∑
k=0

rk(n, x) fn+k(x) , (13)
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where the derivative with respect to x is represented by a finite number of lower or higher
indexed functions of the family, and where rk ∈ IK(n, x) are rational functions in n and
x. We call the two different types of derivative rules backward and forward derivative rule,
respectively.
Note that by an iterative application of (1), the order m of the derivative rule (13) can be
made less than or equal to the order m of the recurrence equation (1). This is our general
assumption.
From an algebraic point of view these properties read as follows: If the coefficients of the
occurring polynomials and rational functions are elements of IK, then

1. the derivative rule states that f′n is an element of the linear space over IK(n, x) which is
generated by {fn, fn−1, . . . , fn−(m−1)} or {fn, fn+1, . . . , fn+m−1}, respectively;

2. the holonomic differential equation states that the m+ 1 functions f
(k)
n (k = 0, . . . , m)

are linearly dependent over IK(n, x); moreover, by an induction argument, any m + 1

functions f
(k)
n (k ∈ IN0) are linearly dependent over IK(n, x);

3. the holonomic recurrence equation states that the m+ 1 functions fn−k (k = 0, . . . , m)
are linearly dependent over IK(n, x); moreover, by an induction argument, any m + 1
functions fn (n ∈ ZZ), are linearly dependent over IK(n, x).

Our main notion is the

Definition (Admissible family of special functions) We call a family fn of functions
admissible if they satisfy a recurrence equation of type (1) and a derivative rule of type (13).
We call the order of the recurrence equation the order of the admissible family fn. �

The recurrence equation (1) together with m initial functions fn0 , fn0+1, . . . , fn0+m−1 deter-
mine the functions fn (n ∈ ZZ) uniquely.
Therefore an admissible family of special functions (with given initial functions) is overdeter-
mined by its two defining properties, i. e. the recurrence equation and the derivative rule must
be compatible. This fact, however, gives our notion a considerable strength:

Theorem 3 For any admissible family fn of orderm the linear space Vfn over IK(n, x) of func-

tions generated by the set of shifted derivatives {f(j)n±k | j, k ∈ IN0} is at most m-dimensional.

On the other hand, if the family {f(j)n±k | j, k ∈ IN0} spans an m-dimensional linear space over
IK(n, x), then fn forms an admissible family of order m.

Proof: By the recurrence equation and an induction argument it follows that the linear
space V spanned by {fn±k | k ∈ IN0} is at most m-dimensional. Using the derivative rule, by

a further induction it follows that the derivative of any order f
(k)
n (k ∈ IN0) is an element of

V . Therefore Vfn = V .

If on the other hand for a family fn the set of derivatives {f(j)n±k | j, k ∈ IN0} is m-dimensional,
then the existence of a recurrence equation and a derivative rule of order m are obvious. �

Note that it can happen that V has dimension less than m. Assume fn(x) = ex is given
as admissible family by fn(x)− fn−2(x) = 0 and f ′n(x) = fn(x). Then the family of shifted

derivatives {f(j)n±k | j, k ∈ IN0} consists just of fn(x), and is therefore one-dimensional rather
than two-dimensional. This is due to the fact that the representing recurrence equation is not

7



of lowest possible order. To guarantee that V is m-dimensional it is therefore necessary to
assume that fn, fn−1, . . . , fn−m+1 are linearly independent over IK(n, x).
The following consequence of Theorem 3 is the main reason for the importance of admissible
families: Any m+ 1 distinguished elements of Vfn are linearly dependent, i. e. any arbitrary
element of Vfn can be represented by a linear combination (with respect to IK(n, x)) of any m
of the others. This is the algebraic background for the fact that so many identities between
the members and their derivatives of an admissible family exist.
In particular we have

Corollary 1 Any admissible family fn of order m satisfies a holonomic differential equation
of order m, and therefore constitutes a holonomic system. �

With regard to Zeilberger’s approach, Corollary 1 can be interpreted as follows: Any ad-
missible family fn(x) forms a holonomic system with respect to the two variables n and x,
whose defining recurrence equation, and the differential equation corresponding to Corollary 1
together with the initial conditions

f
(k)
0 (0) , and fk(0) (k = 0, . . . , m− 1)

yield the canonical holonomic representation of fn(x) (see [32], Lemma 4.1).
On the other hand, not all holonomic systems fn(x) form admissible families so that our notion
is stronger: Let fn(x) := Ai (x) be the Airy function (see e. g. [1], § 10.4) for all n ∈ ZZ, then
obviously fn(x) is the holonomic system generated by the equations

f ′′n(x) = x fn(x) , fn+1(x) = fn(x) , (14)

and some initial values, that does not form an admissible family since the derivative f′n = Ai′

is linearly independent of fn over IK(n, x), and thus no derivative rule of the form (13) exists.
Looking in mathematical dictionaries like [1], one realizes that the class of admissible families
is large. Besides the exponential, sine and cosine functions, it contains the Airy functions
Ai (x), Bi (x) (see e. g. [1], § 10.4), the exponential integrals En (x) (see e. g. [1], (5.1)), the
iterated integrals of the (complementary) error function erfcn (x) (see e. g. [1], (7.2)), the
Bessel functions Jn(x), Yn(x), In(x), and Kn(x) (see e. g. [1], Ch. 9–11), the Hankel functions

H
(1)
n (x) and H

(2)
n (x) (see e. g. [1], Ch. 9), the Kummer functions M(a, b, x) = 1F1

(
a
b

∣∣∣∣x
)

and U(a, b, x) (see e. g. [1], Ch. 13), the Whittaker functions Mn,m(x) and Wn,m(x) (see
e. g. [1], § 13.4), the associated Legendre functions Pb

a(x) and Qb
a(x) (see e. g. [1], § 8),

the Struve functions Hn(x) and Ln(x) (see e. g. [1], Chapter 5), all kinds of orthogonal

polynomials: the Jacobi polynomials P
(α,β)
n (x), the Gegenbauer polynomials C

(α)
n (x), the

Chebyshev polynomials of the first kind Tn(x) and of the second kind Un(x), the Legendre

polynomials Pn(x), the Laguerre polynomials L
(α)
n (x), and the Hermite polynomials Hn(x)

(see [26], [30], and [1], § 22), and many more special functions. The defining recurrence
equations and derivative rules of the above functions are listed in [12].
To present an example of an admissible family that cannot be found in mathematical dictio-
naries (see, however, [1] (13.6)), we consider the functions

kn(x) :=
2

π

π/2∫
0

cos (x tan θ − n θ) dθ

8



that Bateman introduced in [2], see also [16]. He verified that ([2], formula (2.7))

Fn(x) := (−1)n k2n(x) = (−1)n e−x
(
Ln(2x)− Ln−1(2x)

)
. (15)

We call Fn the Bateman functions that turn out to generate an admissible family of order
two.
Bateman obtained the property ([2], formula (4.1))

(n− 1)
(
Fn(x)− Fn−1(x)

)
+ (n+ 1)

(
Fn(x)− Fn+1(x)

)
= 2 xFn(x)

leading to
nFn(x)− 2 (n− 1− x)Fn−1(x) + (n− 2)Fn−2(x) = 0 (16)

which is a holonomic recurrence equation of order two that determines the Bateman functions
uniquely using the two initial functions

F0(x) = e−x and F1(x) = −2 x e−x

which follow from (15).
Bateman obtained further a difference differential equation ([2], formula (4.2))

(n+ 1)Fn+1(x)− (n− 1)Fn−1(x) = 2 xF ′
n(x) ,

which can be brought into the form

F ′
n(x) =

1

x

(
(n− x)Fn(x)− (n− 1)Fn−1(x)

)
(17)

using (16). This is a derivative rule of the form (13). Therefore the functions Fn(x) form an
admissible family of order two.

� Properties of Admissible Families

It is well-known (see e. g. [25], [32], [17], [24]) that if the functions fn, gn satisfy holonomic re-
currence equations of order m and l, respectively, then the sum and product satisfy holonomic
recurrence equations of order ≤ m + l, and ≤ ml, respectively. We call the two functions fn
and gn sum-independent (product-independent) if the resulting recurrence equation of lowest
order has maximal order, i. e. order m+ l in the sum case, and order ml in the product case.
With respect to admissible families, we get then

Theorem 4 Let fn form an admissible family of order m. Then

(a) (Shift) fn±k (k ∈ IN) forms an admissible family of order m;

(b) (Derivative) f′n forms an admissible family of order ≤ m;

(c) (Composition) fn ◦ r forms an admissible family of order ≤ m, if r ∈ IK(x).

If furthermore gn forms an admissible family of order l, then moreover

(d) (Sum) fn+gn forms an admissible family of orderm+l if fn and gn are sum-independent;

9



(e) (Product) fn gn forms an admissible family of order ml if fn and gn are product-
independent.

Proof: (a): This is an obvious consequence of Theorem 3.
(b): Let gn := f ′n. We start with the recurrence equation for fn and take derivative to get

m∑
k=0

p′k(n, x) fn−k(x) +
m∑
k=0

pk(n, x) f
′
n−k(x) = 0 . (18)

From Theorem 3, we know that each of the functions fn−j (j = 0, . . . , m) can be represented
as a linear combination of the functions f′n−k (k = 0, . . . , m−1) over IK(n, x), which generates
a holonomic recurrence equation for gn. Similarly a derivative rule for gn is obtained.
(c): For the composition hn := fn ◦ r with a rational function r, the recurrence equation is
obtained by substitution, and the derivative rule is a result of the chain rule.
(d): By a simple algebraic argument, we see that fn−k + gn−k (k ∈ ZZ) span the linear space
V := Vfn+gn = Vfn + Vgn of dimension ≤ m + l over IK(n, x). Therefore fn + gn satisfies a
holonomic recurrence equation of order ≤ m + l. By our assumption, the dimension of V is
maximal, i. e. m + l. If we add the derivative rules for fn and gn, we see that f ′n + g′n ∈ V ,
and thus can be represented in the desired way.
(e): By a similar algebraic argument (see e. g. [25], Theorem 2.3) we see that fn−k ·gn−k(k ∈ ZZ)
span a linear space V of dimension ≤ ml over IK(n, x), hence fn gn satisfies a recurrence
equation of order ≤ ml. By our assumption, the dimension of V is maximal, i. e. ml. By
the product rule, and the derivative rules for fn and gn we see that the derivative of fn gn is
represented by products of the form fn−k gn−j (k, j ∈ ZZ), and as those span the linear space
V (see e. g. [17], Theorem 3 (d)), we are done. �

As an application we again may state that the Bateman functions form an admissible family:
Using the theorem, this follows immediately from representation (15), and the admissibility
of the Laguerre polynomials.
As an example of a sum-dependent case, we consider fn(x) = ex, given by the relations fn(x)−
fn−1(x) = 0, and f ′n(x) = fn(x), and gn(x) = e−x, given by the relations gn(x)− gn−1(x) = 0,
and g′n(x) = −gn(x). Both fn and gn form admissible families of order 1, and since they both
satisfy the same recurrence equation, their sum satisfies this recurrence equation of order one,
too, so that they are not sum-independent. The derivative of hn = fn + gn is given by

h′n = f ′n + g′n = fn − gn ,

and the question is whether or not this is expressible in terms of hn and hn−1. These are given
by

hn = fn + gn and hn−1 = fn−1 + gn−1 = fn + gn

and therefore hn−k = fn+ gn = hn for all k ∈ ZZ. Obviously h′n = fn− gn cannot be expressed
in terms of fn + gn alone so that hn does not satisfy a derivative rule of any order.
Similarly one shows that the admissible families fn(x) = sin(n)(x), given by f ′n = −fn−1, and
fn = −fn−2, and gn(x) = fn(x) are not product-independent and for hn = f2n no derivative
rule is valid.
Next we study algorithmic versions of the theorem. The following algorithm generates a
representation of the members fn±k (k = 0, . . . , m − 1) of an admissible family in terms of
the derivatives f′n±j (j = 0, . . . , m − 1). By Theorem 3 we know that such a representation
exists. Without loss of generality, we assume that the admissible family is given by a backward
derivative rule. In case of a forward derivative rule, a similar algorithm is valid.
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Algorithm 1 Let fn be an admissible family of order m, given by a backward derivative rule

f ′n(x) =
m−1∑
k=0

rk(n, x) fn−k(x) .

Then the following algorithm generates a list of backward rules (k = 0, . . . , m− 1)

fn−k(x) =
m−1∑
j=0

Rk
j (n, x) f

′
n−j(x) (19)

(Rk
j ∈ IK(n, x)) for fn−k (k = 0, . . . , m− 1) in terms of the derivatives f′n−j (j = 0, . . . , m− 1):

1. Shift the derivative rule m− 1 times to obtain the set of m equations

f ′n−j(x) =
m−1∑
k=0

rk(n− j, x) fn−j−k(x) (j = 0, . . . , m− 1) .

2. Utilize the recurrence equation to express all expressions on the right hand sides of these
equations in terms of fn−k (k = 0, . . . , m− 1) leading to

f ′n−j (x) =
m−1∑
k=0

rjk(n, x) fn−k(x) (j = 0, . . . , m− 1 , rjk ∈ IK(n, x)) .

3. Solve this linear equations system for the variables fn−k (k = 0, . . . , m − 1) to obtain
the representations (19) searched for. �

The proof of the algorithm is obvious. It is also clear how the method can be adapted to
obtain forward rules in terms of the derivatives. As an example, the algorithm generates the
representations

Fn(x) =
1− n+ x

2n− 1− x
F ′
n(x) +

n− 1

2n− 1− x
F ′
n−1(x) ,

and

Fn(x) =
1 + n− x

1 + 2n− x
F ′
n(x)−

1 + n

1 + 2n− x
F ′
n+1(x)

for the Bateman functions in terms of their derivatives.
We note that by means of Algorithm 1 and the results of [17] (see also [32], p. 342, and [24]),
we are able to state algorithmic versions of the statements of Theorem 4.

Algorithm 2 The following algorithms lead to the derivative rules and recurrence equations
of the admissible families presented in Theorem 4:

(a) (Shift) Direct use of derivative rule and recurrence equation lead to the derivative
rule and the recurrence equation for fn±1; a recursive application gives the results for
fn±k (k ∈ IN).

(b) (Derivative) By Algorithm 1 we may replace all occurrences of fn−k (k = 0, . . . , m) in
(18) by derivatives, resulting in the recurrence equation for f′n; similarly the derivative
rule is obtained.
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(c) (Composition) If r is a rational function, then an application of the chain rule leads
to the derivative rule and the recurrence equation of fn ◦ r.

(d) (Sum) Applying a discrete version of Theorem 3 (c) in [17] to fn + gn (see also [32],
p. 342, and [24], Maple function rec+rec) results in the recurrence equation, and a
similar approach gives the derivative rule.

(e) (Product) Applying a discrete version of Theorem 3 (d) in [17] to fn gn (see also [32],
p. 342, and [24], Maple function rec*rec) yields the recurrence equation, and a similar
approach gives the derivative rule. �

A Mathematica implementation [15] of the given algorithms generate e. g. for the derivative
F ′
n(x) of the Bateman function Fn(x) the derivative rule

F ′′
n (x) =

2n− x

x− 2nx+ x2

(
(n− 1)F ′

n−1(x) + (1− n+ x)F′
n(x)

)
,

and the recurrence equation

F ′
n+1(x) =

1

(1+n)(1−2n+x)

(
(n−1)(x−2n−1)F′

n−1(x) + 2 (1−2n2+3nx−x2)F ′
n(x)

)
,

and for the product An(x) := F2
n(x) the derivative rule

A′
n(x) =

(n− 1) (n− 2)2

2nx (1− n+ x)
An−2(x)

− 2 (n− 1) (1− n+ x)

nx
An−1(x)

−
(−5n+ 5n2 + 4 x− 8nx+ 4 x2

)
2 (1− n+ x) x

An(x) ,

and the recurrence equation

An+1(x) =
1

(1 + n)2

(
(n− 2)2 (n− 1) (x− n)

n (1− n+ x)
An−2

+
(n− 1) (3n− 3n2 − 4 x+ 8nx− 4 x2)

n
An−1

+
(x− n) (−3n+ 3n2 + 4 x− 8nx+ 4 x2)

1− n+ x
An

)

are derived.

� Hypergeometric Functions as Admissible Families

An important example of an admissible family is given by the generalized hypergeometric
function pFq. The generalized hypergeometric function satisfies a derivative rule of order two
with respect to any of its numerator parameters ak (k = 1, . . . , p), and denominator parameters
bk (k = 1, . . . , q).
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We choose one of the numerator parameters n := ak (k = 1, . . . , p) of pFq as parameter n, and
use the abbreviations

fn(x) = pFq

(
a1, a2, · · · , n, · · · , ap
b1, b2, · · · , bq

∣∣∣∣∣ x
)
=

∞∑
k=0

Ak(n) x
k .

From the relation
(n+ 1)k
(n)k

=
n+ k

n

it follows that
nAk(n+ 1) = (n+ k)Ak(n) .

Using the differential operator θf(x) = x f′(x), we get by summation

n fn+1(x) = n
∞∑
k=0

Ak(n+ 1) xk = (n+ k)
∞∑
k=0

Ak(n) x
k

= n fn(x) +
∞∑
k=0

kAk(n) x
k = n fn(x) + θfn(x) ,

and therefore we are led to the derivative rule

θfn(x) = n
(
fn+1(x)− fn(x)

)
, or f ′n(x) =

n

x

(
fn+1(x)− fn(x)

)
. (20)

Hence we have established that for any of the numerator parameters n := ak (k = 1, . . . , p) of

pFq such a simple (forward) derivative rule is valid.
We note that by similar means for each of the denominator parameters n := bk (k = 1, . . . , q)
of pFq the simple (backward) derivative rule

θfn(x) = (n− 1)
(
fn−1(x)− fn(x)

)
, or f ′n(x) =

n− 1

x

(
fn−1(x)− fn(x)

)
(21)

is derived.
Next, we note that fn satisfies the well-known hypergeometric differential equation

θ(θ + b1 − 1) · · ·(θ + bq − 1)fn(x) = x(θ + a1)(θ+ a2) · · · (θ+ ap)fn(x) . (22)

Replacing all occurrences of θ in (22) recursively by the derivative rule (20) or (21), a recurrence
equation for fn is obtained having the order of the differential equation (22), i. e. max{p, q+1}.
We summarize the above results in the following

Theorem 5 The generalized hypergeometric function pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣∣x
)

satisfies

the derivative rules
θfn(x) = n

(
fn+1(x)− fn(x)

)
for any of its numerator parameters n := ak (k = 1, . . . , p), and

θfn(x) = (n− 1)
(
fn−1(x)− fn(x)

)
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for any of its denominator parameters n := bk (k = 1, . . . , q), and recursive substitution of all
occurrences of θ in the hypergeometric differential equation

θ(θ + b1 − 1) · · · (θ+ bq − 1)fn(x) = x(θ+ a1)(θ+ a2) · · · (θ+ ap)fn(x)

generates a holonomic recurrence equation of order max{p, q+ 1} with respect to the param-
eter chosen. After multiplication by the common denominator, this recurrence equation has
coefficients in IK[n, x], that are linear with respect to x. In particular, pFq forms an admissible
family of order max{p, q+ 1} with respect to any of its parameters ak, bk. �

We note that if some of the parameters of pFq are specified, there may exist a lower order
differential equation, and thus the order of the admissible family may be lower than the
theorem states. We note further that this theorem is the main reason for the fact that so
many special functions form admissible families: Most of them can be represented in terms of
generalized hypergeometric functions.
Note that Zeilberger’s algorithm determines the recurrence equation for pFq even in the case
that the upper and lower parameters are integer-linear in n, and a generalization of Zeilberger’s
algorithm [13] is successful if the parameters are rational-linear in n, but this approach does
not lead to a derivative rule.
On the other hand, one can formulate an algorithm similar (but more complicated) to the one
described in this section to generate a derivative rule for such pFq which is covered by our
Mathematica implementation [15]. However, in § 8 we will present a more general approach
for the same purpose, based on Gröbner basis techniques.

� Algorithmic Generation of Identities

Since in an admissible family, the linear space spanned by the set of shifted derivatives

Vfn := {f(j)n±k | j, k ∈ IN0} is at most m-dimensional, any m + 1 distinguished elements
gk (k = 0, . . . , m) of Vfn are linearly dependent, i. e., an identity of the form

m∑
k=0

Pk(n, x) gk(n, x) = 0 (Pk ∈ IK[n, x]) (23)

is valid. Given the defining holonomic recurrence equation and derivative rule, we can easily
construct Pk (k = 0, . . . , m) solving a linear system of equations, and therefore generate
identity (23):

Algorithm 3 (Generate an identity) Let fn be an admissible family of order m, and
gk (k = 0, . . . , m) denote m + 1 distinguished elements of Vfn. To generate an identity of
the form (23),

1. take (23) as an ansatz with still undetermined Pk (k = 0, . . . , m).

2. Apply the derivative rule and the derivatives thereof to all gk, recursively. This yields
an equation

M∑
k=0

Qk(n, x) hk(n, x) = 0 (24)

with rational Qk ∈ IK(n, x) (depending on Pk) and hk = fn±nk that are shifts of fn.
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3. Apply the recurrence equation recursively to (24) until only m successive shifts of fn
remain.

4. Set the coefficient list of the system hk equal to zero, and solve the system for the m+1
indeterminates Pk (k = 0, . . . , m).

5. Substituting Pk (k = 0, . . . , m), and multiplying with the common denominator yields
(23).

Proof: Theorem 3 shows that a solution exists. By the described method obviously the sum
(23) is represented by a linear combination of m shifts of fn. If its coefficients vanish, then the
linear combination equals zero. The linear algebra technique described generates the values
Pk (k = 0, . . . , m) for which this is the case. �

We note that the identity generated is unique if it is guaranteed that fn, fn−1, . . . , fn−m+1 are
linearly independent over IK(n, x), see the remark after the proof of Theorem 3.

� Application to Spectral Approximation

In this section, we give an application of Algorithm 3 in the field of spectral approximation
(see e. g. [4]). There, it is essential to have a family fn(x) of orthogonal polynomials possessing
a representation

fn(x) = An f
′
n−1(x) + Bn f

′
n+1(x) (25)

in terms of the derivatives f′n±1 with coefficients An, Bn that are constant with respect to x.
In ([4], § 2.3.2), it is described how such an identity

(2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x) (n ∈ IN) (26)

for the Legendre polynomials fn(x) = Pn(x) is applied.
Whereas our theory of admissible families guarantees the existence of a relation of type (25),
namely a linear relation between fn(x), f

′
n−1(x), and f

′
n+1(x) with polynomial coefficients in

x for any admissible family of order two, in particular for systems of orthogonal polynomials,
the fact that the coefficients in (26) do not depend on x, is good luck. This, in general, is not
the case.
If we calculate the resulting relations for the Laguerre, Jacobi, Gegenbauer, Chebyshev and
Hermite polynomials by Algorithm 3, we realize that mostly these are known formulas for
those polynomials. We recall them here, omitting however the lengthy formula that we obtain

for the Jacobi polynomials: For the generalized Laguerre polynomials L
(α)
n (x), we have

(α+ 2n− x)L(α)
n (x) = −(α + n)

∂

∂x
L
(α)
n−1(x) + (α+ n− x)

∂

∂x
L
(α)
n+1(x) ,

for the Gegenbauer polynomials C
(λ)
n (x), we have (λ �= 0)

2(λ+ n)C(λ)
n (x) =

∂

∂x
C

(λ)
n−1(x)−

∂

∂x
C

(λ)
n+1(x) ,

for the Chebyshev polynomials Tn(x), we have

2(n2 − 1) Tn(x) = (1 + n) T ′
n−1(x) + (1− n) T ′

n+1(x) ,
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for the Chebyshev polynomials Un(x), we have

2(1 + n)Un(x) = U ′
n−1(x)− U ′

n+1(x) ,

and for the Hermite polynomials Hn(x), we have

2(1 + n)Hn(x) = H ′
n+1(x) .

We see that in the case of the Gegenbauer, Chebyshev, and Hermite polynomials, the method
succeeds, and these polynomials can be handled similarly to the Legendre polynomials. In the
case of the Laguerre and Jacobi polynomials, however, the relations between fn(x), f

′
n−1(x),

and f ′n+1(x) have coefficients depending explicitly on x, so we have to modify the method.
We notice that the given method can succeed even if a relation between the four terms fn(x),
f ′n−1(x), f

′
n(x), and f ′n+1(x) with coefficients not depending on x, exists. It turns out that

such a formula exists for any of the classical families of nondiscrete polynomials. We saw
already the results for the Gegenbauer, Chebyshev, and Hermite polynomials, and we will
consider now the Laguerre and Jacobi polynomials. To obtain the announced relations, we
use Algorithm 3 which generates a solution space of dimension one. If we are lucky, we can
choose the free parameter such that, indeed, the coefficients occurring are independent of x.
Here are the results:

Theorem 6 For the generalized Laguerre polynomials L
(α)
n (x), the identity

L(α)
n (x) =

∂

∂x
L(α)
n (x)− ∂

∂x
L
(α)
n+1(x) (27)

is valid.
For the Jacobi polynomials P

(α,β)
n (x), the identity

P (α,β)
n (x) = − 2(α+ n)(β + n)

(α + β + n)(α+ β + 2n)(α+ β + 2n+ 1)

∂

∂x
P

(α,β)
n−1 (x)

+
2(α− β)

(α + β + 2n)(α+ β + 2n+ 2)

∂

∂x
P (α,β)
n (x)

+
2(α+ β + n+ 1)

(α + β + 2n+ 1)(α+ β + 2n+ 2)

∂

∂x
P

(α,β)
n+1 (x) (28)

is valid. �

Note that (27) is well-known (see e. g. [30], VI (1.14)), whereas (28) is new. Note moreover that

(28) shows that only in the case α = β a representation of the Jacobi polynomials P
(α,β)
n (x)

in terms of only two of ∂
∂xP

(α,β)
n−1 (x), ∂

∂xP
(α,β)
n (x), or ∂

∂xP
(α,β)
n+1 (x) with coefficients independent

of x exists.

� Identi	cation of Admissible Families

In this section, we extend Zeilberger’s holonomic approach [32] to identify holonomic families
as admissible ones using Gröbner basis techniques.
Assume a holonomic family fn(x) is given by its holonomic differential equation with respect
to x and by its holonomic recurrence equation with respect to n. We write these equations
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in operator notation using the differential operator D given by D fn(x) = f ′n(x), and the
(forward) shift operator N given by N fn(x) = fn+1(x). This procedure converts the two
holonomic equations into a polynomial equations system in a noncommutative polynomial
ring: From the product rule it follows that D(xfn(x))− xDfn(x) = fn(x), and therefore we
have the commutator relation Dx − xD = 1. On the other hand, for the shift operator we
have N (nfn(x))− nNfn(x) = (n+ 1)fn+1(x)− nfn+1(x) = fn+1(x) = Nfn(x), and therefore
we have the commutator rule Nn− nN = N .
As an example let us consider the Legendre polynomials fn(x) = Pn(x): They form a holo-
nomic family given by the holonomic equations

(x2 − 1)f ′′n(x) + 2xf ′n(x)− n(1 + n)fn(x) = 0

and
(n+ 2)fn+2(x)− (3 + 2n)xfn+1(x) + (n+ 1)fn(x) = 0

(compare (2)–(3)), written here in terms of forward shifts.
In operator notation the holonomic equations read

(x2 − 1)D2 + 2xD− n(1 + n) = 0 and (n+ 2)N2 − (3 + 2n)xN + (n+ 1) = 0 . (29)

If we like to generate a derivative rule from (29), this is an elimination problem in the given
noncommutative polynomial ring which can be solved by Gröbner basis methods ([3], [11],
[32], [35], [27]–[29]).
The Gröbner basis of the left ideal generated by (29) with respect to the lexicographic term
order (D,N, n, x) is given by {

(x2 − 1)D2 + 2xD − n(1 + n),

(1 + n)ND− (1 + n)xD − (1 + n)2,

(x2 − 1)ND− (1 + n)xN + (1 + n), (30)

(1 + n)(x2 − 1)D− (1 + n)2N + x(1 + n)2, (31)

(n+ 2)N2 − (3 + 2n)xN + (n+ 1)
}
;

we used the Reduce implementation [21] for the noncommutative Gröbner calculations of
this article. After the calculation of the Gröbner basis, for better readability I positioned
the operators D and N back to the right, so that the equations can be easily understood as
operator equations, again.
By the given term order, the Gröbner basis contains those equations for which the D-powers
are eliminated furthest possible, and (30)–(31) correspond to the relations

(x2 − 1)P ′
n+1(x) = (1 + n) (xPn+1(x)− Pn(x)) ,

(x2 − 1)P ′
n(x) = (1 + n) (Pn+1(x)− xPn(x))

between the Legendre polynomials and their derivatives.
Therefore, we see that the calculation of the Gröbner basis in particular constructed the
derivative rule for the Legendre polynomials, and therefore identified them as an admissible
family.
The following algorithm generalizes this method for the general case:
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Algorithm 4 Let fn(x) be a holonomic family given by the holonomic equations

P (D, n, x)fn(x) = 0 and Q(N, n, x)fn(x) = 0

in operator notation. Assume further that the holonomic equations are of lowest possible
order. Then the following procedure determines whether or not fn(x) is an admissible family,
and returns a forward derivative rule in the affirmative case.

1. Input: the holonomic representation of fn in form of the polynomials P (D, n, x) and
Q(N, n, x).

2. Calculate the Gröbner basis G of the left ideal generated by P and Q with respect to
the lexicographic term order (D,N, n, x) by a noncommutative version of Buchberger’s
algorithm. The use of a weighted or graded order can simplify the procedure.

3. Choose the subset L ⊂ G of polynomials that are linear with respect to D.

4. Check whether one of the polynomials in L does not contain a product of D and N . If
yes, this is either the derivative rule R(D,N, n, x); or the derivative rule R(D,N, n, x) is
easily constructed from the given polynomial, iteratively using the recurrence equation
to decrease the order of N ; goto (7.).

5. Iterate the following: Take the two polynomials p1, p2 ∈ L having highest degree terms
of the form DNk. Make them of equal degree multiplying the lower order polynomial
by a suitable power of N . Construct a polynomial p3 as a linear combination such that
the degree of the highest term DNk decreases. Replace p1 and p2 in L by p3.

6. Check whether any p ∈ L does not contain products of D and N . If yes, this is either the
derivative rule R(D,N, n, x); or the derivative rule R(D,N, n, x) is easily constructed
from the given polynomial, iteratively using the recurrence equation to decrease the
order of N ; goto (7.). If not, the present method fails.

7. Output: the derivative rule R(D,N, n, x).

Proof: Using the lexicographic term order (D,N, n, x) the Gröbner basis G calculated in
step (2.) eliminates D to the lowest possible order. Therefore if the left ideal I generated by
P and Q contains a forward derivative rule, G contains at least one element of degree one with
respect to D. If such an element exists for which no term DN occurs, then the procedure
given in (4.) generates the derivative rule. Finally, the iteration in (5.) gets rid of highest
powers of DNk (which may not occur with a suitable chosen graded or weighted order), and
leads to the derivative rule, eventually, or the method fails. �

Note, that the algorithm decides that no derivative rule exists for the Airy functions fn(x) :=
Ai (x), given by (14) (under the hypothesis of the linear independence of Ai (x) and Ai′ (x)
over IK(x)).
On the other hand, by the given method, it is possible to construct all derivative rules that
can be found in [1] by the corresponding differential and recurrence equations besides one
for the associated Legendre functions since in this case the recurrence equation does not have
polynomial coefficients. Note that we always used a weighted lexicographic order with weights
(2, 1, 0, 0) and never entered parts (5.) and (6.) of Algorithm 4.
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The most time consuming results in this direction are the calculation of the derivative rules for

the Jacobi polynomials P
(α,β)
n (x), see Theorem 8, since this is a 6-variable problem. Note that,

in a similar treatment, Chyzak tried to derive this type of result with aMaple implementation,
without success ([5], §4.1). Using the Reduce implementation [21], any of these calculations
(for the Jacobi polynomials) needs about five minutes on a DEC Alpha workstation (using
the ezgcd switch, see [10], §9.3). Note that also with a pure lexicographic term order, the
Gröbner bases are derived in a similar time. For all other families considered, the calculation
needs only seconds.
As an example, we consider the Whittaker functions Mn,m(x) with respect to the parameter
m for which no derivative rule is listed in [1], see § 13.4. In Theorem1, we found the holonomic
recurrence equation

Mn,m+1(x) = 16
(1 + 2m)m(4m2 − 1− 2nx)(m+ 1)

x(2m− 1)(2n+ 1 + 2m)(2n− 1− 2m)
Mn,m(x)−

16
(m+ 1)m(1+ 2m)2

(2n+ 1+ 2m)(2n− 1− 2m)
Mn,m−1(x) .

On the other hand, the holonomic differential equation(
1− 4m2 + 4nx− x2

)
Mn,m(x) + 4 x2M ′′

n,m(x) = 0

is well-known ([1], (13.1.31)). Therefore we have the operator polynomials

P (D,m, x) := 1− 4m2 + 4nx− x2 + 4 x2D2 ,

and

Q(M,m, x) := 16 (1+m) (2+m) (1+ 2m) (3+ 2m)2 x

+16 (1 +m) (2 +m) (3 + 2m) (2nx− 3− 8m− 4m2)M

+(1 + 2m) (2n− 3− 2m) (3+ 2m+ 2n) xM2 ,

M denoting the shift operator with respect to m.
Using the method described above to eliminate the second order terms of D and M , we find
for the Whittaker functions:

Theorem 7 The Whittaker function Mn,m(x) satisfy the forward and backward derivative
rules

M ′
n,m(x) =

(
1 + 4m+ 4m2 − 2nx

)
2 (1 + 2m) x

Mn,m(x) +
(1 + 2m− 2n) (1 + 2m+ 2n)

8 (1 +m) (1 + 2m)2
Mn,m+1(x)

and

M ′
n,m(x) = 2mMn,m−1(x) +

(−1 + 4m− 4m2 + 2nx
)

2 (−1 + 2m) x
Mn,m(x)

with respect to m.
Similarly, the Whittaker functions Wn,m(x) satisfy the forward and backward derivative rules

W ′
n,m(x) =

(
1 + 4m+ 4m2 − 2nx

)
2 (1 + 2m) x

Wn,m(x) +
(−1− 2m+ 2n)

2 (1 + 2m)
Wn,m+1(x)

and

W ′
n,m(x) =

(−1 + 2m+ 2n)

2 (1− 2m)
Wn,m−1(x) +

(−1 + 4m− 4m2 + 2nx
)

2 (−1 + 2m) x
Wn,m(x) .
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Note thatMn,m(x) is one of the rare cases for which the second part of part (4.) of Algorithm 4
is entered.
In the rest of this section, we apply Algorithm 4 to derive derivative rules for the classical
orthogonal families. Well-known are backward or forward derivative representations for the
derivative with respect to x of the (nondiscrete) orthogonal polynomials fn(x) in terms of
fn(x) and fn−1(x), or in terms of fn(x) and fn+1(x).
Note that derivative rules with respect to n are commonly stated (see e. g. [1], (22.8)), whereas
those with respect to the other parameters are not.
Applying the above mentioned algorithms to the generalized Laguerre, Jacobi, and Gegenbauer
polynomials yields the following derivative rules:

Theorem 8 The generalized Laguerre polynomials L
(α)
n (x) satisfy the forward and backward

derivative rules

∂

∂x
L(α)
n (x) =

−1− α − n+ x

x
L(α)
n (x) +

1 + n

x
L
(α)
n+1(x)

= −α + n

x
L
(α)
n−1(x) +

n

x
L(α)
n (x)

= L(α)
n (x)− L(α+1)

n (x)

=
α+ n

x
L(α−1)
n (x)− α

x
L(α)
n (x)

with respect to the parameters n, and α.

The Jacobi polynomials P
(α,β)
n (x) satisfy the forward and backward derivative rules

∂

∂x
P (α,β)
n (x) =

(1 + α + β + n)(α− β + (2 + α+ β + 2n)x

(2 + α+ β + 2n)(1− x2)
P (α,β)
n (x)

− 2(1 + n)(1 + α+ β + n)

(2 + α+ β + 2n)(1− x2)
P

(α,β)
n+1 (x)

=
2(α+ n)(β + n)

(α + β + 2n)(1− x2)
P

(α,β)
n−1 (x)− n(−α + β + αx+ βx+ 2nx)

(α+ β + 2n)(1− x2)
P (α,β)
n (x)

= −1 + α+ β + n

1 + x
P (α,β)
n (x) +

1 + α+ β + n

1 + x
P (α+1,β)
n (x)

= −2(α+ n)

1− x2
P (α−1,β)
n (x) +

2α+ n− nx

1− x2
P (α,β)
n (x)

=
1 + α+ β + n

1− x
P (α,β)
n (x)− 1 + α + β + n

1− x
P (α,β+1)
n (x)

=
2(β + n)

1− x2
P (α,β−1)
n (x)− 2β + n+ nx

1− x2
P (α,β)
n (x)

with respect to the parameters n, α, and β.

The Gegenbauer polynomials C
(λ)
n (x) satisfy the forward and backward derivative rules

∂

∂x
C(λ)
n (x) =

(2λ+ n)x

1− x2
C(λ)
n (x)− 1 + n

1− x2
C

(λ)
n+1(x)
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= −1 − 2λ− n

1− x2
C

(λ)
n−1(x)−

nx

1− x2
C(λ)
n (x)

= −2λ+ n

x
C(λ)
n (x) +

2λ

x
C(λ+1)
n (x)

= −(−2 + 2λ+ n)(−1 + 2λ+ n)

2(λ− 1)x(1− x2)
C(λ−1)
n (x)− 1− 2λ− n+ nx2

x(1− x2)
C(λ)
n (x)

with respect to the parameters n, and λ. �

Similarly, we get for the Krawtchouk, Meixner, discrete Laguerre, and Charlier polynomials
the following derivative representations.

Theorem 9 The Krawtchouk polynomials k
(p)
n (x,N ) satisfy the forward and backward deriva-

tive rules

∂

∂p
k(p)n (x,N ) =

−n+ 2np−Np+ x

(p− 1)p
k(p)n (x,N ) +

1 + n

(1− p)p
k
(p)
n+1(x,N )

= (−1 + n− N ) k
(p)
n−1(x,N )

=
n−N + x

p− 1
k(p)n (x,N ) +

N − x

p− 1
k(p)n (x+ 1, N )

=
x

p
k(p)n (x− 1, N ) +

n− x

p
k(p)n (x,N )

=
−1 + n−N

p
k(p)n (x,N ) +

1− n+N

p
k(p)n (x,N + 1)

=
N − x

(p− 1)p
k(p)n (x,N − 1) +

−N + np+ x

(p− 1)p
k(p)n (x,N )

with respect to the parameters n, x, and N .

The Meixner polynomials m
(γ,μ)
n (x) satisfy the forward and backward derivative rules

∂

∂μ
m(γ,μ)

n (x) =
γμ+ μn− x+ μx

(1− μ)μ
m(γ,μ)

n (x)− 1

1− μ
m

(γ,μ)
n+1 (x)

=
n(−1 + γ + n)

(1− μ)μ
m

(γ,μ)
n−1 (x)− n

(1− μ)μ
m(γ,μ)

n (x)

= −γ + n+ x

μ
m(γ,μ)

n (x) +
γ + x

μ
m(γ+1,μ)

n (x)

=
(−1 + γ + n)

μ− 1
m(γ−1,μ)

n (x) +
(1− γ)

(μ− 1)μ
m(γ,μ)

n (x)

=
γμ− n+ μn+ μx

(1− μ)μ
m(γ,μ)

n (x)− γ + x

1− μ
m(γ,μ)

n (x+ 1)

=
x

(1− μ)μ
m(γ,μ)

n (x− 1)− x

(1− μ)μ
m(γ,μ)

n (x)
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with respect to the parameters n, γ, and x.

The discrete Laguerre polynomials l
(ρ,α)
n (x) satisfy the forward and backward derivative rules

∂

∂ρ
l(ρ,α)n (x) =

−1− n− αρ+ x− ρx

(ρ− 1)ρ
l(ρ,α)n (x) +

1 + n

(ρ− 1)ρ
l
(ρ,α)
n+1 (x)

=
α + n

1− ρ
l
(ρ,α)
n−1 (x)−

n

1− ρ
l(ρ,α)n (x) (32)

= −α + x

ρ
l(ρ,α)n (x) +

α + x

ρ
l(ρ,α+1)
n (x)

=
α+ n

(ρ− 1)ρ
l(ρ,α−1)
n (x) +

−α − n+ nρ

(ρ− 1)ρ
l(ρ,α)n (x)

=
α + x

1 − ρ
l(ρ,α)n (x)− α+ x

1− ρ
l(ρ,α)n (x+ 1)

=
1− x

(ρ− 1)ρ
l(ρ,α)n (x− 1) +

−1− n+ nρ+ x

(ρ− 1)ρ
l(ρ,α)n (x)

with respect to the parameters n, α, and x.

The Charlier polynomials c
(μ)
n (x) satisfy the forward and backward derivative rules

∂

∂μ
c(μ)n (x) =

μ − x

μ
c(μ)n (x)− c

(μ)
n+1(x)

=
n

μ
c
(μ)
n−1(x)−

n

μ
c(μ)n (x) (33)

=
μ − n

μ
c(μ)n (x)− c(μ)n (x+ 1)

=
x

μ
c(μ)n (x− 1)− x

μ
c(μ)n (x)

with respect to the parameters n, and x. �

Note that many of the above derivative rules are a direct consequence of Theorem 5 in view
of the hypergeometric representations (7)–(11).
Note further that some of the above derivative rules have appeared in the literature. Relation
(32) e. g. can be found in ([6], (3.19)), for α = 0, and in ([31], (2.28)) for general α, and
(33) is in ([6], (3.31)). However, these relations nowhere appeared systematically. All given
representations can be calculated by a computer algebra system, and were done by theReduce
implementation [21], as well as by our implementation in Mathematica [15].
This section can be summarized as follows: If a holonomic family fn(x) is given by a holonomic
differential and a holonomic recurrence equation, it seems to be wise to use Algorithm 4 to
find a derivative rule for fn(x). In the affirmative case, any identity of the form of Algorithm 3
can be discovered by linear algebra techniques only. So only in the first step, Gröbner basis
techniques are needed to discover whether or not fn(x) forms an admissible family.
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 Representations of Parameter Derivatives

Whereas it turned out that for any of the classical nondiscrete families fn(x) of orthogonal
polynomials a representation of the derivative with respect to the principal nondiscrete vari-
able x in terms of fn(x) and fn−1(x) exists (see e. g. [30], Chapter IV, (4.8)), this is, in
general, not the case with respect to other variables involved. Fröhlich [9] gives, however, the

following argument: For any family f
(α)
n (x) =

n∑
k=0

ak(α)x
k of orthogonal polynomials there is

a representation of the form

∂

∂α
f (α)n (x) =

n∑
k=0

c
(α)
k f

(α)
k (x) (34)

for the α-derivative of f
(α)
n (x), since by termwise differentiation, the expression

∂

∂α
f (α)n (x) =

n∑
k=0

∂

∂α
ak(α)x

k

is seen to be a polynomial of degree n with respect to x, and since any polynomial of degree

n has a representation of the form (34) by the orthogonality of the family f
(α)
n (x). Rather

than having representations in terms of the last two polynomials, in the given situation we

generally have representations in terms of the complete system {f(α)k (x) | k = 0, . . . , n}. We

call the derivative with respect to α a parameter derivative of f
(α)
n (x).

It is a simple task to give representations of the parameter derivatives for hypergeometric
functions, and families of orthogonal polynomials in terms of symbolic sums of hypergeometric
functions, or in terms of the ψ-function (see [1], § 6.3), by termwise differentiation of the
defining series representations, since

∂
∂α(α)n

(α)n
=

∂

∂α

(
ln (α)n

)
=

∂

∂α

(
ln

n−1∏
k=0

(α+ k)

)

=
∂

∂α

n−1∑
k=0

ln (α+ k) =
n−1∑
k=0

1

α+ k
= ψ(α+ n)− ψ(α) . (35)

On the other hand, generally it is a nontrivial question to determine the coefficients c
(α)
k of

representation (34).
In connection with the development of Galerkin methods, i. e. numerical techniques involving
orthogonal polynomials, a result in this direction was given by Wulkow who obtained the
parameter derivative representation

∂

∂α
l(ρ,α)n (x) =

n−1∑
k=0

ρn−k

n− k
l
(ρ,α)
k (x) (36)

([31], (2.30)) for the discrete Laguerre polynomials with respect to the parameter α.
Using the hypergeometric representation (10), this identity can be rewritten

∂

∂c

(
(c)n
n!

2F1

( −n , b

c

∣∣∣∣∣x
))

=
n−1∑
k=0

(c)k
k! (n− k)

2F1

( −k , b

c

∣∣∣∣∣x
)

(37)
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as representation for the derivative of the Gauß hypergeometric polynomial with respect to
its third argument c.

By the product rule, (u v)′ = u′ v+ v′ u, i. e., v′ = (uv)′

u − u′

u v, and therefore we get from (37),
using (35)

∂

∂c
2F1

(
−n, b
c

∣∣∣∣∣x
)

=
n!

(c)n

n−1∑
k=0

(c)k
k! (n− k)

2F1

(
−k, b
c

∣∣∣∣∣ x
)
−

∂
∂c(c)n
(c)n

2F1

(
−n, b
c

∣∣∣∣∣x
)

=
n−1∑
k=0

(
−1

c+ k
2F1

(
−n, b
c

∣∣∣∣∣x
)
+

n!

k! (n− k) (c+ k)n−k
2F1

(
−k, b
c

∣∣∣∣∣x
))

.

Recently, Fröhlich deduced the analogous representation

∂

∂b
2F1

(
−n, b
c

∣∣∣∣∣ x
)
=

n−1∑
k=0

(
1

b+ k
2F1

(
−n, b
c

∣∣∣∣∣x
)
− n!

k!(n−k)(b+k)n−k
2F1

(
−k, b
c

∣∣∣∣∣ x
))

(38)

([9], Theorem 1) for the parameter derivative of the Gauß hypergeometric polynomial with
respect to its second argument b.
By the product rule, again, we obtain from (35) and (38)

∂

∂b

(
(b)n
n!

2F1

(
−n, b
c

∣∣∣∣∣ x
))

=
n−1∑
k=0

(
2 (b)n

(b+ k) n!
2F1

(
−n, b
c

∣∣∣∣∣ x
)
− (b)k
k! (n− k)

2F1

(
−k, b
c

∣∣∣∣∣x
))

which is a statement similar to (37) for the parameter b. Note that the advantage of represen-
tations (36), and (37), is the fact that in these cases the derivative polynomials are of degree

n − 1, i. e. c
(α)
n ≡ 0, and therefore the nth polynomial f

(α)
n (x) does not explicitly appear on

the right hand side. Whether this situation applies or not, depends on the standardization
that is used. Further, we realize that in (36), and (37), the ψ-function does not occur on the
right hand side, either. Unfortunately, the other derivative representations mentioned do not
have the same simple structure.
Using (38), Fröhlich moreover obtained the following representations of the parameter deriva-
tives

∂

∂α
P (α,β)
n (x) =

n−1∑
k=0

1

α+β+1+k+n
(39)

·
(
P (α,β)
n (x) +

α+β+1+2 k

n− k

(β + k + 1)n−k

(α+β+k+1)n−k
P

(α,β)
k (x)

)
,

and

∂

∂β
P (α,β)
n (x) =

n−1∑
k=0

1

α+β+1+k+n
(40)

·
(
P (α,β)
n (x) + (−1)n−k α+β+1+2 k

n− k

(α+ k + 1)n−k

(α+β+k+1)n−k
P

(α,β)
k (x)

)

([9], Theorem 3) for the Jacobi polynomials P
(α,β)
n (x) with respect to α, and β.

In the following theorem, we list some more parameter derivative representations for families
of orthogonal polynomials, that can be obtained from the above results.
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Theorem 10 For the generalized Laguerre polynomials L
(α)
n (x), we have the representation

of the parameter derivative

∂

∂α
L(α)
n (x) =

n−1∑
k=0

1

n− k
L
(α)
k (x) =

n∑
k=1

1

k
L
(α)
n−k(x) (41)

with respect to the parameter α.

For the Gegenbauer polynomials C
(λ)
n (x), we have the representation of the parameter deriva-

tive

∂

∂λ
C(λ)
n (x) =

n−1∑
k=0

(
2 (1 + k)

(2λ+ k) (2λ+ 1 + 2k)
+

2

2 λ+ k + n

)
C(λ)
n (x)

+
n−1∑
k=0

2 (1 + (−1)n−k) (λ+ k)

(2λ+ k + n) (n− k)
C

(λ)
k (x) (42)

with respect to the parameter λ.

For the Krawtchouk polynomials k
(p)
n (x,N ), we have the representation of the parameter

derivative

∂

∂x
k(p)n (x,N ) =

n−1∑
k=0

(
1

x− k
k(p)n (x,N ) +

(−1)n−k pn−k (N − n+ 1)n−k

(n− k) (k− x)n−k
k
(p)
k (x,N )

)
(43)

with respect to the parameter x.

For the Meixner polynomials m
(γ,μ)
n (x), we have the representation of the parameter derivative

∂

∂γ
m(γ,μ)

n (x) =
n−1∑
k=0

n!

k! (n− k)
m

(γ,μ)
k (x) (44)

with respect to the parameter γ.

Proof: From (39), representation (41) easily follows using the limit relation

L(α)
n (x) = lim

β→∞
P (α,β)
n

(
1− 2x

β

)

(see e. g. [1], (22.15.5)).
To deduce (42), we utilize the representation

C(λ)
n (x) =

(2λ)n
(λ+ 1/2)n

P (λ−1/2,λ−1/2)
n (x)

(see e. g. [26], (4.7.1), and [30], V (7.2)) for the Gegenbauer polynomials, and use both, (39),
and (40). Writing α = λ− 1/2, and β = λ− 1/2, we get with the multidimensional chain rule

∂

∂λ
C(λ)
n (x) =

∂

∂λ

(
(2λ)n

(λ+ 1/2)n
P (λ−1/2,λ−1/2)
n (x)

)

=
1

(λ+ 1/2)n
P (λ−1/2,λ−1/2)
n (x)

∂

∂λ

(
(2λ)n

)
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+(2λ)nP
(λ−1/2,λ−1/2)
n (x)

∂

∂λ

(
1

(λ+ 1/2)n

)

+
(2λ)n

(λ+ 1/2)n

∂

∂λ

(
P (λ−1/2,λ−1/2)
n (x)

)

=
n−1∑
k=0

(
2

2λ+ k
− 1

λ+ 1/2 + k

)
C(λ)
n (x)

+
(2λ)n

(λ+ 1/2)n

(
∂

∂α
P (α,β)
n (x) +

∂

∂β
P (α,β)
n (x)

)∣∣∣∣
α=β=λ−1/2

=
n−1∑
k=0

(
2 (1 + k)

(2λ+ k) (2λ+ 1 + 2k)
+

2

2 λ+ k + n

)
C(λ)
n (x)

+
n−1∑
k=0

1 + (−1)n−k

2λ+ k + n

(2λ)n
(λ+ 1/2)n

2λ+ 2k

n− k

(λ+ k + 1/2)n−k

(2λ+ k)n−k
P

(λ−1/2,λ−1/2)
k (x)

=
n−1∑
k=0

(
2 (1 + k)

(2λ+ k) (2λ+ 1 + 2k)
+

2

2 λ+ k + n

)
C(λ)
n (x)

+
n−1∑
k=0

2 (1 + (−1)n−k) (λ+ k)

(2λ+ k + n) (n− k)
C

(λ)
k (x) ,

i. e. (42).
According to (7), representation (43) is a reformulation of (38), whereas relation (44) imme-
diately follows from (36), using (10). �

Using the abbreviation

g(λ)n (x) =
n−1∑
k=0

(
2 (1+ k)

(2λ+ k) (2λ+ 1 + 2k)
+

2

2 λ+ k + n

)
C(λ)
n (x)

=
n−1∑
k=0

(
2 (2k+ 3k2 + 4λ+ 8kλ+ 4λ2 + n+ kn)

(2λ+ k)(2λ+ 1 + 2k)(2λ+ k + n)

)
C(λ)
n (x) ,

representation (42) for the parameter derivative of C
(λ)
n (x) can be rewritten as

∂

∂λ
C(λ)
n (x) = g(λ)n (x) +

n−1∑
k=0

2 (1 + (−1)n−k) (λ+ k)

(2λ+ k + n) (n− k)
C

(λ)
k (x)

= g(λ)n (x) +
n∑

l=1

2 (1 + (−1)l) (λ+ n− l)

(2λ+ 2n− l) l
C

(λ)
n−l(x)

= g(λ)n (x) +
[n/2]∑
k=1

λ+ n− 2k

(λ+ n− k) k
C

(λ)
n−2k(x) .

Whereas (39)–(40) are rather difficult formulas, and difficult to obtain, formula (41) is so
simple that it seems to be rather unlikely that it should not be found somewhere in the
literature. Nevertheless, we were not successful doing so, hence (41) seems to be new.
Obviously, after having found this formula, it may be proved by other means as well. By the
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computations

∂

∂α
L(α)
n (x) =

∂

∂α

⎛
⎝ (α+ 1)n

n!

n∑
j=0

(−n)j
(α+ 1)j j!

xj

⎞
⎠

=
n∑

j=0

(−n)j
n! j!

∂

∂α

(
(α+ 1 + j)n−j

)
xj

=
n−1∑
j=0

(−n)j (α+ 1 + j)n−j

n! j!

n−j−1∑
k=0

1

α+ 1+ j + k
xj ,

and

n−1∑
k=0

1

n− k
L
(α)
k (x) =

n−1∑
k=0

1

n− k

(α+ 1)k
k!

k∑
j=0

(−k)j
(α+ 1)j j!

xj

=
n−1∑
j=0

n−1∑
k=j

1

n− k

(−k)j
k! j!

(α+ 1 + j)k−j x
j ,

we may compare coefficients to find that (41) is equivalent to the identity (j = 0, . . . , n− 1)

(−n)j (α+ 1 + j)n−j

n! j!

n−j−1∑
k=0

1

α+ 1 + j + k
=

n−1∑
k=j

1

n− k

(−k)j
k! j!

(α+ 1 + j)k−j ,

or equivalently

a(n, j) =
n−j−1∑
k=0

1

α+ 1 + j + k
=

n−1∑
k=j

n!

(n− k) k!

(−k)j
(−n)j

(α+ 1 + j)k−j

(α+ 1 + j)n−j

=
n−1∑
k=j

n!

(n− k) k!

(k − j + 1)j
(n− j + 1)j

1

(α+ 1 + k)n−k
= A(n, j) . (45)

The last identity can easily be proved by Zeilberger’s algorithm: It turns out that both sides
of (45) satisfy the inhomogeneous first order recurrence equation (see e. g. [23])

a(n+ 1, j)− a(n, j) = A(n+ 1, j)− A(n, j) =
1

1 + α + n

of the ψ-function, having the same initial value a(j + 1, j) = A(j + 1, j) = 1
α+1+j .
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[27] Takayama, N.: Gröbner basis and the problem of contiguous relations. Japan J. Appl.
Math. 6, 1989, 147–160.

[28] Takayama, N.: An algorithm of constructing the integral of a module—an infinite di-
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