XXX
(XXX]
X X XA]

9SS

X
XX
A X)

.
X)
\V4
W
v

‘
[[Y
[1 (X

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf

Detlev Stalling Hans-Christian Hege

Fast and Resolution I ndependent
Line Integral Convolution

Preprint SC-94-37 (June 1995)

Fast and Resolution I ndependent
Linelntegral Convolution

Detlev Stalling Hans-Christian Hege

Abstract

Line Integra Convolution (LIC) is a powerful technique for generating striking images
and animations from vector data. Introduced in 1993, the method has rapidly found many
application areas, ranging from computer arts to scientific visualization. Based upon lo-
cally filtering an input texture along a curved stream line segment in a vector field, it is
able to depict directional information at high spatial resolutions.

We present a new method for computing LIC images. It employs simple box filter
kernels only and minimizes the total number of stream lines to be computed. Thereby it
reduces computational costs by an order of magnitude compared to the original agorithm.
Our method utilizes fast, error-controlled numerical integrators. Decoupling the charac-
teristic lengths in vector field grid, input texture and output image, it allows computation
of filtered images at arbitrary resolution. This feature is of significance in computer ani-
mation aswell asin scientific visualization, where it can be used to explore vector data by
smoothly enlarging structure of details.

We also present methods for improved texture animation, again employing box filter
kernels only. To obtain an optimal motion effect, spatial decay of correlation between in-
tensities of distant pixels in the output image has to be controlled. This is achieved by
blending different phase-shifted box filter animations and by adaptively rescaling the con-
trast of the output frames.

CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage generation; 1.3.6 [Computer
Graphics]: Methodology and Techniques; 1.4.3 [Image Processing]: Enhancement

Additional Keywords: vector field visualization, texture synthesis, periodic motion fil-
tering

Contents

8

9

Introduction

Background

Making Line Integral Convolution Fast
Streamline I ntegration

Selecting Streamlines

Texture Map Convolution

Periodic Motion Filters

7.1 Intensity Correlation
72 FrameBlending
7.3 VaiableVelocities L.

Smooth Detail Enlargement

Results

10 Conclusion

11
13
14

16

17

20

1 Introduction

Generation of textured images from various kinds of vector fields has become an
important issue in scientific visualization as well as in animation and special ef-
fects. In 1993 Cabral and Leedom presented a powerful technique for imaging
vector data called line integral convolution [1]. Their algorithm has been used as
agenera tool for visualizing vector fields. Additionally it has broad applications
for image enhancement. A major drawback of the original algorithm, however, is
its high computational expense and itsrestriction to afixed spatial resolution.

In this paper we present an improved algorithm for line integral convolution,
in which computation of streamlinesisalgorithmically separated from that of con-
volution. This allows us to exploit economies and to provide wider functionalism
in each of the computational steps. The new algorithm

e isabout an order of magnitude faster than original lineintegral convolution,
making interactive data exploration possible

e ismore accurate by employing an adaptive, error-controlled streamline in-
tegration technique

e isresolution independent, enabling the user to investigate image details by
smooth detail enlargement (zooming)

e improves texture animation using shifted box filter kernels together with a
simple blending technique.

In recent years a number of methods for artificially generating textures have
been suggested. These methods cover avariety of applications. In thefield of sci-
entific visualization texture-based methods are of special interest because they al-
low the display of vector fields in an unrivaled spatial resolution. Traditionaly,
vector data has been represented by small arrows or other symbolsindicating vec-
tor magnitude and direction. This approach isrestricted to arather coarse spatial
resolution. More sophisticated methods include the display of stream lines [8],
stream surfaces [10], flow volumes [14], as well as various particle tracing tech-
niques[19, 9, 11]. These methods are well suited for revealing characteristic fea-
tures of vector fields. However, they strongly depend on the proper choice of seed
points. Experience showsthat interesting details of the field may easily be missed.

Texture-based methods are not affected by such problems. They depict all parts
of the vector field and thus are not susceptible to missing characteristic data fea-
tures. In addition they achieve a much higher spatial resolution, which in some
sense can be viewed as the maximum possibl e resol ution since the minimum pos-
sible feature size of atextured image isasingle pixel. In an early method intro-
duced by van Wijk [18] arandom textureisconvolved along astraight line ssgment

1

oriented parallel to the local vector direction. Lineintegral convolution (LIC) [1]
modifiesthismethod, so that convol utiontakes place along curved stream line seg-
ments. In thisway field structure can be represented much more clearly. Forssell
[5] describes another extension that allows her to map flat L1C images onto curvi-
linear surfacesin three dimensions.

Vector fields are not only of relevance in science and engineering. Many ob-
jects of our natural environment exhibit characteristic directiona features which
arenaturally represented by vector data. Consequently algorithmsfor turning such
datainto pictorial information are of great importance for synthetic image genera-
tion, image post-processing, and computer arts [6, 16]. The variety of directional
filters offered by commercial image processing software is just one evidence for
this.

The remainder of the paper is organized as follows. Section 2 provides math-
ematical background and fixes notation. The basic ideas of the new algorithm are
outlined in section 3. Inthe following three sectionswe present algorithmsfor fast
and accurate streamline integration, discuss some optimization issues, and sketch
strategies for fast texture map sampling. We then discuss periodic motion filter-
ing and smooth detail enlargement. Finaly we present some results and give an
outlook concerning various aspects of LIC methods.

2 Background

Before looking at lineintegral convolution, let usintroduce vector fields formally,
define some characteristic features and fix notation. For more detailed expositions
on vector fields see standard texts on vector analysis, e.g. [13]. Restricting our-
selvesto the ssmplest case, we consider a stationary vector field defined by a map
v:R— Rz — v(x).

Thedirectional structure of v can begraphically depicted by itsintegral curves,
also denoted flow lines or streamlines'. An integral curve is a path o (u) whose
tangent vectors coincide with the vector field:

d
—o(u) = v(o(w) ®

Like any path, o (u) can be reparametrized by acontinous, strictly increasing func-
tion without changing its shape and orientation. For our purpose it is convenient
to use arc-length s. Noting that ds/du = |v(o(u))| we have

d do du v
ga(s):@%=m=f(o'(3))- (2)

! Theimage of integral curves (“lines of force”) and their graphical representation played a cru-
cial rolein Faradays development of the field concept during 1820-1850 [15].

2

Of course, thisreparametrization isonly valid in regions of non-vanishing |v|, i.e.
for non-degenerate curves o. To find a stream line through « the ordinary differ-
ential equation (2) has to be solved with the initial condition o(0) = «. It can
be proved that there is a unique solution if the right hand side f locally obeys a
Lipschitz-condition. In particular this condition is fulfilled for any function with
continuous first derivative. Otherwise, there may exist multiple solutionsat asin-
glepoint x, i.e. multiple stream linesmay start at that point. A typical exampleare
point sources in an electrostatic field. Numerical integrators used in LIC have to
be robust enough to handle such cases. Beside isolated singularities also discon-
tinuities occur quite often in vector fields. Usually these are encountered across
the boundaries of distinctly characterized field regions, e.g. regions with different
electromagnetic properties. An example of thisisshownin Fig. 1.

'
=
=
]

(Tl

Figure 1. LIC image of avector field (electrical field) containing discontinuities. Field
strength |v| isindicated by color.

Given astream line o, line integral convolution consistsin calculating the in-
tensity for apixel located at xy = o (so) by

so+L
I(@) = [k(s = s0) T(e(s)) ds. 3)
Here T denotes an input texture, usually some sort of random image like white
noise. Thefilter kernel k isassumed to be normalizedto unity. The convolution op-
eration (3) causes pixel intensitiesto be highly correlated along individual stream
lines, but independent in directions perpendicul ar to them. In the resulting images
the directional structure of the vector field is clearly visible. Usually good results
are obtained by choosing filter length 2L to be 1/10th of theimage width. Itispos-
sible to simultaneoudly visualize field strength |v| by coloring or animating LIC
images.

3 MakingLinelntegral Convolution Fast

Intraditional L1C for each pixel in the output image a separate stream line segment
and a separate convolution integral are computed. There are two types of redun-
dancies in this approach. First, a single stream line usually covers lots of image
pixels. Thereforeintraditional L1C large partsof astream linearerecomputed very
frequently. Second, for aconstant filter kernel £ very similar convolutionintegrals
occur for pixels covered by the same stream line. Thisis not exploited by tradi-
tional LIC. Consider two pointslocated on the same stream line, ; = o(s;) and
s = o(sq). Assume, both points are separated by asmall distance As = s, — s.
Then for aconstant filter kernel k& obviously

s1—L+As s1+L+As
[(@) = [(z1) — k / T(o(s))ds + k / T(o(s)) ds. 4)

s1—L s1+L

Theintensitiesdiffer by only two small correction termsthat are rapidly computed
by a numerical integrator. By calculating long stream line segments that cover
many pixels and by restricting to a constant filter kernel we avoid both types of
redundancies being present in traditional LIC.

To design a fast LIC algorithm, we have taken an approach which relies on
computing the convolution integral by sampling the input texture 7' at evenly
spaced locations x; along a pre-computed stream line o (s). For the moment we
assume that input texture and output image are of the same size, like in traditional
LIC. The distance between different sample points is denoted by #;,. We initiate

Figure 2: Theinput texture is sampled at evenly spaced locations ; along a stream line
o . For each location the convolution integral I (a;) isadded to the pixel containing ;. A

new stream line is computed only for those pixels where the number of samples does not
aready exceed a user-defined limit.

stream line computation for some location xy = o (s) (see Fig. 2). The convolu-
tion integral for thislocation is approximated as

I(xo) =k > T(x;), witha; = o (so + ihy). (5)
To ensure normalizationwetake k = 1/(2n + 1). Theresulting intensity is added
to the output image pixel containing xy. Calculation of more accurate trapezoidal
sums instead of Riemann sumsis nearly as fast, but does not pay in terms of the
visual effect. After having computed 7 (x,), we step in both directions aong the
current stream line, thereby updating the convolution integrals as follows

H@mi1) = 1(@n) + k [T(@mi100) — T(@m-n)]
](mm—l) = I(mm) +k [T(mm—l—n) - T(mm+n)]'

For each sample point the corresponding output image pixel is determined and the
current intensity is added to that pixel. Inthisway we efficiently obtain intensities
for many pixelscovered by the same stream line. The probability for an output im-
age pixel to be hit by asamplepoint isproportional to the length of theline segment
covering that pixel. This can be used to set up some sort of quality control. Run-
ning through all output image pixels, we require the total number of hits already
occurred in each pixel to be larger than some minimum. If the number of hitsis
smaller than the minimum, a new stream line computation isinitiated. Otherwise
that pixel is skipped. At the end accumulated intensitiesfor all pixels have to be
normalized against the number of individual hits. Basically our algorithm (refer-
enced as ‘fast-LIC’ hereafter) can be described by the following pseudocode:

(6)

5

for each pixel p
if (numHits(p) < minNumHits) then
initiate stream line computation with x, = center of p
compute convolution I ()
add result to pixel p
setm=1
whilem < somelimit M
update convolution to obtain I (x,,,) and I (x_.,)
add results to pixels containing «,,, and x_,,
setm=m-+1
for each pixel p
normalize intensity according to numHits(p)

There are anumber of remarks necessary at thispoint. First, if stream line seg-
ments were computed for each pixel separately, the discrete sampling approach
would be tainted with major aliasing problems, unless h; is chosen much smaller
than the width of atexture cell. However, if asingle stream line is used for many
pixels, correlation of pixel intensities along the stream line is guaranteed because
exactly the same sampling points are used for convolution. We found a step size
of h, = 0.5 timesthe width of atexture cell to be completely sufficient. Although
we have assumed input texture and output image to be of the same size, the fast-
L1C agorithm can easily be generalized to set these sizes independently. Thisis
necessary for smooth detail enlargement as discussed in Sect. 8.

The order in which all the output image pixels are processed is of some im-
portance for the efficiency of the algorithm. The goal isto hit as many uncovered
pixelswith each new stream line as possible. Some optimization strategiesaredis-
cussed in Sect. 5.

In our algorithm the computation of stream line segments can be performed
without referencing input texture or output image. Thisallowsusto utilize power-
ful, adaptive numerical integration methods. We have implemented several differ-
ent integrators, which are discussed in Sect. 4. These methods not only accelerate
stream line tracking significantly in homogeneousregions, but al so ensure high ac-
curacy necessary for resolving small details. Accuracy is especially important in
fast-L I C because multiple stream lines determine the intensity of asingle pixel. If
these lines are incorrectly computed, the L1C pattern gets disturbed. Thisis most
evident near the center of avortex in the vector field.

Accurate stream line integration also offers new opportunities for texture ani-
mation using shifted filter kernels, cf. Sect. 7. For animation we need afull sized
convolution range. Therefore, when astream line leaves the domain of v, we con-
tinuethepath inthe current direction. For texture sampling all pointsare remapped
tofall somewhereinto theinput texture. We continue stream linesin asimilar way
if |v| vanishes or if asingularity was encountered. Of course, artificially contin-
ued stream line segments can not be used to determineintensities of the underlying
pixels.

4 Streamline Integration

Usually the vector field will not be available in functional form. For sake of sim-
plicity we assume v to be given at discrete locations on an uniform grid. Vector
values at intermediate locations have to be computed by interpolation. We use bi-
linear interpolation. Of course, better interpolation schemes can be employed if
more information is available about the field. Sometimes global field properties
areknown, e.g. the existance of closed stream lines. In general these propertiesare
not retained, when alocal interpolation scheme like bilinear interpolation is used.
In particular closed stream lines in the true vector field may no longer be closed
in the interpolated field [12]. However, in practice errors due to interpolation are
usually much smaller than errors caused by a poor numerical integrator, unless v
isgiven on avery coarse grid.

Bilinear interpolation results in a representation of the field that is not dif-
ferentiable across the boundaries of grid cells. Therefore, to integrate EQ. (2) in
general we can't rely on sophisticated algorithms like extrapolation methods or
predictor-corrector schemes, which require avery smooth right hand side. Instead
we have employed traditional Runge-Kutta methods. Accompanied with modern
error monitoring and adaptive step size control these methods are quite competi-
tive[17, 7, 3]. We aso have to take into account that in many applications vector
fields arise that are very rough or even discontinuous. In such cases stream line
integration is confronted with the potential risk of missing small details embedded
in homogeneousregions. Thisproblem can betackled by delimiting the maximum
allowed step size of an adaptive numerical integrator. At the extreme, aredlly safe
method would require stepping from cell to cell in the v-grid.

A fast and accurate general -purpose stream line integrator can be built up from
thewell-known classical fourth-order Runge-Kuttaformula. Thisformularequires
four evaluations of the right hand side to proceed from some point « to some other
point ¢« located a step size i ahead on the same stream line:

éhw:w+ﬁ+@+@+@+0(h5) 7

6 3 3 6
The equation is called fourth-order because it resembles the true solution up to a
power of h*. However, an integration method is rather usel ess without any means
for estimating the actual value of the error term. It turns out that an independent
third-order approximation ¢"a can be computed by reusing some of the interme-
diate stepsin (7), namely
k?l kig kig hf(th.’lj)

—_— ki ke ks hf(d"z) .
<zb:c—zc+6—|—3+3+ 5 + O(h?). (8)

7

The difference between both methods ssimply equals to

1
6

Thisterm is an estimate of the error of the less accurate formula. However, it can
be shown [3] that in many cases this estimate can be safely used to control the step
size of the more accurate method, too.

The idea of adaptive step size control isto choose h aslarge as possible while
observing a user-defined error tolerance TOL. For p-th order integration methods
the error term scalesas h?*1. Thereforeif astep size h resultsin someerror A, an
optimized step size h* can be obtained by

h*=h"/p-TOL/A, (10)

with asafety factor p < 1. With thisequation acontrol mechanism can be set up as
follows. We ask theintegrator to step forward by ~ and compute A from Eq. (9). If
A isbigger than TOL, we repeat the current step with h = h*. Otherwise, we pro-
ceed andtake h = min(h*, hmax) fOr the next iteration, where hpyay isthe maximum
allowed step size. If h becomes much smaller than the grid spacing, we assumethat
asingularity was encountered and terminate stream line integration. Theresulting
adaptive numerical integrator, denoted as RK4(3) hereafter, turns out to be very
robust and well suited for our application.

We have also implemented two fifth order methods with fourth order error
estimation. The first method due to Dormand and Prince [4] requires five f-
evaluations per iteration. The other due to Cash and Karp [2] requires six. In our
case, where the right hand side f is obtained by bilinearly interpolating between
discrete grid points, the higher order methods usually will not be significantly su-
perior to RK4(3), except for smooth vector fields sampled at high resolution. How-
ever, experience shows that they will never be significantly inferior either.

A=¢'w— e = (ki hf(d'D)). 9

5 Selecting Streamlines

For the fast-LIC algorithm it is not only important to quickly compute single
stream lines, but also to process the output image pixelsin such an order that the
total number of stream line computations is minimized. For instance it is not a
good idea to process pixels in scanline order, because it would be quite probable
that new stream lines hit pixels already being covered by other lines. Instead of
looking for the optimal pixel to be processed next, we simply subdivide theimage
into smaller blocks, taking thefirst pixel of each block, then the second, and so on.
With this method the number of computed stream lines is typically about 2% of

the number of image pixels. It is possible to incorporate some more sophisticated
schemes here like Sobol quasi-random sequences [17], which may be combined
with methods for finding areas in the image not covered by stream lines so far.

To obtain an approximately equal stream line density in the image, we stop
following an individual line after some distance M h; (cf. pseudocode in Sect. 3).
Idedlly, thislength should be adjusted automatically. If lots of previously covered
pixels are encountered, computation should be terminated. However, currently we
are using a much simpler scheme which nevertheless works reasonably well. We
use afixed M until a certain percentage of pixelsis hit. For the remaining pixels
we simply compute a short stream line segment and the corresponding convolu-
tion integral, but do not traverse the stream line further. Usually a covering limit
of 90% and avalue M h; of about 50-100 pixel widthsyield optimal run times, but
these values are not that critical for overall performance.

A simpleway to compensate for anon-optimal stream line selection strategy is
to decrease the minimum number of hitsrequired for apixel. Evenwithalow limit
the total number of hits for each pixel may be large due to stream lines which are
computed later. In fact, for al imagesin this paper we have taken a limit of only
asingle hit. Despite thislow value, each pixel usually will be covered by several
stream lines, as may be seen from Fig. 2.

6 Texture Map Convolution

The ODE solvers discussed in Sect. 4 are able to quickly compute long stream
lines at guaranteed high accuracy. However, the actual step sizes used by these
integrators are usually much bigger than the distance h; needed for texture sam-
pling. Therefore we haveto interpolate between every two neighbouring locations
returned by the ODE solver. The distance between these |ocations and the curva
ture of the stream line may easily take valuesthat prohibit the use of asimplelinear
interpolation scheme. Thisisillustrated in Fig. 3. Average increments from 10 to
30 times the spacing of the v-grid are quite common in practice.

A much better approximation of stream lines can be obtained using cubic Her-
mite-interpolation, for convenience with arescaled parameter u € [0, 1],

p(u)=au®+bu*+cu+d, u=—"%n_ (12)

Sn—i—l —Sn
with coefficients

a = 2p(0)—2p(1)+p'(0)+p'(1)
b = —3p(0)+3p(1) —2p'(0) — p'(1)
c = p'(0)

d = p(0).

Figure 3: Distances between stream line points as returned by the adaptive numerical inte-
grators are usually so large that cubic interpolation is necessary to track the path for texture
sampling.

p and p’ expressed in terms of stream line position and orientation are

Tn p,(O) = (Sn-i-l_sn) f(xn)
Ln+1 P'(1) = (8nr1—5n) f(Tni1)-

This ensuresthat the first derivative at the boundaries of the interpolation interval
IS represented correctly. Since we need to evaluate the cubic interpolation poly-
nomia at evenly spaced sample points only, a forward difference scheme can be
employed for stream line tracking. Forward differences are defined by

Alp(u) = p(u +) — p(u)
= 3adu’® + (3ad”® + 2b8)u + as® + bs* + ¢d
A’p(u) = Alp(u+9) — Alp(u)
= 6ad’u + 6ad> + 2b6>
Ap(u) = A%p(u+ h) — A’p(u)
= 6ad> = const.
To step along the curve with constant increment 6 = h;/(s,+1—s,) We first have

to compute A'p(ug), A%p(ug), and A3p(uy); then intermediate positions are ob-
tained by using the recursive relationships

P(upy1) = plur) + Alp(uy)
A'p(ugr) = Alp(ug) + A’p(uy)
A’p(upyr) = A’plug) + A%p(uy).

10

After initialization, forward differences require just three additions per component
to evaluate the polynomial, instead of three additions and three multiplicationsre-
quired by Horner’s rule.

Note, that we cannot assume uq to be zero, because in general the distance be-
tween two neighbouring positionsreturned by the integration algorithm will not be
amultipleof h;. Instead, theremainder of h; whichjust doesn’t fit into the previous
interval anymore will serve astheinitial offset for the next interval.

It should be noted that we do not necessarily need to keep interpolation sepa-
rate from stream line integration. As an interesting alternative so-called continous
integration methods might be considered [7]. These provide dense output, i.e. so-
lution values at intermediate pointsz = x; + Oh with0 < 6 < 1. Thetrick is
to gather appropriate information during integration to constitute an interpolation
polynomial that can be evaluated without much additional cost. For the 5-th order
method of Dormand and Prince a 4-th order continous extension is possible with-
out an extra function evaluation; the solution becomes the fifth-order solution for

0 =1[7].

7 Periodic Motion Filters

L1C images can be animated by changing the shape and location of thefilter kernel
k over time. The apparent motion is well suited to envision vector field direction
in addition to the pure tangential information contained in static images. In previ-
ouswork [1] specially designed periodic filter kernels have been used to achieve a
motion effect. Onfirst sight it might appear difficult to combine texture animation
with the fast-LIC algorithm, since the latter is restricted to constant filter kernels,
i.e. box filters. However, thisis not the case. In the following we will first intro-
duce the notion of intensity correlation. We will then present a ssmple blending
technigue that keepsintensity correlation constant over time and thereby achieves
high quality animations.

7.1 Intensity Correlation

Using box filters, an obvious method to animate L1C images is to cycle the boxes
through some interval along the stream lines. If thisis done with equal velocity
for all pixels, aperiodic sequence arises. Cycling abox filter can be easily accom-
plished with the fast-L | C algorithm. Essentially wejust have to add some periodic
offset function to the limits of the convolution sumin Eq. (5).

It turns out that this naive approach is not well suited for animation since no-
ticeable artifacts are introduced when the boxes reenter the interval. To see this,
consider two points p; and p, on a single stream line that are half afilter length

11

apart. The corresponding pixel intensitiesinitially have a50% correlation because
half of the texture cells being convolved are covered by both filter boxes. When
thefilter boxesreenter theinterval, correlation suddenly dropsto zero, as depicted
in the following figure:

. 2d . Correlation
t — —— 50%
0 <] T
P, P,
! —— M — - 25%
v = 0
L — . o — 0%
d

An intensity correlation function & measuring the amount of overlap between filter
kernels k for two points separated by a distance d may be defined as

S min(k(s,t), k(s +d,t)) ds

£dt) = [k(s,t)ds (12)

for each frame t. For a cycled box filter aplot of thisfunction isshowninFig. 4a.
The length of the filter box was chosen to be 0.5 times the length of the interval.
Reduced correlation results in a smaller feature size in the resulting L1C images.
Thisis perceived as a disturbing artifact in animation. Note, that at the same time
distant points temporarily become correlated.

a) Y b) Sy
Aty T AT
T O TR T
penY T N8 W
T 8 8 (NS W\ A8 AN
WG U0 s
LA RN TS
iR

Figure 4: Intensity correlation between two points on a single stream line for different
motion filter kernels: box filter (a) and Hanning filter (b). Two periods are shown in ¢-
direction.

To achieve a smoother motion Cabral and Leedom [1] suggested to employ a
weighted filter kernel made up of two so-called Hanning filters.

1 4 cos(ks) 9 1 + cos(nks + wt)

k(s,t) =

12

with k = 27 /2L. For n = 2 the corresponding correlation is depicted in Fig. 4b.
Thisfunction varies significantly less over time than the correlation for the cycled
box filter. However, it cannot be used in conjunction with the fast-L1C agorithm.
Fortunately, there isa simple method capable of generating periodic animation se-
guencesthat can be used in fast-L1C. With thismethod no artifacts at all occur due
to reentering filter boxes.

7.2 FrameBlending

Consider animage sequence B,,, n = 0, 1, ..., N—1, with afilter box running along
some stream line segment, but not reentering at the beginning. Obviously, such
a sequence is not periodic anymore, but it will exhibit a constant intensity corre-
lation over time. We have simply discarded all frames associated with the peaks
in Fig. 4a. A periodic sequence A of length N/2 may be obtained by smoothly
blending between phase-shifted B-frames, namely

A, =wy (n) Bnmodn + w2(n) B(n—i—%N) mod N (13)
with the weights w; and w, chosen as follows:

»
Ll

0 N/2 N 3N/2 n

This means that frames get less and less weighted as their filter boxes get closer
to the extreme positions. Whenever w; equals one, the middle frame of B will be
visible. For each pixel both intensity contributions are completely independent,
provided that filter boxes do not overlap. In this case averaging multiple LIC im-
agesis statistically equivalent to computing the convolution integral from a mod-
ified input texture given as the weighted average of two textures distributed in the
original way. While effective filter length L remains the same, averaging multi-
ple frames causes the contrast of the resulting image to be reduced. Thishasto be
compensated.

Inraw LIC imagesintensity I of asingle pixel usually isgiven by convolving
alarge number of independent texture cells. Therefore the central limit theorem
of statistics applies and I can assumed to be gaussian distributed, that is

=7 (14)

Y(I) = const. exp(— 572

13

Figure5: Snapshots from aperiodic LIC animation obtained by frame blending. Thefirst
and the last image are identical. The figure contains a schematic view of the differently
weighted filter boxes moving along the stream line. In the lower part intensity histograms
of the blended images are shown. To keep contrast constant, intensity has to be rescaled
to fit the original gaussian distribution.

Here 1, and o denote average and variance of the intensity distribution v, respec-
tively. Any linear combination of independent gaussian distributed quantities will
again be distributed gaussian. The resulting variance is given by o2, = S w?o?.
Consequently, after averaging multiple LIC images of equal 1. and o2, the original
intensity distribution and therefore also contrast can be restored by asimple linear
scaling,

=
Vw? + w3

Figure 5 summarizes the process of frame blending and intensity rescaling. Note,
that for Eq. (15) to be valid intensities need to be statistically independent. This
isguaranteed if the filter boxesin the frames being averaged do not overlap, i.e. if
filter length does not exceed 0.5 timesthe length of the interval. As an aternative
we may also use two image sequences computed from completely different input
textures. In this case a periodic sequence of length NV would be obtained.

I+ (15)

7.3 Variable Velocities

The simple blending technique described above comes to itsreal value when the
texture is to be animated with variable velocities for each pixel. Such animations
are useful to display not only vector direction and orientation, but also to give an
impression of vector magnitude |v|.

For variable velocities the standard filter cycling approach will not yield pe-
riodic sequences anymore. Forsell [5] describes atechnique for endlessly playing

14

back avariable motion moviefrom afixed number of pre-computed constant speed
images. Thefinal intensity for apixel iscomputed by interpolating the pixel inten-
sities from those two images, where the filter kernel phase approximately resem-
blesthe actual value. However, there still remains amajor problem. With ongoing
time, filter kernel phases for neighbouring pixels will lose any correlation. Dras-
tic spatio-tempora aliasing effects are introduced. For example the texture may
appear to move in the opposite direction in some areas.

To avoid these effects we build up a variable speed animation from only such
frames, where thefilter kernel phasesare correlated. Correlated frames can be pro-
duced by letting filter boxes move some variable distance proportional to their ve-
locity, as depicted in the following picture:

t, vV, <[
V<V, <]

t, >

<]]

<]
t, v

<1 |

To generate a periodic sequence we would like to use the blending technique de-
scribed above again. However, in general the intensities being averaged are not
independent because filter boxes overlap in regions of low velocity. Therefore
Eg. (15) is not valid anymore. It is also not a good idea to use two image se-
guences computed from different input textures. This would cause the LIC pat-
tern to change over time in regions of low velocity. Although no flow would be
perceived, blending between different patterns is somehow irritating. Instead, we
have to rescale intensity locally according to the actual amount of filter box over-
lap. Overlap isinversely proportional to velocity and may be described by a num-
ber u € [0,1]. An expression for the resulting local variance can be derived
by splitting blended intensity into three independent contributions, one due to the
overlapping part and two due to the non-overlapping parts of the individual boxes:

oh = ((w% +w3)(1 —u)? + u2) o?. (16)

With thisequation we are ableto rescale intensity of every pixel so that the original
o? isrestored. In thisway a high quality animation sequence is obtained.

It should be noted that building up animation sequences from shifted box filter
convolutions requires accurate stream line computation, because highly unsym-
metric convolution ranges can occur. These will emphasize errors due to poor nu-
merical integration. For example, circular stream lines may be falsely depicted as

15

spirals. Artifacts of this kind are usually disguised by a symmetric filter kernel
[18, 1]. They do not occur if stream line integration is accurate.

8 Smooth Detail Enlargement

For many applicationsit is useful to adjust the size of aLIC input texture, so that
asingle texture cell is covered by lots of output image pixels. This can be easily
accomplished with thefast-LIC algorithm. Asbefore we are using Eg. (5) to com-
pute the convolution integral for some initial point x,. It is sufficient to sample
the input texture at increments i, = 0.5 times the width of a texture cell. How-
ever, when stepping along the stream line and updating the integral according to
Eq. (6), we use a smaller step size in order to ensure that we hit as many pixels
covered by the stream line as before. Of course, using a smaller step size means
that the value of & in Eq. (6) hasto be adjusted, too. The ability to choose the sizes
of input texture and output image independently can be exploited in several ways.

First, in L1C images created from high frequency input textures, such as white
noise, these high frequencies are retained in directions perpendicular to the field
direction. Thisis caused by the one-dimensional nature of the filter kernel. The
resulting images often look quite busy. Problems ariseif the images are to be pro-
cessed by lower bandwidth filters like video tape recorders or image compression
algorithms. The usual remedy isto use alow-passfiltered input texture or to blur
the final LIC images afterwards. With our algorithm convolutions over long dis-
tances L can easily be computed. Therefore abetter approach isto simply scale up
the size of atexture cell aswell as convolution length L in terms of pixel width.

With traditional LIC it is hard to generate exactly the same image at different
resolutions. It would require to use both aresampled input texture aswell asare-
sampled vector field. This approach is tedious and will unnecessarily introduce
errors. However, often it is important to create several versions of a single im-
age at different resolutions, e.g. adopted to various output devices, or for use in
animations that require distance dependent texture resolution. This can be easily
accomplished with fast-L1C since the size of the output image can be chosen inde-
pendently of vector field resolution and the input texture.

A dlightly different utilization of this feature is the computation of smooth
zoomsinto the vector datafield to enlarge interesting details. Asan example some
close-upsof detailsinavector field are shownin Fig. 6, wherelinear magnification
extends up to afactor 100.

If the zoom is to be played back in a sequence, care has to be taken for low
magnification factors. If stream line integration is unconditionally started at the
center of output image pixels, then in each frame dightly different stream lines
are computed. This causes annoying variations in texture to occur from frame to

16

Figure 6: Details of a vector field displayed at different magnification factors (1, 3, 15,
100). For each frame a completely new L1C image has been computed. The data set had
aresolution of 500%. At the finest level only afew grid points are covered.

frame. One solution would be to increase the minimal number of hitsrequired for
apixel. Another more robust method isto try exactly the same stream lines used
in the previous frame first. For these lines the starting point will not correspond
to the center of an output image pixel anymore. Remaining pixels are treated as
usual afterwards. This method yields smooth animation sequences, alowing one
to compute striking tripsinto details.

9 Results

We have implemented the fast-LIC algorithm in the C++ programming language
within the framework of the modular visualization environment |RISExplorer 74,
Within this system it is possible to pre-process the vector field as well as to post-
process the resulting LIC images in various ways. We have found it especially
useful to apply adirectional gradient filter to the raw LI1C images to further em-
phasize directional information. Another useful method is to multiply color into
the imagesto simultaneously visualize a scalar quantity in addition to vector field

17

N

Figure 7: Field of an irradiating dipole antenna. The same data as in Fig. 6 is shown.
Field strength is indicated by color. Note, how gradient filtering and coloring emphasize
the vector field structure.

orientation. Theimagesin Fig. 1, 7, and 8 were post-processed in this way.
Thedatashownin Fig. 1 comesfrom so-called hyperthermiasimulation, aform
of cancer therapy based upon radiating radio waves into the human hip region. In
Fig. 7 electrical field lines irraditated by a dipole antenna are depicted. Thisim-
age hasto be compared with Fig. 6a. In both cases the same vector field is shown.
However, after gradient filtering and coloring, the image looks much more attrac-
tive. In Fig. 8 a snapshot from the simulation of an instationary fluid flow around
acylinder is shown. Finally, Fig. 9 presents an application of LIC in modern art.
Table 1 summarizes some execution times of fast-LIC compared to the origi-
nal L1C algorithm of Cabral and Leedom. The numbers, obtained on a SGI Indigo?
with 150 MHz MIPS R4400, are in seconds. They refer to the vector fields shown
inFig. 1, 7 and 8, but do not take into account computing timefor gradient filtering
and coloring. For better comparision with the original algorithm the dimensions of
input texture, vector field, and resulting image were chosen to be equal. The actual

18

Figure 8. Flow around acylinder. Color depicts the value of stream function (upper) and
magnitude of velocity (lower). In the lower image directional information still is clearly
visible, although color does not correspond to stream line shape.

EEY

Figure 9: LIC-based variations on a scissors cut of Henri Matisse.

19

L] Ltic|RrRK|CK]|DP

Hyperthermia 10 || 12.26 | 3.36 | 3.65 | 3.55
400 % 600 20| 21.93 | 3.75 | 415 | 3.99
40 || 41.36 | 460 | 5.20 | 4.88
Dipole 10 || 1835 | 435|441 | 431
500 x 500 20 || 3429 | 4.78 | 4.81 | 4.60
40 || 71.14 | 561 | 5.61 | 5.39
Cylinder 10| 7.76 | 149|154 | 157
600 x 200 20| 1444 | 162 | 1.65| 1.70
40| 27.01 | 1.92 | 1.99 | 2.00

Table 1: Performance of the original L1C algorithm compared to the new algorithm using
different numerical integrators. RK = adaptive Runge-K utta scheme RK4(3), CK = Cash
and Karp, DP = Dormand and Prince (cf. Sect. 4). The boldface entry gives the shortest
time in each row.

sizes are indicated in the table. L isthe extent of the convolution integral in one
direction. The table contains different columns for various numerical integrators
we have implemented. These integrators do not differ much in performance. Usu-
ally only about 25% of the time is spent in stream line integration. Most timeis
spent in texture sampling. For the hyperthermiadata set, fast-L I C performs some-
what worse than in the other examples. Thisis caused by the discontinuitiesin the
vector field, forcing the adaptive integrators to choose very small step sizes across
the boundaries. The higher order methods are more affected by this than RK4(3).

10 Conclusion

We have introduced a new line integral convolution algorithm that performs an
order of magnitude faster than previous methods. A feature of our method is the
ability to compute images at arbitrary resolution. We presented methods for pro-
ducing high quality texture animation sequences, employing constant filter kernels
only.

The new techniques have particular significance for computer graphics. They
are useful for fast procedural generation of textures with directional features and
of texture sequences with continously variable spatial resolutions. The production
of such sequencesisof growing interest in computer animation, where severa ver-
sions of atexture with different spatial resolutions are often needed for different

20

views or output media.

There are a number of directions for future research. We intend to investigate
the visualization of time varying and three-dimensional vector fields. The inclu-
sion of visual representations of global and local vector field characteristics other
than flow linesis also an interesting topic that deserves further investigation.

Finaly there is room for considerable further research work with respect to
computer animation, e.g. concerning the production of hierarchies of directional
textures with different spatial resolutions, or new methods for synthesizing vector
fields from images to auto-convolve them. Thismay lead to anew class of direc-
tional filters for image processing.

Acknowledgements

We would like to thank Charlie Gunn, Roland Wunderling, and Gerhard Zum-
busch for reviewing the manuscript and for various helpful discussions. We are
also grateful to the anonymous reviewers of this paper for their valueable remarks,
and to Brian Cabral and Casey L eedom for making their code avail able on the net.

References

[1] Brian Cabral and Leith (Casey) Leedom. Imaging vector fields using line integral convo-
[ution. In James T. Kgjiya, editor, Computer Graphics (S GGRAPH 93 Proceedings), vol-
ume 27, pages 263-272, August 1993.

[2] J. R.CashandAlanH.Karp. A variableorder Runge-Kuttamethod for initial value problems
with rapidly varying right-hand sides. ACM transactions on Mathematical Software, Vol. 16,
pages 201-222, 1990.

[3] Peter Deuflhard and Folkmar Bornemann. Numerische Mathematik I1: Integration gewdhn-
licher Differentialgleichungen. Verlag de Gruyter, Berlin, 1994.

[4] J. R. Dormand and P. J. Prince. Higher order embedded Runge-Kutta formulae. J. Comp.
Appl. Math., 7:67-75, 1981.

[5] LisaK. Forssell. Visualizing flow over curvilinear grid surfaces using line integral convolu-
tion. In Visualization ' 94, pages 240-247. |EEE Computer Society, 1994.

[6] Paul E. Haeberli. Paint by numbers. Abstract image representations. In Forest Baskett, edi-
tor, Computer Graphics (S GGRAPH ' 90 Proceedings), volume 24, pages 207-214, August
1990.

[7] Ernst Hairer, Syvert Paul Ngrsett, and Gerhard Wanner. Solving Ordinary Differential Equa-
tions |, Nonstiff Problems. Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1987.

[8] JamesL.Heman and Lambertus Hesselink. Visualizing vector field topology in fluid flows.
|EEE Computer Graphics and Applications, 11(3):36-46, May 1991.

21

(9]

(10]

[11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

AndreaJ. S. Hin and Frits H. Post. Visualization of turbulent flow with particles. In Visual-
ization ' 93, pages 46-52. |EEE Computer Society, October 1993.

Jeff P M. Hultquist. Interactive numerical flow visualization using stream S urfaces. Com-
puting Systems in Engineering, 1(2-4):349-353, 1990.

Kwan-Liu Maand Philip J. Smith. Virtual smoke: An interactive 3d flow visualization tech-
nigue. In Visualization ' 92, pages 46-52. |EEE Computer Society, October 1992.

Gordon D. Mallinson. The calculation of the lines of a three-dimensional vector field. In
Graham de Vahl Davis and Clive Fletcher, editors, Computational Fluid Dynamics, pages
525-534. North-Holland, August 1988.

Jerrold E. Marsden and Anthony J. Tromba. Vector Calculus. W. H. Freeman, New York,
3rd edition, 1988.

Nelson Max, Barry Becker, and Roger Crawfis. Flow volumes for interactive vector field
visualization. In Visualization’ 93, pages 1924, October 1993.

Nancy John Nersessian. Faraday’sfield concept. In David Gooding and Frank A. J. L. James,
editors, Faraday Rediscovered: EssaysontheLiveandWork of Michael Faraday, pages175—
187. Stockton Press, New York, 1985.

Ken Perlin. Animage synthesizer. In B. A. Barsky, editor, Computer Graphics (9 GGRAPH
'85 Proceedings), volume 19, pages 287-296, July 1985.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipesin C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd
edition, 1992.

Jarke J. van Wijk. Spot noise-texture synthesis for data visualization. In Thomas W. Seder-
berg, editor, Computer Graphics (S GGRAPH ' 91 Proceedings), volume 25, pages 309318,
July 1991.

Jarke J. van Wijk. Rendering surface-particles. In Visualization '92, pages 54-61. |IEEE
Computer Society, October 1992,

22

