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Abstract
In this article we investigate methods to solve a fundamental task in gas trans-

portation, namely the validation of nomination problem: Given a gas transmission
network consisting of passive pipelines and active, controllable elements and given
an amount of gas at every entry and exit point of the network, find operational
settings for all active elements such that there exists a network state meeting all
physical, technical, and legal constraints.

We describe a two-stage approach to solve the resulting complex and numerically
difficult mixed-integer non-convex nonlinear feasibility problem. The first phase
consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer
nonlinear, reduced nonlinear, and complementarity constrained methods to compute
possible settings for the discrete decisions. The second phase employs a precise
continuous nonlinear programming model of the gas network. Using this setup,
we are able to compute high quality solutions to real-world industrial instances
whose size is significantly larger than networks that have appeared in the literature
previously.

1



1 Introduction
Natural gas is an energy resource of paramount importance for human society. In Europe
it accounts for about 25% of the primary energy consumption and is distributed through
a pipeline network with a total length of more than 100,000 km. The reliable and efficient
operation of these pipeline networks is a permanent challenge asking for computer-based
automated decision support.

The European legislative framework for gas transportation has undergone significant
changes in the recent past. By European-Union regulation [25], gas trading and trans-
portation now have to be unbundled, i.e., performed by independent companies. Formerly,
an integrated gas company, possibly owning the pipelines, storages, and consuming power
stations could conclude long-term supplier contracts and then operate its network in a
dedicated point-to-point fashion. Today, gas trading takes place at virtual, liberalized,
and non-discriminatory markets, with consumers, suppliers, storage, and transportation
handled by different independent players. The network itself is owned and operated by so-
called gas transmission system operators (TSO), who on behalf of gas trading companies
have to ensure the delivery of the traded gas from suppliers to consumers.

The market participants can obtain rights (contracts) from a TSO to supply or con-
sume gas from the network at given entries or exits. The TSO decides on the total
capacity of the rights sold for any particular entry or exit. Note that the rights for entries
and exits are sold independently from each other.

For any group of entries and exits the owners of these rights can nominate any bal-
anced1 amount of gas up to the contractual limit to be transported. When selling the
rights to nominate at single points, the TSO already warranted that they are capable of
fulfilling any such combined transportation request. The amount of nominated gas of all
entry and exit points of the network constitutes a nomination, i.e., the total amount of
gas that has to be transported at a given time. It further includes requirements on the gas
composition and pressure bounds. For more details of the German legislation, see [10].

In the present article we investigate a fundamental problem in gas transportation,
namely the validation of nomination problem (NoVa): Given a gas transmission network
consisting of passive pipelines and active, controllable elements such as valves and com-
pressors, and given a nomination (an amount of gas) at every entry and exit point, the
task is to find an operational setting of the active elements of this network such that there
exists a network state meeting all physical, technical, and legal constraints.

In practice, gas networks are operated/dispatched in a transient manner, i.e., over a
continuous time horizon. A transient model of a gas network, thus, would require as input
both initial states and future nomination profiles in continuous time. Since we consider
mid to long term planning, both are unknown. Thus, in the present paper we exclusively
deal with stationary (steady state) gas transportation.

Of course, a gas transportation operator must avoid granting rights of nominations
that are legally correct but technically infeasible. This is closely related to NoVa. Since
it is clearly desirable to grant as many nomination rights as possible, it is important to
detect nominations that cannot be handled by the network.

Altogether, NoVa leads to a complex mixed-integer non-convex nonlinear feasibility
problem, for which new solution approaches are proposed in the present paper.

1In fact, unbalanced nominations are allowed, but they have to be turned into balanced ones by using
regulating energy, which incurs additional cost.
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The state-of-the-art in practice is the verification of a given nomination by using
simulation tools, i.e., an experienced planner tries to find suitable settings of the active
elements by hand and uses a gas network simulator to test the outcome. With the models
described in the present paper we aim at automatizing this procedure. Furthermore, if
the planner fails to find a suitable setting, it does not prove its non-existence. This is
different for some of the models presented here, which can be solved to global optimality,
thus proving infeasibility in case the solver is not able to find any feasible solution.

1.1 Outline of the Paper
Since NoVa involves discrete decisions as well as nonlinearities, it is typically very hard
to solve larger (real-world) instances. We propose a sequential approach. In Section 3,
we present four methods that aim at finding good discrete decisions, while approximating
the nonlinearities. Then, we use these decisions (and corresponding network states) as
input for a nonlinear optimization model that includes a detailed physical model, see
Section 3.5. In this way, we can obtain high quality solutions.

In Sections 4 and 5, we present an extensive computational study. In Section 4,
we first evaluate each of the four approaches via computations on real-world instances
and discuss their different features. It turns out that each approach has its strengths
in different areas. In Section 5, we discuss the combination of these four approaches
yielding a fairly successful solver for the NoVa problem. To the best of our knowledge,
the successful solution of gas transportation problems of this size and complexity has
never been reported in the literature, so far.

1.2 Related Literature and Our Contributions
In this section, we will briefly highlight some of the related literature. For a recent survey
on gas network optimization in general, we refer to [64].

Variants of NoVa, mostly for minimizing operating costs, have been studied by many
researchers. Early approaches were often based on dynamic programming (DP). In [82],
DP was applied to steady state gas network optimization in cases where the underlying
gas network consists of a single straight line; later, branched network structures were
considered in [86]. A similar approach was described in [47], before [37, 9] studied networks
containing branches and loops of arbitrary size. A detailed overview on DP approaches
to gas network optimization can be found in [16].

Since the NoVa problem contains nonlinearities, nonlinear programming (NLP) tech-
niques were applied, too. In [43, 46, 79], subgradient methods were used to tackle the prob-
lem. Sequential linear programming techniques were used in [21]. Sequential quadratic
programming techniques were applied in [29, 24]. The problem was also studied with
respect to primal-dual interior point methods [73]. In [74], locally linearized mixed-
integer nonlinear programs (MINLPs) in combination with a receding horizon technique
are used. Interval analysis techniques were used in [8] to minimize operation costs for
instances without discrete decisions on the basis of the Belgian network.

Several papers deal with the extension or dimensioning of existing gas transportation
networks using NLP/MINLP techniques. They implicitly handle NoVa problems via
(simplified) gas transportation models, see, e.g., [2, 3, 20, 40, 85].
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Mixed-integer linear programming (MILP) methods have already been successfully
applied to steady state optimization of gas networks in [56, 55] and more recently also
to the transient case [57, 52, 30, 35, 34]. A combination of both, MILP- and NLP-
techniques, was suggested in [22].

Other techniques to tackle transient gas network optimization problems include sim-
ulated annealing [83, 51], genetic algorithms [48], ant colony optimization [18], and hi-
erarchical system theory [59]. The operating cost minimization problem can also be
formulated as a non-cooperative game, where compressors and entries are the players,
and communication is established through the network connectivity constraints. The
solution is then given as a Nash-equilibrium found by an iterative algorithm, see, e.g.,
[62, 63].

The idea of variable elimination in models for flows adhering to Kirchhoff’s first and
second laws, which we elaborate in Section 3.3, can be traced back at least to [39] and was
picked up repeatedly later on, see [53], [65], and the monograph [60]. In our approach,
this variable elimination is just a building block in a concerted feasibility testing in large
meshed gas distribution networks with compressors, resistors, and control valves, i.e.,
elements whose control involves combinatorial decisions.

Unlike the existing literature, our approach focuses on discrete decisions and provides
a higher level of (practical) detail. The MILP approach, which we present in Section 3.1,
builds on our own developments and extends it towards solutions that can successfully be
validated with a sophisticated gas network simulation. The spatial branching approach
of Section 3.2 applies outer approximations techniques and adapts them to gas networks;
the approach is based on a new approximation of compressors (compressor groups). The
RedNLP approach of Section 3.3 provides a novel transshipment heuristic to find good
discrete decisions. The MPEC approach is, as far as we know, the first application of
complementarity constraints in this area and applies a new two-stage solution approach.
Finally, the combination of these four approaches with a validation by a detailed NLP
provides to the best of our knowledge the best solution technique to date.

2 Detailed Physical Model
In this section, we describe a detailed physical and technical model of the gas transporta-
tion network and its components.

We model a gas network as a directed graph G = (V,A) with nodes representing
junctions of network elements. The arcs represent pipes, compressor groups, valves,
control valves, and resistors, denoted by Apipe, Acg, Ava, Acv, Ars, respectively. The set
of arcs can be divided into active (Acg, Ava, Acv) and passive (Apipe,Ars) ones. Active
elements can be controlled directly and have several states of operation. This is not the
case for passive arcs. We will treat each type in the presentation below.

For each node u, we introduce a gas pressure variable pu ≥ 0. Moreover, qa ∈ R
denotes the variable of the mass flow along arc a and describes the mass of gas passing
through a given area per unit of time. We use the convention that qa > 0 refers to gas
flow in the direction of the arc and qa < 0 indicates that the gas flows in the opposite
direction. For each network element a = (u, v), there is a relation between the mass
flow qa and the pressures pu and pv, depending on the type of a; see below for details.
Due to technical limitations or contractual requirements, we may have pressure bounds
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pu ≤ pu ≤ pu for each node u and mass flow bounds qa ≤ qa ≤ qa for each arc a; note
that qa and qa are allowed to be negative due to the direction of the flow.

We need the following two additional flow quantities: The volumetric flow Q = q/ρ
describes the volume of gas passing through a given area per time and depends on the
gas density ρ. The normal volumetric flow Q0 = q/ρ0 is the volumetric flow under
normal density ρ0, based on normal pressure p0 = 101 325Pa and normal temperature
T0 = 273.15K.

At some nodes gas is supplied into the network, while it is discharged at other nodes.
The mass flow d = (du)u∈V arising from a nomination specifies the amount of gas entering
(du ≥ 0) or leaving (du ≤ 0) the network at each node u. At each junction, the gas flow
is subject to the mass flow conservation condition∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa = du ∀u ∈ V, (1)

where δ+(u) and δ−(u) are the arcs leaving and entering node u, respectively. In this
paper, we assume a homogeneous gas composition, i.e., we approximate the molar mass
m, pseudocritical pressure pc, pseudocritical temperature Tc, normal density ρ0, and
compressibility factor under normal conditions z0 = z(p0, T0) by constants. In this case,
(1) can equivalently be expressed in Q0 instead of q.

2.1 Modeling of Pipes
Most network elements are pipes, and they are the only elements with a significant length.
A pipe a ∈ Apipe is a passive network element, i.e., the gas flow cannot be controlled
directly. Instead, it results from the laws of physics, which are described by a system
of partial differential equations: the continuity, momentum, and energy equation, e.g.,
[50, 26]. In the stationary case these equations can be simplified to a set of ordinary
differential equations:

∂qa
∂x

= 0, (2)

∂pa
∂x

+
q2a
A2
a

∂

∂x

1

ρ
+ g ρ

(hv − hu)

La
+ λa(qa)

|qa| qa
2A2

aDa ρ
= 0, (3)

qa cp
∂T

∂x
− qaT

ρ z

∂z

∂T

∂p

∂x
+ g qa

(hv − hu)

La
+ πDa cHT (T − Tsoil) = 0. (4)

Here, x denotes the one-dimensional position along the pipe and T the gas temperature.
The parameters La, Da, and Aa specify the length, diameter, and cross-sectional area of
the pipe a. Further, hu and hv are the normal heights of the nodes u and v, and g is the
gravitational acceleration constant. The parameters cHT, cp, and Tsoil denote the heat
transfer coefficient, the specific heat capacity, and the soil temperature, respectively. The
compressibility factor z = z(p, T ) is an approximation for the deviation of real gas from
ideal gas. There exists no exact model, but several approximations. We use the formula
of the American Gas Association (AGA), see, e.g., [49], in this paper:

z(p, T) = 1 + 0.257
p

pc
− 0.533

p/pc
T/Tc

. (5)
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See Papay [61] for another approximation. Finally, λa(qa) is the friction factor that
strongly depends on the vorticity of the flow. For laminar flow (i.e., small mass flow
rates), the friction factor complies with the exact model of Hagen-Poiseuille, see, e.g.,
[27]:

λHP
a (qa) =

64

Re(qa)
. (6)

With Re(qa) we denote the Reynolds number, which is a measure of the ratio of inertial
forces to viscous forces and is also used to characterize the different flow regimes, i.e.,
laminar or turbulent flow. The Reynolds number Re(qa) is linear in |qa|. For turbulent
flow (i.e., large mass flow rates) no exact model is known. A highly accurate empirical
model is the one of Prandtl-Colebrook, see, e.g., [19] and [66, Chap. 9]:

1√
λPC
a (qa)

= −2 log10

(
2.51

Re(qa)
√
λPC
a (qa)

+
ka

3.71Da

)
, (7)

where ka denotes the (integral) roughness of the pipe.
In addition to the differential equations, everywhere in the network pressure, temper-

ature, and density are coupled, see, e.g., [50, 58]. Several models exist for this equation
of state. A common choice is the thermodynamical standard equation:

ρ =
m

R

p

Tz(p, T )
. (8)

In our stationary model, the continuity equation (2) reduces to the fact that the gas
flow along a pipe is constant, which we already ensured by introducing a single mass flow
variable for each pipe. Moreover, we assume a constant gas temperature T throughout
this paper. Hence, the energy equation (4) can be neglected. This leaves us with the
momentum equation (3).

2.2 Modeling of (Control) Valves
Valves are active elements used to control the gas flow. A closed valve prevents gas from
flowing through this arc, decoupling the pressures at both sides of the valve. If the valve
is open, however, no restriction on the flow through the valve applies. Since the physical
length of a valve is negligible, we assume the pressures at both ends to be equal in this
case. For a valve a = (u, v) ∈ Ava, we introduce a binary variable sa to obtain

sa = 0 =⇒ qa = 0, pu, pv arbitrary,
sa = 1 =⇒ qa arbitrary, pu = pv.

(9)

Control valves extend the model of valves by allowing to reduce the pressure within
certain technical limits. They are usually found at the interconnection points of subnet-
works with different pressure ranges. For a control valve a = (u, v) ∈ Acv, we assume
that the pressure reduction ∆a = pu − pv ≥ 0 lies within [∆a,∆a]. The model of a valve
is extended by an additional binary variable sacta , which determines whether the control
valve is actively working or not. We obtain the following model:

sacta = 1 =⇒ 0 ≤ ∆a ≤ ∆a ≤ ∆a, qa ≥ 0, sa = 1. (10)

This allows to model the following three control valve states: “closed” (sa = 0, sacta = 0),
“active” (sa = 1, sacta = 1), and “bypass” (sa = 1, sacta = 0).
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2.3 Modeling of Compressor Groups
While the gas pressure decreases along a pipe, groups of compressors allow to increase
the pressure to facilitate long-distance gas transmission. Similar to control valves, a
compressor group a = (u, v) ∈ Acg can take three states “closed”, “active”, and “bypass”.
Thus, we add a binary variable sa together with (9) and a binary variable sacta that
controls whether a compressor group is active, i.e., compressing.

Each compressor group consists of at least one compressor, which increases the pres-
sure of the gas, and additional technical devices. The set of configurations of a compressor
group defines the valid combinations of the included compressors. For instance, if high
throughput and moderate pressure increase is required, the compressor units may work
in parallel, while in situations with moderate pressure increase some compressors may be
deactivated. The configurations introduce an additional discrete aspect to the model of
compressor groups. It is straightforward to model this by using further discrete variables.

The modeling of compressors is addressed, for instance, in [15, 14, 84]. The feasible
range of the pressure increase of a compressor depends on technical parameters and the
volumetric flow. For a compressor, we call the set of all tuples (pu, pv, Qa), such that the
compressor can increase the pressure from pu to pv for volumetric flow Qa, its operation
range. This is a nonlinearly bounded non-convex set, which is described using the so-called
characteristic diagram of the compressor; see Figure 3 for an example.

The energy needed to compress a unit of gas from pu to pv is described by the adiabatic
head

Had,a(pu, pv) = z(pu, T )T
R

m

κ

κ− 1

((
pv
pu

)(κ−1)/κ

− 1

)
, (11)

with the universal gas constant R and isentropic exponent κ, see, e.g., [17]. The power
consumption of an active compressor is

Pa =
Had,a

ηad,a
qa, (12)

where ηad,a denotes the adiabatic efficiency of a compressor.
Often, larger subnetworks of compressor groups, control valves, and valves are located

at the intersection of several pipelines. The topology of such a subnetwork can be used to
realize many operation modes by appropriately setting the active elements of this subnet-
work. In these cases, usually very few of the possible switching combinations correspond
to realistic operation modes. Thus, for such subnetworks our model includes additional
linear constraints with discrete variables, enforcing so-called Subnetwork Operation Modes
(SOM), ensuring that only one of the permitted switching combinations is used.

2.4 Modeling of Additional Pressure Losses
Besides the pressure loss resulting from friction of the flow through the pipes, there are
some properties and components of the network inducing an additional pressure loss.
Such a pressure loss is caused by, e.g., flow diversion and turbulences in shaped pieces,
measurement devices, curved parts within compressor groups, filter systems, measurement
devices, reduced radii, and partially closed valves. Neither exact data nor exact models
are available for most of these pressure loss effects. We represent them by inserting
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a virtual resistor element at affected locations of the network. Two different types of
resistor models are used: either a constant pressure loss in flow direction

pu − pv = ∆a sgn(qa), (13)

or a pressure loss according to an equation of Darcy-Weisbach type using the parameters
drag factor ζa and a fictitious diameter Da:

pu − pv =
8ζa
π2D4

a

|qa| qa
ρu

. (14)

At this point, we have proposed models for each network component, enabling us to
formulate the nomination validation problem NoVa as a feasibility problem: Given a gas
network G = (V,A) as defined above, can one realize a given nomination d?

2.5 Model Adjustments and Approximations
A model consisting of the presented component models leads to a discrete-continuous,
nonlinear, nonsmooth feasibility problem with ordinary differential equations. Due to its
complexity, this model cannot be solved directly for large-scale instances. Thus, some
aspects of this detailed model are approximated in order to yield more accessible models.
We present several such approximations that are used by the approaches presented in
Section 3.

The momentum equation (3) is replaced by the following approximation from the
literature as an approximation of the behavior of each pipe a = (u, v) ∈ Apipe, see, e.g.,
[5, 50]:

p2v =

(
p2u − Λa(qa) |qa| qa

eSa − 1

Sa

)
e−Sa , (15)

with

Sa =
2g (hv − hu)m

Rzm T
, (16)

Λa(qa) =
( 4

π

)2 La
D5
a

m

R
zm T λa(qa), (17)

zm = z(pm, T), (18)

pm =
2

3

(
pu + pv −

pu pv
pu + pv

)
. (19)

The influence of the slope of a pipe is summarized in Sa according to (16). Under certain
assumptions, this formula gives an analytic solution to the momentum equation.

It turns out that even the simplified models as just described cannot be solved for
real-world instances with state-of-the-art black-box solvers, as we will demonstrate in
Section 4.1. In the following section, we therefore present a new two-step approach for
NoVa.
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3 Our Solution Approach
In this section, we present an approach to solve NoVa that works in two steps: In the first
step, we apply four approaches to handle the discrete decisions necessary to solve NoVa.
These models use an approximation for each network component. The solutions provided
by each of these approaches are validated in a second step to find accurate solutions for
NoVa by fixing the discrete decisions and using the solutions as a starting point for solving
in a more accurate reference NLP model.

Of course, both the choice of a model and the choice of an approach imply certain
tradeoffs regarding physical accuracy and computational tractability. Nevertheless, it is
clear that a model that is sufficiently accurate for practical application will feature both
discrete decisions and non-convex relationships between pressure and flow, i.e., one has
to solve a MINLP problem.

3.1 The MILP Approach
Whereas state-of-the-art solvers for mixed-integer linear programming problems are often
able to solve even problems with millions of variables and constraints in relatively short
time, algorithms for solving non-convex MINLPs are in most cases not yet able to treat
large-scale problems as they appear in gas networks (see Section 4.1 below). Thus, we
exploit the strength of MILP solvers for NoVa via linearization of the nonlinearities.

We start with the model parts and formulas given in Section 2. Here, we have the
basic variables p, Q0, P and s. Compared to constraints involving nonlinearities, com-
binatorial aspects arising from valves, control valves, compressors, or from subnetwork
operation modes (SOM) are fairly straightforward to integrate within a MILP model. In
the following, we thus focus on the handling of the nonlinearities arising from pipes and
compressors.

To model a pipe a = (u, v) ∈ Apipe, we assume a constant (mean) compressibility
factor z and a constant friction factor λa. In particular, we use

zm = z
(min{pu, pv}+ max{pu, pv}

2
, T
)
, (20)

λa =
(

2 log10

(Da

ka

)
+ 1.138

)−2
. (21)

instead of (18)–(19) and (6)–(7). Under the assumption of a constant compressibility
factor, Equation (15) is separable and can hence be expressed by the sum of three non-
linear univariate functions. The power consumption of a compressor (see (11) and (12))
is modeled by a recursive decomposition into three nonlinear univariate functions and
one bivariate product. We remark here that from a theoretical point of view this decom-
position is not necessary for our approach, but it is very valuable for the application to
large-scale instances.

Our approach to integrate the nonlinearities in a MILP model is based on piecewise
polyhedral relaxations of the nonlinearities, i.e., the nonconvexities arising from nonlinear
equality constraints in the MINLP model are transformed into nonconvexities expressed
by linear constraints and integrality conditions using a set of additional variables.

Since all basic variables (mainly p and Q0) are bounded, we can assume that any
occurring nonlinear function f : D → R is defined on a compact set D ⊂ Rd, typically
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a box. We triangulate D into simplices S1, . . . , Sn and approximate f by a piecewise
linear interpolation gi(x) for x ∈ Si, gi affine, i = 1, . . . , n, over the vertices of the
simplices S1, . . . , Sn. Additionally, we compute upper bounds εi, i = 1, . . . , n, for the
approximation error on each simplex and replace each occurrence of f in the constraint
set by its piecewise polyhedral outer approximation. The interpolations together with the
bounds for the approximation errors are computed with an adaptive refinement algorithm,
which makes use of convex underestimators in order to provide reliable error bounds. For
a detailed description of the procedure we refer to [34, 33].

Finally, such a piecewise polyhedral outer approximation is modeled in terms of mixed-
integer linear constraints by means of a modified version of the so-called incremental
method of [54]. The necessary modifications of the method have also been introduced in
[34, 33]. A crucial assumption for the application of the incremental approach is to order
the simplices according to a Hamiltonian path in the dual graph of the triangulation. Si-
multaneously, an appropriate ordering of the vertices of each simplex must be constructed
such that the first vertex of a simplex is equal to the last vertex of the predecessor simplex
in the Hamiltonian path. While this is trivial in dimension one, we refer to [34, 33] for
more details on how to obtain such an ordering in higher dimension.

The modified version of the incremental model is as follows:

x = x̂10 +

n∑
i=1

d∑
j=1

(
x̂ij − x̂i0

)
δij , (22)

y − e = ŷ10 +

n∑
i=1

d∑
j=1

(
ŷij − ŷi0

)
δij , (23)

−ε1 −
n−1∑
i=1

ωi(εi+1 − εi) ≤ e ≤ ε1 +

n−1∑
i=1

ωi(εi+1 − εi), (24)

d∑
j=1

δij ≤ 1, 1 ≤ i ≤ n, (25)

δij ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ d, (26)
d∑
j=1

δi+1
j ≤ ωi ≤ δid 1 ≤ i ≤ n− 1, (27)

ωi ∈ {0, 1} 1 ≤ i ≤ n− 1. (28)

Here, y denotes an approximation to f(x) within the piecewise polyhedral outer approx-
imation of the graph of f . The j-th vertex of the i-th simplex Si of the triangulation is
denoted by x̂ij and ŷij := f(x̂ij). Constraints (24) ensure the error tolerance e over each
simplex. The binary variables ωi, i = 1, . . . n − 1, are used within Constraints (27)–(28)
to express that if for the i-th simplex some variable δij > 0, j ∈ {1, . . . , d}, then δkd = 1
for all previous simplices k = 1, . . . , i− 1 in the Hamiltonian path. The model (22)–(28)
is applied to the formulas (15), (11), and (12)—with simplifications as outlined in the
beginning of this section to obtain 1-D and 2-D approximations, respectively. As an ex-
ample, a piecewise polyhedral relaxation of the function f(Q0,a) = αa |Q0,a|Q0,a with
D = [−4, 4], one of the univariate nonlinearities arising from the simplification of (15), is
given in Figure 1. Here the simplices are the intervals specified by the breakpoints. The
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Q0,a

f(Q0,a)

−4 −2 0 2 4

Figure 1: MILP-relaxation of f(Q0,a) = αa |Q0,a|Q0,a with αa = 0.25 on [−4, 4] with
breakpoints −4,−2, 0, 2, 4.

set of feasible solutions to (22)–(28) is depicted as the union of the parallelograms drawn
with dotted lines in Figure 1.

Besides the function f(Q0,a) = αa |Q0,a|Q0,a, the remaining univariate subexpressions
arising from Equation (15) are p2u and p2v. We introduce additional variables for these
squared pressures. In many cases, however, we can then remove the original pressure
variables as they are not needed, e.g., in the trivial case when the only elements incident to
a node are pipes. We decide a priori whether it is necessary to introduce an approximation
of p2u for a node u in an optimal way using an auxiliary integer linear program (ILP). The
variables of the ILP express whether a pressure variable, a squared pressure variable, or
both variables are needed. The constraints then enforce these requirements. For example,
for both endpoints of a pipe, squared pressure variables are needed, and similarly pressure
variables are required at both endpoints of a compressor group. For a MILP formulation
of a valve, however, homogeneous variables at both endpoints are sufficient. The objective
of the auxiliary ILP is then to minimize the sum of variables that express that both
types are required and hence to minimize the number of nonlinearities for the coupling
of pressure to squared pressure variables.

Characteristic diagrams of compressors are not modeled explicitly. We enforce any
active compressor to operate at least within a convex relaxation of its operation range.
This is achieved by dynamically cutting off solutions via the separation of tangential
hyperplanes to this convex relaxation of the characteristic diagrams, see [44]. Moreover,
in order to improve the chance that the corresponding MILP solution yields a feasible
solution for more accurate NLP models (see Section 3.5), we try to obtain a feasible
solution by incorporating the minimization of the max norm distance to the centroids of
the characteristic diagrams of all active compressors in our objective function. We remark
that although operating ranges of compressors are typically not convex, the centroids of
all the encountered characteristic diagrams are clearly feasible points. To choose among
the different configurations of each compressor group we incorporate SOS-1 constraints
on the respective binary decision variables.
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3.2 The Spatial Branching (SB) Approach
The second approach solves an approximated version of NoVa with an outer approx-
imation method. We use a tailored version of the branch-and-cut constraint integer
programming framework SCIP, see [1, 71, 78], which implements a combination of con-
vex (linear) outer approximation and spatial branching (SB) to prove global optimality.
This method is also used by state-of-the-art solvers for generic MINLP problems, see,
e.g., [6, 75, 76, 77, 72].

Let us give a brief review about the concept of outer approximation and spatial branch-
ing. Let S ⊆ Rn be the (non-convex) feasible set of the problem. A linear approximation
of the feasible set is computed such that

S ⊆ {x |Dx ≤ d}

for suitable D ∈ Qm×n and d ∈ Qm. This relaxation is used during the branch-and-bound
algorithm and is successively refined by additional cutting planes. Branching on integer
variables deals with the integrality requirements. When all integer variables take integral
values, the relaxation is strengthened by recursive spatial branching, i.e., branching on
continuous variables appearing in nonlinear terms. Spatial branching on variable i of the
solution x∗ to the linear relaxation refers to subdividing the previous linear relaxation
into two parts

S ⊆ {x |Dx ≤ d, xi ≤ x∗i } ∪ {x |Dx ≤ d, xi ≥ x∗i } .

For each part of the relaxation, a subproblem is created, and a tighter relaxation can be
computed due to tighter variable bounds, see Figure 2 for an example. Spatial branching
thus improves the convex relaxation, in particular, at places where the describing functions
are non-convex. Branching is pursued until all integral variables take integral values and
the convex relaxation is “close enough” to the feasible region. This way, global bounds
on the objective function can be computed and the problem can be solved to global
optimality.

To apply this approach to NoVa, let us first consider the modeling of pipes. We
use (15) and (16) formulated in norm volumetric flow Q0 and apply the modifications
(20), (21). We introduce squared pressure variables πu := p2u for all nodes u ∈ V . Recall
from Section 2 that all pressure values are nonnegative.2 Formulating (15) using the
pressure square variables yields

πu − βaπv = αa |Q0,a| Q0,a, (29)

for suitable constants αa and βa > 0, which depend on the characteristics of the pipe,
see (16), (20), and (21). To separate the nonlinear part, we introduce an additional
variable ya and get

πu − βaπv = ya (30)
ya = αa |Q0,a| Q0,a. (31)

While (30) is linear, (31) is a nonlinear equation and thus a non-convex constraint. The
nonlinear function is handled by linear outer approximation through a special SCIP plugin

2The pressure in the system is never smaller than the atmospheric pressure.
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Figure 2: Successive improvement of the approximation of x 7→ α |x|x by spatial branch-
ing

for this type of function performing separation of the convex hull and spatial branching,
see [31, 78]. Figure 2 visualizes the treatment of the nonlinear function x 7→ α |x|x by
this approach.

Besides the nonlinear pressure loss equations for the pipelines, compressors are another
source of nonlinear behavior. As mentioned in Section 2.3, the capability of a compressor
is described by its characteristic diagram, which is represented by the set of feasible
combinations of volumetric flow Qa and adiabatic head Had,a, see Figure 3 (left). These
points are obtained by physical measurements on the compressor with different pressures
and flow rates. However, these quantities can not easily be computed in our model. But
for a compressor a = (u, v), they can approximately be mapped to the space (pu, pv, Q0,a)
of inlet and outlet pressure and normal flow through the compressor, respectively, via pu

pv
Q0,a

 = pu

 1(
Had,a

c2
+ 1
) κ
κ−1

Qa
c1

 , (32)

where c1 and c2 are constants, see (5), (8), (11), and (20). Each point specifying
the characteristic diagram can thus be translated into a ray of feasible combinations
{(pu, pv, Q0,a) | pu ≥ 0} for the compressor. The convex hull of all these rays, which is a
cone, approximates the operation range of the compressor. We further intersect the cone
with

{(pu, pv, Q0,a) | pu ≤ pu ≤ pv ≤ pv, Q0,a ≤ Q0,a ≤ Q0,a} ,

corresponding to the technical limitations of the compressor. This gives a bounded convex
polyhedron. Figure 3 visualizes the different steps in this approximation procedure.

The behavior of compressor groups and their configurations is approximated in this
approach. In each configuration in which several machines are involved, flow conservation
constraints connect the different machines. This results in a higher dimensional polytope
for the subnetwork describing the configuration (e.g., several serial or parallel compres-
sors). Instead of using the full polytope, we project it on the boundary variables, i.e., inlet
and outlet pressure and flow, by Fourier-Motzkin elimination. The result is a description
of the capability of each configuration. Finally, we approximate the operation range of the
group in active state by the convex hull over the polytopes of the different configurations.
Closed and bypass states are modeled using additional binary variables. In our imple-
mentation, polyhedral calculations, i.e., convex hull computations and Fourier-Motzkin
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Figure 3: From the characteristic diagram of a compressor (left) over the cone (middle)
to the operation range polytope (right)

elimination, are carried out by the Parma Polyhedra Library [4]. Note that the operation
range polytope uses pressure variables, not squared pressure variables. Hence, explicit
coupling constraints πu = p2u and πv = p2v are needed upstream and downstream of each
compressor group. Algorithmically, we treat these constraints in the same way as (31).

Valves, control valves, and resistors are modeled as described in Section 2. Moreover,
our approach does not involve an objective function. We therefore stop the solution
process as soon as a feasible solution is found and proceed with the detailed validation,
see Section 3.5.

3.3 The reduced NLP (RedNLP) Approach
The approach presented in this section relies on transforming nonlinearities into a more
accessible form, reducing the problem dimension of the underlying NLP. This transfor-
mation approach is embedded into a heuristic procedure for finding promising switching
decisions. The system of (linear) flow conservation (1) and (nonlinear) pipe equations (15)
is transformed into an equivalent nonlinear system, where most flow and pressure vari-
ables get eliminated, because they are explicit functions of a relatively small group of
variables, consisting of one flow variable per fundamental network cycle and two pressure
variables per active arc. Apart from the explicit formulae for flow and pressure variables,
the transformed system contains implicit equations whose number equals the number of
fundamental cycles of the network and whose unknowns are just the variables from the
mentioned group. The approach aims at checking feasibility for a set of switching states
of active elements, either predefined or resulting from a transshipment heuristic.

Transformation of Nonlinearities For a given setting of all the active elements
(switching state) of the network, the directed graph Ḡ = (V, Ā) ⊂ G models the rele-
vant network, where Ā denotes the set of all arcs not being in closed state.

Let A+ denote the node-arc-incidence-matrix and A be the submatrix of full row rank
arising from the deletion of one row, corresponding to a preselected, pipe-incident root
node u ∈ V with pressure variable pu.

Let π and |Q0|Q0 denote the vectors with components πu, u ∈ V \u, and |Q0,a|Q0,a,
a ∈ Ā. For a = (u, v) ∈ Acg ∪Acv, i.e., for compressor groups and control valves, πu and
πv denote squared outgoing and ingoing pressures and ∆a := πv −πu. For a /∈ Acg ∪Acv,
we define ∆a = 0. The diagonal matrix α = diag(Λa) has entries which either are the
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pipe specific values Λa, a ∈ Apipe, as defined in (17), or 0, otherwise. The vector of all
ones is denoted by 1.

The equations for flow conservation at the nodes and pressure drop on the arcs read:

AQ0 = d, (33)

∆−ATπ − α |Q0|Q0 = −πuAT1, (34)

where (34) is built from the pressure loss equations (15) for pipes by neglecting geodetic
heights and adding the vector ∆ for pressure changes in compressor groups or control
valves. The compressibility factor z is approximated by (5). Splitting A = (AB ,AN ) into
basis and non-basis parts according to a spanning tree, (33)–(34) are equivalent to

Q0,B = AB−1d−AB−1ANQ0,N , (35)

π = πu 1− (ABT )
−1(

αB |Q0,B|Q0,B −∆B

)
, (36)

αN |Q0,N |Q0,N −∆N = ANT (ABT )
−1(

αB |Q0,B|Q0,B −∆B

)
. (37)

Indeed, inserting (35) into (34) yields

∆B −ABTπ − αB |Q0,B|Q0,B = −πuABT1, (38)

∆N −ANTπ − αN |Q0,N |Q0,N = −πuANT1. (39)

Multiplying (38) with −(ABT )
−1

implies (36), and inserting (36) into (39) yields (37).
Let us add some remarks on how these formulae relate to network issues:

• The arcs corresponding to the columns of AB form a spanning tree TB ∈ Ḡ.

• Each arc a belonging to a column of AN stands for a fundamental cycle with respect
to TB , i.e., the unique cycle in TB ∪ a.

• The columns of AB−1 mark the directed paths in the spanning tree from the root
node to all other nodes, with entry +1 (−1) if the arc is directed in the same
(opposite) way as the path from the root, and with 0 if the arc does not belong to
the path.

• The columns ofANT (ABT )
−1

mark the tree arcs in fundamental cycles. The column
corresponding to arc a is the difference of the columns of the paths from the root
to the head of a and that to its tail.

• The representation of π in (36) states that the (squared) pressure at an arbitrary
node u 6= u is determined by the pressure at the root minus the pressure drop along
the unique path from u to u and plus/minus the pressure changes by the active arcs
along the path.

• The identity (37) states that the pressure change along the tree arcs of each funda-
mental cycle must equal the change along the arc that created the cycle.

Compared to (33)–(34), one ends up with a much smaller implicit part in the trans-
formed system, namely (37). It has just as many equations as there are components of
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Q0,N or as there are fundamental cycles in Ḡ. For strongly meshed gas distribution net-
works, such as those met in many parts of Europe, this number still can be substantial.
For weakly meshed gas transportation networks, however, values of 1 or 2 already become
practically relevant. If the cycles of Ḡ are arc disjoint, then (37) is separable with respect
to the components of Q0,N .

Altogether, the feasibility system we use comprises (37), pressure bounds applied to
the right-hand sides of (36), and the following specific conditions for resistors, control
valves, and compressor groups.

Control valves allow for a pressure reduction, when traversed in the nominal direction.
Compressor groups are modeled at an aggregated level, without resolution to individual
machines. We add the following restrictions for a = (u, v) ∈ Acg:

pu ≥ pv, (pu − pv) · (−Q0,a) ≤ 0 (40)
(pu − pv) · (Q0,a −Q0,a) ≤ 0, (pu − pv) · (Q0,a −Q0,a) ≤ 0 (41)

(pu − pv) ·
(
rata −

pv
pu

)
≤ 0, (pu − pv) ·

(pv
pu
− rata

)
≤ 0 (42)

(pu − pv) · (inca − pv + pu) ≤ 0, (pu − pv) · (pv + pu − inca) ≤ 0. (43)

Inequalities (40) specify that compressor groups allow for a pressure increase in their active
mode when traversed in the nominal direction. In order to approximate the characteristic
diagram, lower and upper bounds (Q0,a and Q0,a, respectively) are imposed on the flow
for the active mode (see (41)). We impose lower and upper bounds (rata and rata,
respectively) on the pressure ratio (see (42)) and on the pressure increase (inca and inca,
see (43)). Resistors are modeled according to their type by the respective equation (13)
or (14) in a non-smooth way due to the occurrence of the sign of the flow rate.

Search for Promising Switching Decisions To enable the approach described above,
we have to fix switching states for control valves, valves, and compressor groups. We
use two different techniques to fix these binary decisions. First we use a transshipment
heuristic, and then we try some sets of given switching states for all active elements. These
sets are constructed by using expert knowledge about the network and by collecting sets
of switching states from the transshipment heuristic in cases where they led to a feasible
solution for some nominations.

Building the Transshipment Model In gas networks often there are subnetworks of
elements representing bigger entities typically comprising compressor groups and other
active arcs, enabling a limited number of internal flow paths only. We collapse internal
nodes and arcs of such an entity into a single node, which is connected to all nodes on the
boundary of the entity in both directions. The arcs are assigned small cost coefficients.
The node representing the entity is assigned the balance of all in- and outflows related to
nodes within the entity.

All switchable arcs, i.e., valves, control valves, and compressor groups, outside of enti-
ties are substituted by one or two directed arcs depending on the signs of the flow bounds
Q0,a and Q0,a. Cost coefficients are assigned heuristically, for instance, in increasing order
starting with forward arcs representing compressor groups, followed by forward arcs mod-
eling control valves and arcs representing valves pointing into both directions. Finally,
backward arcs for control valves and compressor groups are assigned the largest costs.
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Each connected component of the network remaining after the removal of all entities
and switchable arcs is collapsed into a single node, which is assigned the balance of the
nominations for the entries and exits within the component. Arcs in both directions
connect the node representing such a connected component with all boundary nodes of
entities and endpoints of other switchable elements being incident to the component. To
all these arcs, the sum of the friction coefficients αa in the component is assigned as cost.

Using the Transshipment Model The moderate size of the transshipment problem
allows for rapid solution by any state-of-the-art linear programming solver. From the
optimal solution, switching states for active arcs in the original network are derived.
Namely, if in the optimal solution there is no flow passing through an element outside
an entity, we choose the off-state for it. Reflecting expert knowledge, for all the elements
inside a specified entity, a suitable decision from the corresponding subnetwork operation
mode is chosen by a set of rules based on the amount of flow and the flow direction
through the entity.

3.4 The MPEC Approach
As seen in Section 2, the problem of validation of nominations is a discrete-continuous
nonlinear and non-smooth feasibility problem. The approach described here aims at
finding feasible solutions by means of NLP techniques. Since these techniques require a
continuous and sufficiently smooth model (C2 in our case), we reformulate the discrete
and non-smooth aspects in an appropriate way. For a more detailed explanation of the
theory behind this approach see [67, 69].

Smoothing Techniques Many physical and technical aspects of NoVa are non-smooth,
such as the pressure loss at pipes or resistors. Most of them can be handled by standard
smoothing techniques for min, max, sgn, and absolute value functions (cf. [68]), but others
require problem-tailored smoothing techniques. As an example, we present the smoothing
of our non-smooth model of the pressure loss in pipes, which is based on the quadratic
pressure loss model (15). For the compressibility factor we choose the AGA formula (5),
see, e.g., [68]. Obviously, the term |qa| qa in (15) has a second-order discontinuity at zero,
while the composite friction model λHPPC(qa) defined by (6), (7) has a jump discontinuity
at the transition from laminar to turbulent flow, see Figure 4 (left). Both non-smooth
aspects are handled by a global smooth approximation developed in [12, 11, 68]:

φ(qa) ≈ λHPPC(qa) |qa| qa. (44)

Our choice of φ(qa) is asymptotically correct for |qa| → ∞; see Figure 4 (right).

Complementarity Constraints for Combinatorial Aspects Active network ele-
ments like compressor groups introduce discrete decisions into the validation problem.
For a compressor group a = (u, v) ∈ Acg, these discrete decisions result in states like
active or closed that can be described in a simplified way by

a is active/in bypass =⇒ pv − pu −∆a = 0, ∆a ≥ 0,

a is closed =⇒ qa = 0,
(45)
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Figure 4: Discontinuous friction model λHPPC and its smooth approximation φ for small
flow rates (left) and large flow rates (right)

with ∆a denoting the pressure increase. Standard mixed-integer approaches for modeling
(45) use binary variables for the states (cf. Section 3.1 and 3.2). Here we follow a different
approach and replace (45) by the complementarity constraint

p̃a qa = 0, ∆a ≥ 0, p̃a := pv − pu −∆a. (46)

The model for the active state in (45) is not sufficiently detailed to be practically rele-
vant. An active group can actually be operated in several configurations k ∈ Ka, each
configuration being a serial arrangement or parallel combinations of compressors. Our
heuristic approach attempts to determine the “most feasible” configuration for a given
flow-pressure-situation (pu, pv, qa). To this end, we make the fictitious assumption that
the entire gas flow passes through every configuration, qa = qka for all k ∈ Ka, and relax
the pressure increase ∆a = pv − pu in (45) to a convex combination of pressure increases
of the individual configurations, ∆k

a = pkv − pku. This is completed by a feasibility model
(pku, p

k
v , q

k
a ,Ska ) ∈ Fka for every k ∈ Ka, consisting of a set of smooth nonlinear equations

and inequalities and a set of slack variables Ska ; see [68] for details. The compressor group
model thus takes the form

∀k ∈ Ka : ∆a =
∑
k∈Ka

σka∆k
a,

∑
k∈Ka

σka = 1, σka ≥ 0,

qa = qka , (pku, p
k
v , q

k
a ,Ska ) ∈ Fka .

(47)

To obtain the “most feasible” configuration with the refined model (47), we minimize a
suitable norm of the slack variables. Then we can heuristically choose the configuration
k with a minimum slack variable value and a maximum coefficient σka .

Using techniques similar to (46) for the remaining active elements, almost all discrete
aspects can be represented by complementarity constraints. In combination with the
smoothing techniques, the NoVa problem is thus transformed into amathematical program
with equilibrium constraints (MPEC). We apply standard MPEC regularization schemes
as in [70, 28, 41] to obtain a smooth and continuous NLP reformulation.

A Two-Stage Solution Approach The NLP obtained from the MPEC approach
combines highly nonlinear non-convex physical and technical phenomena with numerically
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problematic smoothing and penalization techniques. Numerical experiments show that
solving all these aspects simultaneously on real-world networks is hardly possible with
general purpose NLP codes like IPOPT [80] or SNOPT [36]. As a substantially more
robust and reliable solution procedure, we propose a two-stage approach, where each stage
solves an NLP with a different set of model aspects.

The first stage incorporates all previously described features except for the convexifi-
cation of compressor groups (47). Thus, it decides the principal states (open or closed)
of all active elements.

As mentioned above, various regularization schemes exist for the stage 1 MPEC. In
our numerical experiments the penalization scheme of [28] proved to be the most appro-
priate choice for the specific class of problems. This scheme introduces an NLP sequence
NLP(τk), k = 1, 2, . . . , with decreasing penalization parameter τk. While providing con-
vergence theory, the approach suffers from significant practical drawbacks: the entire
sequence needs to be solved to optimality, and the computation time is a multiple of a
single instance. In our approach, τ is instead handled as an optimization variable that is
driven to zero during the NLP solution process by additional constraints or penalization
schemes. This direct approach is very stable for our practical purposes.

The solution of the first stage is analyzed and translated into discrete decisions. An
ambiguous situation arises when one or more complementarity constraints are satisfied
bi-actively, with both factors equal to zero. In this case, the most promising decision is
chosen heuristically for stage 2, based on empirical experience. After the first stage, all
open/closed states are decided and the overall flow situation in the network is determined;
these will be fixed in the second stage.

In the second stage, the active configurations of the compressor groups are to be
determined. The decisions of stage 1 are fixed, and the convexification model (47) is
added. Moreover, we use the solution of stage 1 to initialize the NLP of stage 2.

Then, the solution of the second stage is analyzed to fix the remaining active config-
urations. If more than one configuration with vanishing slacks exist, the one with the
largest convex coefficient is chosen. If no configuration with vanishing slack norm exists,
the configuration with the smallest constraint violation is used.

3.5 Validation by NLP
Since the full NoVa problem becomes intractable if both a detailed physics model and
discrete decisions are incorporated, each of the four solution approaches employs its spe-
cific approximations of certain physical and technical details. This raises the need for a
posteriori feasibility checks with respect to some reference model that is trusted to pro-
vide a sufficiently accurate description of reality, such as the models used in commercial
gas network simulation software.

We use a model that includes the pressure loss equation (15), with a global smooth
approximation, see, e.g., [12, 68], replacing the piecewise friction model (6) and (7); Com-
pressor groups are modeled as accurately as possible, complete with drives, with operation
ranges of individual units, and with arbitrary distributions of flow among parallel units,
see [68]; only the fuel gas is neglected in the flow balances, and gas temperatures as well
as gas quality parameters are considered constant in the entire NLP model; details can
be found in [68]. Valves and control valves are modeled as in (9) and (10), and both
resistor types of [68] arise.
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The difficulty is that solution candidates with approximate physics from any approach
will generically be infeasible in a strict sense; we can only expect approximate feasibil-
ity. Assuming that the discrete variables of a solution candidate are correct in the sense
that suitable “small” modifications of the continuous variables will yield exact feasibil-
ity, we proceed as follows to obtain a high-accuracy feasible solution: we fix all discrete
decisions and all discrete states based on the given solution candidate. The discrete-
continuous problem with a detailed physics model then reduces to a purely continuous
feasibility problem consisting of linear and nonlinear equalities and inequalities with suit-
able smoothness properties (C2 in our case). We introduce slack variables to relax all
the nonlinear constraints. The minimization of some measures of the total constraints
violation, specifically a weighted `1-Norm of the slacks (with large weights on the slacks
of compressor units), then yields a standard NLP. An initial solution estimate for this
NLP is generated from the given solution candidate. If we are successful in computing a
local NLP minimizer whose slack objective is zero or sufficiently small, we have a com-
plete solution of the original problem, and we will regard the given candidate as a valid
approximate solution. The final NLP solution can ultimately be verified with a suitable
simulation tool.

Note that a different outcome of our NLP validation procedure does not provide any
decisive information on the original problem. If a local minimizer with a nonzero slack
objective is computed, we know that one or more constraints of the original problem
are violated. In case of a “small” objective, further (typically manual) checks may be
carried out to decide whether the minimizer is practically acceptable or not. In case of a
“large” objective, we just know that the given solution candidate did not lead to a solution
with zero slack. If the instance is feasible, one possibility is to improve the candidate by
increasing the modeling accuracy in the first-stage approach.

4 Computational Studies
To show the practical relevance of our approaches as a solver for the NoVa problem in
gas networks, they are applied to two different types of nominations for country-size
real-world gas networks arising at our project partner Open Grid Europe (OGE), see
Figure 5 for an illustration. The first set (SN4 ) contains 4227 automatically generated
nominations based on contractual and statistical data by a sampling approach, see [45].
All these nominations are based on the same network with 592 nodes, 425 pipes, 35 valves,
23 control valves, and 6 compressor groups. The second group (AB6 ) consists of 44 hand-
made worst-case nominations by OGE, including four definitely infeasible instances. The
corresponding networks are variations of the above. They have about 660 nodes, 500 pipes
and more than 30 valves, 25 control valves, and 7 compressor groups. In the appendix
we give detailed results for this second test set, including feasibility status.

4.1 Solutions via Black-Box Solvers
Since NoVa is a mixed-integer nonlinear problem, it is a fundamental question whether
it is possible to solve our test instances with state-of-the-art MINLP solvers. To answer
this question, we performed a computational study. The answer clearly depends on the
mathematical model that is used to represent NoVa. We choose a MINLP model based
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Figure 5: Illustration of one network used for the computations

on (15) with the simplifications (20)–(21), (11), and (12). Moreover, we include the non-
convex characteristic diagrams of compressors; the remaining model parts are very close
to those of MILP approach.

We are interested in how state-of-the-art solvers perform on such MINLP instances.
If a local MINLP solver finds a feasible solution, NoVa is solved affirmatively. If a local
solver is, however, not able to find a feasible solution, no conclusion for NoVa can be
drawn. Thus, to prove infeasibility of a nomination—a crucial point for our application—
the usage of a global solver is required. We apply state-of-the-art solvers of both classes:
As global solvers for non-convex MINLPs, we select BARON [77, 76, 75] and SCIP [1, 78].
These solvers mainly implement (linear) convexification techniques in combination with
a spatial branch-and-bound.

As local MINLP solvers, we use BONMIN [7], ALPHAECP [81], and KNITRO [13].
All three solvers are exact for convex MINLPs, but can be used as heuristics in the non-
convex case. BONMIN implements different algorithms for convex MINLP, from which
we choose two different variants, BB and Hyb, for our studies. Variant (BB) implements
a nonlinear branch-and-bound search based on solving continuous nonlinear relaxations
at the nodes. The hybrid algorithm (Hyb) is a combination of an outer approximation
branch-and-cut algorithm and the BB algorithm. ALPHAECP is developed for solving
convex or pseudo convex MINLPs by solving a sequence of MILPs, occasionally solving
NLP subproblems, and generating cutting planes. From KNITRO we select the nonlinear
branch-and-bound method.

All computations in this subsection were performed sequentially using a single thread
on a machine with two six-core AMD Opteron CPUs with 2.6GHz and 64GB of RAM.
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We use GAMS 23.8.2 [32] to communicate over a common interface with all solvers. The
respective solver versions included in this GAMS release are BARON 10.1, SCIP 2.1.1,
BONMIN 1.5, ALPHAECP 2.09.01, and KNITRO 8.0. All solvers are set to use their
default parameters (if not stated otherwise above). Experiments with other parameters
did not significantly improve the results. In addition, we use the nonlinear bound propa-
gation preprocessing (except for SCIP), which is also used to tighten variable bounds for
the MILP approach (see Section 4.3 for further details). For SCIP, this preprocessing
dramatically worsens the results and sometimes even leads to false infeasibility detections.
The other solvers did not behave in this way.

From the first test set (SN4), we pick a random subset of 50 instances to keep the
computational effort within reasonable bounds. We set a time limit of four hours for
each solver and instance, which is twice the time limit that is subsequently used for our
specialized approaches. BARON solved three out of 50 instances by finding a feasible
solution after 65, 112, and 162 minutes within the time limit. SCIP solved two instances
in 3 and 10 minutes and ran into the time limit for all others. BONMIN, ALPHAECP,
and KNITRO are unable to find any feasible solution.

For the second test set (AB6), BARON solved three out of the 44 instances by finding
a feasible solution after 84, 112, and 219 minutes. SCIP solved two instances in 1 and 63
minutes. Again all local solvers failed to find a feasible solution.

Interestingly, no global solver is able to prove infeasibility, although 12 out of the 50
instances in the first test set (SN4) are infeasible and at least four instances in the second
test set (AB6).

We conclude from these computational experiments that large-scale instances of the
NoVa problem cannot be solved with state-of-the-art black-box solvers. This motivates
the approaches discussed in this paper.

4.2 Computational Setup
In the following we discuss the computational results of the four approaches presented in
Section 3 and the corresponding validation step. The computations were performed on a
Linux cluster. Each node has two Xeon 3.2 GHz quad core processors and 48GB of RAM.
We imposed a time limit of two hours for the application of the approaches introduced in
Section 3. We performed single-threaded computations, except for Section 4.3. On each
node, only one job is executed simultaneously. The run times for the four approaches to
find good discrete decisions exclude the timings for NLP validation. All timings include
the time for reading the data and building the model, which for some instances consumes
a major part of the running time.

Gurobi 5.0 [38] was used to solve the constructed problems by means of the MILP
approach. The SB approach was implemented in a prerelease version of SCIP 3.0, see [1,
78, 71]. The LP and NLP subproblems therein were solved using CPLEX 12.4 [42] and
IPOPT 3.10 [80], respectively. IPOPT 3.10 was also used to solve the NLP problems
in the RedNLP and MPEC approaches. Since the validation NLP can be tackled by
several NLP solvers, we sequentially tried the solvers IPOPT 3.10, CONOPT 3.15C,
CONOPT 4.00 [23], and KNITRO 8.0.0 [13] until one of them converges to a feasible
point. This last step could, of course, be parallelized. The NLPs of the MPEC and
RedNLP approach as well as the NLP validation are solved using GAMS [32] version
23.8.2 as an interface.
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Most of the results are illustrated by performance diagrams, where at each point on
the x-axis (corresponding to some given measure, e.g., running time, slack value, etc.) we
display on the y-axis the fraction of the total number of instances that were solved using
at most the given measure on the x-axis. All times are reported in seconds.

4.3 Solutions of the MILP Approach
In this section we discuss numerical results of the MILP approach described in Section 3.1.
All MILPs are solved with the branch-and-cut solver Gurobi with default parameter
settings on 8 threads, except that dual reductions and precrush are disabled, since we
apply (lazy) cutting planes.

Before the MILP model is constructed, a straightforward nonlinear bound propagation
preprocessing is performed to improve unnecessarily large variable bounds. Since the
sizes of the variable domains have a direct impact on the size of the linearization, this
step is crucial. We refer to [33] for a detailed description of this propagation algorithm.
The preprocessing never took more than 10 seconds and is therefore negligible compared
to the overall running time of this approach. Thus, we do not list presolving times
explicitly. The piecewise linear relaxations are constructed to be within a deviation of at
most 1.5 bar from the underlying nonlinear function. We remark that if this tolerance
is relaxed, the resulting MILPs are solved faster, but the number of validated solutions
decreases. Conversely, when the error tolerance is strengthened, the amount of nonzero
slack validations declines, while the running time increases. The error tolerance value of
1.5 bar is an appropriate compromise based on our experience with different test sets.

An illustration of the results for the first test set (SN4), consisting of 4227 instances,
is depicted in Figure 6. The variation of the sizes of the resulting MILP instances is
small. On average the instances have about 18302 constraints and 11222 variables, about
3833 are binary variables.

For 3510 instances, a feasible solution to the MILP model is found, and 694 instances
are proved to be infeasible during the time limit of two hours. This leaves 23 undecided
instances. Gurobi’s running time is presented in Figure 6(a). The average running time
is about 20 minutes, and the median is about 9 minutes. A subset of 3205 instances was
solved to optimality, and 3444 instances are proved to be within 10% of the optimum.
Of the 3510 feasible instances, the NLP validation confirmed 3245 of them, i.e., resulted
in a zero slack value. Figure 6(c) shows the distribution of the slack sum values for the
NLP validation of the remaining 265 instances.

The average values are mainly influenced by the large time limit. Within a stricter
time limit of 20 minutes, for example, we still find feasible solutions for 3285 instances.
A similar behavior can be seen for the number of branch-and-bound nodes shown in
Figure 6(b).

Almost all instances (389 out of 397) that were solved within less than 1000 branch-
and-bound nodes (or within less than approximately 30 seconds) are infeasible instances.
In general, only 40 of the 694 infeasible instances needed more than 10000 nodes or
more than approximately one minute. We conclude that the MILP model is suitable
for detecting infeasibility, one of the main purposes why the model is constructed as a
relaxation of the underlying nonlinear model.

We illustrate a typical solution process of the test set (SN4) on instance number 1872.
The solution of this instance requires about 20 minutes. The first feasible solution is
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Figure 6: Numerical results on the first test set (SN4) for the MILP approach.

found after 214 seconds and 38851 branch-and-bound nodes, yielding an optimality gap
of 98%. The dual bound is typically weak at the beginning, but this bound is significantly
improved up to the point where the initial solution is found. Subsequently, the optimality
gap is constantly reduced to 0.24% (by both improving the primal and dual bound) until
the optimal solution is found after 615 seconds have passed and 104874 nodes have been
explored. The remaining search process, which is another 585 seconds and 379938 nodes,
is spent to prove optimality.

The average solution time can in principle be halved, if the solution process is stopped
as soon as the gap between the primal and dual bound is less than 1%. We recall in this
context that NoVa is a feasibility problem. The objective in the MILP approach has
been added to overcome the gap between the underlying nonlinear model of the MILP
approach and the physically more detailed nonlinear validation model. An optimality gap
limit of 1% would also have a major impact on instances reaching the time limit. Most
of those instances (188 out of 305) in fact have a similar behavior: a first feasible solution
is found within the first 5 minutes and is improved to a gap of less than 1% within an
overall running time of about 10 minutes. The remaining time until the time limit is then
just used for trying to prove the last per cent of optimality.

The results for the second test set (AB6) consisting of 44 expert nominations are
shown in Figure 7. The MILP instances have on average about 23824 constraints and
14871 variables, 5484 of which are binary.

For 39 instances, a feasible solution to the MILP model is found, and five instances
are proved to be infeasible. The infeasibility of one instance is already detected by the
nonlinear bound propagation preprocessing, while the remaining four infeasibilities are
determined by Gurobi. Each instance is solved within a running time of no more than
30 minutes. The running times are depicted in Figure 7(a). The average running time is
about 5 minutes, and the median is about 3 minutes. From the 39 feasible instances, 25
were confirmed with a zero slack by the NLP validation.

A more detailed view into the solution process of these instances shows that infeasi-
bility is again rapidly detected (less than a few seconds). In contrast to the first test set,
the dual bound is already improved in the root node or at least within the first 100 nodes
of the search tree. A first primal solution is typically found faster, too – on average after
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Figure 7: Numerical results on the second test set (AB6) for the MILP approach.
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Figure 8: Numerical results on the first test set (SN4) for the SB approach

approximately 100 seconds and exploring about 2000 nodes. Another observation is that
the optimality proof in general does not require as much effort as in the first test set.
Typically, just a few more nodes are explored.

An explanation for the remarkable difference between the solution process of instances
of the test set (SN4) and (AB6) might be their different origins. The nominations of (SN4)
are based on ordinary, everyday gas delivery situations, which are typically realizable in
many different ways and thus typically contain multiple feasible (nearly) symmetrical
solutions. The nominations from (AB6), however, are based on expert knowledge to de-
scribe exceptional extreme situations, in which the number of admissible discrete decisions
is much lower.

4.4 Solutions of the SB Approach
In this section, numerical results for the SB approach (see Section 3.2) are presented.
On the SN4 test set, 4213 instances are solved, leaving only 14 without solution or proof
of infeasibility. 600 instances are proved to be infeasible within the model used by this
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approach. For 3613 instances, a feasible solution is found within the time limit. Figure 8
shows the performance profiles for the run time, branch-and-bound nodes, and NLP
validation slack values of this solver on the SN4 test set. The profile shows that the
approach solves 90% (3270) of the instances within less than 10 seconds. More than 97%
of the instances are solved within one minute.

Most solutions (2640 out of 3613) were found in the tree by the subnlp heuristic,
which is included in SCIP by default. Whenever a solution is found that is integer
feasible for the linear relaxation (either by solving the relaxation in a node or by applying
a MILP heuristic), the subnlp heuristic applies a local solver (IPOPT) to the NLP that is
obtained from the MINLP by fixing all integer variables. In our application, this proves
to be extremely effective.

The picture looks similar for the 600 instances for which infeasibility could be proved.
Here, in 484 of the instances SCIP presolving already detected the infeasibility. Overall
the running time was less than 10 seconds for 92% of the 600 instances.

While the SB seems extremely fast on a large part of the test set, there are 14 instances
for which neither a solution could be found nor infeasibility could be proved within the
time limit of two hours. Two main reasons can be identified. For two instances, integer
feasibility of the relaxation is hard to reach. In one of these two instances, no integer
feasible relaxation is found at all during the solution process. This instance can be proved
to be infeasible with slightly different settings of the solver. The remaining unsolved
instances spend more than half of the time trying to find a feasible solution in the subnlp
heuristic. On these instances, substantial effort is made to strengthen the relaxation by
spatial branching; between 30 and 98% of the branchings are performed on continuous
variables. However, with customized settings, all unsolved instances can be solved within
two hours resulting in 12 feasible and two infeasible instances.

On the vast majority of the instances, surprisingly small effort is made to strengthen
the relaxation by spatial branching. Only in 133 instances, spatial branching is applied
at all. On the remaining test set, the relaxation is strengthened by cutting planes, but
branching is not needed. Since we first branch on integer variables that have fractional
values in the relaxation, this can be expected for the instances that are solved with
only a few nodes. However, only 12 of the 100 instances that take most time to find
a feasible solution apply spatial branching. The solution of the most time consuming
feasible instance (4649 seconds), for example, does not perform any spatial branching.
In this instance, 719290 nodes are explored of which only three have an integer feasible
solution of the linear relaxation. In the third integer feasible node, the subnlp heuristic
finds a solution.

The SB approach was able to solve all instances from the AB6 test set. Four instances
were recognized to be infeasible, while for the remaining 40 instances, feasible solutions
could be computed. Performance profiles for this test set are depicted in Figure 9.

For two instances, infeasibility was proved in presolving. Proving infeasibility for
the other two instances took 436 and 159 seconds, respectively. Interestingly, neither
instance was solved using spatial branching. All feasible solutions were found in less than
100 seconds, but only 65% in less than 10 seconds.

The analysis of the validation of the solutions produced by this approach is as follows.
On the SN4 test set, 2577 out of 3613 (71%) solutions could be validated with slack zero,
while for 1036 a positive slack remains in the NLP validation. On the AB6 test set, only
14 out of 40 solutions (35%) validate with slack zero. Since only one (almost randomly
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Figure 9: Numerical results on the second test set (AB6) for the SB approach

chosen) solution is passed as a candidate to the validation procedure, local improvement
heuristics after a failed validation could help to increase the number of validated solutions.

4.5 Solutions of the RedNLP Approach
For each nomination, the RedNLP approach first uses the binary decisions from the
transshipment problem. If this is not successful, the algorithm is continued by testing
33 given configurations, which successfully solved other nominations. The solution of the
reduced NLP model is given as a starting point to the detailed validation NLP. The
solution is called confirmed if a solution with zero slack could be found.

For the first test set (SN4) of 4227 nominations generated from statistical information,
the reduced NLP model can solve 4194 nominations, 3731 of which were found using the
switching decisions derived from the solution of the transshipment problem. 3058 of the
solutions were confirmed by the detailed NLP slack model. The total computing times
for the reduced NLP range from 6 to 208 seconds with an average of 11.78 seconds and
a median of 10 seconds. Figure 10 shows the results for this test set.

Out of the 44 nominations in the second test set (AB6), a solution was found for 39
nominations, 27 of which were confirmed. 22 of the solutions were found based on the
transshipment solution. The computing times range from 12 to 101 seconds with an
average of 31.64 seconds and a median of 18.5 seconds. Figure 11 presents the results.

The transshipment problem for this network has 198 variables and 108 equality con-
straints. The size of the reduced NLP depends on the chosen switching decisions. The
number of variables varies between 1408 and 1441, the number of equality constraints
between 1318 and 1346, and that of inequality constraints between 60 and 85.

4.6 Solutions of the MPEC Approach
The results of the MPEC approach are given in Figures 12 and 13. The 4227 instances
of the first test set (SN4) require an average computing time of about 17 seconds, with
a maximum of 89 seconds. 2927 of these instances are solved successfully. The final
NLP stage requires about 7 seconds on average with a maximum of 42 seconds, and
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Figure 10: Numerical results on the first test set (SN4) for the RedNLP approach
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Figure 11: Numerical results on the second test set (AB6) for the RedNLP approach
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Figure 12: Numerical results on the second test set (SN4) for the MPEC approach
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Figure 13: Numerical results on the second test set (AB6) for the MPEC approach.
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1749 of the MPEC-feasible instances are solved to optimality with vanishing slacks. All
computing times include a preprocessing of variable bounds, which only takes a few
seconds, see Section 4.3.

Constraints that couple discrete decisions of different active elements to select feasi-
ble subnetwork operation modes (see Section 2) can currently not be handled within the
MPEC model. These constraints do not fit the requirements necessary for the problem-
tailored MPEC-based reformulation techniques, that are used for the other discrete as-
pects of the model. Only 30 of the 2927 instances solved by the validation NLP satisfy
these additional constraints. The success rate may be increased by postprocessing al-
gorithms which revisit ambiguous decisions. These algorithms are subject of further
research.

For the 44 nominations in the second test set (AB6) the MPEC model finds ten
MPEC-feasible solutions, six of them with zero slack in the validation NLP. Subnetwork
operation modes are not fulfilled. The four infeasible instances are correctly identified as
MPEC-infeasible, i.e., the MPEC did not converge to a feasible point. The computing
time is 29 seconds on average, with median 31, and maximum 37 seconds.

Several typical reasons for unsuccessful runs can be observed. The penalization ap-
proach of stage 1 attempts to drive the violations of complementarity constraints to
zero. If some violations remain positive in a local minimum, we have an infeasible solu-
tion (which may even involve technically impossible states such as „compressing“ control
valves). In this case, stage 1 may be repeated with a different regularization scheme that
treats complementarity as explicit constraints. Another difficulty arises from numerical
inaccuracy: nonzero constraint values that are smaller than the thresholds of the decision
heuristics of stage 1 may lead to wrong discrete decisions. For example, very small but
non-zero flows into a sub-network behind a valve may result in closing this valve. Finally,
the simplified compressor group model may lead to an overly optimistic decision for a
compressor group in stage 1. Especially when compressors need to be operated close to
the boundary of their operation range, as in the worst-case nominations, this may produce
first-stage solutions outside the domain of convergence of stage 2.

5 Comparison and Combination of the Approaches
Sections 4.3, 4.4, 4.5, and 4.6 present an individual analysis of the performance of our four
approaches to obtain good discrete decisions and starting points for the NLP validation
step. In this section, we compare the different results w.r.t. NLP validation and discuss
their combination to yield a reliable solver for NoVa.

5.1 Comparison of the Approaches and their Results
As outlined in Section 3.5, we are validating the solutions of the different solvers using
a detailed NLP model. Before passing the solution to the NLP, we check whether all
discrete decisions are taken in accordance with the technical restrictions described by the
subnetwork operation modes. The latter check is often the reason that a solution of the
MPEC approach is rejected. (For the other approaches this test is satisfied by design –
and only included to catch implementation errors.) For this reason, we will not compare
the MPEC heuristic together with the other approaches in the following.
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Figure 14: Profile of the run times (s) for test set SN4 including NLP validation; y-axis:
percentage of confirmed or infeasible instances (total: 4227)

Table 1: Results of the solvers on test set SN4 (4227 instances)
slack 0 infeasible slack > 0 no solution

MILP 3245 694 265 23
SB 2577 600 1036 14
RedNLP 3058 0 1136 33

In line with the description of Section 3.5, we call solutions that yield an NLP
slack below the precision of the validation NLP (which allows constraint violations of
at most 10−5) valid or confirmed. We repeat that this might exclude valid solutions,
since the validation NLP might only find a local optimum.

On the test set SN4, the overall results of the MILP, SB, and RedNLP approaches
are shown in Table 1 and Figure 14. Each solver can report at most one solution to be
validated by the detailed NLP. The times now include the time needed for the validation
NLP. All instances that are solved by the SB approach within 10 s are infeasible and
therefore no validation with the NLP model is carried out. This explains the notable
“bump” in the graph of the SB approach in Figure 14. Moreover, when the MILP cannot
prove optimality within the time limit, but has found a feasible solution, the best solution
found is validated at the very end of the computation. This explains the “jump” of the
MILP success at the 7200 s line.

The computations on the test set AB6 are displayed in Table 2 and Figure 15.
When analyzing the results, we note that the SB and the RedNLP approach can both

produce solutions for many instances in a rather short time. The MILP approach is by
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Figure 15: Profile of the run times (s) for test set AB6 including NLP validation; y-axis:
percentage of confirmed or infeasible instances (total: 44)

Table 2: Results of the solvers on test set AB6 (44 instances)
slack 0 infeasible slack > 0 no solution

MILP 25 5 14 0
SB 14 4 26 0

RedNLP 27 0 12 5
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far slower, but has a significantly higher success rate. This is partly due to the parameter
setting choice for the MILP approach to yield high accuracy.

The differences between the SB and the RedNLP approach become visible when
comparing the numbers in Tables 1 and 2. The SB approach is able to detect infeasibility,
whereas the RedNLP approach just reports that no solution has been found.

The differences between the MILP and SB approach with respect to their validation
success might be explained as follows. One principal difference in the models is the
compressor model. The MILP decides which configurations of the compressor groups
are used in the model, while for the SB approach the capability of a compressor group is
modeled by the convex hull over all configurations, and a feasible or a “least” infeasible
configuration is selected in a postprocessing step. This might include convexification
errors and, thus, bad decisions in the surroundings of compressor groups. Apparently,
especially on the AB6 instances, it is crucial to choose appropriate configurations for the
compressor groups.

The results for the AB6 test set are similar to the ones for the SN4 test set, but
the NLP validation results are worse for all approaches. One reason is that the ratio of
feasible to infeasible instances is different in the two test sets. It seems to be easier for
the SB and the MILP approach to detect infeasibilities than to find primal solutions for
challenging instances. This also explains the comparatively better results of the RedNLP
approach.

5.2 Combined Solver
We have combined the MILP, SB, and RedNLP approaches presented in Section 3 to
form a solver that can be used to reliably solve the NoVa problem for real-world gas
network instances as described in the previous sections.

The analysis of the results is complicated by the fact that the models are not direct
refinements of each other. All models divert at one or the other point from the model
of the validation NLP. For instance, this holds for current implementation of the MILP
model of Section 3.1: It could, in principle, be extended to form a proper relaxation
of the MINLP corresponding to the validation NLP. This is, however, undesirable in
practice: The nondifferentiable functions like sgn and absolute values appearing in the
nonlinear models usually have to be smoothed. A MILP model, on the other hand, can
model these functions. The smoothing functions, however, may lead to problems in the
MILP setting and inexactness. This means, that different models are preferred for the,
say, MILP model and the validation NLP.

Consequently, the approaches can contradict each other: one approach might find a
feasible solution, while another might report the instance as infeasible. Our approach is,
nevertheless, to run all solvers for all models in parallel. As above, each solver can report
at most one solution to be validated by the detailed NLP. Recall once again that this
approach might exclude valid solutions as we cannot be sure that the validation NLP is
not stuck in a local optimum.

For the purpose of analysis, we call such a parallel run successful, if the solvers do
not contradict each other and either at least one solver finds a solution with zero slack
or at least one solver reports infeasible. Otherwise such a run is unsuccessful. For the
following computational experiments we used the same infrastructure as for the other
tests. The parameters of the MILP model of Section 3.1 are calibrated to reliably yield
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Figure 16: Profile of the run times (s) for the combined approach on test set SN4 including
NLP validation; y-axis: percentage of confirmed or infeasible instances (total: 4227)

feasible solutions at the cost of a long running time. We use the other solvers to generate
feasible solutions quickly.

The results of the combined solver on the test set SN4 are given in Figure 16. 4157
(more than 98%) of the 4227 instances in the test set can be solved successfully, whereas
we are unsuccessful on 70 of the instances. Here, 38 of the instances yield a contradictory
result, and the remaining 32 failed to yield any definitive result. The times shown in
Figure 16 are with respect to the first solver that reports the final result (now including
the time needed to validate feasible solutions with the validation NLP).

The results of the combined approach on the test set AB6 are given in Figure 17 (using
the same structure as Figure 16). Of the 44 instances in the test set, 38 (more than 86%)
can be solved successfully, whereas we are unsuccessful on six of the instances. Here,
none of the instances yield a contradictory result, and the remaining six fail to yield any
definitive result.

6 Summary
Faced with a complex and numerically difficult mixed-integer non-convex nonlinear feasi-
bility problem, we have shown how to utilize the full range of mathematical optimization
technology (NLP, MILP, MINLP) in this context.

Our two-stage approach is finally able to successfully solve nearly 98% of the instances
with high precision. The paper describes the two key reasons for this success:

• Splitting the problem into two phases: A first phase using approximate models for
finding settings for the discrete decisions and then using the results of the first phase
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Figure 17: Profile of the run times (s) for the combined approach on test set AB6 including
NLP validation; y-axis: percentage of confirmed or infeasible instances (total: 44)

to compute highly precise solutions using an NLP.

• Combination of four quite distinct approaches to solve phase one: While all the
approaches in their way are quite successful, none of them for itself is able to come
near the combined performance.

Nevertheless, while the networks used in this paper are large in comparison to the
state-of-art, they are small compared to the real European pipeline network. We are
currently trying to further develop our approach to be able to solve networks which are
at least five times bigger.

Another area that leaves room for improvement is the transition from the approximate
models to the detailed NLP model. Due to the corresponding model differences, it is not
entirely clear what the best objective for the approximate models of the first phase is. In
principle, any feasible solution to the approximate models could be tried in the detailed
model. This is one of the reasons why we included the MPEC approach. The model used
here is the one which is most similar to the detailed NLP model. Consequently, those
instances that can be solved typically exhibit no or only very small slacks in the validation.
The validation performance of the MPEC approach is currently not comparable to the
other approaches, because of the missing SOM constraints. Thus, the MPEC approach
is promising, if there is a way to address these issues.
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A Appendix
In this section, we collect detailed results on the 44 instances in the AB6 test set for the
MILP, SB, RedNLP, and MPEC approaches described in Section 3, see Tables 3, 4, 5,
and 6, respectively. The tables contain data that are specific to the respective approach.
In all tables, “Name” refers to the name of the instance, and “Time” shows the time (in
seconds) needed for the specific approach, excluding the time for NLP validation. For
each approach, “Status” refers to the status of the NLP validation: It displays the value
of the NLP validation slack, if the approach produced a solution. If the approach proved
infeasibility or found no solution, it displays “inf” or “nosol”, respectively. The last column
(“Validation Time”) displays the time need for NLP validation (in seconds).

Additionally, in Table 3 for the MILP approach, “Nodes” refers to the number of
branch-and-bound nodes, “Variables” the total number of variables, “Binary” the num-
ber of binary variables, and “Constraints” the number of constraints. Table 4 for the
SB approach additionally gives the number of branching on integer variables in “Vari-
able Branchings” and in column “Spatial Branchings” the number of spatial branchings.
Table 5 for the RedNLP displays in the column labeled “Transshipment” whether the
binary decisions found by the transshipment heuristic lead to a feasible solution. The
column “Tested Configs” gives the number of tested preselected configurations. Table 6
for the MPEC approach additionally shows the status after the stage X in “Status X”
and the running time of IPOPT in seconds in “Time X”.
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Table 3: Detailed results of the MILP approach on test set AB6
Name Time Status Nodes Variables Binary Constraints Validation Time

01-1011 76 0.00 56 14873 5482 23835 9
02-1011 210 0.00 4835 15187 5638 24308 9
04-1011 26 84.01 304 14851 5478 23781 8
03-1011 52 6.80 1904 14805 5455 23712 8
05-1011 123 132.55 4970 14501 5296 23277 8
06-1011 96 8.05 3447 15436 5768 24676 8
07-1011 119 0.00 2331 14843 5463 23778 10
08-1011 437 0.00 42335 14577 5342 23390 10
09-1011 73 0.00 2077 14719 5412 23583 9
09-1011-inf 9 inf – – – – –
10-1011 90 0.00 1324 14659 5377 23520 9
01-1112 110 0.00 7674 14865 5477 23820 8
02-1112 189 0.00 15626 15179 5634 24296 9
04-1112 29 86.45 866 14871 5488 23811 8
03-1112 26 71.77 76 14851 5478 23781 8
05-1112 95 55.03 3204 14551 5321 23352 9
06-1112 185 22.88 26767 15432 5766 24670 7
06-1112-inf 39 inf 0 15432 5766 24670 –
07-1112 147 10.13 14837 14835 5459 23766 8
08-1112 1838 0.00 333372 14571 5339 23381 10
09-1112 84 0.00 4411 14865 5485 23802 10
10-1112 168 0.00 17231 14629 5362 23475 8
01-1213 115 0.00 2735 14903 5496 23877 9
02-1213 182 0.00 23920 15175 5632 24290 10
04-1213 26 66.75 402 14871 5488 23811 8
04-1213-inf 22 inf 0 14871 5488 23811 –
04-1213-inf-m 47 inf 5 14908 5505 23887 –
03-1213 24 0.00 0 14801 5453 23706 10
05-1213 33 inf 0 14575 5333 23388 –
06-1213 155 27.86 18846 15334 5717 24523 8
07-1213 115 0.00 6580 14829 5456 23757 9
08-1213 459 0.00 26949 14605 5356 23432 10
09-1213 398 0.00 196466 14863 5484 23799 9
10-1213 173 0.00 13594 14617 5356 23457 9
01-1314 204 0.00 1943 14867 5478 23823 9
02-1314 153 0.00 7797 15171 5630 24284 9
04-1314 24 2.38 0 14873 5489 23814 6
03-1314 26 0.00 0 14801 5453 23706 8
05-1314 77 18.08 1618 14549 5320 23349 8
06-1314 112 28.27 15513 15378 5739 24589 7
07-1314 117 0.00 3584 14829 5456 23757 8
08-1314 458 0.00 9135 14603 5355 23429 10
09-1314 84 0.00 12742 14863 5484 23799 9
10-1314 172 0.00 2067 14615 5355 23454 10
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Table 4: Detailed results of the SB approach on test set AB6
Name Time Status Variable Branchings Spatial Branchings Nodes Validation Time

01-1011 10 0.16 0 0 0 10
02-1011 13 34.54 96 1 136 9
04-1011 10 233.00 35 7 53 8
03-1011 10 12.26 38 0 63 9
05-1011 13 656.57 101 0 167 9
06-1011 13 53.45 251 0 439 8
07-1011 12 0.00 92 58 263 10
08-1011 10 526.43 24 0 22 8
09-1011 10 0.09 44 4 59 9
09-1011-inf 7 inf 3 0 1 –
10-1011 9 0.00 17 0 17 10
01-1112 29 0.00 1728 0 3366 10
02-1112 9 0.00 30 0 36 10
04-1112 9 370.67 14 0 16 8
03-1112 9 190.47 49 0 80 9
05-1112 100 0.00 4449 4181 17194 10
06-1112 10 0.16 122 0 219 8
06-1112-inf 438 inf 37548 0 74648 –
07-1112 14 0.00 202 0 341 9
08-1112 12 187.67 161 0 243 10
09-1112 8 10.04 22 0 22 8
10-1112 8 0.00 22 1 21 9
01-1213 10 34.58 15 0 17 10
02-1213 11 0.00 63 0 109 10
04-1213 9 2.21 46 0 71 9
04-1213-inf 7 inf 0 0 0 –
04-1213-inf-m 159 inf 11653 0 23042 –
03-1213 10 8.89 75 0 133 12
05-1213 48 419.13 2255 0 4325 9
06-1213 9 4.16 25 0 23 9
07-1213 9 36.65 18 0 18 14
08-1213 9 0.00 11 0 13 9
09-1213 7 13.17 14 0 14 8
10-1213 9 0.00 22 0 22 10
01-1314 9 36.74 12 0 13 9
02-1314 10 0.00 70 0 123 9
04-1314 9 9.32 49 0 78 8
03-1314 10 10.54 15 0 16 14
05-1314 58 533.70 3464 0 6790 9
06-1314 12 0.11 142 1 242 9
07-1314 12 0.00 87 0 134 10
08-1314 9 0.00 13 0 13 10
09-1314 10 0.02 24 9 37 9
10-1314 10 0.00 25 0 23 10
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Table 5: Detailed results of the RedNLP approach on test set AB6
Name Time Status Transshipment Tested Configs Validation Time

01-1011 17 0.00 Yes 0 9
02-1011 15 0.00 Yes 0 9
04-1011 27 0.00 No 4 7
03-1011 24 0.00 No 4 8
05-1011 29 166.59 No 2 9
06-1011 76 nosol – 33 –
07-1011 17 0.00 Yes 0 8
08-1011 12 436.10 Yes 0 44
09-1011 59 0.00 No 26 9
09-1011-inf 98 nosol – 33 –
10-1011 17 0.00 Yes 0 9
01-1112 16 0.00 Yes 0 8
02-1112 14 0.00 Yes 0 8
04-1112 41 0.00 No 18 9
03-1112 27 0.00 No 4 9
05-1112 21 27.07 Yes 0 7
06-1112 18 153.81 No 1 8
06-1112-inf 78 nosol – 33 –
07-1112 17 0.00 Yes 0 9
08-1112 13 560.38 Yes 0 7
09-1112 101 0.00 No 26 9
10-1112 16 0.00 Yes 0 8
01-1213 17 0.00 Yes 0 10
02-1213 14 0.00 Yes 0 8
04-1213 41 0.00 No 18 9
04-1213-inf 80 nosol – 33 –
04-1213-inf-m 82 nosol – 33 –
03-1213 26 0.00 No 4 9
05-1213 23 35.78 Yes 0 8
06-1213 18 0.11 No 1 8
07-1213 19 0.00 Yes 0 9
08-1213 13 279.50 Yes 0 8
09-1213 86 0.00 No 26 9
10-1213 14 0.00 Yes 0 9
01-1314 17 0.00 Yes 0 8
02-1314 15 0.00 Yes 0 9
04-1314 33 0.00 No 4 8
03-1314 26 0.00 No 4 9
05-1314 27 225.91 No 2 8
06-1314 17 123.70 No 1 8
07-1314 17 0.00 Yes 0 9
08-1314 12 292.22 Yes 0 9
09-1314 28 0.03 No 4 8
10-1314 14 0.00 Yes 0 8
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Table 6: Detailed results of the MPEC approach on test set AB6 (instances with violated
SOMs in italics)
Name Time Status Status 1 Time 1 Status 2 Time 2 Validation Time

01-1011 33 nosol optimal 3 infeasible 2 –
02-1011 35 0.00 optimal 4 optimal 1 9
04-1011 36 nosol optimal 4 infeasible 2 –
03-1011 29 nosol optimal 2 infeasible 2 –
05-1011 36 nosol optimal 5 infeasible 1 –
06-1011 37 nosol optimal 4 infeasible 7 –
07-1011 35 55.28 optimal 3 optimal 2 11
08-1011 35 nosol optimal 5 infeasible 1 –
09-1011 28 nosol optimal 2 optimal 2 –
09-1011-inf 21 nosol infeasible 3 – – –
10-1011 36 nosol optimal 4 infeasible 1 –
01-1112 32 nosol optimal 3 optimal 1 –
02-1112 34 nosol optimal 4 infeasible 3 –
04-1112 29 nosol optimal 3 optimal 1 –
03-1112 32 nosol optimal 3 optimal 1 –
05-1112 31 nosol optimal 2 infeasible 1 –
06-1112 36 nosol optimal 5 infeasible 3 –
06-1112-inf 32 nosol optimal 5 infeasible 1 –
07-1112 33 nosol optimal 2 optimal 2 –
08-1112 31 nosol optimal 4 infeasible 1 –
09-1112 32 nosol optimal 4 infeasible 2 –
10-1112 34 1.62 optimal 5 optimal 1 8
01-1213 32 nosol optimal 1 infeasible 2 –
02-1213 31 0.00 optimal 3 optimal 1 10
04-1213 32 nosol optimal 3 infeasible 2 –
04-1213-inf 29 nosol optimal 2 infeasible 2 –
04-1213-inf-m 30 nosol optimal 2 infeasible 1 –
03-1213 32 nosol optimal 4 optimal 1 –
05-1213 34 978.74 optimal 4 optimal 2 9
06-1213 32 nosol optimal 3 infeasible 2 –
07-1213 24 0.00 optimal 4 optimal 1 10
08-1213 22 1618.63 optimal 3 optimal 1 9
09-1213 20 nosol optimal 4 optimal 0 –
10-1213 22 nosol optimal 2 infeasible 1 –
01-1314 22 0.00 optimal 2 optimal 1 8
02-1314 22 nosol optimal 2 infeasible 1 –
04-1314 19 nosol optimal 3 optimal 1 –
03-1314 22 nosol optimal 4 optimal 1 –
05-1314 24 nosol optimal 3 infeasible 2 –
06-1314 26 nosol optimal 7 infeasible 2 –
07-1314 24 0.00 optimal 4 optimal 1 9
08-1314 25 nosol optimal 5 infeasible 2 –
09-1314 23 nosol optimal 6 infeasible 1 –
10-1314 25 0.00 optimal 5 optimal 1 8
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