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12. Oktober 2012

. . .

Zusammenfassung

This work aims to develop a new algorithm to calculate the free ener-

gy of water molecules by using a deterministic way. For this purpose, we

assume a closed system confined to a physical volume, having water mo-

lecules in gas phase. To calculate the free energy of this sytem we utilized

Mayer cluster expansion and the fluctuation free integration method.

1 Introduction

Molecular simulation methods are often used to generate statistical data in order
to estimate the probability of a system to attain a certain state. For example,
how probable is a receptor-ligand-binding compared to the unbound state? The
answer to such questions is equivalent to computing the fee energy difference
between the states of the molecular system. The generation of statistical da-
ta is comparable to using a Monte Carlo approach for solving the underlying
quadrature problem.

From a computational point of view, Monte Carlo methods are preferable
for high-dimensional integrals, because deterministic methods suffer from the
curse of dimensionality.

To compute the free energy of the systems, in general, Monte Carlo methods
are often combined with sophisticated analytical reformulations of the problem
[1, 2].

However, if the free energy of a system can be expressed by solving many low-
dimensional integrals, purely deterministic approaches may become valuable.
In this work, we do not use any similation techniques, instead, we developed
a deterministic algorithm to calculate the free energy of water in gas phase.
For this purpose, we utilize some numerical methods such as Mayer Cluster
Expansion[3] and Fluctuation Free Integration[4, 5].

Especially, six-diemensional integrals will play a major role in this article,
if the potential energy can be expressed by only writing atom-pair-interaction
terms.
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2 Mathematical Background

We will calculate the free energy of water in gas phase. In this sense, we need
to exploit the mathematical structure of partition functions, we need the Mayer
Cluster Expansion method and the Fluctuation Free Integration method. These
methods will help us to develope an algorithm for deterministic free energy
calculations. The details of these methods are given in the followings.

2.1 Partition Function and Mayer Cluster Expansion

There are actually several different types of partition functions, each of them
corresponds to a different type of a statistical ensemble. In this study we deal
with the canonical ensemble partition function. The canonical ensemble of a
system means that the system is observed at constant temperature with fixed
number of particles, N . The canonical ensemble partition function is very im-
portant for statistical thermodynamics because it allows us to evaluate most of
the thermodynamic properties of the system, such as the free energy, entropy,
and enthalpy.

Consider a classical system inside of a finite-volumed box which consists
of N particles. The canonical partition function of a gas particles system can
be written in terms of a total energy H (depending on the locations and the
momenta of the particels) as follows

Z(β) ≡ 1

N !~3N

∫

V

dVe−βH(p,q) (1)

where the symbols ~ and the term e−βH are known as reduced Planck constant
and the Boltzmann factor respectively. The above form of the partition function
is not dimensionless and to make it a dimensionless quantity, we must divide
the relation by 3Nth power of reduced Planck constant, ~. In addition, we know
that it is impossible to distinguish the particles even they are actually identical
particles. To this end, the partition function must be divided by N !. Moreover,
here, β is called as reciprocal micro thermal enery and it is defined as

β ≡ 1

kBT
(2)

where kB and T are Boltzmann’s constant and absolute temperature, respec-
tively. In this study, we use three dimensional physical space that is, we need
6N entities formed by 3N momenta and 3N positions. So, in definition of the
partition function shown above as (1), a 6N -tuple integration is involved. Conse-
quently, V defines the volume, which is covered by momentum, p and position,
q variables. The sets of momenta, p and positions, q are given through the
following expression

p ≡ {p1, . . . , p3N} , q ≡ {q1, . . . , q3N} (3)

Since the equation given in (1) has 6N dimensional integral, the definition of
dV, which corresponds to the value sets taken by p and q variables, can be given
as follows

dV = dp1 · · · dp3N · dq1 · · · dq3N (4)
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Usually, a limitation is not considered for the speed of particles, but even if it
is considered, it can be predicted that, a particle’s momentum will not affect
another particle’s momentum. These predictions bring up noticable eases, other-
wise major problems can be faced with abovementioned integration evaluation.
Dealing with identical particles allows us to assume that the momentum of each
particle will take a value from a single value set. Thus, Vd will be used as the
volume parameter for each particle and the following domains will be used

(p3i−2, p3i−1, p3i) ∈ Vd, i = 1, . . . , N (5)

Furthermore, if it is considered that all the particles are in a finite, consequently
a closed volume, and this volume is symbolized with V , then the following
domains are used.

(q3i−2, q3i−1, q3i) ∈ V, i = 1, . . . , N (6)

Moreover, the matematical expression of Hamiltonian of the system used in this
work can be given as

H (p,q) ≡ 1

2µ

3N∑

j=1

p2j + U (q) (7)

where µ represents the mass of a particle which is same for all. However, the
potential function U is not given explicitly in the above equation. It is assumed
to be the sum of all possible pairwise interactions.

To this end, the partition function can be rewritten in terms of the relations
given up to here as follows

Z(β) ≡ 1

N !~3N




N∏

j=1

∫

Vd

dp3j−2dp3j−1dp3j e
−β
2µ (p

2
3j−2+p2

3j−1+p2
3j)




×
∫

V

· · ·
∫

V

dq3j−2dq3j−1dq3j e
−βU(q) (8)

Here, there are N number of 3-tuple integrals on the volume, V .
If the very specific nature of the Hamiltonian is used to separate the inte-

gration over momenta and positions, the following equation can be written

Z(β) ≡ 1

N !

(α1α2

~

)3N
Dmom(β)NZpos(β) (9)

where

Zpos(β) ≡
1

α3N
2

∫

V

· · ·
∫

V

dq1 · · · dq3N e−βU(q) (10)

and

Dmom(β) ≡ 1

α3N
1

∫

Vd

dp3j−2dp3j−1dp3j e
−β
2µ (p

2
3j−2+p2

3j−1+p2
3j) (11)

Here, α1 and α2 parameters are used as scalars to make it dimensionless. It is
assumed that the scaling is independent of the direction. The equations given
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in (10) and (11) are called as “Position Interacted Partition Function” and
“Momentum Distribution Function” respectively.

Momentum Distribution Function is determined through the idea of that the
volume is completely overlapped with the whole 3-dimensional space. That is,

Dmom(β) =
1

α3
1

∫ ∞

−∞

dp1

∫ ∞

−∞

dp2

∫ ∞

−∞

dp2e
−β
2µ (p

2
1+p2

2+p2
3)

=

(
1

α1

∫ ∞

−∞

dpe
−β
2µ p2

)3

=

(
2

α1

∫ ∞

0

dp√
p
e

−β
2µ p

)3

=

(
2µ

βα2
1

) 3
2
(∫ ∞

0

dpe−pp
−1
2

)3

=

(
2πµkB
α2
1

) 3
2

T
3
2 (12)

To this end, the Momentum Distribution Function is evaluated without depen-
ding on the interaction appeared between particles. If we use the result given
in relation (12) and rewrite the equation (9) then we can reach the following
equation

Z(β) ≡ 1

N !

(
2πµα2

2

~2β

) 3N
2

Zpos(β) (13)

In contrast to Momentum Distribution Function, the Position Interacted Partiti-
on Function cannot be evaluated so easily. This time to evaluate that expression
we can use an assumption. This assumption says that the interactions between
the particles are assumed as the summation of only the binary interaction bet-
ween particles.

U (q) ≡
N−1∑

j=1

N∑

i=j+1

Ui,j (ri,j) (14)

Here, ri,j represents the distance between ith and jth particles and it is given
as follows.

ri,j ≡
[
(q3i−2 − q3j−2)

2
+ (q3i−1 − q3j−1)

2
+ (q3i − q3j)

2
] 1

2

,

i, j = 1, . . . , N (15)

We consider that the binary interaction potential should have the same unique
structure for all pairs because of the identicality of the particles in the system.
Hence, we use the following relation

e−βU(q) =

N−1∏

i=1

N∏

j=i+1

e−βUi,j(ri,j) (16)

and the following Mayer Function

Mi,j ≡ e−βUi,j(ri,j) − 1, i, j = 1, . . . , N (17)

which is symbolyzed by Mi,j [6, 7] to determine the canonical partition function,
Z(β), given in (13). Mayer Function urges us to write following relation.

e−βUi,j(ri,j) ≡ Mi,j + 1, i, j = 1, . . . , N (18)
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If we substitute this relation into the equation given in (16) the equation beco-
mes a power series of the partition functions and it is called as Mayer Cluster
Expansion[3].

e−βU(q) =
N−1∏

i=1

N∏

j=i+1

(1 +Mi,j) = 1 +
N∑

i=1,i<j

Mi,j

+
N∑

i=1,i<j,k=1,k<l

Mi,jMk,l + · · · (19)

The first term of this expansion is for the single particle term which means that
there are no any interaction between the particles, the second term corresponds
to the two particle interactions, the third one is for the three particle interac-
tions, and so on. That is, the interactions within clusters of a certain number
of particles are expressed by each term. Thus, this expansion is called the clu-
ster expansion. If this series replaced into the equation (10), the following series
expansion is obtained as a result.

Zpos(β) = Ṽ N +
N(N − 1)

2
Ṽ N−2S2(β) + · · · (20)

Here, the first term is the most dominant term because dominancy is coming
from the particles which have no relations with the others like in the case of
ideal gases. The second term is less dominant term and it is related to pairwisely
interacting two particle cases which are somehow related to Van der Waals
gases. As the clustering level increases then the dominancy decreases for this
expansion.

The first term of the right hand side of the expansion given in (20) is sym-

bolized by Z
(0)
pos (non-existence of particle interactions):

Z(0)
pos ≡ Ṽ N =

(
V

α3
2

)N

=
1

α3N
2

∫

V

· · ·
∫

V

dq1 · · · dq3N (21)

This term does not contain any Mayer function and its integrand is just the
unit constant function. For this reason, the multivariate integral given in (21)

can be easily evaluated analytically and the result is obtained as Ṽ . Actually,
Ṽ expresses as the macroscopic dimensionless volume in microparticular units.

The second term is denoted by Z
(1)
pos and it is considered as the binary inter-

action integral between any two particles

Z(1)
pos(β) ≡ N(N − 1)

2
Ṽ N−2S2(β)

=
1

α3N
2

∫

V

· · ·
∫

V

dq1 · · · dq3N





N−1∑

i=1

N∑

j=i+1

(
e−βUi,j(ri,j) − 1

)


(22)

Here, S2 depends only on the potential between an isolated pair of molecules.
If you know the type of potential and the temperature S2 can be calculated by
using the following formula.

S2(β) =
1

α6
2

∫

V

∫

V

dq3i−2dq3i−1dq3idq3j−2dq3j−1dq3j

(
e−βUi,j(ri,j) − 1

)
(23)
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The integrand of this term depends on six integration variables, q3i−2, q3i−1, q3i
and q3j−2, q3j−1, q3j , only. The remaining integration variables are independent
of the integrand hence the result is obtained as a constant that is, this integration
process produce Ṽ N−2 with respect to remaining integration variables. So any
particle pair independent of the other particles behaviour is characterized by
the sixfold volume integral.

The higher terms can be obtained by using the same philosophy. So the
third term, which includes the multiplication of two different kinds of Mayer
functions, is concerned to depend on triple interaction. But this time there are
ninefold integrals to be evaluated to get the third term, that is, the number of
integrations is related with the clustering level. As clustering level increases the
number of integrals to be evaluated increases. In order to determine the number
of integrals, which belong to the clustering level, the number of interacting
particles within clusters is multiplied by 3.

Finally, when we take the relations (13) and (20) into consideration, the
canonical partition function given in (1) can be rewritten as follows

Z(β) ≡ 1

N !

(
2πµα2

2

~2β

) 3N
2
[
Ṽ N +

N(N − 1)

2
Ṽ N−2S2(β) + · · ·

]
(24)

The thermal de Broglie wavelength is defined in physics as

λth =
~√

2πµkBT
(25)

If we take α2 parameter equal to Broglie wavelength, that is, α2 = λth, then the
following final form is obtained as the partition function. This function is the
one that is used to evaluate the free energy.

Z(β) =
1

N !
Zpos(β) =

1

N !

[
Ṽ N +

N(N − 1)

2
Ṽ N−2S2(β) + · · ·

]
(26)

Now, we need to determine S2(β) and higher terms appearing in the above
relation to get the result. However, as stated before, S2(β) has six-tuple integrals
while S3(β) has nine-tuple integrals and so on. To cope with these multiple
integrals, we can use the Fluctuation Free Integration method[8, 9, 10, 11]. The
details of this method are given in the followings.

2.2 Fluctuation Free Integration Method

The Fluctuationlessness Approximation method is a recently developed algo-
rithm including the philosophy given by the Fluctuationlessness Theorem. The
method is used to obtain numerical solutions of algebric methods and to compo-
se very rapidly converging univariate numerical integral schemes. These schemes
can be used for both univariate and multivariate cases in various scientific and
engineering research areas[4, 5, 12].

The theorem considers two infinite dimensional matrice representations of
two different operators f̂ and x̂ in infinite dimensional Hilbert space H. If a
finite dimensional subspace Hn is used to construct a matrix representation of
the operators, then an approximation is obtained as follows

M(n)

f̂
≈ f

(
X(n)

)
(27)
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where n corresponds to the truncation level in the Hilbert space. Here, M(n)

f̂

is the n dimensional matrix representation of the operator f̂ and X(n) stands
for the n dimensional matrix representation of x̂. The explicit form of these
matrices are given by using the inner product relations defined in Hilbert space
as

X(n) ≡




(u1, x̂u1) · · · (u1, x̂un)
...

. . .
...

(un, x̂u1) · · · (un, x̂un)




M(n)

f̂
≡




(
u1, f̂u1

)
· · ·

(
u1, f̂un

)

...
. . .

...(
un, f̂u1

)
· · ·

(
un, f̂un

)


 (28)

where uj(x) (1 ≤ j ≤ n) form the orthonormal basis set which spans the n di-
mensional Hilbert subspace Hn. The Fluctuationlessness Theorem says that for
a proper choice of the basis functions and for n → ∞ the approximation in (27)
turns into an equality. Thus, the matrix representation of an algebraic operator
which multiplies its arguments by a scalar univariate function is identical to the
image of the independent variable’s matrix representation over the same space
through the same basis set under that univariate function[8, 9, 10, 11, 12].

The elements of the above matrices are evaluated by using the following
inner product of two functions from H under a given weight function

(g, h) =

∫ b

a

dxw(x) g(x)h(x), g(x), h(x) ∈ H (29)

The Fluctuationlessness Approximation method uses an arbitrary orthonormal
set in its algorithm. In constrast to some other methods which need a polynomial
basis set to do so. To construct an orthonormal basis set, we can use a method
such as the Gram-Schmidt orthonormalization method[13].

The dimension of the matrix X(n) is independent of the considered problem.
This dimension is directly related with the acceptable approximation quality
level of the integration result. Hence, the higher n value the better the appro-
ximation. In addition, the elements of this matrix depend on only the basis
set chosen. This means that the matrix structure is also independent of the
considered problem. Thus, this matrix is named as a “Universal Matrix”. If
we construct this matrix for a certain n value, we can use that matrix for all
problems we are dealing with.

Now, the question is how X(n) will be used in an algorithm to evaluate an
integral. This algorithm is called “Fluctuation Free Integration Method”[4, 5].
To explain the details of this algorithm, the following steps are listed for the
integral evaluation of a univariate function under unit interval and unit weight.

Step 1. Let f(x) be an analitic function and I denotes the integral of this func-
tion in the interval [0, 1].

I =

∫ 1

0

dx f(x) (30)
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Step 2. Specify the truncation level which is denoted by n > 0. In many cases
n = 3 is a typical choice and provides already very good results.

Step 3. Compose the orthonormal basis set including n number of elements.
Although the Fluctuationlessness Approximation Method has no limi-
tations on basis set selection process, there is an important exception on
this flexibility in the Fluctuation Free Integration Method, that is, the
first element of the selected basis set should be 1. In this work, ui basis
functions are constructed from the polynomial basis set 1, x, x2, . . . , xn

and we can make this set orthonormal by applying Gram-Schmidt or-
thonormalization procedure on the selected set.

Step 4. Calculate the matrixX(n), which is n dimensional matrix representation
of independent variable x, by using the relation given in (28).

Step 5. Determine eigenvalues, λi and corresponding eigenvectors, ξi (1 ≤ i ≤
n) of X(n). The spectrum of the matrix X(n) is on the real axis since it
is symmetric matrix. Furthermore, the spectrum must be confined into
the interval [0, 1] because the basis set which is used for constructing
the matrix representation of x is orthonormal over the interval [0, 1] and
all eigenvalues are discrete. So, we can write the following relations

X(n) =
n∑

i=1

λiξiξ
T
i , f

(
X(n)

)
=

n∑

i=1

f (λi) ξiξ
T
i (31)

Step 6. Since u1(x) = 1 as stated in Step 3, this helps us to use a tricky idea in
the evaluation process of the integral given in (30) as

I =

∫ 1

0

dx f(x) =

∫ 1

0

dxu1(x) f(x)u1(x) =
(
u1, f̂ u1

)

= eT1 M
(n)

f̂
e1 (32)

where e1 is an n dimensional unit Cartesian vector whose only nonzero
element its first element which is 1.

Step 7. Take the Fluctuationlessness Theorem into consideration to rewrite the
last expression of the relation given in (32) as

eT1 M
(n)

f̂
e1 ≈ eT1 f

(
X(n)

)
e1 (33)

Step 8. Use the spectral decomposition of X(n) given in (31) to rewrite the
above expression.

eT1 f
(
X(n)

)
e1 = eT1

n∑

i=1

f (λi) ξiξ
T
i e1 =

n∑

i=1

f(λi)
(
eT1 ξi

)2
(34)

Step 9. Obtain the approximate result of the integral I given in (30) by using
the relations (32) and (34).

I =

∫ 1

0

dx f(x) ≈
n∑

i=1

f(λi)
(
eT1 ξi

)2
(35)
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These steps are given for evaluation of the integral of a univariate functi-
on. This method can be extended to find the result of integral of multivariate
functions[4, 5].

The methods given in this section are used to develop a new algorithm for
free energy evaluation process of water molecules in gas form. In this work,
we are considering a closed system having water molecules in which we have
atom pairs interacting with each other through a given potential energy. The
definition of this mentioned potential energy is given in the next section.

3 Potential Energy Definition

The free energy of a molecular system including N particles, which is confined
into a physical volume V , is evaluated through the following Helmholtz Free
Energy relation

A = − 1

β
ln (Z(β)) (36)

where Z(β) is partition function whose relation is given in (1). When we take
the relation (26) into consideration, the above relation can be rewritten in terms
of position interacted partition function, Zpos(β), as

A = − 1

β
ln

(
1

N !
Zpos(β)

)
(37)

The explicit form of Zpos(β) is given in (20). We use the first two components of
the expansion of Zpos(β) in our free energy evaluations not to increase the com-
putational complexity since the other components have nine-tuple and higher
tuple integrals. If we take the relations given in (21) and (22) into consideration,
we obtain the following relation for free energy evaluation process

A = − 1

β
ln

(
1

N !

[(
V

α3
2

)N

+
N(N − 1)

2
Ṽ N−2S2(β)

])
(38)

where the structure of S2(β) is given in (23).
It is obvious that to evaluate the free energy through position interacted par-

tition function, we need to define a binary interaction potential. The potential
energy chosen in this work is as follows

Ui,j (ri,j) =
∑

bonds

Kr(ri,j − req)
2 +

∑

angles

Kθ(θi,j − θeq)
2

+
∑

i<j

[
ai,j

r12i,j
− bi,j

r6i,j
+

qiqj

ǫri,j

]
, i, j = 1, . . . , N (39)

where req and θeq are equilibration structural parameters while Kr and Kθ

are force constants. In addition, qi and qj are the electric charges in coulombs
carried by i-th and j-th charges respectively and ǫ is the electrical permittivity
of space. ri,js are the distances and their mathematical expressions are given in
(15).

As it is seen, the structure of the potential is composed of bond, angle,
Lennard-Jones and Coulomb potentials.
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4 A Novel Free Energy Evaluation Algorithm

This section covers the proposed algorithm to calculate the free energy of water
molecules in gas phase. We are dealing with pairwise interactions between the
identical particles in this work. This means that we can write the distance
between the first and the second particles as follows and assume that this will
be the same for the distances between other pairs

r1,2 =
[
(x4 − x1)

2
+ (x5 − x2)

2
+ (x6 − x3)

2
] 1

2

(40)

Moreover, the abovementioned assumption allows us to rewrite the relation given
in (23) as

S2(β) =
1

α6
2

∫

V

dx1dx2dx3

∫

V

dx4dx5dx6

(
e−βU1,2 − 1

)
(41)

where the dummy integration variables are changed to x1, x2, x3 for the first
particle and x4, x5, x6 for the second particle from qs not to cause any confusion
between the electric charges in coulombs.

As it is observed in (39) and (41), the potentials evaluated through bond
and non-bond interactions appear as one factor of the exponential function of
S2(β). Here, we have 6-tuple integrals and the structure inside this integral
coming from the potentials is too complicated to evaluate these integrals either
analytically or numerically. This urges us to bypass this complex structure of
the considered integral evaluations through a new algorithm.

When we have identical and distinguishable atoms in our problem, then the
total number of the atoms corresponds to N value appearing in the relation
of free energy evaluation given in (38). We may assume that the pairwise in-
teractions will occur through any potential for this case and this will result in
a more simple model for evaluating the free energy whenever we are able to
evaluate 6-tuple integrals appearing in (41). However, we are working on wa-
ter molecules which have 2 hydrogen and 1 oxygen atoms. So, this structure is
indistinguishable and includes different potentials that affects its free energy.

Here, we construct our algorithm first by looking at the total number of
the atoms of water molecules and the possible pairwise interactions that will
occur between their atoms. In this sense, to build the steps and the related
relations of our proposed algorithm, we will discuss a 4 water molecules system
and then extend the resulting relations to the general case. In this algorithm m

will represent the total number of water molecules appearing in the mentioned
general case. Our test system has 8 hydrogen and 4 oxygen atoms. There are O-H
bond, H-O-H angle, Lennard-Jones and Coulomb potentials to be evaluated to
get the final free energy value. For this purpose, we need to specify the pairwise
interactions appearing between the mentioned atoms. These interactions are
listed as follows:

1. The first pairwise interaction is between the oxygen atoms of distinguisha-
ble water molecules. There are 4 oxygen atoms. This means that we have
totally m number of oxygen atoms that have pairwise interactions in the
general case. This can be given as

N = m (42)
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where we have to evaluate the following Lennard-Jones and Coulomb po-
tentials

U1,2 =
a1,2

r121,2
− b1,2

r61,2
+

q1q2

ǫr1,2
(43)

2. The second pairwise interaction is between any hydrogen atom and the
other hydrogen atoms of the molecules that do not include that hydrogen
atom. There are 7 atoms satisfying this case. Hence, in general, we can
write the following relation

N = 2m− 1 (44)

Similar with the previous case given in (43), Lennard-Jones and Coulomb
potentials should be evaluated for this case.

3. The third pairwise interaction is between the hydrogen and oxygen atoms
that have no bond with each other. That is, these atoms interacts through
Lennard-Jones and Coulomb potentials and the potential for this case
can be evaluated by using (43). There are 7 atoms like that. So, we can
formulize this case as

N = 2m− 1 (45)

4. There is also a bond potential between the hydrogen and oxygen atoms.
Each water molecule includes two hydrogen and one oxygen atoms inter-
acting through bond potential

U1,2 = Kr(r1,2 − req)
2 (46)

and this results in 3 atoms in interaction for all cases, that is,

N = 3 (47)

5. The H-O-H angle potential is the next step in evaluating the freen energy
value. However, instead of taking this angle potential into consideration,
we evaluate the bond energy between the hydrogen atoms of the same
water molecule. Because, the total number of variables representing the
H-O-H angle do not match the total number of integrands needed to be
evaluated appearing in S2(β) as it is seen in (41). Since there are 2 hydro-
gen atoms for all cases, we can write the following

N = 2 (48)

To this end, the relation given in (46) is used for the potential evaluation
process in this case.

The philosophy given up to here allows us to write the following relation for
free energy evaluation of water molecule in gas phase.

A = A1 +A2 +A3 +A4 +A5 (49)
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Here, to evaluate the A1, A2, A3, A4 and A5, we use the steps 1,2,3,4 and 5
respectively. In this sense A1 can be written as

A1 = − 1

β
ln

(
1

m!

[(
V

α3
2

)m

+
m(m− 1)

2
Ṽ m−2 1

α6
2

K1

])
(50)

where

K1 =

∫

V

dx1dx2dx3

∫

V

dx4dx5dx6

(
e
−β

[
a1,2

r121,2
−

b1,2

r61,2
+

q1q2
ǫr1,2

]

− 1

)
(51)

Since the second and the third steps include the same potentials with the first
step, A2 and A3 can be written as follows in terms of K1

A2 = − 1
β
ln

(
1

(2m−1)!

[(
V
α3

2

)2m−1

+ (2m−1)(2m−2)
2 Ṽ 2m−3 1

α6
2
K1

])

A3 = − 1
β
ln

(
1

(2m−1)!

[(
V
α3

2

)2m−1

+ (2m−1)(2m−2)
2 Ṽ 2m−3 1

α6
2
K1

])
(52)

The fourth and the fifth steps urge us to write the following relations for A4

and A5

A4 = − 1

β
ln

(
1

3!

[(
V

α3
2

)3

+ 3Ṽ
1

α6
2

K2

])

A5 = − 1

β
ln

(
1

2!

[(
V

α3
2

)2

+
1

α6
2

K2

])
(53)

where

K2 =

∫

V

dx1dx2dx3

∫

V

dx4dx5dx6

(
e−βKr(r1,2−req)

2 − 1
)

(54)

It is clear that our new structure for evaluating the free energy is now more sim-
ple than the structure obtained in (36) since we have discrete integral structures
to evaluate instead of a single one with a complicated integrand. However, we
have still 6-tuple integrals in K1 and K2 to be evaluated for getting the resulting
free energy value. At this point, it is time to apply the steps of the Fluctuation
Free Integration method to overcome our multiple integral evaluation problem.
For this purpose, the first step is to apply this method to K1. So we can start
to calculate these integrals beginning from the last one. In this sense, we should
take (35) into consideration. This results in the following relation

K1 ≈
∫

V

dx1dx2dx3

∫
dx4

∫
dx5

n∑

i6=1

(
eT1 ξi6

)2 (
e−βγ1(x1,...,x5,λ

(i6)
6 ) − 1

)
(55)

where

γ1(x1, . . . , x5, λ
(i6)
6 ) ≡ a1,2[

(x4−x1)
2+(x5−x2)

2+
(
λ
(i6)
6 −x3

)2
]6

− b1,2[
(x4−x1)

2+(x5−x2)
2+

(
λ
(i6)
6 −x3

)2
]3 + q1q2

ǫ

[
(x4−x1)

2+(x5−x2)
2+

(
λ
(i6)
6 −x3

)2
] 1

2
(56)
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Tabelle 1: Free energy values for different numbers of water molecules.

# of Water Molecules Free Energy Value (joule)

100 -394051.3185
500 -1947505.398
1000 -3881239.13
5000 -19264455.07
7000 -26930590.33
10000 -38412655.87

and λ
(i6)
6 and ξi6 stand for the i6-th eigenvalue and the corresponding eigen-

vector of the n × n dimensional matrix representation of the 6-th independent
variable respectively. The remaining integrals can also be calculated in the simi-
lar way depending on the relation given in (35) and the following final structure
is obtained for K1

K1 ≈
n∑

i1=1

· · ·
n∑

i6=1




6∏

j=1

(
eT1 ξij

)2


(
e−βγ1(λ

(i1)
1 ,...,λ

(i6)
6 ) − 1

)
(57)

The next step is to determine K2 appearing in A4 and A5. If we use the relations
given in (35) and (54), then we obtain the following relation in K2 determination
process

K2 ≈
∫

V

dx1dx2dx3

∫
dx4

∫
dx5

n∑

i6=1

(
eT1 ξi6

)2 (
e−βKrγ2(x1,...,x5,λ

(i6)
6 ) − 1

)
(58)

where

γ2(x1, . . . , x5, λ
(i6)
6 ) ≡

[[
(x4 − x1)

2
+ (x5 − x2)

2
+
(
λ
(i6)
6 − x3

)2 ] 1
2

− req

]2
(59)

The remaining integrals of K2 can be evaluated as follows when we apply the
Fluctuation Free Integration method

K2 ≈
n∑

i1=1

· · ·
n∑

i6=1




6∏

j=1

(
eT1 ξij

)2


(
e−βKrγ2(λ

(i1)
1 ,...,λ

(i6)
6 ) − 1

)
(60)

Finally, when we insert the result of (57) into (50) and (52) we obtain A1, A2

and A3. To get A4 and A5, we use (60) inside the relations given in (53). At the
end, the results obtained for As are inserted into the relation (49) to determine
the free energy value of the water molecule in gas phase.

5 Results and Discussion

We proposed a method to calculate the free energy of water molecules in gas
phase by using a deterministic way. To achieve this, we developed a new algo-
rithm by using two different methods from the literature. One of them is Mayer
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Abbildung 1: Free energy values for different numbers of water molecules.
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Cluster Expansion method. To benefit from this method, at first, we have re-
written the Helmholtz Free Energy relation in terms of the partition function.
After that, we used the Mayer Cluster Expansion method to construct the power
series expansion of the partition function. Under the binary interaction assump-
tion, we composed an algorithm by clustering the water molecules. To this end,
some equations were obtained which have six tuple integrals and we solved these
equations by using the Fluctuation Free Integration method which is the second
method coming from the literature.

The Free energy results obtained for different numbers of water molecules
are given in Table1. The evaluations were done under the following values T =
395.15 and ~ = 1.054571726 ∗ 10−34j.s where T and ~ stands for temparature
and reduced Planck constant respectively. Figure 1 shows the characteristic of
the results given in Table 1 with respect to the diffrerent numbers of water
molecules
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