
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

BENJAMIN HILLER TORSTEN KLUG
ANDREAS TUCHSCHERER

An Exact Reoptimization Algorithm for
the Scheduling of Elevator Groups

ZIB-Report 12-43 (November 2012, revised April 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

An Exact Reoptimization Algorithm for the
Scheduling of Elevator Groups∗

Benjamin Hiller
Zuse Institute Berlin

Takustraße 7
D–14195 Berlin, Germany.

hiller@zib.de

Torsten Klug
Zuse Institute Berlin

Takustraße 7
D–14195 Berlin, Germany.

klug@zib.de

Andreas Tuchscherer

April 9, 2013

Abstract

The task of an elevator control is to schedule the elevators of a group
such that small waiting and travel times for the passengers are obtained.
We present an exact reoptimization algorithm for this problem. A re-
optimization algorithm computes a new schedule for the elevator group
each time a new passenger arrives. Our algorithm uses column generation
techniques and is, to the best of our knowledge, the first exact reoptimiza-
tion algorithm for a group of passenger elevators. To solve the column
generation problem, we propose a Branch&Bound method. The overall
algorithm finds high-quality solutions very quickly.

1 Introduction
The scheduling of passenger elevators in a building is one of the prime real-world
examples of an online optimization problem, where the data describing the op-
timization problem becomes available over time. A suitable elevator scheduling
algorithm should make best use of the capacity the elevator group offers to
achieve good service, i. e., short waiting times, for the passengers.

Most algorithms in current use are reoptimization algorithms: As new infor-
mation becomes available, they update the schedule to follow by computing a
new schedule for the new system state that is supposed to minimize some objec-
tive modeling service quality. Industry practitioners often argue (e. g., [18]) that
computing an optimal schedule is not possible since the problem is NP-hard and
thus justify using heuristics. Recent work shows, however, that reoptimization
algorithms based on exact techniques are feasible for similar problems [13, 5].

Most of the currently installed elevator systems are conventional (2-button)
systems, where a passenger registers his desired travel direction using up/down
buttons. The destination floor is entered inside the elevator after it arrived.

∗A preliminary extended abstract of this paper was presented at MAPSP 2009 [8].

1

Thus there is not only uncertainty about future passengers (the online aspect),
but also uncertainty about the destination floors of the passengers waiting at a
floor. This additional lack of information severely limits the optimization that
can be performed. Some elevator companies therefore offer destination (hall)
call systems, where a passenger registers the destination floor already at his
start floor. Such a destination call system provides more information earlier,
which should allow to improve the performance of the system.

As far as we know, all existing installations of destination call systems are
immediate assignment (IA) systems, i. e., passengers are assigned to a serving
elevator in immediate response to a call. The immediate assignment limits the
scheduling decisions later on and thus reduces the optimization potential. We
therefore also consider delayed assignment (DA) systems, in which the elevator
control can defer the decision which elevator serves a call until some time before
the elevator arrives at the floor. It then signals the destination floors served
by the elevator, thus selecting the corresponding passengers. DA systems are
interesting for two reasons: They might be implemented if they provide better
performance and they are a natural yardstick for evaluating algorithms for IA
systems.

Contribution We introduce a unified model for both IA and DA systems,
allowing to develop algorithms that can handle both, which facilitates system
comparisons.

Based on this model, we present the first exact reoptimization algorithm
for scheduling a group of passenger elevators in a destination call system. It
employs a set partitioning model that is solved via Branch&Price, where the
pricing problem is solved by a suitable Branch&Bound method. We report that
destination call systems controlled by our new algorithm achieve significantly
better waiting times than conventional 2-button systems and a heuristic state-
of-the-art destination call algorithm.

The exact approach allows to assess the quality of the solutions of heuristics
and is thus an important ingredient for improving real-world scheduling algo-
rithms. The algorithm is a result of a research project with our industry partner
Kollmorgen Steuerungstechnik.

Related work Although there is much literature on elevator control algo-
rithms, there is not much work on destination call systems yet. Gloss [6] intro-
duced the idea of destination call systems in 1970, but found that computing
power was insufficient to even schedule a single elevator optimally. Interestingly,
he in fact proposed DA systems. The first destination call system was introduced
around 1990 by Schindler [14]. Seckinger and Koehler [15] reinvestigated the
problem for a single elevator and proposed an exact algorithm that frequently
obtained optimal solutions in less than a second. Tanaka et al. [17] propose a
sophisticated Branch&Bound algorithm for controlling a single elevator, being
fast enough for simulations. Both Seckinger and Koehler and Tanaka et al. re-
port that destination call systems achieve lower waiting and travel times than
2-button systems. Conceptually, our algorithm is similar to the vehicle routing
algorithm presented in [13], which was later extended to groups of cargo ele-
vators [5] with unit capacity. However, scheduling passenger elevators is much
more complex due to their high capacity and the complex constraints involved.

2

The industry standard is to use relatively simple heuristics [14, 16, 12, 10]. The
work presented here is an outgrowth of the PhD thesis [7] of the first author.

The remainder of the paper is structured as follows. Section 2 defines the
problem in detail. We describe our new algorithm ExactReplan in Section 3
and provide some computational results on its performance in Section 4.

2 Problem definition
In a destination call system, a passenger registers his destination floor upon
his arrival at the start floor. A destination call (or call for short) is a triple
of the release time, the start floor, and the destination floor corresponding to
this registration. Note that the elevator control knows only about destination
calls, not about passengers. The task of the elevator control is to schedule the
elevators such that for each call there is an elevator travelling to the call’s start
floor to pick it up and to visit its destination floor afterwards for dropping it,
ensuring service of registered passengers. We call a set of schedules for each
elevator that serve all calls in this way a dispatch. At any point in time, the
elevators follow the current dispatch, which is updated each time a new call is
registered by solving a snapshot problem describing the current system state.

Throughout the paper and in the implementation we assume there is a one-
to-one correspondence between destination calls and passengers. Of course,
in reality it might (and will) happen that several people register just a single
destination call. In this case, we underestimate the number of passengers in
the elevator cabin. This might not be an issue, since we do not fill a cabin
up to the rated cabin capacity, but only to 80% (as is common practice in
the elevator industry), so there is some flexibility. In the worst case, however,
some passenger(s) may not enter the cabin as expected and will have to reissue
their destination call. This is very similar to the 2-button system, where the
information about the number of waiting passengers is even less reliable.

In the following, we describe the structure of the snapshot problem. We
do this based on a generic model for elevator schedules that captures 2-button
systems, IA systems, and DA systems at the same time. Moreover, the schedule
model also applies to (IA/DA) destination call systems with passenger selection,
where the elevator control can decide and control which passengers board the
elevator on each floor. Although this is an unrealistic setting for passenger ele-
vators, it may be interesting as a kind of “yardstick” in performance evaluations.

We will use the following terms for 2-button systems: A landing call corre-
sponds to a selected travel direction at a floor (or landing), whereas a car call
may be given inside the elevator cabin to stop at a certain floor. A call may be
either a landing call or a destination call.

Request model Due to the way the passengers and the elevator control inter-
act it may not be possible to pick up several calls at the same floor independently.
For instance, if in an IA system there are two calls from floor 1 upwards that
both have been signalled to be served by elevator 2, then both have to be picked
up as elevator 2 arrives and travels upwards. For this reason, we group calls
with the same start floor that have to be picked up by the same elevator into
requests. A request models that the elevator control has no way to distribute
its calls among different elevators.

3

The set of requests R can be partitioned into the requests that are already
assigned to an elevator e, denoted byR(e), and the ones that are still unassigned,
denoted by Ru. The exact set of calls belonging to a request and the sets of
assigned requests depend as follows on the system considered.

2-button system: There is one request for each landing call, which consists
of this landing call only. A request is assigned to an elevator as soon as
the elevator is going to stop at that floor and signalled the corresponding
leaving direction.

IA system: There is one request for each floor/direction/elevator combina-
tion such that a call from that floor leaving in the direction has been
assigned to the elevator. This request consists of all calls with match-
ing floor/direction that have been assigned to the elevator e and belongs
to R(e). Another type of request arises from each yet unassigned call,
making up an unassigned request of its own, reflecting that it still can be
assigned to any elevator.

DA system: For each elevator e that signalled destination floors to be served,
there is a request in R(e) consisting of all the calls originating from the
start floor and going to the destination floors signalled. Unassigned calls
belong to the unassigned requests in Ru; there is one such request per
start floor/destination floor combination.

(IA/DA) systems with passenger selection: Each destination call consti-
tutes its own request. The assignment to an elevator is handled as in the
system without passenger selection. However, if the capacity does not suf-
fice to pick up all matching requests, the elevator control algorithm may
choose the ones to pick up.

A request is served by picking up the corresponding calls and visiting each
destination floor of the destination calls belonging to the request. In addition
to serving picked up requests, an elevator may have drop commitments, i. e.,
floors to stop at before changing the direction, due to destination calls that
have been picked up earlier or due to car calls.

The example mentioned above also shows that if an elevator reaches a floor
with an assigned request the first time with leaving direction matching the re-
quest direction, it has to pick up this request because the passengers assume the
elevator to serve them. We call this the first-stop pickup requirement. Observe
that the original reason for stopping at this floor might be to drop calls, i. e.,
there is some drop commitment for this floor. Still the elevator then needs to
serve the calls of the first-stop pickup request as well. Thus serving an additional
request may have a significant impact on other requests, too. See Figure 1 for
an example.

The requests represent the calls still to be picked up. In general, some
destination calls have already been picked up, but not been dropped yet. These
are represented by the set C(e) of destination calls loaded by elevator e.

Schedule and feasibility A schedule S = (s0, . . . , sk) for elevator e is a se-
quence of stops si which describe future visits to floors. A stop si is character-
ized by the stopping floor si.floor , the leaving direction si.direction, the arrival

4

1 3 1 2 5
1 2

1 2

3

3
1

(a) Original schedule S.

1
1,4

2 3
4 1

3
5
3

3 1
2

2
(b) Schedule S after including request 4.

Figure 1: Serving request 4: 1 → 2 changes the structure of the schedule com-
pletely. Our graphical notation represents a stop by a boxed floor number.
Numbers above or below a stop indicate requests picked up or dropped, respec-
tively.

time si.arrival , the set of currently loaded calls si.current , the set si.pickups
of requests picked up at this stop, and the set si.drops of calls dropped at this
floor.

At any point in time, elevator e is either halting at a floor or travelling
towards a floor. Let f0(e) be this floor. Depending on its current state, elevator e
may not stop on every floor. For instance, it may currently bypass floor 5 at
maximum speed, but deceleration takes too long to stop on floor 6, so floor 7
is the next floor it can stop at. We denote by Fi(e) the set of floors that are
admissible for the first stop in a schedule. If the elevator is halting at floor f0(e),
we have Fi(e) = {f0(e)} and it is not possible to have the first stop at a floor
different from f0(e). In case the elevator is full, the only floor allowed as a first
stop is the next floor of the drop commitments.

Similarly, the leaving direction of the first stop might already be fixed due to
drop commitments or because the leaving direction has already been signalled
to the passengers. Denote by D0(e) the set of feasible leaving directions for the
first stop. Finally, C(e) denotes the set of destination calls that are currently
loaded by elevator e.

We assume that passengers are well-behaving, i. e., they board the elevator
that was signalled to serve them on its first stop in the matching direction. To
model this (i. e., the first-stop pickup requirement), we let P (e, f, d) denote the
set of requests that are to be picked up by elevator e at its first stop on floor f
with leaving direction d. The first such stop of elevator e then has to be followed
by stops according to the additional drop commitments implied by all requests
in P (e, f, d). The definition of P (e, f, d) depends as follows on the considered
system.

2-button system: All sets P (e, f, d) are empty. The rationale for this is that
in a conventional system there are no implied drop commitments, since
the elevator control does not know the destination floors yet.

IA system: P (e, f, d) is the set of requests leaving floor f that have been
assigned to elevator e.

DA system: P (e, f, d) is again the set of requests leaving floor f that have
been assigned to elevator e. Note that in a delayed assignment system,
requests are only assigned to an elevator that is already approaching the
floor and signalled the corresponding destination floors.

(IA/DA) systems with passenger selection: All sets P (e, f, d) are empty,

5

since the elevator can freely choose which passengers/requests are picked
up.

We now have all the ingredients to formally define feasibility of a sched-
ule S = (s0, . . . , sk) for elevator e. For convenience, we denote by P (si) the set
of requests already picked up by the schedule up to, but not including, stop si.
Note that P (s0) = ∅.

The most important feasibility restrictions are due to the requirement that
(well-behaving) passengers must not be transported in the wrong direction. This
implies restrictions on the sequence of floors and the leaving directions of the
stops. For the initial stop s0 we have the following conditions:

• The floor s0.floor is one of the floors of Fi(e).

• The leaving direction s0.direction is one of D0(e).

• The drop commitments s0.drop_floors are the floors from F(e) without
s0.floor plus the destination floors of the destination calls picked up at
this stop.

The analogues of these conditions for the later stops are a bit more involved.

• There are the following cases depending on the pending drop commit-
ments:

si.drop_floors 6= ∅: si+1.floor is between si.floor and the next floor from
si.drop_floors in the leaving direction of si or equal to this floor.
The leaving direction si+1.direction is the same as on the last stop,
if si.drop_floors consists of at least two floors or it is one floor,
but si+1.floor is before this floor. Otherwise the direction may be
arbitrary.

si.drop_floors = ∅: si+1.floor and the leaving direction are arbitrary.

• The drop commitments si+1.drop_floors are the same as si.drop_floors
without si+1.floor plus the destination floors of the destination calls picked
up at this stop.

In addition to the conditions due to passenger directions there are conditions
on the sets of picked up requests and the sets of current and dropped destination
calls.

• si.pickups contains all the requests in P (e, si.floor , si.direction) \ P (si).
Moreover, si.pickups does not contain any request that is assigned to a
different elevator and, of course, each request starts at floor si.floor and
travels in direction si.direction.

• si.current is the set of current calls of the preceding stop (C(e) for s0) that
have a different destination floor than si.floor plus the destination calls
corresponding to si.pickups. Note that these are all calls that could have
been picked up if the elevator capacity was not limited.

• si.drops is the set of current calls of the preceding stop (C(e) for s0) that
have destination floor si.floor .

6

Now the overall schedule is feasible if and only if

• every stop is feasible,

• there are no two successive stops on the same floor with the same leaving
direction,

• all requests assigned to the elevator are served, i. e., R(e) ⊆ P (sk),

• finally, all calls and drop commitments have been served, i. e., sk.current =
∅ and sk.drop_floors = ∅.

Timing and cost model We use the following timing model for schedules.
The floor-to-floor travel time from floor f1 to floor f2 of elevator e is given
by τdrv(e, f1, f2) and includes the time to close and reopen the door. Moreover,
let τstop be the minimum stopping time on a floor and τload the transfer time of
a passenger, i. e., the time a passenger needs for boarding or leaving. Given the
information of a stop si, the arrival time of the subsequent stop si+1 is given by

si+1.arrival = si.arrival +max{τstop, τload
(
|si.pickups|+ |si.drops|

)
}

+ τdrv(e, si.floor , si+1.floor).
(1)

Note that the elevator stopping time at a floor is essentially proportional to the
number of calls transfered.

Each feasible schedule is associated to a cost, which is the (weighted) sum of
the waiting and travel times. The waiting time is the time between the arrival
of a passenger and the time the serving elevator arrives. Similarly, the travel
time is the time between the arrival of the passenger and the arrival of the
serving elevator at the destination floor. Based on the arrival times it is easy
to compute the waiting times for the calls picked up according to si.pickups
and the travel times for the calls in si.drops. Let twait(c) and ttravel(c) denote
the waiting and travel time of call c, respectively. The cost for serving call c
is then cwaittwait(c) + ctravelttravel(c) where cwait and ctravel are preselected cost
coefficients.

So far we did not take the limited elevator capacity into account. In gen-
eral, we cannot avoid insufficient elevator capacity so we cannot strictly forbid
capacity violations. To avoid overbooking and thus having the passengers to
reissue their calls, we introduce a capacity penalty cost as follows. We penalize
each call of a request that exceeds the elevator capacity at the pickup stop of
the request with additional cost ccapacity. Denoting the capacity of elevator e
by κ(e), the capacity penalty cost at stop s are

ccapacity ·max
{
0, |s.current |+ |s.pickups| − κ(e)

}
.

A dispatch is a collection of feasible schedules, one for each elevator, that
serves every request exactly once. The cost of a dispatch is just the sum of
costs of the schedules. The overall task when solving the snapshot problem is
to determine a dispatch with minimal cost. Note that a dispatch determines
an assignment of requests to elevators, which in an IA system determines the
assignment of calls to elevators for the next snapshot problem.

7

3 The algorithm
Our algorithm ExactReplan is designed to work for destination call systems
(and not for 2-button systems), since it assumes that the assignment of one
request to an elevator is independent of the schedules of the remaining elevators.
This is not the case for 2-button systems, since here essentially the elevator to
arrive first will serve a landing call. We also note that although the algorithm
is in principle applicable to systems with passenger selections, the resulting
instances will be to huge to be solved in a reasonable time, since each passenger
constitutes a request on its own. In contrast, for IA and DA systems without
passenger selection, 100 or more destination calls are usually grouped into not
more than 30 requests.

The algorithm ExactReplan is based on the following set partitioning
model. Recall that a dispatch distributes the unassigned requests Ru among
the elevators and gives, for each elevator, a feasible schedule that serves its
assigned requests R(e) and the unassigned requests it received.

Let E denote the set of elevators. Furthermore, let S(e) be the set of feasible
schedules for elevator e and define S :=

⋃
e∈E S(e). A dispatch is then a col-

lection of feasible schedules such that each unassigned request is served exactly
once. For each schedule S ∈ S we introduce a decision variable xS ∈ {0, 1} for
including it in the dispatch or not. We denote the cost of schedule S by c(S).
To compute an optimal dispatch, we can solve the following set partitioning
problem:

min
∑
S∈S

c(S)xS (2)∑
S∈S : ρ∈S

xS = 1 ρ ∈ Ru, (3)

∑
S∈S(e)

xS = 1 e ∈ E, (4)

xS ∈ {0, 1} S ∈ S. (5)

This Integer Programming (IP) problem cannot be solved by an off-the-shelf
IP solver directly since the number of feasible schedules and thus columns is
very large. It is, however, sufficient to consider for each elevator e only cost-
minimal feasible schedules for each subset R ⊆ Ru, which are just a few if |Ru|
is not large, as it is usually the case for IA systems. It turns out that generating
only the cost-minimal feasible schedules using the Branch&Bound algorithm
described below takes more than a second already for 3 or 4 unassigned requests
for a group of 8 elevators. Our algorithm therefore uses column generation (see
e. g., [4]) to solve the linear programming relaxations of the above IP arising in
a Branch&Price process. We do not invoke the column generation/IP solver
if there is only a single unassigned request. Instead, we determine the optimal
dispatch by computing an optimal schedule serving this request for each elevator
and then choosing the elevator / schedule with least additional cost. Having only
one unassigned request is very frequent for IA systems.

Let πρ, ρ ∈ Ru, and πe, e ∈ E, denote the dual prices associated with
constraints (3) and (4), respectively. The pricing problem for the LP relaxation
of the above IP is then to find, for each elevator e, a set of feasible schedules for

8

elevator e having negative reduced cost c̃(S) := c(S) −
∑
ρ∈Ru∩S πρ − πe or to

decide that no such schedule exists.

3.1 Pricing via Branch &Bound
Pricing problems for similar vehicle routing problems can often be modelled
as shortest path problems. Due to the complex constraints of the elevator
scheduling problem, the corresponding graph is very large. We therefore solve
the pricing problem using a Branch&Bound algorithm which allows us to take
care of all the constraints rather easily. Another important feature of our pricing
algorithm is that we do not solve the pricing problem exactly, i. e., determine
the schedule with the smallest (negative) reduced cost, but stop pricing after we
found k schedules with negative reduced cost. These schedules are then added
to the set partitioning IP. The rationale is that we do not spend too much search
effort initially, when the dual prices are still far from the optimal ones and thus
do not yield reliable valuations of the relative usefulness of schedules.

The basic observation to enumerate all feasible schedules for an elevator is
that each schedule can be described by a sequence of pickup actions and drop
actions, specifying which request to pick up and at which floor to stop for drop-
ping, respectively. We use this description to make up a search tree traversed to
find schedules with negative reduced costs. Each node in the tree corresponds
to a stop of the elevator at a floor, where a subset of the possible requests has
already been picked up. The nodes are joined by edges corresponding to pickup
or drop actions, if the action does not lead to transporting a passenger in the
wrong direction.

Formally, a node v of the search tree is labelled with the following data:

Av Set of not yet picked up (assigned) requests from R(e).

Ov Set of not yet picked up (optional) requests from Ru.

Sv A feasible schedule that serves all requests in R(e) \ Av. This schedule is
determined by the path from the root node to node v. In addition to stops
corresponding to the actions on this path Sv has stops at the pending drop
floors.

sv A stop from Sv, namely the stop resulting from the sequence of actions along
the path from the root node.

Node v represents all schedules that may be obtained by picking up unserved
requests at stop sv or later. The schedule Sv has the property that there are
no pickups after stop sv, i. e., these stops are there only for dropping loaded
destination calls. Node v is called feasible if Av is empty and sv is the last stop
of Sv, i. e., has no pending drop floors. A feasible node corresponds to a feasible
schedule that serves all requests assigned to the elevator. There is a separate
root node r for every floor f where the elevator can still stop at next. Sr is the
schedule corresponding to dropping all loaded calls of elevator e with first stop
at floor f ; sr is the first stop of Sr.

As described before, a child node v′ of node v arises by two actions: Either
a request is picked up or the elevator moves to the next floor for dropping a
loaded call. The child node v′ for dropping a call has the labels of v with
sv′ being the successor stop of sv. If v′ reflects the pickup of request ρ, it is

9

labeled with schedule Sv′ arising from Sv in the following way. The stops up
to sv and all stops that need to be visited before ρ can be picked up are copied
directly. If necessary, a stop at the start floor of ρ is created, potentially also
including pickups according to the first-stop pickup requirement. Then stops
for dropping the now loaded calls are appended. Of course, Av′ , Ov′ , and sv′

are set accordingly.
Our Branch&Bound pricing algorithm starts by computing lower bounds

on the reduced cost for each root node and collects the root nodes in a queue Q.
It traverses the search forest in a best-first manner, i. e., it selects the node v
from Q with the smallest lower bound. Moreover, the algorithm maintains a
result set M , containing all schedules with negative reduced cost found so far.
Each node v is processed as follows: If v is feasible and has reduced cost less
than threshold θ (initially −1.0 × 106), the corresponding schedule is collected
in the result set M . If M has now k schedules, the search is stopped and M
returned to be added to the set partitioning IP. Otherwise we branch on v and
collect all valid child nodes in the set N . Each u ∈ N is added to Q provided
that its lower bound is less than θ. Then we consider the next node from Q.
Everytime a schedule is added to M , θ is set to the minimum reduced cost of
a schedule in M to avoid finding many schedules whose reduced cost are only
slightly negative. Thus we can prune a large part of the search tree, looking
only for schedules with even lower negative reduced cost.

3.2 Lower bounds
The lower bound computed consists of two parts: a lower bound on the reduced
cost of the requests already picked up and dropped or currently loaded and a
lower bound on the additional reduced cost for serving still unserved requests.
The reduced cost for the picked up requests are at least c̃(Sv). To see this, note
that the service costs increase with time. Due to the construction of Sv, the
waiting times of all calls are already fixed and the travel time of currently loaded
calls can only increase by picking up further requests, since the calls cannot be
dropped earlier than at the already existing drop stops. Since capacity penalty
cost are only incurred when picking up a request and all pickups of Sv are
irrevocable, they cannot decrease either.

We now turn to the computation of the lower bound for the additional re-
duced cost. The idea of this “greedy”-type bound is to determine for each un-
served request earliest pickup and drop times. Serving the request incurs at
least the service cost according to these times, so the sum of all of these costs
gives a lower bound for the additional cost. Note that this corresponds to as-
suming that all requests can be served at their earliest pickup times, i. e., the
interactions between requests due to serving a set of them are neglected.

Seckinger and Koehler [15] used this idea in a Branch&Bound algorithm to
compute an optimal schedule for a given set of requests. However, they did not
take into account the currently loaded calls and the requirement that passengers
must not travel in the opposite direction as we do. Thus our lower bound is
significantly stronger.

Consider a node v in the search tree and a request ρ ∈ Av ∪ Ov and let
f+(ρ) be the start floor of ρ. In case the direction of ρ is opposite to the leaving
direction from sv, the elevator has to visit all drop floors before it can pickup ρ.
If the direction matches, the elevator has to pass the drop floors before (and

10

including) f+(ρ), too. For both cases, let s′ be the first stop of Sv where all
preceding drop floors have been passed. A lower bound t+(ρ) for the pickup
time of ρ is then given by

t+(ρ) =

{
s′.arrival f+(ρ) = s′.floor ,

s′.arrival + τstop + τdrv(e, s
′.floor , f+(ρ)) f+(ρ) 6= s′.floor .

Now consider a call c ∈ ρ and let f1, . . . , f` be the sequence of ` floors to be
visited before dropping c, where f1 = f+(ρ) and f` is the destination floor of
call c. This sequence includes the drop floors of the currently loaded calls of
stop s′ and the destination floors of other calls of ρ. A lower bound t−(c) for
the drop time of c is

t−(c) = t+(ρ) + max{τstop, |ρ|τload}+
`−1∑
i=1

τdrv(e, fi, fi+1) + (`− 2)τstop.

To estimate the additional capacity penalty cost at node v or below we have
to treat the immediate assignment system and the delayed assignment system
differently, due to the differences in signalling. In general, there are two types of
contributions to the additional capacity penalty cost: costs ccap(ρ) that can be
attributed to picking up a request ρ, and costs ccap(Sv, Av) that arise from Av
and the structure of Sv so far. Intuitively, the latter part is either due to assigned
requests at a floor / direction pair exceeding the cabin capacity, or due to earlier
picking up requests that now take up too much capacity to accomodate the
remaining assigned requests.

Recall that in the immediate assignment system, a request has to be picked
up on the first stop with matching start floor and leaving direction. Denote
by n(f, d) the number of calls that are unavoidably picked up when leaving
floor f in direction d. The value of n(f, d) is given by the number of all assigned
requests (i. e., requests in Av) starting at floor f with travel direction d. In
addition, let κ(f, d) be the remaining cabin capacity when the elevator leaves
floor f in direction d after a subsequent stop. More precisely, we have κ(f, d) =
max{0, κ(e)−|s.current |}, if there is a stop s on floor f with leaving direction d
in schedule Sv equal to or after the current stop sv. If there is no such stop,
κ(f, d) = κ(e). We can now bound ccap(Sv, Av) by

ccap(Sv, Av) = ccapacity ·

∑
f,d

max{0, n(f, d)− κ(f, d)}

 .

Since the assigned requests are also accounted for by ccap(Sv, Av), we set ccap(ρ) =
0 for all ρ ∈ Av. For optional requests, the additional capacity penalty costs
can only be estimated for each request separately. However, it is possible to
take into account the assigned requests. To this end, let n(ρ) := n(f, d) and
κ(ρ) = κ(f, d) for the start floor f and direction d of request ρ. For ρ ∈ Ov we
then have the bound

ccap(ρ) =

{
ccapacity ·

(
max{0, |ρ|+ n(ρ)− κ(ρ)}

)
n(ρ) < κ(ρ),

ccapacity · |ρ| n(ρ) ≥ κ(ρ).

11

In the first case, there is some cabin capacity left that may even accomodate
the loaded calls and those from ρ. In the second case, no cabin capacity is left
so every call of ρ incurs the capacity penalty.

For the delayed assignment system, we use ccap(Sv, Av) = 0. The rationale
is that exceeding the capacity due to too many loaded calls can be avoided by
first emptying the elevator, i. e., signalling no destination floor at the remaining
drop floors of Sv. Since every request can effectively be served on its own the
only way to incur a capacity penalty is that a single request already exceeds the
elevator capacity, i. e., |ρ| > κ(e). This leads to the bound ccap(ρ) = ccapacity ·
max{0, |ρ| − κ(e)} for each ρ ∈ Av ∪Ov.

Denoting the release time of a call c by trelease (c), we can use these estimates
to obtain a lower bound c(ρ) on the additional cost for serving request ρ in any
schedule by summing the cost according to the time bounds and the capacity
penalty cost, i. e.,

c(ρ) =
∑
c∈ρ

(
cwait(c)[t

+(ρ)− trelease(c)] + ctravel(c)[t
−(c)− trelease(c)]

)
+ ccap(ρ).

An important observation is that we can do some kind of dual fixing based
on c(ρ) for requests ρ ∈ Ov: If πρ ≤ c(ρ) it will never be favorable to serve this
request, since it cannot decrease the reduced cost and it does not have to be
served by this elevator. These requests can thus be ignored in the subtree below
node v, thus pruning the search tree.

3.3 Incorporation in a Branch& Price framework
The ingredients described in the preceding subsections are already sufficient
to obtain an algorithm that finds high-quality (though not necessarily opti-
mal) solutions as follows. We solve the LP relaxation of (2)–(5) using the
Branch&Bound pricing algorithm. To find a schedule, we then use an IP solver
to find the optimal solution of IP (2)–(5) with the restricted set of schedules
encountered during column generation.

To obtain a truely exact algorithm that always finds an optimal solution we
need to incorporate the column generation into a Branch&Price framework. In
Branch&Price, column generation is applied at all nodes generated during the
usual LP-based Branch&Bound search to solve the LP relaxations. It is crucial
that the branching is done in such a way that it is compatible with the pricing
problem, i. e., the branching decision can be taken into account when solving it.

In our algorithm ExactReplan, we use the following branching strategy.
Let x be the optimal fractional LP solution at some node v in the IP search
tree. For each unassigned request ρ ∈ Ru, we consider the set of elevators Eρ(x)
that are used to serve ρ in x, i. e.,

Eρ(x) := {e ∈ E | ∃S ∈ S̃(e) : xs > 0},

where S̃(e) denotes the subset of the schedules generated at node v belonging to
elevator e. Since x is fractional, there is at least one ρ ∈ Ru with |Eρ(x)| ≥ 2.
We choose any such ρ and partition Eρ(x) into two subsets E1 and E2 of (almost)
the same size such that the condition

0 <
∑

e∈Ei,S∈S̃(e) : ρ∈S

xS < 1

12

is satisfied for i ∈ {1, 2}. We then create two child nodes of v with the additional
constraints ∑

e∈E1,S∈S(e) : ρ∈S

xS = 1,
∑

e∈E\E1,S∈S(e) : ρ∈S

xS = 0, (6)

and ∑
e∈E1,S∈S(e) : ρ∈S

xS = 0,
∑

e∈E\E1,S∈S(e) : ρ∈S

xS = 1, (7)

respectively. Clearly, x is cutoff by both (6) and (7). Moreover, it is easy to
take care of (6) and (7) in the pricing algorithm: We simply forbid serving ρ
for the elevators in E \ E1 (or E1) and force assignment of ρ to elevator e in
case E1 = {e} (or E \ E1 = {e}).

To speed up the pricing process, we use an additional optional technique
which we call pricing of old schedules. If pricing of old schedules is enabled,
we keep all schedules from the previous reoptimization run and check whether
any of those has negative reduced cost before invoking the Branch&Bound
pricing. If schedules with negative reduced cost are found, they are added to
the master problem and the current LP is resolved before pricing continues. This
technique allows to exploit the fact that two subsequent snapshot problems are
rather similar by “warmstarting” the pricing process. If pricing of old schedules
is used, we get the same LP relaxation value, but usually fewer columns.

4 Computational results
We implemented our algorithms and the simulation environment in C++, using
the SCIP 2.0 framework [2, 1] to implement the ExactReplan algorithm,
employing CPLEX 12.4 as LP solver. All computations ran under Linux on a
system with an Intel i7 870 CPU and 16 GB of RAM. In all the tests performed
we used the service cost coefficients of the waiting time set to 1 and 0 for the
travel time. The reason is that we want to compare the resulting waiting times to
those achieved by a conventional 2-button system in which only the waiting time
can be measured. Moreover, the waiting time is the most important criterion
for the service quality of an elevator system. The capacity penalty ccapacity is
chosen such that it corresponds to the waiting time cost of 300 seconds.

Elevator control algorithms are usually evaluated for several kinds of traffic
patterns that arise in a typical office building. In the morning, passengers
enter the building from the ground floor, causing up peak traffic. Then there
is some interfloor traffic where the passengers travel roughly evenly between
the floors. During lunch traffic, people leave and reenter the building via the
ground floor. Finally, there is down peak traffic when people leave the building
in the afternoon. In addition, we also consider real up peak traffic and real down
peak traffic, which mix the up peak and down peak traffic with 5% of interfloor
and 5% of down peak and up peak traffic, respectively. These two patterns are
supposed to model the real traffic conditions more closely than the pure ones.

To evaluate the performance of ExactReplan, we generated 10 snapshots
for each of the six traffic patterns. This was done by simulating five minutes of
traffic in a 23-floor building (“building B” in Table 4 on page 17). In these five

13

traffic pattern calls requests unassigned requests
min avg max min avg max min avg max

IA, Interfloor 35 42.1 48 15 17.0 19 1 1 1
IA, Real Down Peak 52 59.0 70 14 15.6 19 1 1 1
IA, Down Peak 51 64.4 80 13 16.2 21 1 1 1
IA, Lunch Peak 63 69.1 78 15 17.4 19 1 1 1
IA, Real Up Peak 58 76.6 91 6 10.5 14 1 1 1
IA, Up Peak 55 65.3 79 2 3.6 5 1 1 1

DA, Interfloor 29 36.3 42 14 16.4 19 14 16.4 19
DA, Real Down Peak 24 46.6 57 13 15.1 19 13 15.1 19
DA, Down Peak 36 51.4 70 13 14.5 18 13 14.5 18
DA, Lunch Peak 50 63.9 77 16 19.7 28 16 19.7 28
DA, Real Up Peak 63 71.8 79 17 22.4 28 17 22.4 28
DA, Up Peak 30 45.3 59 11 13.7 18 11 13.7 18

Table 1: Overview of the size of the snapshot problems in our test set.

minutes, 16% of the building population had to be transported, which represents
a very high load situation and thus a stress test for our algorithm. We used
these 16% for all traffic patterns except for interfloor traffic, where we assumed
10% since interfloor traffic usually has a lower intensity. From the recorded
snapshot problems of the simulation runs, we selected 10 snapshot problems
with long running times. These snapshot problems thus do not reflect typical
performance, but rather point to performance limitations of the algorithm and
are thus suitable for investigating which techniques may improve the perfor-
mance. Table 1 summarizes some statistics of our test set. Note that in each
of the intermediate assignment snapshot problems there is only one unassigned
request. This is an artifact of our simulation, which invokes a reoptimization
after each new call. In a real IA system, most often there will be just one new
call, but never more than say, 5 new calls.

The performance of ExactReplan on the selected snaphot problems is
shown in Table 2. Since there is always just one assigned request in the IA
snaphot problems, they are solved by enumeration. This is very efficient and
the computation time of ExactReplan is never more than 0.01 seconds in this
case.

The DA system snapshots are more challenging, since there are more unas-
signed requests and we thus need to solve our IP model. Table 2 shows how the
optional feature pricing of old schedules influences the performance of Exact-
Replan. As Table 2 reveals, the algorithm in its default variant without pricing
of old schedules is already very fast for most situations. It solves all delayed
assignment (DA) snapshots from interfloor and down peak traffic in well below
a second. Pricing of old schedules roughly halves the average running time with
the exception of Real Up Peak, where the average running time increases by
5%. A closer look reveals that this is entirely due to the snapshot instance with
the maximum running time; ignoring this instance the average running time is
reduced by 14% (this data is indicated by an asterisk in Table 2). Up peak
and real up peak are then the only traffic situations which require considerably
more than one second to solve to optimality. Although the running time for
real up peak traffic is up to 24,000 seconds for very high load snapshots, we can

14

scenario nodes time [s]
avg max avg max

immediate assignment, default settings
IA, Interfloor 192 262 0.01 0.01
IA, Down Peak 263 509 0.01 0.01
IA, Real Down Peak 276 524 0.01 0.01
IA, Lunch Peak 280 600 0.01 0.01
IA, Up Peak 35 41 0.00 0.01
IA, Real Up Peak 86 135 0.01 0.01

delayed assignment, default settings
DA, Interfloor 8,929 31,491 0.18 0.63
DA, Down Peak 7,930 18,347 0.14 0.33
DA, Real Down Peak 8,216 19,962 0.14 0.35
DA, Lunch Peak 46,644 180,335 1.00 4.17
DA, Up Peak 1,259,773 7,008,815 63.96 388.91
DA, Real Up Peak 78,425,653 488,514,111 3,955.88 23,925.48
DA, Real Up Peak* 32,860,269 153,835,629 1,737.03 8,365.17

delayed assignment, pricing of old schedules
DA, Interfloor 5,013 20,527 0.10 0.41
DA, Down Peak 4,243 11,197 0.07 0.20
DA, Real Down Peak 4,351 15,087 0.08 0.31
DA, Lunch Peak 23,249 97,758 0.51 2.14
DA, Up Peak 590,975 2,526,717 29.13 138.07
DA, Real Up Peak 82,712,301 571,786,012 4,161.57 28,194.00
DA, Real Up Peak* 28,370,778 129,508,242 1,491.30 6,986.47

Table 2: Performance of our exact reoptimization algorithm ExactReplan
on the snapshot problem test set. Shown are the total number of nodes in all
pricing search trees and the running time. In the lines marked by an asterisk,
the outlier instance with the maximum running time is omitted.

conclude that ExactReplan is fast enough to simulate a DA system, allowing
us to investigate the additional performance gain that might be achieved by
using a DA system instead of an IA system. We also remark that the running
time on a DA system rises above one second only for snapshot problems with at
least 10 unassigned requests. We conclude from this that ExactReplan has
running times less than a second on an IA system, even if there is more than
one new call.

Table 3 shows data for the optimality gaps of ExactReplan with and
without pricing of old schedules after one second running time. An optimal
solution for determining the optimality gap has been computed by solving each
snapshot problem to optimality using ExactReplan without a time limit. The
numbers β0.25, β0.5, β0.75, and β1 are the 0.25-, 0.5-, 0.75-, 1.0-quantiles of the
optimality gap. As we can see, the gaps are almost always less than 1% and
pricing of old schedules helps to reduce the remaining gap. For comparison,
Table 3 also shows the optimality gaps achieved by our heuristic destination
call algorithm BestInsert that we developed earlier [10, 7]. BestInsert also
obtains solutions with very small optimality gaps, however, ExactReplan is

15

scenario
β0.25 β0.5 β0.75 β1 ∅

BestInsert
DA, Interfloor 0.00% 0.00% 0.09% 1.28% 0.19%
DA, Down Peak 0.00% 0.00% 0.24% 0.32% 0.08%
DA, Real Down Peak 0.00% 0.00% 0.19% 1.23% 0.21%
DA, Lunch Peak 0.00% 0.00% 0.25% 0.78% 0.14%
DA, Up Peak 0.00% 0.01% 0.22% 0.62% 0.14%
DA, Real Up Peak 0.16% 0.57% 1.02% 2.09% 0.75%

ExactReplan stopped after one second
DA, Interfloor 0.00% 0.00% 0.00% 0.09% 0.01%
DA, Down Peak 0.00% 0.00% 0.00% 0.00% 0.00%
DA, Real Down Peak 0.00% 0.00% 0.00% 0.13% 0.01%
DA, Lunch Peak 0.00% 0.00% 0.00% 0.03% 0.00%
DA, Up Peak 0.00% 0.01% 0.06% 0.62% 0.09%
DA, Real Up Peak 0.16% 0.57% 1.02% 2.09% 0.75%

ExactReplan stopped after one second, using pricing of old schedules
DA, Interfloor 0.00% 0.00% 0.00% 0.09% 0.01%
DA, Down Peak 0.00% 0.00% 0.00% 0.00% 0.00%
DA, Real Down Peak 0.00% 0.00% 0.00% 0.04% 0.00%
DA, Lunch Peak 0.00% 0.00% 0.00% 0.02% 0.00%
DA, Up Peak 0.00% 0.00% 0.04% 0.45% 0.06%
DA, Real Up Peak 0.11% 0.50% 0.60% 2.09% 0.56%

Table 3: Quality of ExactReplan solutions after one second running time.

often able to improve non-optimal solutions of BestInsert within one second
running time.

Our results indicate that ExactReplan with pricing of old schedules gives
the best results after one second. We will therefore use this setting in our
simulation experiments.

To study the online performance of our algorithm we consider up peak traffic
only, since it is well known [3] that it is the most demanding traffic situation.
In order to assess the performance of an elevator scheduling algorithm, we sim-
ulate 5 minutes of up peak traffic, recording the waiting times achieved by the
algorithm. This is intended to mimic the peak traffic condition in a building.
We do this with increasing traffic intensity (measured as a percentage of the
building population) and are interested in the highest intensity where the algo-
rithm still provides reasonable service. According to Barney [3], performance is
still fair, if the median α0.5 of the waiting time is at most 25 seconds and the
0.9-quantile α0.9 is at most 55 seconds. We define the handling capacity of an
elevator system to be the highest traffic intensity, measured as percentage of
the overall population that may arrive in 5 minutes, that can be served without
exceeding these thresholds.

In our simulations, we limit the computation time of ExactReplan to
one second. A new snapshot is computed each time a new call arrives. We

16

building A building B

population 3300 1400
floors 12 23
elevators 8 6
cabin capacity 19 13
acceleration [m/s2] 1.0 0.9
maximum speed [m/s] 2.0 5.0
deceleration [m/s2] 1.0 0.9

Table 4: Details of the elevator systems in the buildings considered.

consider two example buildings / elevator systems whose data is given in Table 4.
Building A has 12 floors served by a group of eight elevators. Its population is
3,300 persons, which is relatively high. In contrast, the 23-floor building B has
only a population of 1,400 persons. The elevator group in building B consists
of six elevators with a significantly higher maximum speed than that of the
elevators in building A. This high maximum speed is necessary to provide a
reasonable service in such a tall building. We are interested in how much the
handling capacity of both elevator systems can be improved by applying the
advanced destination control algorithms developed in the preceding section.

Before looking at the handling capacity that can be achieved by Exact-
Replan, we compare ExactReplan to our heuristic destination call algorithm
BestInsert [10, 7], which may also be used for both IA and DA systems. For
an IA system, the waiting times are almost identical, since there is always only
one unassigned request and the schedules therefore do not differ much. Tables 5
and 6 give the waiting times obtained for a DA system in building A and B,
respectively. ExactReplan performs as least as good as BestInsert in all
cases and outperforms BestInsert considerably for higher load, sometimes
even halving both the median α0.5 and the 0.9-quantile α0.9 of the waiting time.
We saw in Table 3 that the relative improvement of ExactReplan over Best-
Insert in terms of snapshot optimality is rather small, still the solutions found
by ExactReplan are much better in the long run. This observation is in line
with our findings in an earlier similar application [9].

Finally, we compare the performance of ExactReplan controlling an IA
and a DA system with the performance of a conventional 2-button system which
is controlled by the CGC algorithm [3, 7]. The CGC algorithm inserts requests
(i. e., up/down calls) successively in a set of elevator schedules serving all reg-
istered stopping floors plus the requests assigned so far. The cost of request ρ
incurred by assigning it to elevator e is the waiting time of ρ in the result-
ing single-roundtrip schedule for e. In order to compute reasonable estimates
for this, CGC assumes that the (unknown) destination floor of each request is
halfway between the start floor and the last floor in the request direction. In
general, request ρ is assigned to the elevator with minimal cost, with two ex-
ceptions based on a parameter HTT called “high threshold time”. In order to
reduce the number of stops, request ρ is allocated to an elevator with a car call
at the start floor of ρ, provided it does not get waiting time greater than HTT
due to this allocation. Moreover, request ρ is not allocated to the minimum
cost elevator if the waiting time of another request increases beyond HTT. If

17

Szenario BestInsert
DA system

ExactReplan
DA system

α0.5 α0.9 ∅ α0.5 α0.9 ∅

Up 6% 0 2 1 0 1 1
Up 7% 0 10 2 0 10 2
Up 8% 0 20 5 0 20 5
Up 9% 2 33 11 3 32 11
Up 10% 15 66 24 13 57 21
Up 11% 23 93 35 19 72 27
Up 12% 33 116 48 24 88 35
Up 13% 46 161 64 29 103 41
Up 14% 49 220 84 39 115 48
Up 15% 70 209 89 47 120 54
Up 16% 90 233 104 61 134 63
Up 17% 104 249 113 69 142 69
Up 18% 122 296 133 80 150 76
Up 19% 134 312 146 93 161 86
Up 20% 154 350 164 100 169 93

Real Up 6% 0 11 3 0 10 2
Real Up 7% 0 16 4 0 14 3
Real Up 8% 0 20 6 0 19 6
Real Up 9% 2 38 13 2 25 9
Real Up 10% 9 66 21 7 35 13
Real Up 11% 20 98 36 14 53 22
Real Up 12% 30 133 52 19 73 29
Real Up 13% 40 139 59 22 87 34
Real Up 14% 59 153 70 28 102 41
Real Up 15% 60 196 84 33 105 45
Real Up 16% 93 225 102 43 118 53
Real Up 17% 110 237 110 51 126 58
Real Up 18% 126 263 126 59 138 65
Real Up 19% 136 280 134 63 141 68
Real Up 20% 151 310 152 70 150 74

Table 5: Comparison of the performance of BestInsert and ExactReplan for
building A. Values marked bold are the best values obtained by any algorithm.

this cannot be avoided, ρ is allocated to the minimum cost elevator anyway.
We remark that for the high load up peak situations considered here all algo-
rithms for 2-button systems are essentially the same. The reason is that each
elevator will be fully loaded when it leaves the main floor and it has to drop
all the passengers before returning. An algorithm for a conventional system has
no means to group passengers by destination floors to avoid stopping at many
upper floors. This is a major disadvantage of conventional systems [11].

The waiting times for the three systems are reported in Tables 7 and 8. Both
destination call systems clearly outperform the conventional system, with the
IA system being slightly better for low loads and the DA system performing
considerably better for high loads.

The resulting handling capacities are shown in Table 9. In both buildings,
a destination call system controlled by ExactReplan increases the handling
capacity over that of a conventional system, if only by 1–2%. However, in

18

Szenario BestInsert
DA system

ExactReplan
DA system

α0.5 α0.9 ∅ α0.5 α0.9 ∅

Up 6% 0 8 2 0 8 2
Up 7% 0 10 2 0 10 2
Up 8% 0 13 3 0 13 3
Up 9% 0 16 4 0 14 4
Up 10% 0 20 6 0 19 5
Up 11% 0 25 7 0 22 6
Up 12% 1 29 9 1 27 8
Up 13% 9 48 17 6 41 14
Up 14% 13 58 21 9 45 16
Up 15% 23 78 31 14 59 22
Up 16% 33 97 40 18 71 28
Up 17% 52 114 53 26 95 38
Up 18% 63 133 64 30 106 43
Up 19% 70 151 71 32 118 47
Up 20% 87 172 85 42 131 54

Real Up 6% 0 16 4 0 14 4
Real Up 7% 0 15 4 0 15 4
Real Up 8% 0 18 5 0 17 5
Real Up 9% 0 19 6 0 18 5
Real Up 10% 0 22 7 0 19 6
Real Up 11% 6 31 11 4 26 9
Real Up 12% 9 38 14 6 27 11
Real Up 13% 12 47 19 9 35 14
Real Up 14% 19 61 25 12 47 19
Real Up 15% 28 84 36 15 60 25
Real Up 16% 40 100 45 21 79 33
Real Up 17% 49 116 53 24 91 38
Real Up 18% 54 129 61 31 103 44
Real Up 19% 67 150 73 39 119 52
Real Up 20% 78 161 79 44 122 54

Table 6: Comparison of the performance of BestInsert and ExactReplan for
building B. Values marked bold are the best values obtained by any algorithm.

the conventional system elevators are very frequently overloaded, meaning that
passengers are left which have to reregister their calls. This can be avoided
in destination call systems; thus the effective improvement in service quality is
actually more significant. Table 9 also shows that a DA system does not enable
a higher handling capacity than an IA system, although a DA system delivers
much better waiting times for high loads. The reason is that the service gets
unacceptable roughly at the same traffic intensity as for the IA system.

5 Conclusion
In this paper we presented an exact algorithm for the online control of passenger
elevator groups. The algorithm is based on a model unifying different elevator
control systems and is thus suitable for comparing the performance possible with

19

Szenario CGC
ExactReplan

IA system
ExactReplan
DA system

α0.5 α0.9 ∅ α0.5 α0.9 ∅ α0.5 α0.9 ∅

Up 6% 0 3 1 0 0 1 0 1 1
Up 7% 0 11 3 0 0 0 0 10 2
Up 8% 3 22 7 0 6 2 0 20 5
Up 9% 20 43 21 0 15 4 3 32 11
Up 10% 39 80 40 3 33 11 13 57 21
Up 11% 53 111 56 15 54 21 19 72 27
Up 12% 75 146 76 30 87 33 24 88 35
Up 13% 97 181 97 43 102 45 29 103 41
Up 14% 116 215 115 58 124 59 39 115 48
Up 15% 129 251 133 61 147 73 47 120 54
Up 16% 155 288 156 72 214 91 61 134 63
Up 17% 174 323 175 79 243 106 69 142 69
Up 18% 192 356 193 90 280 124 80 150 76
Up 19% 214 392 212 126 315 143 93 161 86
Up 20% 233 427 232 135 341 156 100 169 93

Real Up 6% 0 15 4 0 11 3 0 10 2
Real Up 7% 0 16 5 0 13 3 0 14 3
Real Up 8% 4 26 9 0 18 5 0 19 6
Real Up 9% 14 47 18 0 23 7 2 25 9
Real Up 10% 18 71 27 8 38 15 7 35 13
Real Up 11% 44 108 48 22 55 25 14 53 22
Real Up 12% 67 148 71 32 84 36 19 73 29
Real Up 13% 85 178 87 40 102 45 22 87 34
Real Up 14% 95 208 102 53 125 59 28 102 41
Real Up 15% 123 250 127 63 145 71 33 105 45
Real Up 16% 138 271 138 75 169 83 43 118 53
Real Up 17% 144 298 151 85 224 100 51 126 58
Real Up 18% 171 337 173 100 264 118 59 138 65
Real Up 19% 191 362 185 115 279 128 63 141 68
Real Up 20% 212 400 205 123 319 144 70 150 74

Table 7: System performance for building A: Waiting times obtained by a con-
ventional system and an IA system and a DA system controlled by Exact-
Replan. Values marked bold are the best values obtained by any sys-
tem/algorithm.

20

Szenario CGC
ExactReplan

IA system
ExactReplan
DA system

α0.5 α0.9 ∅ α0.5 α0.9 ∅ α0.5 α0.9 ∅

Up 6% 0 7 2 0 7 2 0 8 2
Up 7% 0 9 2 0 10 2 0 10 2
Up 8% 0 12 3 0 14 4 0 13 3
Up 9% 0 14 4 0 15 4 0 14 4
Up 10% 0 21 6 0 19 5 0 19 5
Up 11% 2 23 8 0 22 6 0 22 6
Up 12% 6 31 11 2 28 9 1 27 8
Up 13% 9 41 15 10 40 15 6 41 14
Up 14% 19 57 24 15 52 20 9 45 16
Up 15% 30 76 34 24 71 30 14 59 22
Up 16% 42 101 44 35 88 38 18 71 28
Up 17% 55 116 56 47 103 52 26 95 38
Up 18% 62 139 67 53 146 66 30 106 43
Up 19% 70 163 77 58 179 75 32 118 47
Up 20% 83 182 90 73 213 96 42 131 54

Real Up 6% 0 15 4 0 16 4 0 14 4
Real Up 7% 0 16 5 0 15 4 0 15 4
Real Up 8% 0 18 6 0 17 5 0 17 5
Real Up 9% 1 20 6 0 17 5 0 18 5
Real Up 10% 3 25 8 0 23 8 0 19 6
Real Up 11% 6 30 11 5 28 10 4 26 9
Real Up 12% 13 41 16 8 32 13 6 27 11
Real Up 13% 18 60 24 12 39 16 9 35 14
Real Up 14% 23 60 27 15 50 21 12 47 19
Real Up 15% 36 92 42 26 68 30 15 60 25
Real Up 16% 55 120 58 34 91 42 21 79 33
Real Up 17% 60 134 63 47 104 51 24 91 38
Real Up 18% 61 150 70 49 119 58 31 103 44
Real Up 19% 77 178 87 61 167 76 39 119 52
Real Up 20% 93 194 96 70 185 84 44 122 54

Table 8: System performance for building B : Waiting times obtained by a con-
ventional system and an IA system and a DA system controlled by Exact-
Replan. Values marked bold are the best values obtained by any sys-
tem/algorithm.

CGC ExactReplan
IA system DA system

building A Up Peak 9% 11% 10%
Real Up Peak 9% 11% 11%

building B Up Peak 13% 14% 14%
Real Up Peak 12% 14% 14%

Table 9: Resulting handling capacities for the considered elevator systems and
elevator control algorithms according to Tables 7 and 8.

21

these systems. The algorithm gives very good schedules after short running time
and can therefore be implemented in a real-time environment. In particular,
employing our exact algorithm ExactReplan significantly reduces passenger
waiting times compared to a state-of-the-art heuristic.

Our work shows that it is worthwhile to investigate exact algorithms for the
online control of complex logistics systems, since they can be implemented to
deliver high-quality solutions fast. Although the advantage offered by the more
flexible DA system and a powerful exact algorithm exploiting this flexibility
did not pay off in terms of a higher handling capacity for passenger elevators,
similar techniques could be used to improve related systems, e. g., order-picking
systems. Moreover, we remark that there are techniques extending this basic
version of ExactReplan to increase the handling capacity further. However,
these techniques are quite sophisticated and go beyond the scope of this paper
and will thus be presented in a follow-up paper.

Acknowledgements We like to thank the SCIP developer team and in particular
Gerald Gamrath for advice and explanations to make our Branch&Price algorithm
work. Moreover, we thank two anonymous reviewers who made suggestions to improve
the paper.

References
[1] Achterberg, T.: SCIP: solving constraint integer programs. Mathematical

Programming Computation 1(1), 1–41 (2009)

[2] Achterberg, T., Berthold, T., Gamrath, G., Heinz, S., Pfetsch, M.,
Vigerske, S., Wolter, K.: SCIP – solving constraint integer programs. Avail-
able at http://scip.zib.de

[3] Barney, G.C.: Elevator Traffic Handbook: Theory and Practice. Taylor
and Francis (2002)

[4] Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column generation.
Springer (2005)

[5] Friese, P., Rambau, J.: Online-optimization of a multi-elevator transport
system with reoptimization algorithms based on set-partitioning models.
Discrete Appl. Math. 154(13), 1908–1931 (2006). Also available as ZIB
Report 05-03

[6] Gloss, G.D.: The computer control of passenger traffic in large lift systems.
Ph.D. thesis, Victoria University of Manchester (1970)

[7] Hiller, B.: Online optimization: Probabilistic analysis and algorithm engi-
neering. Ph.D. thesis, TU Berlin (2009)

[8] Hiller, B., Klug, T., Tuchscherer, A.: Improving the performance of elevator
systems using exact reoptimization algorithms. In: 9th MAPSP (2009)

[9] Hiller, B., Krumke, S.O., Rambau, J.: Reoptimization gaps versus model
errors in online-dispatching of service units for ADAC. Discrete Appl.
Math. 154(13), 1897–1907 (2006). Traces of the Latin American Conference

22

on Combinatorics, Graphs and Applications – A selection of papers from
LACGA 2004, Santiago, Chile

[10] Hiller, B., Tuchscherer, A.: Real-time destination-call elevator group con-
trol on embedded microcontrollers. In: Operations Research Proceedings
2007, pp. 357–362. Springer (2008)

[11] Hiller, B., Vredeveld, T.: Stochastic dominance analysis of online bin col-
oring algorithms. ZIB Report 12-42, Zuse Institute Berlin (2012). http:
//opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1650

[12] Koehler, J., Ottiger, D.: An AI-based approach to destination control in
elevators. AI Magazine 23(3), 59–78 (2002)

[13] Krumke, S.O., Rambau, J., Torres, L.M.: Realtime-dispatching of guided
and unguided automobile service units with soft time windows. In: Pro-
ceedings of the 10th ESA, LNCS, vol. 2461, pp. 637–648. Springer (2002)

[14] Schröder, J.: Advanced dispatching: Destination hall calls + instant car-
to-call assignments: M10. Elevator World pp. 40–46 (1990)

[15] Seckinger, B., Koehler, J.: Online-Synthese von Aufzugssteuerungen als
Planungsproblem. In: 13th Workshop on Planning and Configuration, pp.
127–134 (1999)

[16] Smith, R., Peters, R.: ETD algorithm with destination dispatch and
booster options. Elevator World pp. 136–145 (2002)

[17] Tanaka, S., Uraguchi, Y., Araki, M.: Dynamic optimization of the oper-
ation of single-car elevator systems with destination hall call registration.
European J. Oper. Res. 167(2), 550–587 (2005)

[18] Tyni, T., Ylinen, J.: Evolutionary bi-objective optimisation in the elevator
car routing problem. European J. Oper. Res. 169(3), 960–977 (2006)

23

