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Efficient projection and deformation of volumetric intensity
models for accurate simulation of X-ray images

M. Ehlke and H. Ramm and H. Lamecker and S. Zachow

Zuse Institute Berlin, Medical Planning Group, Berlin, Germany

Abstract

We present an efficient GPU-based method to generate virtual X-ray images from tetrahedral meshes which are
associated with attenuation values. In addition, a novel approach is proposed that performs the model deformation
on the GPU. The tetrahedral grids are derived from volumetric statistical shape and intensity models (SSIMs) and
describe anatomical structures. Our research targets at reconstructing 3D anatomical shapes by comparing virtual
X-ray images generated using our novel approach with clinical data while varying the shape and density of the
SSIM in an optimization process. We assume that a deformed SSIM adequately represents an anatomy of interest
when the similarity between the virtual and the clinical X-ray image is maximized. The OpenGL implementation
presented here generates accurate (virtual) X-ray images at interactive rates, thus qualifying it for its use in the
reconstruction process.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware architecture—
Parallel processing I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing algorithms

1. Introduction

The reconstruction of a patient’s 3D anatomy based on a
single or a few X-ray images for diagnosis and advanced
therapy planning has received increasing interest in recent
years [LWH06, Zhe10, BKdB∗11]. Compared to 3D image
acquisition methods like computed tomography (CT), X-ray
imaging is widely available and rather inexpensive.

The common concept of most existing reconstruction me-
thods is to project many variations of a 3D shape onto an
image plane with a known X-ray setup. Those projections
are then compared to a patient’s X-ray within an optimiza-
tion framework. The projected model instance that best de-
picts the 2D shape in the X-ray image(s) is assumed to be
the best approximation of the underlying 3D anatomy. Ho-
wever, the reduction of dimensionality occurring during the
X-ray acquisition renders this process an ill-posed problem.
Even for a human observer it can be hard to resolve ambi-
guities in X-ray images resulting from overlapping structu-
res [SQNS12].

The goal is to generate realistically looking radiograph
images that mimic the appearance of clinical X-ray images
as good as possible to allow for a direct image-based com-

parison. At the same time, a suitable method should be able
to produce large quantities of projections that are required
during the optimization process.

This work is structured as follows: First, existing methods
for 3D reconstruction from X-ray images are discussed that
employ 2D projection images. We introduce the theory be-
hind X-ray attenuation and how it can be modeled on 3D de-
formable tetrahedral grids in Section 3. Our GPU-based pro-
jection algorithm is presented in Section 4 and an OpenGL
implementation including a method for fast deformation is
outlined in Section 5. The implementation is evaluated and
discussed in Sections 6 and 7. We finally conclude our work
in Section 8.

2. Related Work

Existing approaches for the reconstruction of 3D anatomi-
cal models from X-ray data typically employ deformable
surface models in combination with contour-based distan-
ce measures [DLvB∗10,Zhe10,BKdB∗11]. Contours can be
computed very efficiently. However, contour matching tur-
ned out to be problematic since similar contours have to be
determined in both the projected model and the clinical X-
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ray images. An improvement would be to directly compare
image intensities rather than contour information. One solu-
tion to incorporate intensity information is the projection of
CT-like atlases. Steininger et al. [SFK08] for instance per-
form the projection of a deformable hexahedral grid of the
proximal femur by means of a ray casting approach.

Lamecker et al. [LWH06] propose a method for 3D sha-
pe reconstruction from X-ray images by comparing a thick-
ness projection of a deformable surface model to X-rays
using image-based distance measures like mutual informati-
on. They conclude that this naive approach of modelling X-
ray attenuation is not sufficient to model the heterogeneous
density inside the bone. A similar approach for visualization
purposes was presented by Vidal et al. [VGF∗10]. They de-
scribe regions of different bone density by multiple surface
models.

A more adaptive sampling of the interior densities of the
anatomical structure can be achieved by the use of unstruc-
tured grids. Here, the size of the volume elements defines the
quality of the sampling. There are a variety of GPU-based al-
gorithms available for the visualization of unstructured grid
data [GW06, MMF10, WKME03]. Those methods typically
employ absorption-emission based lighting models that are
not directly applicable to the simulation of X-ray attenuati-
on.

Yao [Yao02] proposed an idea to provide a dense samp-
ling of density values on low resolution tetrahedral grids
by using higher-order polynomial functions. The deforma-
ble model is represented as a point distribution model (PDM)
that additionally encodes density values learned from CT da-
ta. Yao utilized a CPU-based projection algorithm that re-
spects the non-linear density distribution in each tetrahedron
while simulating X-ray attenuation. Sadowsky et al. [SC06]
seize the idea of Yao and simulate X-ray images using a
Projected Tetrahedra approach that is partly implemented on
the GPU. The deformation is performed on the CPU, con-
sequently the geometry and intensity information has to be
copied to the GPU memory after the model is altered.

Contribution: In this paper we present an extension to the
work of Yao and Sadowksy et al. that generates virtual X-ray
images from deformable volumetric density models. Density
information is described as a higher-order polynomial func-
tion on each volumetric cell of an unstructured grid, allowing
for accurate density representation even on coarse grids. Un-
like previous methods, our approach is implemented entirely
on the GPU, thus avoiding time consuming copy operations
between GPU- and system-memory.

(a) (b)

(c) (d)

Figure 1: Actual density distribution within a single tetra-
hedron acquired from a CT volume (a) and approximations
using Bernstein polynomial density functions of degree
d = 1 (b), d = 2 (c) and d = 3 (d). A higher polynomial
degree better approximates the non-linear gray value
distribution of the CT data.

3. Background

3.1. Higher-order X-ray attenuation functions

The overall attenuation encountered by a monochromatic X-
ray beam p(x) = win+(wout−win) ·x passing through a ma-
terial is described by the Beer-Lambert law:

Iout = Iin · e−
∫

p(x) α(w)dw (1)

where Iin/Iout are the input/output intensities of the beam,
win and wout are the entrance and exit points, and µ = α(w)
denotes the linear attenuation coefficient of some tissue en-
countered by the ray at point w. The function µ = α(w) is
referred to as the density distribution of an anatomical struc-
ture.

We follow the proposal of Yao [Yao02] and model anato-
mical structures as tetrahedral grids with Bernstein polyno-
mials describing the density distribution within each tetrahe-
dron. The Bernstein polynomial of degree d is parameterized
per tetrahedron t using Bernstein coefficients ct = {ci, j,k,l}
with i+ j + k + l = d. Given a point b = (bx, by, bz, bw)

T

in local barycentric coordinate space of t, the corresponding
linear attenuation coefficient calculates as

αt(b) = ∑
i+ j+k+l=d

[ci, j,k,lB
d
i, j,k,l(b)] (2)
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Figure 2: Ray interaction with a single tetrahedron. The ray
originates at the source eeye,beye, intersects the tetrahedron
at win,ein,bin, traverses the tetrahedron by length wlength
and exits at the point wout ,eout ,bout . The letter w stands for
world coordinates, e for normalized eye coordinates, and b
for barycentric coordinates.

where

Bd
i, j,k,l(b) =

d!
i! j!k!l!

(bx)
i(by)

j(bz)
k(bw)

l (3)

is the Bernstein basis function of degree d. The number of
Bernstein coefficients assigned per tetrahedron therefore de-
pends on the degree of the polynomial that is used to descri-
be the density distribution: |ct |=

(
d+3

3
)
, with n = 1,4,10,20

for degrees d = 0,1,2,3 respectively. By applying higher po-
lynomial degrees, non-linear density distributions can be ex-
pressed in a tetrahedron (cf. Figure 1).

To accumulate the attenuation encountered by a ray p(x)
passing through a tetrahedron (cf. Figure 2), the Bernstein
polynomial density distribution is integrated along the ray:

∫
p(x)

αt(b)db= |wout−win| · ∑
i+ j+k+l=d

[ci, j,k,l

bout∫
bin

Bd
i, j,k,l(b)db]

(4)
See [Yao02] for a detailed closed form solution of Equati-
on 4.

3.2. Statistical shape and intensity models (SSIMs)

A SSIM, as employed in this work, is a statistical mo-
del of shape and intensity (or density) variation generated
from a set of training tetrahedral grids by means of a prin-
cipal component analysis (PCA). The SSIM represents the
mean shape and density plus their specific variations descri-
bed by the PCA eigenvectors. We stick with the notation of
Yao [Yao02], who expressed an SSIM as Y = Ȳ +Pr. Here,

Y = [Ys,Yµ] denotes an SSIM instance with tetrahedral vertex
positions Ys and coefficients Yµ to Bernstein polynomial den-
sity distributions of a fixed degree. A model deformation is
described as a linear combination of deformation parameters
r and the eigenvector matrix P, added to the average vertex
positions and Bernstein coefficients Ȳ = [Ȳs,Ȳµ].

We chose this type of deformable volumetric model, be-
cause the deformation can be controlled by only a few para-
meters. Additionally, tetrahedra are the simplest polyhedral
cell type and allow a straight-forward interpolation in their
interior.

4. A GPU-based algorithm for fast projection of
unstructured tetrahedral grids

According to Equations 1 and 4, the total attenuation en-
countered by an X-ray in a single tetrahedron can be calcula-
ted directly, if the ray traversal distance in world coordinates
wlength = ||wout−win|| and its entrance and exit points in ba-
rycentric coordinates bin and bout are known. Moreover, the
Beer-Lambert law states that the total attenuation calculates
by the accumulated contributions of all tetrahedra along the
ray, irrespective of the order they are traversed ("visibility
order"). Our algorithm for simulating X-ray attenuation in
tetrahedral grids exploits these properties by independently
processing each tetrahedron of the grid.

We stream the tetrahedra and corresponding Bernstein po-
lynomial coefficients through the vertex, geometry and frag-
ment stages of the graphics pipeline. The entrance parame-
ters of the rays on the front-facets of the tetrahedra, such
as bin, are interpolated linearly between tetrahedral vertices.
Our approach adapts the idea of cell-based ray casting [WK-
ME03,GW06] to determine the ray exit parameters bout and
their traversal depths wlength in the fragment shader stage
using direct ray-facet intersection tests in barycentric coor-
dinates. Both the entrance and exit parameters are then app-
lied to integrate the Bernstein density functions (Equation 4)
in closed form using per-fragment operations. As proposed
in [SC06], we combine the contributions of single tetrahedra
by summing up their contributions in a post-processing step.

4.1. Calculating the rays’ entrance parameters

In a first processing step, per-vertex operations transform the
tetrahedral vertices into normalized device coordinates and
eye coordinates (ei). The vertex positions are then handed to
the per-geometry processing stage together with the Bern-
stein coefficients of the respective tetrahedron.

The per-geometry operations construct the matrix M =
[e0, e1, e2, e3] and its inverse M−1 using the normalized eye
coordinates computed in the per-vertex stage. M−1 is a li-
near transformation matrix that projects eye coordinates in-
to the local barycentric coordinate space of the respective
tetrahedron. We apply M−1 to compute beydir, the eye ray
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direction vector in barycentric coordinates at the tetrahedral

vertices: beyedir = bi−
M−1·eeye
|M−1·eeye| . The vector beyedir points

from the source to the entrance point in barycentric coordi-
nates of a ray in the tetrahedron. An additional processing
step then determines the length of its eye space correspon-
dent, eeyedir = ei− eeye, which is equal the length of the eye
coordinates ei at the tetrahedral vertices. Note that the source
(the eye position) is located at (0,0,0,1)T in eye space.

Consecutive operations in the geometry shader stage tri-
angulate a tetrahedron into its four facets. The parameters
bi, beyedir and ||eeyedir|| are assigned as parameters of the
triangle facet’s vertices. They are linearly interpolated bet-
ween the front-faces of the tetrahedron, thus making the
perspective-correct entrance parameters of all rays intersec-
ting the tetrahedron available in the fragment shader sta-
ge. We utilize the culling functionality of graphics hardware
to discard the rasterization of tetrahedral back-facets. The
Bernstein coefficients are pushed down the GPU pipeline as
non-varying parameters.

4.2. Calculating the rays’ exit parameters

Given the front-face parameters bin, beyedir and ||eeyedir|| of a
ray, the goal is to find the correct exit parameter bout and the
traversal length wlength. Here, we propose a method which
utilizes intersection tests in barycentric coordinates. In the
following bi, j denotes the jth component of a barycentric
coordinate bi. Keeping in mind that local barycentric coor-
dinates of a tetrahedron are non-negative and sum up to 1,
we observe the following:

1. At least one component of bin and of bout is 0, since
bin and bout are located on the facet of a tetrahedron:
∃i.bin,i = 0,∃ j.bout, j = 0.

2. In the “regular” case, a ray enters and exits a tetrahedron
on two distinct facets. This implies, that the zero compo-
nent of bin has a different index than the zero component
of the corresponding bout : ∃i.(bout,i = 0∧bin,i > 0).

As an exception from (2.), the ray might only hit a tetra-
hedral vertex. In this case the traversal depth wlength is 0 and
the ray is not attenuated.

We model the ray between the barycentric entrance and
exit points of a tetrahedron as braydir = bout − bin. Sin-
ce the vectors braydir and beyedir lie on the same ray of
sight, braydir can be calculated by the linear transformation
braydir = beyedir · s with the positive factor s. The barycentric
exit coordinates of an ray then compute as

bout = bin +(beyedir · s) (5)

According to observation (1.), we know that one compo-
nent of bout is 0. Consequently, there exist four possible ca-

nidates for s, given that the parameters bin and beyedir are
known:

si =−
bin,i

beyedir,i
(6)

The si describe the solutions for intersecting the ray with
all four tetrahedral facets.

Our algorithm for finding the correct si ignores all results
with beyedir,i ≥ 0 or bin,i = 0. Among the remaining candida-
tes, the smallest positive si is the correct solution for s. If no
candidate is found, then s = 0 and therefore bin = bout .

Once the transformation factor s is determined, we use it
to compute the actual exit point of the ray on the tetrahe-
dron bout according to Equation 5. Given bout it would now
be possible to determine eout by applying the transformation
matrix M and determine wlength = ||eout−ein||. However, we
propose a more efficient method based on the fact that s also
scales the ray direction vector in normalized eye coordinates
to the traversal length of the ray:

wlength = ||eout − ein||
= ||M · (bout −bin)||
= ||M · (braydir)||
= ||M · s · (beyedir)||
= s · ||eeyedir||

(7)

In our algorithm, we apply s to calculate bout according to
Equation 5 and wlength according to Equation 7. Afterwards,
all parameters are available to solve the Bernstein rendering
integral in the fragment shader stage. The attenuation en-
countered by the ray is then returned as the fragment color
and can be summed up (e.g. blended) with the contributions
of other tetrahedra in the grid.

5. An OpenGL implementation

This section describes an OpenGL-based implementation of
our algorithm. We will first propose an implementation of
the algorithm to render static tetrahedral grids with higher-
order attenuation functions that was presented in the pre-
vious section. This approach is then extended by a GPU-
implementation for the deformation of SSIMs. We imple-
mented the rendering pipeline based on OpenGL version 4.0,
featuring the OpenGL Shading Language (GLSL) as of ver-
sion 4.00.

5.1. Projection of tetrahedral grids on the GPU

In the following we will describe the render process for
a single tetrahedron. To generate the final image, i.e. ac-
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cumulating the attenuation of all tetrahedra in a 2D tex-
ture, we simply set the OpenGL blending functionali-
ty to glBlendFunc(GL_ONE, GL_ONE), glBlend-
Equation(GL_FUNC_ADD) and bind a framebuffer ob-
ject (FBO). Taking the exponential of the summed-up con-
tributions in the 2D textures is then performed in the post-
processing step using an addional rendering pass.

One GL_POINT primitive is issued per tetrahedron. The
respective tetrahedral vertex positions in world coordinates
and the Bernstein coefficients are thereby assigned as point
vertex attributes. The vertex shader is executed once for eve-
ry tetrahedron (GL_POINT primitive), and therefore has ac-
cess to the four vertex coordinates of the respective tetrahe-
dron. It performs the transformation into (normalized) eye
and device coordinate space. The transformed vertices and
the Bernstein coefficients are then streamed further down the
rendering pipeline.

In the geometry shader stage, M−1 is computed using the
GLSL inverse() call on M = [e0, e1, e1, e3]. The ma-
trix M−1 is stored as a dmat4 data type of 64bit precision.
(Note: If dmat4 is not available, mat4 can be used alterna-
tively. This might lead to visual artefacts due to numerical
issues in the matrix inversion.) In the next step the tetrahe-
dron is decomposed into its four triangle facets and the ||ei||,
bi and beyedir are linearly interpolated in between the geome-
try and fragment shader stages. OpenGL backface culling is
enabled explicitly, such that only the front-faces of the tetra-
hedron are rasterized.

The fragment program performs the ray-tetrahedron inter-
section tests in one vector division and the correct solution s
is found by issuing four mix() tests on the si. It then evalua-
tes the Bernstein integral (Equation 4). In order to efficiently
determine the integral solution, the Bernstein basis functi-
ons are precomputed using hard-coded multinomial factors
as proposed by [SC06].

Due to numerical precision issues, the beyedir components
sometimes contain values close to 0 at the edges or verti-
ces of a tetrahedron. The implementation avoids artefacts,
by discarding fragments which fulfill ||braydir||>

√
2.

5.2. Combined deformation and projection of SSIMs on
the GPU

The whole SSIM is stored in the graphics hardware memory
in order to perform the deformation and projection entire-
ly on the GPU. Our implementation utilizes OpenGL tex-
ture buffer objects (TBOs) to store the mean vertex coor-
dinates Ȳs and the mean Bernstein coefficients Ȳµ. Their
components can be accessed using unique vertex identi-
fiers and unique tetrahedron identifiers respectively. The ei-
genvector components of the vertex positions and of the
Bernstein coefficients are each split in one texture array
(GL_TEXTURE_2D_ARRAY). Every eigenvector maps to
exactly one 2D texture where the respective eigenvector

components are stored consecutively. Additionally, two ver-
tex arrays hold the static tetrahedral indices and the corre-
sponding vertex indices. The width and height of the 2D ei-
genvector textures and the number of eigenvectors are han-
ded to the shader stages as uniform parameters. The defor-
mation parameters are pushed to the pipeline using a TBO
as well.

In the vertex shader stage, the mean values are extracted
from the samplerBuffer (TBO) using the current tetra-
hedral and vertex ids. The normalized texture coordinates for
accessing the eigenvector textures are then precomputed, ap-
plying the uniform texture width and height. Afterwards, the
vertex shader performs the deformation of both vertex positi-
ons and Bernstein coefficients. The “deformed” tetrahedron
is then projected in consecutive shader stages according to
the projection method introduced in the preceding section.

To avoid multiple deformation of vertices that are sha-
red between tetrahedra a preliminary rendering pass is is-
sued that only performs the geometric deformation. Here,
the OpenGL transform feedback buffer is utilized to avoid
data exchange between CPU and GPU. One primitive is ren-
dered per vertex, and the deformation of the vertex positi-
ons is computed in the vertex shader stage. The implementa-
tion discards the fragment rasterization using the OpenGL
glEnable(GL_RASTERIZER_DISCARD_NV) functio-
nality. Rather than putting the result on the screen, the defor-
med vertices are stored directly on the GPU. They are then
bound to the shader programs as vertex buffer objects in a
consecutive rendering pass. A different vertex shader pro-
gram deforms the attenuation coefficients and proceeds with
the projection accordingly. The model is therefore deformed
and projected entirely on the GPU in three rendering passes.

6. Experiments and Results

Both the implemented projection algorithm and the combi-
ned deformation and projection methods were evaluated in-
dependently in terms of their speed. We additionally com-
pared the rendering quality of the projection approaches to
ground truth rendering generated from CT data. For the eva-
luation, a standard desktop PC with a 3GHz Intel Core2Duo
CPU E8400 and 12 GB DDR2 main memory was used.
The PCI Express x16 Gen2 slot of the machine was equip-
ped with an NVIDIA GeForce GTX 560 Ti GPU (NVIDIA
295.20 graphics drivers).

6.1. Rendering speed

To evaluate the rendering speed of the projection method on-
ly, we used tetrahedral grids based on the Stanford “dragon”
dataset with varying grid resolutions (from 17k tetrahedra to
4M tetrahedra) and the four density function degrees. The
data was generated by sampling the dragon as Bernstein po-
lynomial density distributions onto equally sized spherical



6 M. Ehlke et al. / GPU-based X-ray simulation for 3D reconstruction

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Number of tetrahedra

F
ra

m
e
s
 p

e
r 

s
e
c
o
n
d

17K 24K 42K 72K 174K 335K 670K 1.2M 2.8M 4M

d=0
d=1
d=2
d=3

Figure 3: Rendering speed performance in average frames
per second (30 measurements) on the dragon dataset for all
four density distribution degrees.

tetrahedral grids. We then recorded the projection speed whi-
le rotating the camera around the data in 12 degree incre-
ments. Therefore, in total 30 projections were generated per
grid resolution and degree for a full 360° trajectory. Using
an artificial dataset we could ensure that the viewport of size
10002 showed a constant pixel coverage of 75%.

The results depicted in Figure 3 show that the projection
speed approximately decreases inversely linear to the num-
ber of tetrahedra rendered. Higher polynomial degrees redu-
ce the projection speed compared to rendering density dis-
tributions with d = 0 or d = 1.

To evaluate the combined deformation and projection
speed of SSIMs, we employed a statistical model based on
an SSIM of the femur (thighbone) developed by Bryan et al.
[BSMH∗10] featuring a resolution of 616k tetrahedra and 45
eigenvectors. For the original SSIM only one density value
was given for each tetrahedron. To compare different degrees
we filled Bernstein coefficients for degrees 1 to 3 with dum-
my data. Although this results in inaccurate density distri-
butions for higher polynomial degrees, the deformation and
projection speed is not affected by this conversion.

The combined deformation and projection time of our im-
plementations was recorded while projecting the SSIM onto
an 10002 viewport in anterior view. To deform the model, 0
to 44 eigenvectors were considered and 30 combined defor-
mations and projections issued for every number of deforma-
tion parameters. We chose the parameters randomly equally
distributed within the range of the minimum and maximum
weight of the respective training data. To provide a rough
comparison to a CPU approach, a single-threaded deforma-
tion on the CPU was measured. Note that this did not include
the time for projecting the deformed model.

The results of this evaluation are given in Figure 4. The
rendering time of the combined deformation and projecti-
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Figure 4: Rendering time (in milliseconds, averaged over
30 experiments) of the combined deformation and projection
of the femur SSIM for a density function degree d = 1 and
d = 2.

on grows nearly linearly with the number of regarded ei-
genvectors (e.g. the number of applied deformation para-
meters). Our evaluation showed that the GPU-based defor-
mation and projection of models with density degree 3 (not
depicted) reaches a rendering time of 500 and 2000 milli-
seconds when applying 10 and 40 deformation parameters
respectively. Density distributions with d = 0 were proces-
sed as fast as d = 1 distributions.

6.2. Rendering quality

To judge on the rendering quality, we compared our projecti-
on approach to ground truth images generated from clinical
CT data of a pelvis (resolution 512× 512× 531). We seg-
mented the pelvis and extracted tetrahedral grids of four re-
solutions (20k, 58k, 252k and 731k tetrahedra) with density
functions sampled from the original CT data. A GPU imple-
mentation of the ray casting algorithm proposed by [KW03]
that is respecting the Beer-Lambert law was used to generate
the ground-truth projections.

During experiments, the viewport was set to a resoluti-
on of 15002 with the projected pelvis covering 31% of the
viewport pixels in anterior view. We measured the quality of
the projections generated with our results in terms of RMS
distance and mean absolute error to the ground truth. Only
those pixels were regarded in the distance measures that we-
re either covered by the projected pelvis in the ground truth
or in the virtual X-ray image compared to it.

Table 1 summarizes the results and Figure 5 provides
example projections and difference images. Note how the
image quality increases by utilizing higher density distribu-
tion degrees while keeping the grid resolution fixed.
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(a) (b) (c) (d) (e) (f)

Figure 5: Comparison of X-rays to ground truth data from CT. SSIM instance featuring (a) 56k tetrahedra and degree d = 0,
(b) d = 2. The corresponding difference images [(c)(d)] to ground truth (e) with red indicating positive error, blue negative
error. An clinical X-ray image showing the same pelvis with similar pose is depicted in (f)

d=0 d=1 d=2 d=3
20k rms 0.066 0.056 0.054 0.051

abs 0.046 0.039 0.039 0.035
58k rms 0.046 0.038 0.034 0.030

abs 0.034 0.028 0.025 0.022
252k rms 0.035 0.029 0.023 0.021

abs 0.026 0.022 0.016 0.014
731k rms 0.029 0.023 0.019 0.018

abs 0.021 0.017 0.012 0.011

Table 1: Root mean square and mean absolute error bet-
ween X-rays from model instances and ground truth projecti-
ons from the segmented pelvis CT (depicted in Figure 5). The
maximal pixel intensity in the ground truth image is 0.974.

7. Discussion

In general, it can be observed that the projection speed ap-
proximately decreases inversely linear to the number of te-
trahedra rendered. One would expect this behavior, assu-
ming that the computations performed per tetrahedron re-
mains constant when the grid resolution is increased.

The simulation of X-ray attenuation in tetrahedral grids
with Bernstein density functions of degree 1 is only slightly
slower than using a degree of 0. This holds true for the com-
bined deformation and projection on the GPU as well. We at-
tribute this to the hardware-accelerated vector operations on
the graphics hardware, which allows an efficient processing
of the four Bernstein coefficients stored in a four component
vector.

With higher-degree density distributions, the performan-
ce is decreasing. This matches well with the investigation
of Sadowsky et al. [SC06]. They note that the decrease is
caused by the Bernstein density function terms integrated
in the fragment shader, which show a “trend to exponential
growth”. However, our implementation still reaches interac-
tive rates even for d = 2 and more than 1 million tetrahedra.

The rendering time of the combined deformation and pro-

jection grows nearly linearly with the number of regarded ei-
genvectors (e.g. the number of applied deformation parame-
ters). For a polynomial degree of up to 2, the combined de-
formation and projection outperforms our CPU implemen-
tation by a factor of three to seven and scales better with
respect to the number of eigenvectors. It is important to no-
te that the CPU measurement does only include the time for
deforming the model. In practice, additional resources are
required to push the deformed model to the GPU and to pro-
ject it accordingly.

In our evaluation, the combined deformation and projec-
tion of models with density degree 3 on the GPU is signifi-
cantly slower than with lower degrees. We identified the tex-
ture fetch operations to extract the eigenvector components
as a bottleneck. When projecting using a degree of 1, inclu-
ding the maximum number of deformation parameters, we
achieve interactive rendering times of about 50ms. Since the
major variation of the SSIM is captured by the first eigen-
vectors, only a subset of the deformation parameters have
to be considered for the application in a 3D reconstruction
framework. In this case a higher degree might be used that
significantly increases projection quality without loss of per-
formance compared to all parameters with a lower degree.

The quality evaluation indicates that our method genera-
tes virtual X-ray images similar to our ground truth. When
higher-order density distributions are projected, anatomical
features such as cortical structures are depicted distinctly
even on lower grid resolutions. For density functions of de-
gree 0, similar results can only be obtained by generating the
X-ray images from grids of much higher resolution.

The difference images to ground truth data show dis-
crepancies at the boundaries of the projected pelvic bone
(cf. Figures 5(c) and (d)). We attribute this to the process of
grid generation. The strong geometric simplification for the
lower resolution tetrahedral grids in areas of high curvature
leads to boundary triangles located “inside” the pelvis. The-
refore, the boundary tetrahedra fail at recovering the thin,
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high-density cortical shell of the bone during the assignment
of density values. This has to be considered for model gene-
ration in future studies.

Compared to [SC06], our approach is a priori perspective
correct. We tailored the algorithm for the efficient integration
of Bernstein polynomial functions in barycentric space. It
does not require a pre-computation of face normals or an
explicit conversion from barycentric to eye space in order to
compute all integration parameters.

8. Conclusion

In this work, we proposed an algorithm for fast and accurate
simulation of X-ray images from deformable volumetric mo-
dels, represented by tetrahedral grids. The method is speci-
fically designed for GPU-accelerated execution and utilizes
the specific properties of X-ray attenuation to reach a high
degree of parallelization. Our projection method in combina-
tion with the model deformation process achieves interactive
frame rates even for large tetrahedral grids.

By employing higher-order attenuation functions, it is
possible to keep the resolution of the tetrahedral grid low
while obtaining a quality that is comparable to significantly
higher resolution grids with constant intensity encoding. Our
method also supports the use of different polynomial degrees
on the same grid, requiring only one additional rendering
pass for each new degree. This allows tetrahedral models to
be tailored for specific anatomical structures and applicati-
ons, both in terms of grid resolution and density distribution.

We presented a shader program implementation of the
projection algorithm that avoids any explicit branching or
looping. It processes the tetrahedra independent from each
other and therefore reaches a high degree of parallelism,
while making full use of the hardware-accelerated vector
operations. Due to the feed-forwardnature of the proposed
pipeline, it might furthermore be coupled with arbitrary de-
formation techniques executed on the CPU or the GPU.

The proposed extension to embed the deformation of ver-
tex positions and higher-order density distributions on the
GPU is shifting computational resources from the CPU to
the GPU. This has several advantages compared to a CPU-
based deformation: First, the CPU can concurrently perform
other computations, e.g. related to the reconstruction pro-
cess. Second, for a density function’s degree up to two, the
combined deformation and projection on the GPU shows a
performance increase by a factor of three to seven compa-
red to the CPU-based deformation. Finally, the GPU-based
deformation scales better with respect to the number of de-
formation parameters considered. Further research is requi-
red to find a more efficient GPU-memory storage and access
pattern for very large SSIMs with a high polynomial degree.

Future studies should include an in-depth evaluation of
the application of our projection method to the problem of

reconstructing a 3D anatomical model from clinical X-ray
data. We expect that in combination with existing methods
for GPU-based image-registration [FVW∗11], our projecti-
on method increases both, speed and accuracy of the 3D re-
construction process.
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