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Abstract

The celebrated Zeilberger algorithm which finds holonomic recurrence equations for
definite sums of hypergeometric terms F (n, k) is extended to certain nonhypergeometric
terms. An expression F (n, k) is called hypergeometric term if both F (n + 1, k)/F (n, k)
and F (n, k+1)/F (n, k) are rational functions. Typical examples are ratios of products of
exponentials, factorials, Γ function terms, binomial coefficients, and Pochhammer symbols
that are integer-linear with respect to n and k in their arguments.

We consider the more general case of ratios of products of exponentials, factorials,
Γ function terms, binomial coefficients, and Pochhammer symbols that are rational-linear
with respect to n and k in their arguments, and present an extended version of Zeilberger’s
algorithm for this case, using an extended version of Gosper’s algorithm for indefinite
summation.

In a similar way the Wilf-Zeilberger method of rational function certification of integer-
linear hypergeometric identities is extended to rational-linear hypergeometric identities.

The given algorithms on definite summation apply to many cases in the literature
to which neither the Zeilberger approach nor the Wilf-Zeilberger method is applicable.
Examples of this type are given by theorems of Watson and Whipple, and a large list of
identities (“Strange evaluations of hypergeometric series”) that were studied by Gessel and
Stanton. It turns out that with our extended algorithms practically all hypergeometric
identities in the literature can be verified.

Finally we show how the algorithms can be used to generate new identities.
Reduce and Maple implementations of the given algorithms can be obtained from

the author, many results of which are presented in the paper.

� Hypergeometric identities

In this paper we deal with hypergeometric identities. As usual, the notation of the generalized
hypergeometric function pFq defined by

pFq

(
a1 a2 · · · ap
b1 b2 · · · bq

∣∣∣∣∣x
)

:=
∞∑
k=0

Ak x
k =

∞∑
k=0

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!x

k (1)

is used, (a)k = Γ(a+k)
Γ(k) denoting the Pochhammer symbol or shifted factorial. The numbers ak

are called the upper, and bk the lower parameters of pFq .
The coefficients Ak of the generalized hypergeometric function have the rational term ratio

Ak+1

Ak
=

(k + a1) · (k + a2) · · · (k+ ap)

(k + b1) · (k + b2) · · · (k + bq)(k + 1)
(k ∈ IN) .
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If an expression Ak has a rational term ratio Ak+1/Ak, we call Ak a hypergeometric term
or closed form. Note that any hypergeometric term essentially has a representation as the
ratio of shifted factorials (over C), and its generating function is connected with a generalized
hypergeometric series.
The classical reference concerning generalized hypergeometric series is the book of Bailey
(1935) containing a huge amount of relations between hypergeometric series some of which
represent the value of certain hypergeometric functions at a special point (mostly x = 1 or
x = −1) by a single hypergeometric term. We will be concerned with this type of identities,
and Table 1 is a complete list of all such hypergeometric identities found in Bailey’s book.
Here n ∈ IN is assumed to represent a positive integer so that the hypergeometric series
with upper parameter −n are terminating. All other parameters involved represent arbitrary
complex variables such that none of the lower parameters corresponds to a negative integer.
With a method due to Wilf and Zeilberger, and with an algorithm of Zeilberger, many of
these hypergeometric identities can be checked. It turns out, however, that for some of these
identities both methods fail. We give extensions of both the Wilf-Zeilberger approach, and
the (fast) Zeilberger algorithm with which all above identities can be handled as well as a
large list of identities that were studied by Gessel and Stanton (1982).
Our extensions therefore unify the verification of hypergeometric identities.

� The Gosper Algorithm

In this section we recall the celebrated Gosper algorithm (Gosper, 1978), see also Graham,
Knuth and Patashnik (1994).
The Gosper algorithm deals with the question to find an antidifference sk for given ak, i. e. a
sequence sk for which

ak = sk − sk−1 (2)

in the particular case that sk is a hypergeometric term, therefore

sk
sk−1

is a rational function with respect to k , (3)

i. e. sk/sk−1 ∈ Q(k). We call this indefinite summation.
Note that if a hypergeometric term antidifference sk exists, we call the input function ak
Gosper-summable which then itself is a hypergeometric term since by (2) and (3)

ak
ak−1

=
sk − sk−1

sk−1 − sk−2
=

sk
sk�1

− 1

1− sk�2

sk�1

=
uk
vk

∈ Q(k)

is rational, i. e. uk, vk ∈ Q[k] are polynomials.
Now, Gosper uses a representation lemma for rational functions to express ak/ak−1 in terms
of polynomials.
The idea behind this step comes from the following observation: If we calculate ak from
sk = (2k)!/k!, e.g., we get

ak = sk − sk−1 =
(2k)!

k!
− (2k − 2)!

(k − 1)!
= ((2k)(2k− 1)− k) · (2k − 2)!

k!
= k(4k− 3) · (2k − 2)!

k!
,

i. e. a product of a polynomial pk = k(4k − 3) and a factorial term bk = (2k−2)!
k! for which

bk/bk−1 = qk/rk is rational, and therefore qk and rk can be assumed to be polynomials.
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Table 1: Bailey’s hypergeometric database

page Theorem Identity

2–3
Vandermonde
Gauß 2F1

(
a , b

c

∣∣∣∣∣ 1
)

=
(c− b)

�a

(c)
�a

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

9 Saalschütz 3F2

(
a , b ,−n

c , 1 + a+ b− c− n

∣∣∣∣∣1
)

=
(c − a)n (c− b)n
(c)n (c− a− b)n

9 Kummer 2F1

(
a , b

1 + a− b

∣∣∣∣∣− 1

)
=

(1 + a)
�b

(1 + a/2)
�b

=
Γ(1 + a− b)Γ(1 + a/2)

Γ(1 + a)Γ(1 + a/2− b)

11 Gauß 2F1

(
a , b

(a+ b+ 1)/2

∣∣∣∣∣ 12
)

=
Γ(1/2)Γ((a+ b+ 1)/2)

Γ((a+ 1)/2)Γ((b+ 1)/2)

11 Bailey 2F1

(
a , 1− a

c

∣∣∣∣∣ 12
)

=
Γ(c/2)Γ((c+ 1)/2)

Γ((a + c)/2)Γ((1− a+ c)/2)

13 Dixon 3F2

(
a , b , c

1 + a− b , 1 + a− c

∣∣∣∣∣ 1
)

=
(1 + a)

�c (1 + a/2− b)
�c

(1 + a/2)
�c (1 + a− b)

�c
=

Γ(1 + a/2)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a/2− b− c)

Γ(1 + a)Γ(1 + a/2− b)Γ(1 + a/2− c)Γ(1 + a− b− c)

16
Watson
Whipple 3F2

(
a , b , c

(a+ b+ 1)/2 , 2c

∣∣∣∣∣ 1
)

=
Γ(12)Γ(

1+2c
2 )Γ(1+a+b

2 )Γ(1�a�b+2c
2 )

Γ(1+a
2 )Γ(1+b

2 )Γ(1�a+2c
2 )Γ(1�b+2c

2 )

16 Whipple 3F2

(
a, 1− a, c

e, 1 + 2c− e

∣∣∣∣∣ 1
)

=
π21�2cΓ(e)Γ(1 + 2c− e)

Γ(a+e
2 )Γ(a+1+2c�e

2 )Γ(1�a+e
2 )Γ(2+2c�a�e

2 )

26
Dougall’s
Theorem 7F6

(
a , 1+a/2 , b , c , d , 1 + 2a− b− c− d+ n ,−n

a/2 , 1+a−b , 1+a−c , 1+a−d , b+c+d−a−n , 1+a+n

∣∣∣∣∣ 1
)

=

(1 + a)n (1 + a− b− c)n (1 + a − b− d)n (1 + a − c− d)n
(1 + a− b)n(1 + a− c)n (1 + a− d)n (1 + a − b− c− d)n

25/27 Dougall 5F4

(
a, 1+a/2, c, d, e

a/2, 1+a−c, 1+a−d, 1+a−e

∣∣∣∣∣1
)

=
(1+a)

�e(1+a−c−d)
�e

(1+a−c)
�e(1+a−d)

�e
=

Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− c − d− e)

Γ(1 + a)Γ(1 + a− d− e)Γ(1 + a− c− e)Γ(1 + a− c − d)

28 Whipple 4F3

(
a, 1+a/2, d, e

a/2, 1+a−d, 1+a−e

∣∣∣∣∣− 1

)
=

(1+a)
�e

(1+a−d)
�e

=
Γ(1+a−d)Γ(1+a−e)

Γ(1+a)Γ(1+a−d−e)

30 Bailey 3F2

(
a , 1 + a/2 ,−n

a/2 , w

∣∣∣∣∣ 1
)

=
(w − a− 1− n)(w − a)n�1

(w)n

30 Bailey 3F2

(
a , b ,−n

1 + a− b , 1 + 2b− n

∣∣∣∣∣ 1
)

=
(a− 2b)n(1 + a/2− b)n(−b)n
(1 + a − b)n(a/2− b)n(−2b)n

30 Bailey 4F3

(
a , 1 + a/2 , b ,−n

a/2 , 1 + a − b , 1 + 2b− n

∣∣∣∣∣ 1
)

=
(a− 2b)n(−b)n

(1 + a− b)n(−2b)n

30 Bailey 4F3

(
a, 1+a/2, b,−n

a/2, 1+a−b, 2+2b−n

∣∣∣∣∣1
)

=
(a−2b−1)n(1/2+a/2−b)n(−b−1)n
(1+a−b)n(a/2−b−1/2)n(−2b−1)n
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Gosper shows then that such a representation with the property

gcd (qk, rk+j) = 1 for all j ∈ IN0 (4)

generally can be found and gives an algorithm to generate it.
Therefore we have for ak the relation

ak
ak−1

=
pk

pk−1

qk
rk

, (5)

pk corresponding to the polynomial and (qk, rk) to the factorial part of ak.
Gosper finally defines the function fk by the equation

sk =
qk+1

pk
fk ak (6)

for which one sees immediately that

fk =
pk
qk+1

sk
ak

=
pk
qk+1

sk
sk − sk−1

=
pk
qk+1

sk
sk�1

sk
sk�1

− 1

is rational. Using (4), Gosper proves the essential fact that fk is a polynomial.
It follows from its defining equation that the polynomial fk satisfies

ak = sk − sk−1 =
qk+1

pk
fk ak − qk

pk−1
fk−1 ak−1 ,

or multiplying by pk/ak, and using (5), one gets the recurrence equation

pk = qk+1 fk − qk
pk
pk−1

ak−1

ak
fk−1 = qk+1 fk − rk fk−1 . (7)

Using (7), Gosper gives an upper bound for the degree of f in terms of the degrees of pk, qk,
and rk which yields a fast method to calculate fk, so that we finally find sk, given by (6). This
shows in particular that whenever ak possesses a closed form antidifference sk then necessarily
sk is a rational multiple of ak:

sk = Rk ak with Rk =
qk+1 fk

pk
.

If any of the steps to find the polynomial fk fails, the algorithm proves that no hypergeometric
term antidifference sk of ak exists.
Therefore the Gosper algorithm is a decision procedure which either returns “No closed form
antidifference exists” or returns a closed form antidifference sk of ak, provided one can decide
the rationality of ak/ak−1, i. e. one finds polynomials uk, vk such that ak/ak−1 = uk/vk. In so
far, the Gosper algorithm is an algorithm with input uk and vk rather than ak.
Since without preprocessing, the user’s input is ak rather than the polynomials uk and vk, the
success of an implementation depends heavily on an algorithm quickly and safely calculating
(uk, vk) given ak. In Algorithm 1, we present such a method. It turns out that none of the
existing implementations of Gosper’s algorithm uses such a method, examples of which we
will consider later.
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In case, the Gosper algorithm provides us with an antidifference sk of ak, any sum

n∑
k=m

ak = sn − sm−1

can be easily calculated by an evaluation of sk at the boundary points like in the integration
case. Note, however, that the sum

n∑
k=0

(
n
k

)
(8)

e. g. is not of this type as the summand
(
n
k

)
depends on the upper boundary point n explicitly.

This is an example of a definite sum that we consider in § 3.
Gosper implemented his algorithm in the Macsyma nusum command, an implementation of
the algorithm is distributed with the sum command of the Maple system (to check its use set
infolevel[sum]:=5), and one was delivered with Mathematica Version 1.2 (in the package
Algebra/GosperSum.m). Another Mathematica implementation was given by Paule and
Schorn (1994).
On the lines of Koornwinder (1993), together with Gregor Stölting I implemented the Gosper
algorithm in Reduce (Koepf, 1994) and Maple, using the simple decision procedure for
rationality of hypergeometric terms described in Algorithm 1 below rather than internal sim-
plification procedures (like Maple’s expand). In § 3, we will show that this makes our
implementations that can be obtained from the author much stronger than the previous ones.
It is almost trivial but decisive that the following is a decision procedure for the rationality of
ak/ak−1 for input ak (at least) of a special type:

Algorithm 1 (simplify_combinatorial)
The following algorithm decides the rationality of ak/ak−1:

1. Input: ak as ratio of products of rational functions, exponentials, factorials, Γ function
terms, binomial coefficients, and Pochhammer symbols that are rational-linear in their
arguments.

2. (togamma)
Build ak/ak−1, and convert all occurrences of factorials, binomial coefficients, and Poch-
hammer symbols to Γ function terms.

3. (simplify_gamma)
Recursively rewrite this expression according to the rule

Γ (a+ k) = (a)k · Γ (a)

((a)k := a(a+ 1) · · · (a+ k − 1) denoting the Pochhammer symbol) whenever the argu-
ments a and a+ k of two representing Γ function terms have positive integer difference
k. Reduce the final fraction cancelling common Γ terms.

4. (simplify_power)
Recursively rewrite the last expression according to the rule

ba+k = bk ba

whenever the arguments a and a+k of two representing exponential terms have positive
integer difference k. Reduce the final fraction cancelling common exponential terms.
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5. The expression ak/ak−1 is rational if and only if the resulting expression in step 4 is
rational uk/vk, uk, vk ∈ Q[k].

6. Output: (uk, vk).

Note that this result follows immediately from the given form of ak and therefore of the
expression ak/ak−1 considered.
As an example, the rationality of ak/ak−1 of

ak =
Γ (2k)

4k Γ (k) Γ (k + 1/2)

is recognized by the given procedure, and from the resulting information (ak/ak−1 = 1), by
induction ak = 1/(2

√
π) (Abramowitz and Stegun, 1964, (6.1.18)).

Algorithm 1 does also apply to

ak = Γ (2k)− α4k Γ (k) Γ (k + 1/2) ,

and leads to
ak

ak−1
= 2 (2 k− 1) (k − 1)

which is true whenever α �= 1
2
√
π
. If α = 1

2
√
π
, however, ak ≡ 0, and therefore ak/ak−1 is not

properly defined.
For this reason, Gosper’s algorithm with input

ak = Γ (2k)− 1

2
√
π
4k Γ (k) Γ (k + 1/2)

fails to find the true antidifference sk = 1.
We note, however, that in most cases also sums of ratios of the described form can be treated
by the same method without using multiplication formulas of the Γ function explicitly. An
important family of examples of this type will be considered in the next section.
We note, finally, that an implementation of Algorithm 1 in a computer algebra system allows
the user to enter his input in the form in which it is found in the literature, and no preprocessing
is necessary. The user can be sure that the rationality is decided correctly. Unfortunately,
this is not so with any of the current implementations.
Maple’s expand command which is used for that purpose in Zeilberger’s (1990) and Koorn-
winder’s (1993) implementations of Zeilberger’s algorithm (see § 6), e. g., does not the job
required. The same is valid for Mathematica’s FactorialSimplify procedure that comes
in the package DiscreteMath/RSolve.m. Also, the Gosper implementation which comes with
Maple’s sum command, has the same failure. Paule and Schorn’s Mathematica implemen-
tation aborts in those cases with the message input not interpretable, whereas Gosper’s
nusum command gives the (wrong) error message errexp1 NON-RATIONAL TERM RATIO TO

NUSUM.
Therefore in all these implementations, the fact that Gosper’s algorithm is a decision proce-
dure, unfortunately is completely lost. An example for that fact is given by the expression

ak =
1

2n

(
n
k

)
− 1

2n−1

(
n− 1
k

)

6



with
ak

ak−1
=

(n− k + 1) (n− 2 k)

k (n− 2 k + 2)
,

for which our Gosper implementations succeed very quickly, whereas Maple’s sum command
as well as Mathematica’s GosperSum, Paule/Schorn’s Gosper, and Gosper’s nusum fail if the
input is not preprocessed by the user.
This is a very simple example of an important type of examples considered next.

� The Wilf�Zeilberger Method

Examples for an application of the Gosper algorithm in connection with Algorithm 1 are
given by the Wilf-Zeilberger method on definite summation (Wilf and Zeilberger, 1990), see
also Wilf (1993).
The Wilf-Zeilberger method is a direct application of Gosper’s algorithm to prove identities
of the form

sn :=
∑
k∈ZZ

F (n, k) = 1 (9)

for which F (n, k) is a hypergeometric term with respect to both n and k, i. e.

F (n, k)

F (n− 1, k)
and

F (n, k)

F (n, k − 1)
are rational functions with respect to both n and k,

where n is assumed to be an integer, and the sum is to be taken over all integers k ∈ ZZ.
To prove a statement of the form (9) by the WZ method1, one applies Gosper’s algorithm to
the expression

ak := F (n, k)− F (n− 1, k)

with respect to the variable k. If successful, this generates G(n, k) with

ak = F (n, k)− F (n− 1, k) = G(n, k)−G(n, k − 1) , (10)

and summing over all k leads to

sn − sn−1 =
∑
k∈ZZ

(
F (n, k)− F (n− 1, k)

)
=
∑
k∈ZZ

(
G(n, k)− G(n, k− 1)

)
= 0

since the right hand side is telescoping. Therefore sn is constant, sn = s0, and if we are able
to prove s0 = 1, we are done. Note that s0 = 1 generally can be proved if the series considered
is terminating in which case also no questions concering convergence arise.
Since the WZ method only works if n is an integer, we can try to prove the statements of
Bailey’s list in Table 1 anyway only if one of the upper parameters of the hypergeometric
series involved is a negative integer. The extension to the general case is over the capabilities
of the methods of this article, and must be handled by other means.
Note that the rationality of ak/ak−1 for the WZ method is decided by Algorithm 1 since

ak
ak−1

=
F (n, k)− F (n− 1, k)

F (n, k − 1)− F (n− 1, k− 1)
=

F (n, k)

F (n, k − 1)
·

1− F (n−1,k)
F (n,k)

1− F (n−1,k−1)
F (n,k−1)

.

1Note that Wilf and Zeilberger use forward differences rather that downward differences, whereas we decided
to follow Gosper’s original treatment. There is no theoretical difference between these two approaches, though.
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Table 2: The WZ method

Theorem n R(n, k)

Vandermonde −a − (b+ k) (−n + k)

n (c+ n− 1)

Saalschütz n − (b+ k) (−n + k) (a+ k)

n (c + n− 1) (1 + a+ b− c − n+ k)

Kummer −b
(a+ k) (−n+ k)

n (a + 2n)

Dixon −c −(a+ k) (−n + k) (b+ k)

n (a− b+ n) (a+ 2n)

Watson
Whipple

−c 2
(a+ k) (−n+ k) (b+ k)

(−1 + a+ b+ 2n) (−2n+ 1 + k) (−2n+ k)

Whipple −c − (a+ k) (a− 1− k) (−n+ k)

n (2− 2n− e + k) (1− 2n− e + k)

Dougall n
(2 a− b − c− d+ 2n) (a+ k) (−n+ k) (b+ k) (c + k) (d+ k)

n (a+ 2 k) (a− b− c+ n − d− k) (a− d+ n) (a− c + n) (a− b+ n)

Dougall −e − (a+ k) (−n+ k) (c+ k) (d+ k)

n (a + 2 k) (a− c + n) (a− d+ n)

Whipple −e
(d+ k) (−n+ k) (a+ k)

n (a+ 2 k) (a − d+ n)

Bailey n −
(
a2+2 a−wa+na+2−2w−2 kw+2 ka+2 k+2 kn

)
(a+ k) (−n+ k)

(−w + a+ n)n (a + 2 k) (w + n− 1)

Bailey n −
(−2 b− 2 b2 + 2nb+ ab− 1 + n− k

)
(a+ k) (−n + k) (b+ k)

nb (1 + 2 b− n+ k) (a− 2 b+ 2n− 2) (a− b+ n)

Bailey n −(2 b+ ab+ 1− n+ 2 kb+ k) (b+ k) (−n + k) (a + k)

nb (a+ 2 k) (1 + 2 b− n+ k) (a− b+ n)

Bailey n − (a+ k) (−n + k) (b+ k)

nb (a+ 2 k) (2 + 2 b− n+ k) (a− 2 b− 3 + 2n) (a− b+ n)
·

· (−8b−4b2+6nb−ab−2n2+2nba−4+6n−2b2a+a2b−6k−8kb−4b2k+4kn+4kbn+2kba−2k2
)
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Note moreover, that the application of Gosper’s algorithm may be slow. But as soon as we
have found the function G(n, k), we easily can calculate the rational function

R(n, k) :=
G(n, k)

F (n, k)

by an application of Algorithm 1. R(n, k) is rational since the proof of Gosper’s algorithm
shows that G(n, k) is a rational multiple of ak = F (n, k) − F (n − 1, k), G(n, k) = r(n, k) ·
(F (n, k)− F (n− 1, k)), say, so that

R(n, k) =
G(n, k)

F (n, k)
= r(n, k)

F (n, k)− F (n− 1, k)

F (n, k)
= r(n, k)

(
1− F (n− 1, k)

F (n, k)

)

is rational. R(n, k) is called the rational certificate of F (n, k). Once the rational certificate
of a hypergeometric expression F (n, k) is known, it is a matter of pure rational arithmetic
(which is fast) to decide the validity of (9) since the only thing that one has to show is (10)
which after division by F (n, k) is equivalent (modulo an application of Algorithm 1) to the
purely rational identity

1− R(n, k) + R(n, k− 1)
F (n, k− 1)

F (n, k)
− F (n− 1, k)

F (n, k)
= 0 . (11)

As an example, to prove the Binomial Theorem (compare (8)) in the form

sn :=
n∑

k=0

F (n, k) =
n∑

k=0

1

2n

(
n
k

)
= 1 (12)

by the WZ method, Algorithm 1 yields

ak
ak−1

=
F (n, k)− F (n− 1, k)

F (n, k − 1)− F (n− 1, k− 1)
=

(n− k + 1) (n− 2 k)

k (n− 2 k+ 2)

so that Gosper’s algorithm can be applied, and results in

G(n, k) =
k

2n(2k − n)

(
2
(
n− 1
k

)
−
(
n
k

))
.

This proves (12) since s0 =
0∑

k=0
1 = 1.

The rational certificate function is

R(n, k) =
G(n, k)

F (n, k)
=

k − n

n
,

and the verification of identity (12) is therefore reduced to simplify the rational expression

1−R(n, k)+R(n, k− 1)
F (n, k − 1)

F (n, k)
−F (n− 1, k)

F (n, k)
= 1−k − n

n
+
k−1−n

n

k

n+1−k
− 2(n−k)

n

to zero.
Table 2 is a complete list of those identities of Bailey’s list (Table 1) that can be treated by
the given method together with their rational certificates with which the reader may verify
them easily.
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Note that neither the statements of Gauß and Bailey of argument x = 1/2 (p. 11) are accessible
with respect to any of the parameters involved, nor can Watson’s Theorem (p. 16) be proved
by the WZ method with respect to Watson’s original integer parameter a, nor can the method
be applied to Whipple’s Theorem (p. 16) concerning parameters a or b since in all these cases
the term ratio ak/ak−1 is not rational.
Note further that both our Reduce and our Maple implementations generate the results of
Table 2, and only the calculation of the rational certificate of Dougall’s Theorem needs more
than a few seconds. In the appendix, we will present some example results. On the other hand,
Maple’s sum command was not successful with a single example without preprocessing the
input (entered in factorial or Γ notation), in most cases quickly responding with the incorrect
statement Gosper’s algorithm fails, and unsuccessfully trying other methods afterwards.
In § 4, we consider a generalization of the WZ method. To be able to consider the most general
case, we present an extended version of Gosper’s algorithm next.

� An Extended Version of the Gosper Algorithm

Here we deal with the question, given a nonnegative integer m, to find a sequence sk for given
ak satisfying

ak = sk − sk−m (13)

in the particular case that sk is an m-fold hypergeometric term, i. e.

sk
sk−m

is a rational function with respect to k . (14)

Note that in the given case the input function ak itself is an m-fold hypergeometric term since
by (13) and (14)

ak
ak−m

=
sk − sk−m

sk−m − sk−2m
=

sk
sk�m

− 1

1− sk�2m

sk�m

=
uk
vk

is rational, i. e., uk and vk can be chosen to be polynomials.
Assume first, given ak, we have found sk with sk − sk−m = ak. Then we can easily construct
an antidifference s̃k of ak by

s̃k := sk + sk−1 + · · ·+ sk−(m−1) (15)

since then

s̃k − s̃k−1 = (sk + · · ·+ sk−(m−1))− (sk−1 + · · ·+ sk−m) = sk − sk−m = ak .

Note, however, that in general, this antidifference is not a hypergeometric term, but is a finite
sum of hypergeometric terms.
Assume next that given ak there exists a hypergeometric term sk with sk − sk−m = ak. Then
obviously also

sk
sk−m

=
sk

sk−1
· sk−1

sk−2
· · · sk−(m−1)

sk−m

is rational, and therefore our algorithm below will find sk.
An m-fold antidifference always can be constructed by an application of Gosper’s original
algorithm in the following way:

10



Algorithm 2 (extended_gosper)

The following steps generate an m-fold antidifference:

1. Input: ak, and m ∈ IN.

2. Define bk := akm.

3. Apply Gosper’s algorithm to bk with respect to k. Get the antidifference tk of bk, or
the statement: “No hypergeometric term antidifference of bk, and therefore no m-fold
hypergeometric term antidifference of ak exists.”

4. The output sk := tk/m is a solution of (13) with the property (14).

Proof: This is valid since ak = sk − sk−m is equivalent to

bk = akm = skm − skm−m = tk − tk−1

and since
tk
tk−1

=
skm

skm−m

describes the transformation between tk and sk. �

As an example, we consider ak := k
(
k
2

)
!, and m = 2. Then bk = a2k = 2k k!, and Gosper’s

algorithm yields tk = 2(k + 1)k!. Therefore sk = tk/2 = (k + 2)
(
k
2

)
! has the property that

sk − sk−2 = ak .

By (15), we moreover find the antidifference

s̃k = sk + sk−1 = (k + 2)

(
k

2

)
! + (k + 1)

(
k − 1

2

)
!

of ak.

We consider two other examples: If ak =
( k/3

n

)
then our algorithm generates the antidiffer-

ence

sk =
1

3(n+ 1)

(
(k + 3)

( k
3
n

)
+ (k + 2)

( k�1
3
n

)
+ (k + 1)

( k�2
3
n

))
,

and if ak =
( n
k/2

)
−
( n
k/2− 1

)
then

sk =
(2n+ 3− k)(n+ 1− k)

2(n+ 2− k)(n+ 1− k)

(( n
k�1
2

)
−
( n

k�3
2

))

+
(n+ 2− k)(2n+ 2− k)

2(n+ 2− k)(n+ 1− k)

((
n
k/2

)
−
(

n
k/2− 1

))
.

Note, however, that we will use m-fold hypergeometric antidifferences rather than non-hyper-
geometric antidifferences in the later chapters.
Now, we give an algorithm that finds an appropriate nonnegative integer m for an arbitrary
input function ak given as ratio of products of rational functions, exponentials, factorials,
Γ function terms, binomial coefficients, and Pochhammer symbols that are rational-linear in
their arguments:

11



Algorithm 3 (find_mfold)

The following is an algorithm generating a successful choice for m for an application of Algo-
rithm 2.

1. Input: ak as ratio of products of rational functions, exponentials, factorials, Γ function
terms, binomial coefficients, and Pochhammer symbols that are rational-linear in their
arguments.

2. Build the list of all arguments. They are of the form pj/qj k + αj with integer pj and
qj, pj/qj in lowest terms, qj positive.

3. Calculate m := lcm{qj}.
Proof: It is clear that the procedure generates a representation for bk = akm with the given
choice of m which is integer-linear in the arguments involved. Since in this case bk/bk−1 is
rational, Algorithm 2 is applicable. �

We mention that in our example cases above, the given procedure yields the desired values

m = 2 for ak := k
(
k
2

)
!, m = 3 for ak =

(
k/3
n

)
, and m = 2 for ak =

(
n
k/2

)
−
(

n
k/2− 1

)
.

� Extension of the WZ method

In this section we will give an extended version of the WZ method which resolves the questions
that remained open in § 3 so that finally Bailey’s complete list (Table 1) can be settled using
a unifying approach.
Assume that for a hypergeometric identity the WZ method fails. This may happen either
because ak/ak−1 is not rational, or because there is no single formula for the result like in
Andrews’ statement

3F2

( −n , n+ 3a , a

3a/2 , (3a+ 1)/2

∣∣∣∣∣ 34
)
=

⎧⎪⎨
⎪⎩

0 if n �= 0 (mod 3)
n! (a+ 1)n/3

(n/3)! (3a+ 1)n
otherwise

(16)

which—together with many similar statements—can be found in a paper of Gessel and Stanton
(1982), Equation (1.1).
In such cases, we proceed as follows: To prove an identity of the form

sn :=
∑
k∈ZZ

F (n, k) = constant (n mod m constant) , (17)

m denoting a certain positive integer, F (n, k) being an (m, l)-fold hypergeometric term with
respect to (n, k), i. e.

F (n, k)

F (n− m, k)
and

F (n, k)

F (n, k − l)
are rational functions with respect to both n and k,

and n assuming to be an integer, we apply our extended version of Gosper’s algorithm to find
an l-fold antidifference of the expression

ak := F (n, k)− F (n− m, k)

12



Table 3: Gessel and Stanton’s hypergeometric identities

Eq. Identity

(1.1) 3F2

(
−n , n+ 3a , a

3a/2 , (3a+ 1)/2

∣∣∣∣∣ 34
)

=

⎧⎨
⎩

0 if n �= 0 (mod 3)
n! (a+ 1)n/3

(n/3)! (3a+ 1)n
otherwise

(1.2) 5F4

(
2a , 2b , 1− 2b , 1 + 2a/3 ,−n

a− b+ 1 , a+ b+ 1/2 , 2a/3 , 1 + 2a+ 2n

∣∣∣∣∣ 14
)

=
(a+ 1/2)n (a+ 1)n

(a + b+ 1/2)n (a− b+ 1)n

(1.3) 5F4

(
a, b, a+1/2−b, 1+2a/3,−n

2a+1−2b, 2b, 2a/3, 1+a+n/2

∣∣∣∣∣ 4
)

=

⎧⎨
⎩

0 if n odd
n! (a+ 1)n/2 2

�n

(n2 )!(a−b+1)n/2(b+
1
2)n/2

otherwise

(1.4) 3F2

(
1/2 + 3a , 1/2− 3a ,−n

1/2 ,−3n

∣∣∣∣∣ 34
)

=
(1/2− a)n (1/2 + a)n

(1/3)n (2/3)n

(1.5) 3F2

(
1 + 3a , 1− 3a ,−n

3/2 ,−1− 3n

∣∣∣∣∣ 34
)

=
(1 + a)n (1− a)n
(2/3)n (4/3)n

(1.6) 3F2

(
2a , 1− a ,−n

2a+ 2 ,−a− 1/2− 3n/2

∣∣∣∣∣ 1
)

=
((n + 3)/2)n (n + 1)(2a+ 1)

(1 + (n+ 2a+ 1)/2)n (2a + n+ 1)

(1.7) 7F6

(
2a , 2b , 1− 2b , 1 + 2a/3 , a+ d+ n+ 1/2 , a− d ,−n

a− b+ 1 , a+ b+ 1/2 , 2a/3 ,−2d− 2n , 2d+ 1 , 1 + 2a+ 2n

∣∣∣∣∣1
)

=

(2a+ 1)2n (b+ d+ 1/2)n (d− b+ 1)n
(2d+ 1)2n (a + b+ 1/2)n (a − b+ 1)n

=
(a+ 1/2)n (a + 1)n (b+ d+ 1/2)n (d− b+ 1)n
(a+ b + 1/2)n (a− b+ 1)n (d+ 1/2)n (d+ 1)n

(1.8) 7F6

(
a , b , a+ 1/2− b , 1 + 2a/3 , 1− 2d , 2a+ 2d+ n ,−n

2a− 2b+ 1 , 2b , 2a/3 , a+ d+ 1/2 , 1− d− n/2 , 1 + a+ n/2

∣∣∣∣∣ 1
)

=

⎧⎨
⎩

0 if n odd
(b+ d)n/2 (d− b+ a+ 1/2)n/2n! (a+ 1)n/2 2

�n

(b+ 1/2)n/2 (a+ d+ 1/2)n/2 (d)n/2 (n/2)! (a− b+ 1)n/2
otherwise

(3.7) 2F1

(
−n ,−2n− 2/3

4/3

∣∣∣∣∣− 8

)
=

(5/6)n
(3/2)n

(−27)
n

(5.21) 3F2

(
3a+ 1/2 , 3a+ 1 ,−n

6a+ 1 ,−n/3 + 2a+ 1

∣∣∣∣∣ 43
)

=

⎧⎨
⎩

0 if n �= 0 (mod 3)
(1/3)n/3 (2/3)n/3

(1 + 2a)n/3 (−2a)n/3
otherwise

(5.22) 2F1

(
−n , 1/2

2n+ 3/2

∣∣∣∣∣ 14
)

=
(1/2)n

(2n+ 3/2)n

(
27

4

)n

(5.23) 2F1

(
−n ,−1/3− 2n

2/3

∣∣∣∣∣− 8

)
= (−27)n

(5.24) 2F1

(
−n , n/2 + 1

4/3

∣∣∣∣∣ 89
)

=

⎧⎨
⎩

0 if n odd
(1/2)n/2

(7/6)n/2
(−3)�(n/2) otherwise

(5.25) 2F1

(
−n , 1/2

(n+ 3)/2

∣∣∣∣∣4
)

=

⎧⎨
⎩

0 if n odd
(1/2)n/2 (3/2)n/2

(5/6)n/2 (7/6)n/2
otherwise

(5.27) 4F3

(
1/3− n ,−n/2 , (1− n)/2 , 22/21− 3n/7

5/6 , 4/3 , 1/21− 3n/7

∣∣∣∣∣− 27

)
=

(−8)n

1− 9n
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Table 4: The extended WZ method

Bailey p. n m R(n, k)

11, Gauß −a 2 − (b+ k) (n− k)

(−b+ n− 1− 2 k)n

11, Bailey −a 2
(2n− 1) (n− k)

(c+ n− 1) (n+ k)

16, Watson −a 2 −2
(c+ k) (b+ k) (n− k)

(−1 + n+ 2 c) (−b+ n− 1− 2 k)n

16, Whipple −a 2 2
(2n− 1) (n− k) (c+ k)

(2 c− e+ n) (−1 + n+ e) (n+ k)

G.-S. Eq. m R(n, k)

(1.1) 3 3
(a + k) (n− k) (3 a+ 2n− 3)

(n+ 3 a+ k − 2) (n+ 3 a+ k − 1)n

(1.2) 1 − (2 a+ k) (n− k) (2 b− 1− k) (2 b+ k)

2n (3 k + 2 a) (2 a+ 2 b− 1 + 2n) (a− b+ n)

(1.3) 2 4
(b+ k) (a+ k) (2 a− 2 b+ 1 + 2 k) (n − k)

n (3 k + 2 a) (2 b− 1 + n) (2 a− 2 b+ n)

(1.4) 1 3
(n − k) (6 a− 1− 2 k) (6 a+ 1 + 2 k)

(12n− 4 k) (3n− 1− k) (3n− 2− k)

(1.5) 1 3
(n− k) (3 a− k − 1) (3 a+ 1 + k)

(3n− 1− k) (3n− k) (3n− k + 1)

(1.6) 2

(−4 a+4 an+18n2−20n+2−16nk
)
(n−k) (a−k−1) (2 a+k)

n (2 a+1+3n−2 k) (2 a−1+3n−2 k) (2 a−3+3n−2 k) (n−1)

(1.7) 1
(2 a− 1 + 4n+ 2 d) (a− d+ k) (2 a+ k) (n− k) (2 b− 1− k) (2 b+ k)

n (2 a+3 k) (2 d+2n−k) (2 d+2n−1−k) (2 a+2 b−1+2n) (a−b+n)

(1.8) 2 8
(2 d−1−k) (b+k) (n−k) (a+k) (2 a−2 b+2 k+1) (a+n+d−1)

n (2 a+3 k) (−2+2 d+n−2 k) (2 b−1+n) (2 a−2 b+n) (2 a+2 d+n+k−1)

(3.7) 1 4
(n− k) (6n+ 2− 3 k) (7n− 1− 3 k)

(3n+ 1) (1 + 2n)n

(5.21) 3 2
(3 a+ 1 + k) (6 a+ 2 k + 1) (n− k)

n (6 a+ n) (−n + 6 a+ 3 + 3 k)

(5.22) 1
(5 + 6 k) (1 + 2 k) (n− k)

(24n+ 4) (6n− 1)n

(5.23) 1 4
(21n− 7− 9 k) (6n+ 1− 3 k) (n− k)

(6n+ 1) (3n− 1)n

(5.24) 2 4
n− k

1 + 3n

(5.25) 2
(4n− 4 k) (1 + 2 k) (2 + 3 k)

n (3n− 1) (1 + 3n)

(5.27) 1 81
(n− 1− 2 k) (n− 2 k) (−1 + 3n− 3 k)

n (3n− 1) (−1 + 9n− 21 k)
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with respect to the variable k. (In most cases l = 1, so that Gosper’s original algorithm is
applied.) If successful, this generates G(n, k) with

ak = F (n, k)− F (n−m, k) = G(n, k)−G(n, k− l) , (18)

and summing over all k leads to

sn − sn−m =
∑
k∈ZZ

(
F (n, k)− F (n− m, k)

)
=
∑
k∈ZZ

(
G(n, k)−G(n, k − l)

)
= 0

since the right hand side is telescoping. Therefore sn is constant for constant n mod m, and
these constants can be calculated using suitable initial values. This can be accomplished if
the series considered is terminating. Note, that again, the function

R(n, k) =
G(n, k)

F (n, k)
(19)

acts as a rational certificate function. Once the rational certificate is known, it is a matter
of pure rational arithmetic to decide the validity of (17) since the only thing that one has to
show is (18) which after division by F (n, k) is equivalent to the purely rational identity

1− R(n, k) + R(n, k− l)
F (n, k− l)

F (n, k)
− F (n−m, k)

F (n, k)
= 0 .

As an example, we prove (16): In the given case, we set m := 3, l := 1, further

F (n, k) :=
(−n)k (n+ 3a)k (a)k

k! (3a/2)k ((3a+ 1)/2)k

(n/3)! (3a+ 1)n
n! (a+ 1)n/3

(
3

4

)k

,

and notice that
F (n, k)

F (n, k − 1)
and

F (n, k)

F (n− 3, k)

are (complicated) rational functions (Algorithms 2 and 1). An application of Gosper’s algo-
rithm is successful, and leads to the rational certificate

R(n, k) = 3
(a+ k) (n− k) (3 a+ 2n− 3)

(n+ 3 a+ k − 2) (n+ 3 a+ k − 1)n
.

Therefore ∑
k∈ZZ

F (n, k) =
n∑

k=0

F (n, k) = constant (n mod 3 constant) ,

and statement (16) follows using three trivial initial values.
Table 3 lists the hypergeometric identities of the Gessel-Stanton paper (note the misprint
in Equation (1.4)), and Table 4 contains their rational certificates (19), calculated by our
implementations, together with the certificates of Bailey’s list (Table 1) to which the WZ
method did not apply.
Note that in all cases considered, l = 1, so that the original Gosper algorithm is applied.
Note, moreover, that Gessel and Stanton were not able to present proofs for their statements
(6.2), (6.3), (6.5), and (6.6): Table 5 contains proofs.
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Table 5: Gessel and Stanton’s open problems

Eq. Identity

(6.2) 7F6

(
a+ 1/2 , a , b , 1− b ,−n , (2a+ 1)/3 + n , a/2 + 1

1/2 , (2a− b+ 3)/3 , (2a+ b+ 2)/3 ,−3n , 2a+ 1 + 3n , a/2

∣∣∣∣∣ 1
)

=

((2a + 2)/3)n (2a/3 + 1)n ((1 + b)/3)n ((2− b)/3)n
((2a − b)/3 + 1)n ((2a+ b+ 2)/3)n (2/3)n (1/3)n

(6.3) 5F4

(
a+ 1/2 , a ,−n , (2a+ 1)/3 + n , a/2 + 1

1/2 ,−3n , 2a+ 1 + 3n , a/2

∣∣∣∣∣ 9
)

=
((2a+ 2)/3)n (2a/3 + 1)n

(2/3)n (1/3)n

(6.5) 2F1

(
−n ,−n+ 1/4

2n+ 5/4

∣∣∣∣∣ 19
)

=
(5/4)2n

(2/3)n (13/12)n

(
26

35

)n

(6.6) 2F1

(
−n ,−n+ 1/4

2n+ 9/4

∣∣∣∣∣ 19
)

=
(9/4)2n

(4/3)n (17/12)n

(
26

35

)n

Rational certificates

Eq. m R(n, k)

(6.2) 1 6
(a− 1 + 3n) (a+ k) (2 a+ 2 k + 1) (n− k) (b− 1− k) (b+ k)

(a + 2 k) (3n− k) (3n− 1− k) (3n− 2− k) (2 a− b + 3n) (2 a+ b− 1 + 3n)

(6.3) 1 −(6 a− 6 + 18n) (n− k) (2 a+ 2 k + 1) (a+ k)

(a+ 2 k) (3n− k) (3n− 1− k) (3n− 2− k)

(6.5) 1 −
(
52n2 − 13n− 21− 56 k+ 16nk− 32 k2

)
(n− k) (4n− 1− 4 k)

(108n− 27) (3n− 1) (1 + 12n)n

(6.6) 1 −
(
52n2 + 39n− 55− 84 k+ 16nk− 32 k2

)
(4n− 1− 4 k) (n− k)

(108n− 27) (1 + 3n) (5 + 12n)n
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Similarly as the original WZ approach, our method is not capable, however, to prove Gessel-
Stanton’s (6.1), a non-terminating version of (6.2). Also, Gessel-Stanton’s result (1.9)

3F2

( −sb+ s+ 1 , b− 1 ,−n

b+ 1 , s(−n− b)− n

∣∣∣∣∣ 1
)
=

(1 + s+ sn)n b (n+ 1)

(1 + s(b+ n))n (b+ n)

is over the capabililites of our method since in this case the summand is an (m, l)-fold hyper-
geometric term only for fixed (rational), but not for arbitrary s.
Note, that our method not only unifies the proof of hypergeometric identities in a stronger
fashion than the original WZ approach but moreover our Reduce and Maple implementa-
tions do all the necessary computations completely automatically. We present some of the
input and output in the appendix.
Finally, we give examples of an application for which l �= 1. To prove the identity (n ∈ IN)

−
n∑

k=0

(−2)n
(
n
k

)
·
(
k/2
n

)
= 1 , (20)

we apply our extended WZ method with l = 2, and m = 1, and get the rational certificate

R(n, k) =
(−k + n− 1) (−k + n)

(n− 1) (−k + 2n− 2)
,

which proves (20). Similarly one proves the statement (n ∈ IN0)

n∑
k=0

(−1)k (−2)n
(
n
k

)
·
(
k/2
n

)
= 1 .

� The Zeilberger Algorithm

In this section, we recall the celebrated Zeilberger algorithm (Zeilberger, 1990–1991), see also
Graham, Knuth and Patashnik (1994) with which one can not only verify hypergeometric
identities but moreover definite sums can be calculated if they represent hypergeometic terms.
Zeilberger’s algorithm deals with the question to determine a holonomic recurrence equation

J∑
j=0

Pj(n) Σ(n− j) = 0 (21)

with polynomials Pj in n, for sums

Σ(n) :=
∑
k∈ZZ

F (n, k) (22)

for which F (n, k) is a hypergeometric term with respect to both n and k.
Zeilberger’s idea is to apply Gosper’s algorithm in the following non-obvious way: Set

ak := F (n, k) +
J∑

j=1

σj(n)F (n− j, k)
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with yet undetermined variables σj depending on n, but not depending on k. Then

ak
ak−1

=

F (n, k) +
J∑

j=1
σj(n)F (n− j, k)

F (n, k − 1) +
J∑

j=1
σj(n)F (n− j, k− 1)

=
F (n, k)

F (n, k − 1)
·

1 +
J∑

j=1
σj(n)

F (n−j,k)
F (n,k)

1 +
J∑

j=1
σj(n)

F (n−j,k−1)
F (n,k−1)

turns out to be rational with respect to k, so the Gosper algorithm may be applied.
If an application of Gosper’s algorithm is successful it provides us with sk depending on n,
and a set of rational functions σj(n) (the coefficients of fk are determined together with the
unknowns σj) such that

sk − sk−1 = ak = F (n, k) +
J∑

j=1

σj(n)F (n− j, k) ,

so that by summation

∑
k∈ZZ

ak =
∑
k∈ZZ

⎛
⎝F (n, k) +

J∑
j=1

σj(n)F (n− j, k)

⎞
⎠

= Σ(n) +
J∑

j=1

σj(n) Σ(n− j) =
∑
k∈ZZ

(
sk − sk−1

)
= 0

since the right hand side is a telescoping sum. After multiplication with the common denom-
inator this establishes the recurrence equation (21) searched for.
Koornwinder (1993) gives a rigorous description of Zeilberger’s algorithm in the (most com-
mon) case that the summation bounds are natural: a−1 = an+1 = 0, i. e. the summation is
for k = 0 . . .n.
Like for the Wilf-Zeilberger method, the Zeilberger algorithm is accompanied by a rational
certification mechanism.
Note that Zeilberger’s algorithm can be applied to ratios of products of rational functions,
exponentials, factorials, Γ function terms, binomial coefficients, and Pochhammer symbols
that are integer-linear in their arguments with respect to both n and k.
In the next section we will present a modified version of Zeilberger’s algorithm that is appli-
cable if the arguments of such expressions are rational-linear with respect to n and k.
The application of Zeilberger’s algorithm has the advantage over the WZ method that the
right hand side of the hypergeometric identity does not have to be known in advance, but
is generated by the algorithm (not to speak of the possibility to verify identities of other
type). Therefore, Zeilberger’s algorithm can be used to calculate definite sums rather than
only verifying them. All identities mentioned in this article which could be verified with the
WZ method, can be generated by Zeilberger’s algorithm.
Implementations of the Zeilberger algorithm were given by Zeilberger (1990) and Koorn-
winder (1993) in Maple, and by Paule and Schorn (1994) in Mathematica. On the lines of
Koornwinder (1993), we implemented the Zeilberger algorithm in Reduce (Koepf, 1994) and
Maple, examples of which are given in the appendix.
Note the following side conditions of the previous implementations:

• Zeilberger: Here one must write the input into a file rather than on the command line.
Supports only integer-linear input of a special form.
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• Koornwinder: Supports only integer-linear input in hypergeometric notation.

• Paule-Schorn: Supports only ratios of rational functions, products of exponentials, fac-
torials, and binomial coefficients.

Our implementations support the input in factorial-binomial-Gamma-Pochhammer as well as
hypergeometric notation, and use Algorithm 1 for rationality decisions, and are therefore not
bound to integer-linear input.

� An Extended Version of Zeilberger	s Algorithm

Our extended version of the Zeilberger algorithm deals with the question to determine a holo-
nomic recurrence equation (21) for sums (22) for which F (n, k) is an (m, l)-fold hypergeometric
term with respect to (n, k), see § 5.
In particular, this applies to all cases when the input function F (n, k) is given as a ratio of
products of rational functions, exponentials, factorials, Γ function terms, binomial coefficients,
and Pochhammer symbols that are rational-linear in their arguments with respect to both n,
and k.
First of all we mention that Zeilberger’s algorithm may be applicable even though this is safely
the case only if the arguments are integer-linear. An example of that type is the function

Σ(n) := 2F1

( −n/2 , −n/2 + 1/2

b+ 1/2

∣∣∣∣∣ 1
)
=

∞∑
k=0

(−n/2)k (−n/2 + 1/2)k
k! (b+ 1/2)k

,

for which an application of Zeilberger’s algorithm yields the recurrence equation

(2b+ n− 1) Σ(n)− 2(b+ n− 1) Σ(n− 1) = 0 ,

and therefore the explicit representation

Σ(n) =
2n (b)n
(2b)n

.

Zeilberger’s algorithm applies since F (n, k)/F (n− 1, k) and F (n, k)/F (n, k− 1) are rational
even though the representing expression for F (n, k) is not integer-linear in its arguments.
On the other hand, not for every F (n, k) given with rational-linear Γ-arguments, the Zeilberger
algorithm is applicable. An example for this situation is the left hand side of the Watson
theorem with respect to variable a (see Table 1).
We present now an algorithm which can be applied for arbitrary rational-linear input.

Algorithm 4 (extended_sumrecursion)

The following steps perform an algorithm to determine a holonomic recurrence equation (21)
for sums (22).

1. Input: F (n, k), given as a ratio of products of rational functions, exponentials, factorials,
Γ function terms, binomial coefficients, and Pochhammer symbols with rational-linear
arguments in n and k.

2. Build the list of all arguments. They are of the form pj/qj n+ sj/tj k+ αj with integer
pj, qj, sj, tj, pj/qj and sj/tj in lowest terms, qj and tj positive.
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3. Calculate m := lcm{qj} and l := lcm{tj}.
4. Define F̃ (n, k) := F (mn, kl). Then F̃ (n, k) is integer-linear in the arguments.

5. Apply Zeilberger’s algorithm to F̃ (n, k). Get the recurrence equation

J∑
j=0

Pj(n) Σ̃(n− j) = 0

with polynomials Pj in n, for the sum

Σ̃(n) :=
∑
k∈ZZ

F̃ (n, k) .

6. The output is the recurrence equation

J∑
j=0

Pj(n/m) Σ(n− jm) = 0

for the sum
Σ(n) :=

∑
k∈ZZ

F (n, k) .

Proof: Obviously our construction provides us with F̃ (n, k) integer-linear in the arguments
involved. Therefore Zeilberger’s algorithm can be applied, and the result follows. �

As a first example, we apply our algorithm to the Watson function

Σ(n) = 3F2

( −n , b , c

(−n+ b+ 1)/2 , 2c

∣∣∣∣∣ 1
)

with respect to the variable n to which Zeilberger’s algorithm does not apply. In this case,
the algorithm determines m = 2 and l = 1, and leads to the two-fold recurrence equation

(b− 2c− n+ 1) (n− 1) Σ(n− 2)− (b− n+ 1) (2c+ n− 1) Σ(n) = 0

from which the explicit right hand representation listed in Table 1 can be deduced for integer
n since for positive values of n the Watson sum is finite, and therefore

Σ(0) = 1 ,

and

Σ(1) = 1 +
−1 b c

1 (b/2) (2c)
= 0 .

It turns out that our method is applicable to all identities considered in this paper to which
Zeilberger’s original approach does not apply.
For example, we consider the three major identities of the paper of Gessel and Stanton (1982):
The evaluation of (1.7)

Σ(n) := 7F6

(
2a , 2b , 1− 2b , 1− 2a/3 , a+ d+ n+ 1/2 , a− d ,−n

a− b+ 1 , a+ b+ 1/2 , 2a/3 ,−2d− 2n , 2d+ 1 , 1 + 2a+ 2n

∣∣∣∣∣ 1
)

=
(a+ 1/2)n (a+ 1)n (b+ d+ 1/2)n (d− b+ 1)n
(a+ b+ 1/2)n (a− b+ 1)n (d+ 1/2)n (d+ 1)n
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is found by a direct application of Zeilberger’s algorithm with respect to n, leading to the
equivalent recurrence equation

0 = (2a+ 2b+ 2n− 1)(a− b+ n)(2d+ 2n− 1)(d+ n)Σ(n)

+(2a+ 2n− 1)(a+ n)(2b+ 2d+ 2n− 1)(b− d− n)Σ(n− 1) .

On the other hand, the evaluation of (1.8)

Σ(n) := 7F6

(
a , b , a+ 1/2− b , 1 + 2a/3 , 1− 2d , 2a+ 2d+ n ,−n

2a− 2b+ 1 , 2b , 2a/3 , a+ d+ 1/2 , 1− d− n/2 , 1 + a+ n/2

∣∣∣∣∣ 1
)

=

⎧⎪⎨
⎪⎩

0 if n odd
(b+ d)n/2 (d− b+ a+ 1/2)n/2 n! (a+ 1)n/2

(b+ 1/2)n/2 (a+ d+ 1/2)n/2 (d)n/2 (n/2)! (a− b+ 1)n/2
otherwise

cannot be handled with respect to n using Zeilberger’s algorithm, but the extended version
leads to the equivalent 2-fold recurrence equation

0 = (n− 1 + 2d+ 2a)(2b− n− 2a)(n− 1 + 2b)(n− 2 + 2d)Σ(n)

+(n− 1 + 2d− 2b+ 2a)(n− 2 + 2d+ 2b)(2a+ n)(n− 1)Σ(n− 2) .

A direct application of Zeilberger’s algorithm is possible, however, with respect to the other
variables involved (even with respect to a).
Gessel-Stanton’s open problem (6.2)

Σ(n) := 7F6

(
a+ 1/2 , a , b , 1− b ,−n , (2a+ 1)/3 + n , a/2+ 1

1/2 , (2a− b+ 3)/3 , (2a+ b+ 2)/3 ,−3n , 2a+ 1 + 3n , a/2

∣∣∣∣∣ 1
)

=
((2a+ 2)/3)n (2a/3 + 1)n ((1 + b)/3)n ((2− b)/3)n
((2a− b)/3 + 1)n ((2a+ b+ 2)/3)n (2/3)n (1/3)n

,

again, can be solved directly with Zeilberger’s algorithm leading to the recurrence equation

0 = (2a+ b+ 3n− 1) (2a− b+ 3n) (3n− 1) (3n− 2) Σ(n)

+(2a+ 3n− 1) (2a+ 3n) (b+ 3n− 2) (b− 3n+ 1)Σ(n− 1) .

Finally, as an example with l �= 1, we consider (20), again. Our algorithm generates m = 1
and l = 2, and the recurrence equations

Σ(n)− Σ(n− 1) = 0 and 2Σ(n) + Σ(n− 1) = 0

for

Σ(n) := (−2)n
(
n
k

)
·
(
k/2
n

)
, and Σ(n) :=

(
n
k

)
·
(
k/2
n

)
,

respectively.


 Deduction of hypergeometric identities

Finally, we mention that with a good implementation of Zeilberger’s algorithm and our ex-
tension at hand, it is easy to discover new identities. Just for fun, we realized the pattern in
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Andrews’ statement (16), and tried to generate similar ones: It turns out that

3F2

( −n , n+ 2a , a

2a/2 , (2a+ 1)/2

∣∣∣∣∣ 24
)
=

⎧⎪⎨
⎪⎩

0 if n odd

(−1)n/2 (1/2)n/2
(1/2 + a)n/2

otherwise

and

3F2

( −n , n+ 4a , a

4a/2 , (4a+ 1)/2

∣∣∣∣∣ 44
)

=

⎧⎪⎨
⎪⎩

0 if n odd
(1/2)n/2

(1/2 + 2a)n/2
otherwise

.

Another example of a more deductive strategy is: Applying Zeilberger’s algorithm to the
general 2F1 polynomial

Σ(n) := 2F1

(
a ,−n

b

∣∣∣∣∣x
)

,

e. g., leads to the recurrence equation

(b− 1 + n) Σ(n) + (−2n+ xn+ xa− b+ 2− x) Σ(n− 1)− (x− 1) (n− 1) Σ(n− 2) = 0 .

It is therefore hypergeometric only if the coefficient of Σ(n− 2) is identical zero, i. e. if x = 1.
This gives Vandermonde’s identity. However, the coefficient of Σ(n − 1) can be made zero
(equating coefficients), if we choose x = 2, and b = 2a, in which situation we get

(n+ 2a− 1) Σ(n)− (n− 1) Σ(n− 2) = 0 .

Therefore we have deduced the identity

2F1

(
a ,−n

2a

∣∣∣∣∣ 2
)
=

⎧⎪⎨
⎪⎩

0 if n odd
(1/2)n/2

(1/2 + a)n/2
otherwise

.

We see that this method, to some extent, can be a substitute for the ingenuity of people
like Dougall, Bailey, Andrews, Gessel or Stanton to find hypergeometric sums which can be
represented by single hypergeometric terms.
We finally give a strange example to demonstrate that our method can be of great help to
find new identities.
We try to find all hypergeometric functions of the form

Σ(n) := 2F1

(
a ,−n

n+ b

∣∣∣∣∣ x
)

for which a, b and x are constants with respect to n, and for which a recurrence equation with
only two terms Σ(n− j) is valid.
The recurrence equation for Σ(n) turns out to be

0 = − (x− 1)2 (n− 1) (n− 1 + b) (n− 2 + b) (xn+ n− xa− x+ bx)Σ(n− 2)

+ (n− 1 + b)P (n, a, b, x) Σ(n− 1)

+x (2n+ b− 1) (2n+ b− 2) (n− a− 1 + b) (xn+ n− xa− 2 x− 1 + bx)Σ(n) ,

where P (n, a, b, x) denotes a very complicated polynomial of degree 2 in n that does not have
a rational factorization. To receive a recurrence equation for which only two terms Σ(n− j)
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different from zero occur, we may set the coefficient lists with respect to n of any of the factors
occurring zero, and try to solve for a, b and x. Note that since the resulting equations systems
are polynomial systems, by Gröbner bases methods these can be solved algorithmically.
In our case, we receive either x = 1, i. e. the recurrence equation

0 = − (n− 1 + b) (2n− a+ b− 1) (b− a+ 2n− 2)Σ(n− 1)

+ (2n+ b− 1) (2n+ b− 2) (n− a− 1 + b)Σ(n) ,

or we are led to the Kummer identity, i. e. to the values b = a + 1 and x = −1 with the
recurrence equation

−2 (n+ a)Σ(n− 1) + (2n+ a) Σ(n) = 0 .

The only exception occurs when we set the coefficient list with respect to n of the factor
P (n, a, b, x) zero, leading to the Kummer case again, and to the second solution set

{a = 1/2, b = 3/2, x2 − 6x+ 1 = 0} .

For x = 3± 2
√
2, we have the recurrence equation

−4 (2n− 1) (2n+ 1)Σ(n− 2) + (4n− 1) (4n+ 1)Σ(n) = 0

leading to the closed form representations

2F1

(
1/2 ,−n

n+ 3/2

∣∣∣∣∣ 3 + 2
√
2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 (5/4)(n−1)/2 (7/4)(n−1)/2

5 (11/8)(n−1)/2 (13/8)(n−1)/2
(1−

√
2) if n odd

(3/4)n/2 (5/4)n/2
(7/8)n/2 (9/8)n/2

otherwise

and

2F1

(
1/2 ,−n

n+ 3/2

∣∣∣∣∣ 3− 2
√
2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 (5/4)(n−1)/2 (7/4)(n−1)/2

5 (11/8)(n−1)/2 (13/8)(n−1)/2
(1+

√
2) if n odd

(3/4)n/2 (5/4)n/2
(7/8)n/2 (9/8)n/2

otherwise

,

in particular, for even n, the values at x = 3+ 2
√
2 and x = 3− 2

√
2 are rational and equal:

2F1

(
1/2 ,−2n

2n+ 3/2

∣∣∣∣∣ 3± 2
√
2

)
=

2n∑
k=0

(−1)k

(
2n
k

)(
2n+ k + 1

k

)
( 4n+ 2k + 2

2k

) (
3± 2

√
2
)k

=
(3/4)n (5/4)n
(7/8)n (9/8)n

.

We will discuss the given method in greater detail in a forthcoming paper.
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Appendix

In this appendix, we give a short description of aMaple implementation, which I implemented
together with Gregor Stölting on the lines of Koornwinder (1993), incorporating Gosper’s and
Zeilberger’s algorithms and the extensions of this article, and present some of its results. Our
Reduce implementation is described elsewhere (Koepf, 1994).
After loading our package, one can use the following Maple functions:

gosper(f,k) determines a closed form antidifference. If it does not return a closed form
solution, then a closed form solution does not exist.

gosper(f,k,m,n) determines
n∑

k=m

ak

using Gosper’s algorithm. This is only successful if Gosper’s algorithm applies.

extended_gosper(f,k,m) determines an m-fold hypergeometric antidifference. If it does
not return a solution, then such a solution does not exist.

sumrecursion(f,k,n) determines a holonomic recurrence equation for

summ(n) =
∞∑

k=−∞
f(n, k) with respect to n if f(n, k) is hypergeometric with respect to

both n and k. The resulting expression equals zero.

sumrecursion(f,k,n,j) searches only for a holonomic recurrence equation of order j.

extended_sumrecursion(f,k,n,m,l) determines a holonomic recurrence equation for

summ(n) =
∞∑

k=−∞
f(n, k) with respect to n if f(n, k) is an (m, l)-fold hypergeometric term

with respect to (n, k).

hyperrecursion(upper,lower,x,n) determines a holonomic recurrence equation with re-

spect to n for pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣∣x
)
, where upper = {a1, a2, . . . , ap} is the list of

upper parameters, and lower = {b1, b2, . . . , bq} is the list of lower parameters depending
on n.

hyperrecursion(upper,lower,x,n,j) searches only for a holonomic recurrence equation of
order j.

hyperterm(upper,lower,x,k) yields the hypergeometric term

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!x

k

with upper parameters upper = {a1, a2, . . . , ap}, and lower parameters lower =
{b1, b2, . . . , bq}

simplify_gamma(f) simplifies an expression f involving only rational functions, exponentials
and Γ function terms according to a recursive application of the simplification rule
Γ (a+ 1) = aΓ (a) to the expression tree, see Algorithm 1.
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simplify_combinatorial(f) simplifies an expression f involving exponentials, factorials, Γ
function terms, binomial coefficients, and Pochhammer symbols by converting factorials,
binomial coefficients, and Pochhammer symbols into Γ function terms, and applying
simplify_gamma and simplify_power to its result. If the output is not rational, it is
given in terms of Γ functions, see Algorithm 1.

The Maple function

WZ:=proc(summand,k,n,m)

local tmp,gos;

tmp:=summand-subs(n=n-m,summand);

gos:=extended_gosper(tmp,k,m);

RETURN(simplify_combinatorial(gos/summand))

end:

therefore, calculates the (m, l)-fold rational certificate (19) of F (n, k).
Here are some results of the implementation:

|\^/| Maple V Release 3 (FU-Berlin)

._|\| |/|_. Copyright (c) 1981-1994 by Waterloo Maple Software and the

\ MAPLE / University of Waterloo. All rights reserved. Maple and Maple V

<____ ____> are registered trademarks of Waterloo Maple Software.

| Type ? for help.

> read summation;

> # see (SIAM Review, 1994, Problem 94-2)

> gosper((-1)^(k+1)*(4*k+1)*(2*k)!/(k!*4^k*(2*k-1)*(k+1)!),k);

(k + 1)

(2 k)! (-1)

------------------

k

(k + 1)! 4 k!

> # Dougall

> WZ(hyperterm({a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n},

{a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n},1,k)/

hyperterm({1+a,1+a-b-c,1+a-b-d,1+a-c-d,1},

{1+a-b,1+a-c,1+a-d,1+a-b-c-d},1,n),k,n,1);

(2 a - d + 2 n - c - b) (a + k) (- k + n) (b + k) (c + k) (d + k)

- -----------------------------------------------------------------------

n (a + 2 k) (a - b - c - d + n - k) (a - b + n) (a - d + n) (a - c + n)

> sumrecursion(hyperterm({a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n},

{a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n},1,k)/

hyperterm({1+a,1+a-b-c,1+a-b-d,1+a-c-d,1},

{1+a-b,1+a-c,1+a-d,1+a-b-c-d},1,n),k,n);

summ(n) - summ(n - 1)

> hyperrecursion({a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n},

{a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n},1,n);
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- (a + n) (a - c - d + n) (a - b - d + n) (a - b - c + n) summ(n - 1)

+ summ(n) (a - d + n) (a - c + n) (a - b + n) (a - b - c - d + n)

> # Gessel-Stanton (6.2)

> WZ(hyperterm({a+1/2,a,b,1-b,-n,(2*a+1)/3+n,a/2+1},

{1/2,(2*a-b+3)/3,(2*a+b+2)/3,-3*n,2*a+1+3*n,a/2},1,k)/

hyperterm({(2*a+2)/3,2*a/3+1,(1+b)/3,(2-b)/3,1},

{(2*a-b)/3+1,(2*a+b+2)/3,2/3,1/3},1,n),k,n);

6 (a - 1 + 3 n) (a + k) (2 a + 2 k + 1) (- k + n) (b - 1 - k) (b + k)/(

(a + 2 k) (3 n - k) (3 n - 1 - k) (3 n - 2 - k) (2 a - b + 3 n)

(2 a + b - 1 + 3 n))

> sumrecursion(hyperterm({a+1/2,a,b,1-b,-n,(2*a+1)/3+n,a/2+1},

{1/2,(2*a-b+3)/3,(2*a+b+2)/3,-3*n,2*a+1+3*n,a/2},1,k)/

hyperterm({(2*a+2)/3,2*a/3+1,(1+b)/3,(2-b)/3,1},

{(2*a-b)/3+1,(2*a+b+2)/3,2/3,1/3},1,n),k,n);

summ(n) - summ(n - 1)

> hyperrecursion({a+1/2,a,b,1-b,-n,(2*a+1)/3+n,a/2+1},

{1/2,(2*a-b+3)/3,(2*a+b+2)/3,-3*n,2*a+1+3*n,a/2},1,n);

- (3 n - 2 + b) (3 n - 1 - b) (2 a + 3 n) (2 a - 1 + 3 n) summ(n - 1)

+ summ(n) (3 n - 1) (3 n - 2) (2 a - b + 3 n) (2 a + b - 1 + 3 n)

> # The following two sums are identified to be equal, see Strehl (1993)

> sumrecursion(binomial(n,k)^3,k,n);

2 2 2

- 8 (n - 1) summ(n - 2) - (7 n - 7 n + 2) summ(n - 1) + summ(n) n

> sumrecursion(binomial(n,k)^2*binomial(2*k,n),k,n);

2 2 2

- 8 (n - 1) summ(n - 2) - (7 n - 7 n + 2) summ(n - 1) + summ(n) n

> simplify_combinatorial((binomial(n,k)-binomial(n-2,k))/

(binomial(n-3,k)-binomial(n-6,k)));

(n - 5) (n - 4) (n - 3) (n - 2) (- k + 2 n - 1)

--------------------------------------------------------------------------

2 2

(3 n - 24 n - 3 k n + 12 k + k + 47) (n - 2 - k) (- k + n - 1) (- k + n)

> extended_gosper(binomial(k/2,n),k,2);

26



(1/2 k + 1) binomial(1/2 k, n)

------------------------------

n + 1

> WZ(binomial(n,k)*binomial(k/2,n)*(-1)^k*(-2)^n,k,n,1,2);

(- k + n - 1) (- k + n)

-----------------------

(n - 1) (- k + 2 n - 2)

> extended_sumrecursion(binomial(n,k)*binomial(k/2,n)*(-1)^k*(-2)^n,k,n,1,2);

summ(n) - summ(n - 1)

> extended_sumrecursion(binomial(n,k)*binomial(k/2,n)*(-2)^n,k,n,1,2);

summ(n) - summ(n - 1)

> hyperrecursion({-n,n+2*a,a},{2/2*a,(2*a+1)/2},2/4,n);

(n - 1) summ(n - 2) + (n + 2 a - 1) summ(n)

> hyperrecursion({-n,n+4*a,a},{4/2*a,(4*a+1)/2},4/4,n);

- (n - 1) summ(n - 2) + (n + 4 a - 1) summ(n)
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