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Abstract:

Recently, Holm and Ivanov, proposed and studied a class of multi-component generalisa-
tions of the Camassa-Holm equations [D D Holm and R I Ivanov, Multi-component gen-
eralizations of the CH equation: geometrical aspects, peakons and numerical examples, J.
Phys A: Math. Theor 43, 492001 (20pp), 2010]. We consider two of those systems, denoted
by Holm and Ivanov by CH(2,1) and CH(2,2), and report a class of integrating factors
and its corresponding conservation laws for these two systems. In particular, we obtain
the complete sent of first-order integrating factors for the systems in Cauchy-Kovalevskaya
form and evaluate the corresponding sets of conservation laws for CH(2,1) and CH(2,2).

MSC numbers: 35Q35, 76B15

1 Introduction

It is well known that certain conservation laws of shallow water wave equations, such as
the Camassa-Holm equation [4] and the the Degasperis-Procesi equation [8], are useful
to prove blow-up, cf. the papers [5], [18] and [15]. Furthermore, conservation laws play
a central role in the prove of the global existence (in time) for solutions evolving from
certain initial data, cf. the paper [6], and for proving the stability of peakons for both
model equations, cf. the papers [7], [12] and [13]. In the context of the Camassa-Holm
equation they are instrumental in the set-up of a theory of global weak solutions for
nonlinear nonlocal conservation laws, cf. the considerations in the papers [2], [3] and [10]

In the current paper we derive all first-order integrating factors and its correspond-
ing conservation laws for some recently proposed multi-component generalizations of the
Camassa-Holm equation [11]. We concentrate on two explicit systems, namely CH(2,1)
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and CH(2,2), proposed by Holm and Ivanov in [11] (see 1.1a) — (1.1b) and (1.6a) — (1.6b)
below).

We recently reported in [9] the complete set of first-order integrating factors and con-
servation laws for a classs of Camassa-Holm type equations, which includes the Camassa-
Holm equation [4] and the the Degasperis-Procesi equation [8]. Our approach applied in
this paper is based on the direct method described by Anco and Bluman in their paper
[1], which can be applied to derive conservation laws of evolution equations that are in
Cauchy-Kovalevskaya form. We also refer the reader to [16] and [17] for more details and
alternate methods for computing conservation laws for partial differential equations and
systems.

Consider the two-component Camassa-Holm equations introduced and denoted by
Holm and Ivanov [11] as CH(2,1), which has the following form:

o1q: + 2qug + uqy + opp, =0 (1.1a)

Pt + pug +upy =0, (1.1b)
where

q=01U— Uggy + S (1.2)

and s, o and o) are arbitrary constants. The physically interesting cases are o = +1 and
01 =1 or 01 = 0. By defining the new dependent variables

u:= Uy, uy :=Us (1.3a)
Uy 1= Us, p:=Uy (1.3b)
and the change of independent variables,
X =1 T:=uz, (1.4)
we can write system (1.1a) — (1.1b) in the following Cauchy-Kovalevskaya form:
Ei:=Uir—-Uy=0 (1.5a)
Ey:=Uyr—U3=0 (1.5b)
E3:=Usr — oiU; UL x + 01Uy ' Us x — 301U + 2U; 1 UsUs + oU; 2ULUL x
+oU2UsU — 25U Uz = 0 (1.5¢)
Ey = Uy + Uy 'Usx + Uy ' UUs = 0. (1.5d)

The second 2-component Camassa-Holm equation that we study in the current paper,
denoted by CH(2,2), has the form [11]

q1,t +Uoqle + 2q1U0 + U1z + 2q2u1 e = 0 (1.6a)

@2t + U022 + 2qaup = 0, (1.6b)



where

Q1 = Ul — Ul gz + S1 (1.7a)

g2 = Up — U0z + 3u% — u%gc — 2U1U gp + 451U1 + S2. (1.7b)
Here s1, so are arbitrary constants. By defining the new dependent variables

ug = U1, UQ,x ‘= UQ, UQ,zx = U3 (1.8&)

uy := Uy, w1z :=Us, U120 :=Us (1.8b)

and the change of independent variables (1.4), we can present (1.6a) — (1.6b) in the
following Cauchy-Kovalevskaya form:

Ei:=Uir—U;=0 (1.9a)
Ey:=Uyr —Uz=0 (1.9b)
B3 :=Usp + 12U U3 Us — AU ' ULU x + 2U; ' UsUs x — 451U Uy x
+4UsUs — 451Us + 2U; UsUs — 6U; UpU3 + 2U U U2 — 250U, Us
—45,U; ' UUy — 12U 2UpUy + 22U MUsUy x — 88U TUUsUs
165U ULUs + AU 2U2UGUL x — 851U 2U2U x + AU 2U2ULUs3
HAUT2ULUSU? + 8U 2UsUUs — 1651U7 2UsU; — 4soUy 2UUS
HAU2UZUsUs x — AU UsULUs + 42U UL Us — 12U 2USU, x

12U 2ULUs x + AU 2UUs x — AU ' ULUS — 2U2UZ UL x

~U; U x + U U3 x — 33Uy =0 (1.9¢)
Ey:=Uyr—Us=0 (1.9d)
E5 = U57T - U6 =0 (1.98)

Eg := Usr + 4U; ' UsUsUs — 851U, ' ULUs + 22U PUR — 3Us — Uy Uy x
+U; U x — 2U; UiUs x + 6U; 2UU; — Uy UsaUs x + Uy 2UsUn x
FOUT2U2U, x — 2UT2U4UUs x + 451U 2UsUs x — 205 2U5UsU,
—2U U5 UL U — AU UQURUs + 851U 2UsUS 4 252U 2Us Uy
—2U2UsUsUs x + 2U;  U3Us — 252U M Us + 2U;  UaUs

—25,U; Uy — 6U; TUZ U5 = 0. (1.9f)



The above first-order Cauchy-Kovalevskaya systems can now be investigated for inte-
grating factors to derive conservation laws for the systems; which then leads to conservation
laws of the systems CH(1,1) and CH(2,2) in the original variables.

2 General description

In this section we breifly describe the direct method [1] of integrating factors (or multipli-
ers) for the general first-order Cauchy-Kovalevskaya system of six equations:

Ej = Uj,T_Fj(Ula-'-aUﬁaUl,Xa'--7U6,X):07 j:1,2,...,6. (21)

Every conserved density, ®’, and conserved flux, ®X, of system (2.1) must satisfy

Dr®T + Dx®X =0, (2.2)
F=0

where, in general, both ®7 and ®%X are functions of X, T, U. ; as well as X-derivatives of Uj.
Moreover, every ®1 requires six integrating factors, {A1, As,...,Ag}, which are directly
related to the conserved density by the relation [1]

A = E[U]®T,  k=1,2,...,6. (2.3)

Here E is the Euler Operator,

0 0 a 0
5 - _ E : _1\inJi
E[Uk] = A Dro - + A 1( 1) D% o A (2.4)

where we use the notation

U,
Urix = 5xi-

The conditions on the integrating factors, {A;}, of system (2.1) are
E[Uk](AlEl—{—AgEQ—F—|—A6E6):0, k=1,2,...,6. (25)

However, since all integrating factors of system (2.1) are adjoint symmetries of the system
(2.1), we can calculate {A;} by the condition

Ly [Uh] Lg,[Uh] -+ Ly (Ui Ay 0
Ly U] Ly, (U] -+ Ly, [Us] Az 0

_ (2.6)
Ly, [Us] Lg,[Us] -+ L [Us] Ne ) |ps 0




b}

and then require the self-adjointness condition on {A;} (as integrating factors

tional quatities), namely

LAl [Ul] LA1 [UZ] LA1 [UG] Eq

LA2 [Ul] LA2 [UZ] LA2 [UG] Ey

Lag[Ur]  Lpg (U] Lag[Us] Esg

Ly, [Uh] Ly, [Ui]
Ly, [Us] L3, (U]

Ly, [Uh]
L3, U]

L}, [Us] L3, [Us] L3, [Us]

Here L is the linear operator and L* its adjoint:

Eq

oP & P, &K 9P
Lp[Uj] ==+ ——— D} ——— DX
Pl a@ﬁ?ﬂa@ﬂ T+kﬂmgm X
Lx [U] — 8i+ - (_1)i Dt oai+i(—1)k Dk o oP
PERT oy P00 XU px

are varia-

(2.9a)

(2.9b)

Note that the self-adjointness condition, (2.7), is independent of the form of the evolution
system (2.1) and only depends on the functional arguments of {A;} as well as the number

of equations in the system.

3 Integrating factors for system (1.5a) — (1.5d) and conser-

vation laws for (1.1a) — (1.1b):

Solving conditions (2.6) and (2.7) for system (1.5a) — (1.5d), the complete set of first-order

integrating factors {A1,..., A4}, of the form

Aj=ANj(X,T,Uy, ..., U, Ui x, ..., Usx),

j=1,2,...,4
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for arbitrary o, o1 # 0 and s is as follows:

3 1
A= MUs + 2 <S + 50’1[]1 — 2U3>

—\3 (01Us,x — 25Uy — oU} — 301UT + 2U Us) o7 ! (3.1a)
Ag = —XaUs + AU x (3.1b)
Az = —XU; — A0y ‘U (3.1¢)
Ay = MU + MooUy + 203007 UL Uy (3.1d)

where ); are arbitrary constants. This leads to the following three sets of conserved
density, ®, and conserved flux, ®*, for the original system (1.1a) — (1.1b) (separated by
means of the arbitrary Aj, A2 and A3, respectively ):

ol =p (3.2a)
DY = up (3.2b)
(Dt _ 2,
5 = 01U — O1Uzg (3.3a)
1 3 1
OF = 2su + 50p2 + §alu2 — Ullgy — iui (3.3b)
e (o, 1 9 155 L 9\ 1
o5 = ( —oqus + 0P+ 501U — O1Ulag + SO1U; | 0y (3.4a)
3= (aluxut + Sui + oup?® + oyu® — u2um) afl (3.4b)

Some special must be considered:

Special Case 1: ¢ = 0 with o; arbitrary, but nonzero, and s arbitrary. The integrating
factors are as follows:

2U3 - 30’1U1 — 25
(0’1U1 —Us + 8)1/2’

Ar = Ay =0 (3.5)

Ux
Az = Ay =0. 3.6

and the corresponding conserved current for system (1.5a) — (1.5d) is
' = 01 (01U — Uge + )"/ (3.7a)
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Special Case 2: ¢ = 0 with 07 = 1 and s arbitrary. The integrating factors are as
follows:

3 ry/
A= —UleH(m FOULH(W), As =0 (3.8)
4
DLW HY (W) ,
py = PO ny o0, (W) + HOW)) (3.8b)
4

where H(WW) is an arbitrary differentiable function with

Uy
W .= . 3.9
(Ul—U3+S)1/2 ( )

The conserved current for system (1.5a) — (1.5d) is then
o' = H(w)p (3.10a)
¥ = H(w)up. (3.10b)

Here the argument, w, in the arbitrary function H, is

_ p
Wi T (3.11)

Special Case 3: ¢ arbitrary, but nonzero, with o1 = 1 and s arbitrary. The integrating
factors are as follows:

Us — 2U; —
A= 2775 6, =, (3.12a)
oUy
U, SUl—UUZ—FUlZ—UlUg
Az = —L Ay = . 3.12b
ST ey oU?2 ( )

The conserved current for system (1.5a) — (1.5d) is then

Upe — U — 8

op

Pt = (3.13a)

Wlgy — U2 — op® — su

Pt =
op

(3.13D)

Special Case 4: 01 = 0 with ¢ and s arbitrary. The integrating factors are as follows:
AN =(Us—2s)H(X, W), Ay=UsH(X,W) (3.14a)
As=UH(X,W), Ay=—-0cUH(X,W), (3.14b)

where H is an arbitrary differentiable function and

W= = (—4sUy — oUj +2U,Us + U3) . (3.15)

N =
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The conserved current for system (1.5a) — (1.5d) is then

Y = wH(t,w), (3.16b)
where
1
w = 3 (—4su — 0p2 + 2uug, + ui) . (3.17)

Special Case 5: 01 = 0 with ¢ arbitrary, but nonzero, and s arbitrary. The integrating
factors are as follows:

2 o
A= <3U1 + U} - U1U3) . A =0 (3.18a)
Ut
A3 = —77 A4 - 2U1U4. (318}))

The conserved current for system (1.5a) — (1.5d) is then

2

ot =1 (3.192)
2
1

r = — (su2 + oup? — u2um) . (3.19Db)
o

4 Integrating factors for system (1.9a) — (1.9f) and conser-
vation laws for (1.6a) — (1.6b):

Solving conditions (2.6) and (2.7) for system (1.9a) — (1.9f), the complete set of first-order
integrating factors {Aq,..., Ag}, of the form

Aj:Aj(XvTaUla-"7U6>U1,Xa---7U6,X)7 j:1a27"~a6



are the following:

Ay =\ (2UsU + 2U3Uy + 2U4UZ + AU U — 6U; — 251U — 8s1U% — 6U1 Uy
—285Us + Us x) + A2 (Us + 2UZ — 451Uy — 3U; — 2s3)
+A3 (Us — 3Us — 251) + Ay (—857Us — 25152 — s1U1 + 251U3 — 2251 U7
+1251U4Us + 251U2 — 489Uy + 289Ug — 3U1Uy + Uy Us + 4U3Uy — 2U3Us — 12U

+14U3Us + 4U,UZ — 4ULUZ — 2UsUs) Z73/2

A
+?5 (—851Us — 289 — 3U; + 2U3 — 6UZ + AUyUs + 2U2) Z /2 (4.1a)

Ay = = MUy x + AUz + A3Us (4.1b)
Ag =20 U Uy + A2 (Ur — 2UF) + AUy

+As (—81U1 + 881U% + 289Uy + Uy Uy + Uy Ug — 2U3Uy + 6U;

—4U3Us — 2U0,U2) Z73/% ¢ %Ulz—l/2 (4.1¢)
Ay =\ (2U1UZ + 2U1Us + 2U4Us x — 289U — 3UT — 18U Uf + Us x

—1651U1Uy + 8U1UsUs) + Ao (24U} — AU3U4 — 4U4UZ — 12U Us — 2Us x

+2451U7 — 451U + 4s2Us) + A3 (Us + 4UsUs — 3Uy + 2UZ — 12U7

121Uy — 282) + 2X\4 (257U1 — 48s1U7 — 20s150Us — 195101 Uy — 35:U1Us
+2051U3Uy — 8451U3 + 485,U2Ug + 205, U4UZ — 253 — 559U + 459Uz — 1855U7
+10s9U4Us + 452U2 — 3UE 4 5U U — 18U U? + 8UULUs + 5U U2 + U UZ — 2U2
+18U3U? — 10U3U,Us — 4U3U2 — 36U} + 42U3Us + 18UZU2 — 12U3U2
~10U,U2Us — 2U3) Z73/% 4+ NsUy (—2s1 + 3Us + Ug) 271/ (4.1d)
As = A1 (4U1UUs — Uy x — 2UsUs x) + A2 (4U1Us — AUFUs + 2Us x )

A3 (Us + 4UsUs) — 20Us (s1U1 — 8s1U7 — 285Uy — UrUy — UrUs + 2U3Us
—6U} + 4U3Us + 2U04U2) Z73/2 4 \sU U 2~ 1/? (4.1¢)
Ao = A1 (Uf +4U1U7) — 40U3 + Ag (Ur + 2U7) + 2X4 (351U1U4 + 851U + 82Uy
+255U37 — U — Uy Uz + 4ULUZ — U UyUs — U U2 — 2UUZ + 6U}

—AUUs — 2U3U2) Z73% 4 NsUnUs 2712, (4.1f)
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where

Z = 51Uy — 59 — Uy + Us — 3U3 + 2U,Us + UZ.

(4.2)

This leads to the following set of three conserved densities and conserved flux for the

system (1.6a) — (1.6b):

¢ 2 2 3
D7 = uUg gz + UTUL gz — UoUL — 251U] — 2]

2 2 2 2
o7 = (uo + ul) U1zt + 2UpU1U0 2o + 2uouruy , + (4u0u1 + uo) Ul g

1
—§u% (6u1 + 2s1) — ug (6u:1)’ + 2s9u1 + 8812@) — UQ UL ¢

t 2 2
@2 == 2u1u17gjx + u(]’xx —Uup — 2u1 + 2U17$ - 481u1

1
2 3 2 2y, 2
Q5 = —2uqut gt + (uo — 2u7)Uo gz — 4UTUL gz + SU0x +2(up — uy)ui,

3
—2(s9 + 25111 )up — ~ud + 2u3(s9 4 4s1u1 + 3u?)

2

t
@3 = UL,z — UL

DY = (ug + 2u} )1 20 + ULU0zz + UoaU1 e + 2urul, — (251 + Bur)ug

—2uq(s2 + 3s1uy + 2u%)

@i =2(81 — U122 +U1) 212

F = 2 (s1ug + 8s1uf + 282u1 + Jugur — UU1 gz — 2Uo zoti1 + 6US

2 2 —1/2
—duiul gz — 2u1u17x) 21/

oL = 212
T = upz'/?,

where

Z 1= 81U1 — 82 — UQ + U0 2z

2 2
— 3u] + 2u1U oo + Uy -

(4.3a)

(4.3b)

(4.4a)

(4.4b)

(4.5a)

(4.5b)

(4.6a)

(4.6D)

(4.7a)

(4.7b)

(4.8)
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5 Concluding remarks

We have derived the complete set of first-order integrating factors for the systems CH(2,1)
and CH(2,2) in Cauchy-Kovalevskaya form. The corresponding sets of conservation laws
related to these integrating factors have been derived for both these systems. It would
certainly be interesting to calculate higher-order integrating factors, although the compu-
tations involved for such calculations appear to be rather challenging. We aim to report
some results in a future paper.

We expect that the same method than was applied here could also be used to find
conservation laws for more general CH-systems proposed in [11] and [14].
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