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Abstract 

Induction heating of large steel slabs can be described by a coupled system of 
nonlinear evolution equations of Stefan type representing the temporal and 
spatial distribution of the induced magnetic field and the generated temper
ature within the slab. Discretizing these equations implicitly in time and by 
finite differences in space, at each time step the solution of a system of dif
ference inclusions is required. For the solution of that system two multi-grid 
algorithms are given which combined with a nested iteration type continu
ation strategy to proceed in time result in computationally highly efficient 
schemes for the numerical simulation of the induction heating process. 
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1. Introduction 
In steel industry, for reasons of energy savings, induction heating of steel 
slabs is preferred to heating with fuel-fired furnaces, because approximately 
87 percent of the thermal energy is generated within the slab. The principle 
of induction heating is as follows: an aluminum or copper conductor, being 
wrapped around the steel slab along its longer side, generates an alternating 
magnetic field thus causing eddy currents in the slab which in turn heat 
the slab by Joule dissipation. Due to the skin-effect the eddy currents are 
concentrated below the surface which results in a non-uniform distribution 
of the temperature. Mathematically the temporal and spatial distribution 
both of the induced magnetic field and of the generated temperature within 
the slab can be described by a coupled system of two nonlinear evolution 
equations, an electromagnetic equation and a heat equation. Since carbon 
steel undergoes a phase transition at the Curie temperature of 760° C with 
a jump-like behavior of the enthalpy (Figure 1), the heat equation is of 
Stefan type. Likewise, the magnetization characteristics can be modelled 
as a discontinuous curve with a jump discontinuity at zero as long as the 
saturation flux density is positive which happens to be the case below the 
Curie temperature (Figure 4). Hence, also the electromagnetic equation is 
of Stefan type in regions where the temperature is below the Curie point. 
Altogether, we thus are faced with a coupled system of two Stefan type 
equations. 

As far as the analysis and numerical solution of the coupled system is con
cerned, the most advanced work so far has been done by Bossavit [2], [3]. 
Note, however, that for the solution of the nonlinear electromagnetic equa
tion in one space dimension, assuming a known temperature distribution, 
there are earlier approaches by Gillott and Calvert [8], who use an explicit 
finite difference discretization (with severe stability restrictions), by Lim and 
Hammond [14] whose scheme is based on a modified DuFort-Frankel finite 
difference method and by Schulze and Andree[16] using integral equation 
techniques. Since the right-hand side of the heat equation, where essentially 
the gradient of the magnetic field enters, is rapidly oscillating, in the approach 
taken by Bossavit [2], [3] different time-scales for the two equations are intro
duced. Then, a limit analysis yields a model system with an averaged heat 
equation and a time-periodic electromagnetic equation the coupling being 
unilateral in the sense that the heat equation has the lead, and the elec
tromagnetic equation is subordinated to it. Numerically the leading heat 
equation can be solved by a nonlinear Crank-Nicolsen type scheme requiring 
at each time step the evaluation of the averaged right-hand side. This can be 
done by performing a corresponding nonlinear Crank-Nicolsen scheme for the 
electromagnetic equation over a sufficient number of half-periods in order to 
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get a suitable approximation to the periodic solution of that equation. The 
resulting systems of nonlinear difference equations are solved by a nonlinear 
SOR technique with a local choice of the relaxation parameter u. In partic
ular, u = 1 is chosen for grid points where a change of phase occours while 
overrelaxation is performed elsewhere. Note that a corresponding SOR tech
nique has been proposed by Elliott [7] for the numerical solution of two-phase 
Stefan problems. It is well known that the convergence rate of such iteration 
schemes deteriorates considerably with decreasing step sizes. Hence, it would 
be preferable to use iterative methods with a reasonable convergence rate be
ing independent of the chosen step sizes. Such methods can be provided by 
the application of multi-grid techniques. Multi-grid algorithms have been 
originally designed for the efficient solution of elliptic boundary value prob
lems but have also proven their usefulness in a wide variety of other type of 
problems [10]. Concerning two-phase Stefan problems, the authors [12] have 
developed two multi-grid algorithms and have shown their superiority com
pared to Elliott's single grid SOR technique by application to a model Stefan 
type equation. Actually, both algorithms solve a difference equation resulting 
from a discretization of the Stefan problem implicit in time and by standard 
finite differences in space. The first of the algorithms is based on an inter
polation of the enthalpy function between its two phases in regions where a 
change of phase occurs and uses bilinear interpolation as prolongations and 
full weighted restrictions while the coarse grid correction is damped by a 
strictly chosen damping factor. The main features of the second multi-grid 
algorithm which can be derived by a duality argument from convex analysis 
are the use of nonlinear Gauss-Seidel iteration as a smoother and a different 
choice of prolongations and restrictions in regions close to the free boundary 
and off the free boundary. Finally, in both algorithms at each time step an 
approximation on the finest grid is obtained by a suitable nested iteration 
type continuation strategy. 

In this paper, we will show how these multi-grid schemes can be effectively 
applied to the coupled systems of Stefan type equations describing induction 
heating of large steel slabs. The paper is organized as follows: in chapter 2, 
following Bossavit's approach, we will introduce and discuss the averaging 
based model system. Then, in chapter 3 the multi-grid algorithms will be 
presented in detail and finally, in chapter 4 numerical results will be given 
documenting the whole spectrum of physical phenomena arising during the 
induction heating process. 
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2. The Coupled Stefan Equations 
We consider a steel slab of width 2a, length 26 and height c (26 > c^> 2a) oc
cupying the domain [0,2a] x [0,26] x [0, c] in Euclidian 3-space (typical dimen
sions are a = 0.05m, 6 = 2.5m, c = lm). Denoting by B = (Bi,B2, B3), E = 
(Ei,E2,E3),H = (H\,H2,Hz) and J = {J\,J2,Jz) the vector fields repre
senting the magnetic induction, the electric field, the magnetic field and the 
eddy currents density, respectively, by Faraday's law we have 

dB 
— + rot£ = 0 . (2.1) 
at 

According to Ohm's law, the electric field E is related to the eddy currents 
density J by 

E = QQJ (2.2) 

while by Ampere's theorem we have 

J = rotH (2.3) 

where in (2.2) the scalar function g& stands for the electric resistivity de
pending on the temperature distribution 0 = Q(x,y, z,t) within the slab 
(Figure 2). Finally, the magnetic field H is related to the induction B by 

^ = J7e(|B|)sgn(5) (2.4) 

with a temperature dependent monotone function TJQ satisfying TJQ{0) = 0 . 
In the subsequent analysis, for the inverse ß% — r/©1 , called the magnetiza
tion characteristics, we will assume the simplified Fröhlich's model 

ße{s) = p0s + 6esgn(s), s € IR (2.5) 

with fi0 denoting the magnetic permeability in vacuum and 6e the tempera
ture dependent saturation flux density. In view of the geometric configuration 
of the problem - the conductor is wrapped around the longitudinal axis of 
the slab - the induced magnetic field H is parallel to the z-axis, i.e., 

H3 = h(x,y,t)t 0<x<2a, 0 = < y < 26 . 

Moreover, due to symmetry reasons we may assume 

h(x,y,t) = h(2a-x,y,t),0<x<a 

h{x,y,t) = h(x,2b-y,t), 0<y<b. 
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Consequently, the problem is basically a two-dimensional one in the domain 
R = (0, a) x (0,6), where in view of (2.2, 2.3, 2.4, 2.5) and (2.6) the governing 
electromagnetic equation (2.1) reduces to 

p\ 
TT-/MM*, y> *)) - V • (g& VÄ(X, y, i)) = 0 , <> 0 . (2.8a) 

Taking (2.7) into account, the boundary conditions are given by 

h(x,y,t) = hsinut , (x,y)£d\R 
d (2.8b) 

—h(x,y,t) = 0, (x,y)ed2R 

where & # = {(x,0)|0 < x< a] Ö {(0,y)\0 <y <b},d2R= {(x,b)\0 <x< 
a) U {(a, y)|0 < ?/ < 6}, /i denoting the amplitude and tx> the frequency of 
the applied magnetic field. Since ße has a jump discontinuity at the origin 
as long as 69 > 0, the electromagnetic equation (2.8a) is of Stefan type and 
thus has to be interpreted in a suitable weak sense [13]. 
For the temperature distribution 0 within the slab we may also assume 
that it is constant in ^-direction satisfying the same symmetry (2.7) as h. 
Neglecting heat exchange by radiation or convection at the slab surface, the 
heat equation takes the form 

^q(e(x,y,t))-V-(KeVe(x,y,t)) = Qe\Vh(x,y,t)\2, (x,y) G R (2.9a) 

with zero Neumann boundary conditions 

« e ^ 0 ( x , y, t) = 0 , ( x , y ) e d R (2.9b) 

where q = q(Q) denotes the enthalpy and KQ the thermal conductivity (Fig
ures 1,3). Since the enthalpy q exhibits a jump discontinuity at the Curie 
temperature of 0C = 760°C, the heat equation (2.9a) is also of Stefan type. 

In order to clarify the coupling between the electromagnetic equation (2.8a) 
and the heat equation (2.9a) we introduce a new time scale according to 

r = ut (2.10) 

and we transform the domain R onto the unit square Q. = (0,1) x (0,1) by 

x = a£, y = btj. (2.11) 

Furthermore, normalizing the electric resistivity £e and the saturation flux 
density b@ by 

Qe = eor(e), be = bol(e) (2.12) 



and setting 
h(x,y,t) = hu{t,Ti,T) (2.13) 

the transformed boundary value problems (2.8, 2.9) are given by 

aö-(7(Ö)sgn(u) + C 1 " ) -

Ja . ,^dux 2 d, , ^ d u . n ,, , n (2-14a) 
- ^ ( r ( 0 ) ^ ) - « 2 ^ ( r ( 0 ) ^ ) = O, (e , . ) e f i 

«(£> *?>T) = sin r , (£, ?/) G djfi 
Ö (2.14b) 

where 
0 i« = {(€,0)|0 < e < 1} U {(0,r7)|0 < 77 < 1}, 

d2n = {(e,i)|o<f <i}u{(i , i7) |o<i7<i} 

2.2 # ,rx\ 12 d i ^0 2 9 / d® \ 

= ^2[62 | | |2 + a2|^|2], ( ( , ^ n 
(2.15a) 

« e ^ e U , r ? , r ) = 0 , (e,7?)GÖÜ. (2.15b) 

Note that in (2.14a) the constants a, C_1 are given by a = (ub0a
2b2)/(g0h) 

and £ - 1 = (poh)/b0. (£ is commonly referred to as the Stefan number of the 
problem). 

Since u> ^> 1 in (2.10) (a typical value is u = lOOx), we thus have a coupled 
system of two equations with significantly different time scales. In particular, 
the variation of the temperature 6 with time is slow as compared to the rate 
of time variation of u and the right-hand side of the heat equation (2.15a). 
Such systems can be conveniently handled by the method of avaraging. Fol
lowing Bossavit's approach [3], we consider the time-periodic electromagnetic 
equation 

a—( 7 (0)sgn(u) + C_1u) - Li(e){u) = 0, (£, r/) £ ft, 0 < r < 2TT (2.16a) 

U{£,T],T) = sinr , (£ , r?)edif t , 0 < T < 2TT 
d (2.16b) 

—u(Z,rj,T) = 0 , (£,*?) <Ed20, 0 < T < 2 T T 

"(£ ,*? ,T) = u(£,77,T- | -27r) 
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and the "averaged" heat equation 

a 2 & 2 J^(0) - Lj j e ) (e ) = / e , (€,17) € ft, * > 0 (2.17a) 

| - © ( 6 I M ) = 0 , (f, 1?) e a n , * > 0 (2.17b) 

where the differential operators L1, Ln and the source term f& in (2.17a) are 
given by 

Ll(e)(u) 

^(e)(e) 

/ e = 

fe -

fl -

9 

4(«°>£W£(Ke)£) ae ae> 
l 2 9 / , ^ d 0 \ , 3 / . . . Ö 0 \ 

Of 5e 

drj 

,d_ 

dr] 

dr\' 

de 

(2.18a) 

(2.18b) 

(2.19a) 

(2.19b) 



3. The Multi-Grid Algorithms 
In this section we will discuss the application of two multi-grid algorithms 
in the numerical solution of the coupled system (2.16), (2.17) which have 
recently been developed by the authors for the solution of the classical two-
phase Stefan problem [12]. Both algorithms are based on a discretization of 
(2.16), (2.17) implicit in time with step sizes Ar, At and by standard finite 
differences in space with respect to a hierarchy (SlkYk^o of equidistant grid 
point sets. As we shall see below, the discretized problems can be inter
preted as difference inclusions being equivalent to variational inequalities of 
the second kind and unconstrained minimization problems for convex subd-
ifferentiable functionals, respectively. 
We denote by GQ and Q the functions given by 

Ge{s) = a[7(e)sgn(5) + C1*] , s GIR (3.1a) 

Q(s) = a2b2q(s) , s 6 l R + (3.1b) 

where the graph of the enthalpy function q is shown in Figure 1. Due to 
the jump discontinuity of the enthalpy at the Curie temperature, Q must 
be interpreted as multivalued function. Moreover, in view of sgn(s) = 
[—1,+1] for s = 0 , the same applies to GQ for temperatures below the 
Curie point. 

Now, we choose step sizes A T = 2n/M , M (E IN, and At > 0 , and we 
denote by 0 n , un,m approximations to 0 , u at times tn — nAt , n € IN , 
and rTO = mAr , 0 < m < M, respectively. Since the variations of «(0) 
and r (0 ) are small during a full time period of the electromagnetic equation, 
we may choose K ( 0 ) = /c(0n) and r ( 0 ) = r ( 0 n ) in (2.17a). Moreover, 
we discretize fQn , /@„ by approximating the integrals in (2.19) by the 
summarized trapezoidial rule for periodic functions, i.e. 

A T 1 riii71'0 M~l riiin'm 1 f)un'M 

&=°M°")£(ii^ri'+£ i V 2 + s 1 V | 2 ) • (32b) 

Then, if we select some appropriate GQ„ € Ge°("n , m))0 < m < M — 1, 
where un'° = u n _ 1 ' M for n > 1, and Qn G Q ( 0 n ) , n > 0 , the implicit time 
discretization of (2.16a), (2.17a) results in the differential inclusions 

Gg„ + Ar# ( e n ) ( t i n ' m + 1 ) E Ge"(«n , m + 1) (3.3) 
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Qn + A*Z, ;^)(0 n + 1 ) + A t / g . e Q(0 n + 1 ) (3.4) 

where /g„ = p0h
2(f$ + /©J?) . 

R e m a r k . In view of the results by J. Jerome for the classical two-phase 
Stefan problem [13], for sufficiently small A T , At the differential inclusions 
(3.3), (3.4) with corresponding boundary conditions (2.16b), (2.17b) admit 
unique solutions. Moreover, for Ar —-> 0 and At —> 0 the piecewise linear 
prolongations in time of these solutions converge in the L2-sense to weak 
solutions of (2.16) (with 7 ( 0 ) = 7 ( 0 n ) , r ( 0 ) = r (0 n ) ) and (2.17) (with 
K (0) = /c(0n) , r(0) = r (0 n ) ) . 

We now consider finite difference discretizations of the differential inclusions 
(3.3),(3.4) with respect to a hierarchy (Qk)'k=0 of grid point sets Qk = üf\\R2

k 

where 

lR£ = {(&, r)Mi = ihk, Vj = Jhk, i,j G 2 } 
with step sizes hk+\ = /tjt/2, 0 < k < I — 1, given h0 — 1/2. For grid functions 
uk on Q,k = Ü D'Rfc w e denote by Df^ and Dkr) the standard forward and 
backward difference operators 

£&«*(£> V) = Kl [±uk{Z ± hk, r?) =F uk(£, i/)], ({, TJ) eük, 

Dfv defined similarly. The normal derivative du/dn on 0 0 is then approx

imated by Dkinuk on dCtk = d£lf)\Rl where DktUuk = D^^uk \Dktnuk — 
Dtr,uk] in (£,r?) - (0,7k) [(£,77) = (&,0)] and Dkynuk = -D^uk [Dk<nuk -

-Dlnuk\ in (t,V) = (l>>7i) [(£,77) = (6,1)] , 1 < i,j <Nk-l,Nk = l/hk 

while at the corners we use Dkynuk = (D^uk + D%vuk)/2 in (£,17) = (0,0) 

with similar definitions in (0,1), (1,0) and (1,1) . We approximate the ellip

tic differential operators LLe„x and L^Q^ by finite difference operators Lk 

and Ll
k
l where Lk is given by 

+ b'Dlv(r(eh-x/2)Dl,vuk) + b2Dktr)(r(QlJ+1/2)Dlvuk) 

with r (0» I ± 1 / 2 ) = [r(en
k(t ± A*,i?)) + r ( 0 ^ , 7 , ) ) ] / 2 and r ( 6 j J ± 1 / 2 ) = 

[r(e*(£>>7 ± Äfc)) + r(0J(^,i7))]/2 while L? is defined analogously with 
62 and r(-) replaced by a2 and «(•), respectively. Finally, we discretize 
\du/d(\\ \du/drj\2 in (3.2) by (\Dl(uk\

2 + |D^tz fc |2)/2, where 
(\D£vuk\

2 + \Dkr)uk\
2)/2 is denoting the resulting grid functions by /^©n, 1 < 

i < 2, and /£ e »- Then the fully discretized problems (2.16, 2.17) can be writ
ten as the following system of difference inclusions 

Ggn + ArL{(un
k'

m+1) e G&~(un
k'

m+1) (3.5a) 
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un
k'

m+1 = s inrm + 1 , U,V) € drük = d1Üf)\Rl 
(3.5b) 

Dktnun
k'

m+1 = o, ((,r1)ed2nk = d2ür]\Rl 

Qn + AtLl'iGf1) + A</£e„ € Q(0£+ 1) (3.6a) 

Dk,ne
n
k
+1=0, U,V)edÜk. (3.6b) 

Remark: If u£m(x) = 0 or 0£(x) = 0 c , x € 0fc, we choose Ggn(x),0 < 
m < M — 1, respectively Q n ( i ) by 

G%(x) = G%nl(x) + ATL[(unr)(z) 

Q»(x) = Q«-1(x) + A ^ ( 0 ] J ) ( x ) + Ai /^ 1
n _ 1 

where G£l = Ggt* . 

Identifying grid functions on Qk with vectors in 1R *, 
Nk — card ük, with respect to the lexicographic ordering of grid points 
and incorporating the boundary inclusions, the conditions (3.5), (3.6) can be 
algebraically written as 

6 i - 4 « r + 1 € G e 2 ( u r + 1 ) (3.7) 

hi1 - A»®?1 € W I T 1 ) (3.8) 

where the (Nk, iVfc)-matrices Ak, Aj? denote the matrix representations of the 
difference operators — ArLj[, — AtLj/ and b^bl1 are appropriately defined 
vectors in 

In the sequel we will present two multi-grid methods for the numerical solu
tion of (3.7) and (3.8). For simplification the schemes will only be described 
as applied to (3.7). Furthermore, for notational convenience the superscripts 
/ , n and m + 1 in (3.7) will be omitted. 

The first multi-grid algorithm is based on the idea to replace the inclusion 
(3.7) by an equivalent nonlinear algebraic systems which is then solved using 
Brandt's FAS algorithm [4] combined with damping of the interpolated coarse 
grid correction. Setting Ak = (afj),tj=i and 

AM(ufc) = (bk>i - £ aj.tifcj + a7(0 fc, t) ) /2a7(efcl,-) , 1 < i < Nk , 
\ ;=i iH l 

it is easily seen from (3.1a) and (3.7) that the two phases uk^ < 0 , u*,,- > 0 
and the change of phase ukti = 0 can be characterized by \kj(uk) according 
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to 
uk,i < 0 

uk,i = 0 

uk,i > 0 

A*,i(«fc) < 0 

Afc,,-(ufc)G[0,l] 

. Ajfef,-(ufc) > 1 . 

Now, if Ajt,,(«fc) € [0,1] we replace the i-th. component of (3.7) by 

bk,i - (Afcufc).- = G g ^ K O (3.9) 

where GQnv(uk,i) is the following convex combination 

O « ) = (X - A*.«-(u*)) K " 1 ^ . « ~ 07(öw)) ( 3 1 0 ) 

+Afc,i(ufc) (aC_1«fc,i - a7(0 f c ) t)) . 

Obviously, (3.9) imphes uki = 0 and hence, defining a vector Gk(uk) G IR * 
by 

Ö ^ « * ) - ! * 6 ^ ' i f ^ ^ (3.11) 
I G 5 W , if Afcli-(ufc)e[0,l] 

the algebraic inclusion (3.7) is equivalent to the nonlinear algebraic system 

Fk(uk) := 6* - Afctifc - Gk(uk) = 0 . (3.12) 

Starting from an iterate wj' , v > 0, on the highest level and choosing full 
weighted nine-point restrictions r£ - 1 , 1 < k < I , Brandt's FAS scheme [4] 
involves the nonlinear systems 

Fk{uk) = bk, 0<k<l (3.13) 

where 6/ = 0 and bk , 0 < A; < / — 1, is recursively defined by 

h := Ffc(r^+1ü^+1) - rk
k+l(Fk+1(ül+1) - 6*+1) , 

"fc+i denoting the result of the smoothing process on level k + 1. A conve
nient smoothing process is to perform Kk > 0 nonlinear Gauss-Seidel itera
tions applied to (3.13). Choosing u"'° = u" respectively u£'° = r£+1w£+1 , 
0 < k <l — 1 , as a startiterate, ü£ is computed by 

fi* = « * " ' , « ? ' = ^ ( u r _ 1 ; bk), 1 < i; < Kk 

where Sk(-;bk) denotes the execution of one nonhnear Gauss-Seidel iteration 
step. Taking (3.10) and (3.11) into account, the components of u^v can be 
easily computed by means of 

«M = 1 

(dk,i + a7(©*,,))/(«,C-1 + 4 ) , if dk,i < - a 7 (0* , , ) 

0 , if dk,i € [-a7(Ofc, t) , +a7(0 fc,,)] (3.14) 

{ ( ^ - a 7 ( e w ) ) / ( a C - 1 + 4-) i f 4 , , > + « 7 ( 0 f c , , ) 
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where 

j=i j=i+i 

Nonlinear Gauss-Seidel iteration will also be used as an iterative solver of the 
coarsest grid correction problem, performing at most K0 iterations. Finally, 
having computed an approximation t/jt_i to the coarse grid problem on level 
k — 1, a new iterate u£+1 on level k is determined by 

where pjt_x is the prolongation based on bilinear interpolation and u>k a suit
ably chosen damping parameter. Note that damped nonlinear multi-grid 
iterations have been recently proposed by Hackbusch and Reusken [11] for 
the solution of discretized nonlinear elliptic boundary value problems. Alto
gether, the complete multi-grid algorithm for the approximate solution of the 
fully discretized electromagnetic equation can be described by the following 
procedure MGELECl (/, u/, &/) with m = u\ as input and u\ = up1"1 as output: 

procedure MGELECl (/,u/,6j); 
integer i,l; array u/,fy; 
if / = 0 then 

for i := 1 step 1 un t i l no do UQ := 5o(uo; &o) 
else 

begin array u/_i,6/_i; 
for i := 1 step 1 un t i l K/_i do u/ := .?/(«/;&/); 
u;_! :=r{ - 1uj; 
6/_! := JF,_1(r/'-

1uO - rj-^fKu,) - 6 / ) ; 
for i := 1 step 1 until 7/_! do MGELECl (/ — l,«/_i,6/_i) ; 
ui := ui -uip\_x{r\~xui - u/_i); 
end 

end MGELECl. 

The choice 7* = 1 respectively 7^ = 2, 1 < A: < / — 1, corresponds to a 
V-cycle respectively W-cycle structure of the multi-grid iteration. 

A suitable startiterate on the highest level can be provided by nested iteration 
incorporating the previously computed values u™ at time t = tm [10]: 

procedure NIELEC1 (/,u/,u™,&;); 
integer /; array u\,u™,bi; 
begin integer i,k; 
for k := 0 step 1 u n t i l / — 1 do 

if k - 0 then Uk = «j? 
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else 
uk := v% + p£_x («fc_i - «J1.!); 
for i := 1 step 1 un t i l Tk do MGELEC1 (k,uk,bk); 

ui := ttf1 +pj_1(uj_i - u ^ i ) ; 
end NIELEC1. 

The second multi-grid algorithm can be derived by making use of some ele
mentary facts from convex analysis. In particular, the multivalued function 
GQ as given by (3.1a) appears to be the subgradient d $ e of the piecewise 
quadratic function 

*e{s) = ±aC1*' + <rr{&){*+-*-) 

where s+ = max(s,0) and s_ = min(s,0). Setting 

<Pek(uk) = Ü $©*,<("*,«) ' ak{uk,vk) = {Akuk,vk) 

where (•, •) denotes the Euclidean scalar product in IR *, the inclusion (3.7) 
is equivalent to the nonlinear variational inequality 

ak(uk,vk -uk) - {h,vk -uk) + <pQk(vk) -(p@k(uk) >Q,vk €\RNk . (3.15) 

Due to the appearance of the subdifferentiable functional </>©fc, such inequal
ities are commonly referred to as variational inequalities of the second kind 
[9]. Moreover, (3.15) is the necessary and sufficient optimality condition for 
the unconstrained minimization of the subdifferentiable convex functional 

•M«fc) = Öak(uk, «*) ~ (h, ujfe) + Ve*(«jfe) • (3.16) 

For variational inequalities of type (3.15) Elliott [7] has developed a nonlin
ear SOR technique with relaxation parameter u> = 1 when change of phase 
occurs and overrelaxation elsewhere which results in a globally convergent 
minimizing sequence for the functional Jk. Since nonlinear SOR iteration 
suffers from poor convergence rates for decreasing step sizes but is known 
to yield good smoothing rates within a multi-grid framework, we will use a 
multi-grid approach to the problem at hand. The difficulty to deal with inclu
sions can be circumvented by taking advantage of the well known equivalence 

[6] 
bk - Akuk € d$Qk{uk) &uke d$*Qk(bk - Akuk) (3.17) 

where $@fc stands for the Fenchel conjugate of $©fc. Here, $© can be easily 
computed giving 

*e(') = |«_1C(* - «7(6))2
+ + I*"1«* + «7(0))2_ 
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so that its subgradient d$Q turns out to be the piecewise Unear continuous 
function. 

a - 1C(s + «7(0)) , -s < -ctj(e) 

dVe(s) = l 0 , 3 G [ - a 7 ( 0 ) , + a 7 ( 0 ) ] (3.18) 

a - 1C(s - «7(6)) , s > + « 7 ( 0 ) . 

Consequently, the second inclusion in (3.17) reduces to the nonlinear alge
braic system 

uk = d$Qk(bk - Akuk) 

and it is that nonlinear system which will be solved by Brandt's FAS scheme 
using nonlinear Gauss-Seidel iteration a a smoother and an adaptive local 
choice of restrictions and prolongations in the fine-to-coarse and coarse-to-
fine transfers of the multi-grid cycles. The FAS scheme gives rise to the 
nonlinear systems 

Fk(uk) = uk- d$%k{lk - Akuk) = 0 , 0 < k < I, (3.19) 

where 6/ = b\ and 

h = A,tr£+1ü£+1 - r£+1(A*+iü£+1 - ftjt+i) , 0 < k < I - 1 , 

"fc+i again denoting the result of the smoothing process on level k + 1. Re
garding (3.18), the components of the Gauss-Seidel iterates can be computed 
in the same way as described by (3.14). 

As far as the restrictions rjjj-1 , 1 < k < /, are concerned we remark that 
full weighted nine-point restriction cannot be used globally, since otherwise 
it is not guaranteed that the solution u* to (3.19) on level / is a fixed point 
of the multi-grid iteration. The reason is that for coarse grid point with fine 
grid neighbours corresponding to different phases the full weighted restricted 
defect is not a reliable indicator of the accuracy of the approximation [12]. To 
remedy that inconvenience we decompose the grid point sets Qk , 0 < k < I, 
according to 

nk = n\((uk)[jül{uk)uEk(uk) 
where 

fti(tifc) = { i 6 f i t | ( - l ) , ' u J k ( i ) > 0 } ) t = l ,2 

Sfc(ujt) = {z GÜk\uk(x) = 0} 

and we define Nk(x),x £ Clk, as the set consisting of x G Clk and its eight 
neighbouring grid points in Qk, i.e. Nk(x) = {x,x ± hkek \ 1 < j < 4} fl 
fi,, where e£ = (1,0) , t\ = (0,1) , e£ = 4 + t\ , e\ = e\ - t\. 
Then a grid point x € ft* will be called regular, if Nk(x) C Clk(uk) , i € 
{1,2}, or Nk(x) C Ejt(ufc), and irregular otherwise. Denoting by r^ - 1 full 
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ofc-1 . . . 

weighted nine-point restriction and by rk pointwise restriction, we choose 

r £ - 1 according to 

, jt_i w v f ( ^ ~ V ) ( * ) » i f x i s regular 
(rk uk)(x) = I fc_x . 

I (rjt « W W 5 « x irregular. 

Moreover, a change of phase should not be caused by the coarse-to-fine trans
fer but only by the smoothing process, since otherwise an oscillatory be
haviour of the iterates will occur in a vicinity of the discrete free boundary. 
For tha t reason denoting by p'k_1 prolongation based on bilinear interpola
tion, a convenient choice of p^-i is 

. \ (pJLjUfc-iH*) , if x is regular 

1 0 , it x is irregular. 

The complete multi-grid algorithm can be described by the following proce

dure MGELEC2 (/,«/, 6/): 

procedure MGELEC2 (/,«/,&;); 
i n t ege r i,/; a r ray ui,bi; 
i f / = 0 then 

fo r i := 1 s t ep 1 u n t i l KO do UQ := 5o(«o;6o); 
e l s e 

begin array «/_!,&/_!; 
for i := 1 step 1 until K] do v.[ := 5/(w/;6j); 

6/_i := i4/_ir{ -1«/ - r{_1(A(u, - 6/); 
fo r i := 1 s t ep 1 u n t i l 7,_i do HGELEC2 (/ - 1, u;_i ,6;_i) ; 
«/ := «/ -p{_ i ( r | _ 1 u / - u / - i ) ; 
fo r i := 1 s t ep 1 u n t i l Kp do u/ := 5/(«/;6/); 
end 

end MGELEC2. 

Note tha t K\ and /c| , 1 < k < I, stand for the numbers of pre-and post-
smoothings while Ko is the maximal number of nonlinear Gauss-Seidel i t e r 
ations for solving the coarsest grid correction problem on level k = 0. The 
use of nonlinear Gauss-Seidel iteration as an iterative solver for the coarsest 
grid correction problem is justified by the fact t ha t the mappings Fk defined 
by means of (3.19) can be shown to be continuous surjective M-functions for 
which the iteration is known to be globally convergent [15]. Moreover, using 
elementary subdifferential calculus [5] and nonlinear multi-grid convergence 
theory in the spirit of Hackbusch [10], local convergence of the multi-grid 
algorithm MGELEC2 can be established [12]. 
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Finally, a startiterate on the highest level / can be obtained by the nested 
iteration algorithm NIELEC2 which is literally the same as NIELEC1 except 
that MGELECl has to be replaced by MGELEC2. The second algebraic 
inclusion (3.8), representing the fully discretized heat equation, can be solved 
numerically by the same multi-grid techniques as described above. Without 
giving details the corresponding multi-grid algorithms will be denoted by 
MGHEAT1, NIHEAT1, MGHEAT2 and NIHEAT2, respectively. 
The efficiency of the two multi-grid algorithms has been tested for a model 
two-phase Stefan problem exhibiting a step-size independent convergence 
rate compared to a deteriorating convergence rate with decreasing step-size 
for Elliott's single-grid SOR technique [12]. 
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4. Numerical Results 
The induction heating process has been numerically solved by the multi-grid 
algorithms MGELECl, MGHEATl respectively MGELEC2, MGHEAT2 de
scribed in the preceding section for slabs of different width 2a and length 2b 
and for various physical data H,u> and discretization parameters, i.e., hier
archies (fljfe)jt_0 and time steps A T , At. In accordance with the findings for 
a model two-phase Stefan problem [12], the asymptotic convergence rates of 
both algorithms turned out to be independent of the spatial step size com
pared to the typical 0(1 — hf) behaviour of the convergence rate of Elliott's 
single-grid nonlinear SOR method. Moreover, for a suitable choice of the 
damping parameter the solution based on MGELECl and MGHEATl was 
faster than using MGELEC2 and MGHEAT2 by an average factor of 1.5. 

In the sequel we want to document the numerical simulation of the phys
ical phenomena arising during the induction heating process by display
ing the induced magnetic field and the temperature distribution for a slab 
of width 0.1 m, length 2.0 m and physical data H = 1.4 • 106A/m and 
u> = 100ir(50Hz) using a hierarchy of grids with fio (^o = 1/2) as coarsest 
grid and fLj (/14 = 1/32) as finest grid as well as time step sizes A T = 27r/16 
and At — 0.02. Note that the amplitude H = 1.4 • 106v4/m is not physically 
realizable by the technical devices being available up to now, but has been 
chosen in the present example to speed up the induction heating process. 
As initial temperature we have chosen a uniform temperature distribution of 
6° = 20°C. Startiterates on the finest grid have been computed by nested 
iteration (NIELEC1, NIHEAT1 respectively NIELEC2, NIHEAT2) followed 
by the execution of multi-grid V-cycles (MGELECl, MGHEATl respectively 
MGELEC2, MGHEAT2) with one pre-smoothing and no post-smoothing un
til the relative error of two subsequent multi-grid iterates was less then 5-10-4. 
The damping parameter both in MGELECl and MGHEATl was chosen by 
0.5. 

Figures 5-8 represent the induced magnetic field over the half-section [0, a] x 
[0,26] of the slab at the beginning of the heating (t = 0.1), after some heating 
(t — 0.5), when the surface has crossed the Curie temperature 0C (t = 2.0) 
and when most part of the slab has crossed 0C (t = 3.0). The plots display 
the magnetic field over a full period of the electromagnetic equation from 
T\ = 27r/16 up to T16 = 27T and have to be regarded from left to right and from 
top to bottom. Note that the plots do not reflect the actual geometry of the 
slab. For the sake of better visibility of the physical effects, the slab appears 
to be stretched in the x-direction. In particular, the Stefan effect, i.e., the 
appearance of moving boundaries, is even better visible for one-dimensional 
plots. Figures 9-12 show the induced magnetic field for 0 < x < a and fixed 
y = b (half-length of the slab) at the same stages of the heating process as 
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in Figures 5-8. Finally, Figures 13-16 display the corresponding temperature 
distributions over the half-section [0, a] x [0,26]. 

At the beginning of the heating (Figures 5, 9), both the skin effect, i.e., the 
appearance of a dead zone which has not yet been penetrated by the electro
magnetic field, and the Stefan effect are clearly visible. In particular, at each 
half-period of the electromagnetic equation, a free boundary, corresponding 
to the change of phase of the induced magnetic field, is created at the sur
face of the slab and then wanders out to the right until it meets the dead 
core. Figure 13 represents the associated temperature distribution. Note 
that in the dead zone the temperature is only slightly above the initial room 
temperature. 

Figures 6, 10 and 14 show the corresponding results after some duration of the 
heating process, but still completely in the nonlinear regime, i.e., the surface 
temperature is still below the Curie point by a wide margin (Figure 14). 
Basically, one can observe the same phenomena as in the figures discussed 
before with the only difference that the penetration depth has increased, i.e., 
the dead core has become smaller (Figures 6, 10). 

A new phenomenon, namely the coexistence of a nonlinear regime below 
the Curie temperature 0C and a linear regime above 0C , arises when part 
of the slab close to the surface has crossed 0C (Figures 7, 11, 15). Now, 
the penetration depth is already larger than the half-width of the slab, i.e., 
the dead core effect has disappeared. The moving boundaries travel to the 
right up to the half-width of the slab where they meet their counterparts 
coming from the right-hand side of the slab and die out. Notice the almost 
uniform distribution of the induced magnetic field after that happens and 
the appearance of a certain oscillating behaviour within the boundary larger 
in y-direction (Plots 7, 15 in Figures 7, 11). The reason for these oscillations 
lies in the fact that the penetration depth is slightly larger than 0.05 m so 
that due to the geometry of the slab in ^-direction we have a superposition 
of the waves coming from the left and the right while in y-direction there 
is still a pronounced dead core effect. As far as the associated temperature 
distribution is concerned (Figure 15), besides the expected temperature peaks 
at the corner of the slab notice the appearance of a moving boundary with 
respect to the heat equation: the region which appears as a step in the 
temperature profile corresponds to the change of phase temperature 0C of 
the heat equation where the magnetic behaviour of the steel changes from 
ferromagnetic to paramagnetic. 
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Finally, Figures 8, 12 and 16 display the results in the case where most part 
of the slab has crossed the Curie temperature 0C. Note that the life span 
of the moving boundaries for the electromagnetic equations has decreased 
compared to the situation before (Figures 8, 12) and that, as expected, the 
moving boundary for the heat equation has travelled to the right (Figure 
16). All results reported in this section are based on computations which 
have been performed on the CRAY X-MP/24 at the Konrad-Zuse-Zentrum, 
Berlin. 
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MAGNETIC FIELD 
(ATTHE BEGINNING OF THE HEATING) 

FIGURE 5 
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MAGNETIC FIELD 
(AFTER SOME HEATING) 

FIGURE 6 
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MAGNETIC FIELD 
(SURFACE HAS CROSSED THE CURIE TEMPERATURE) 

FIGURE 7 
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MAGNETIC FIELD 
(MOST PART OF THE SLAB HAS CROSSED THE CURIE TEMPERATURE) 

FIGURE 8 
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MAGNETIC FIELD FOR FIXED Y = b 
(ATTHE BEGINNING OF THE HEATING) 

FIGURE 9 
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MAGNETIC FIELD FOR FIXED Y = b 
(AFTER SOME HEATING) 

FIGURE 10 
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MAGNETIC FIELD FOR FIXED Y = b 
(SURFACE HAS CROSSED THE CURIE TEMPERATURE) 

FIGURE 11 
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MAGNETIC FIELD FOR FIXED Y = b 
(MOST PART OF THE SLAB HAS CROSSED THE CURIE TEMPERATURE) 

FIGURE 12 
29 



o 
* 

(M 
cn-f 

>-cs; 

r-r- CO+ 

J— 

o 
en 
c\rf 

o 
o 

FIGURE 13: TEMPERATURE DISTRIBUTION 

(AT THE BEGINNING OF THE HEATING) 

O 

FIGURE 14: TEMPERATURE D 

(AFTER SOME HEATING) 



en H 

G 

w 5 
o 
w 

en 

n 
Jö o 
en 
en 
W 
O 

n3 a w 

ui 

i-3 
M 
S 
W 

C 

W 

O en 
C ^ 
JO 50 
H H 

w w 
i-3 
W 

w 

C! 

C 
t-3 
H 
O 
3 

THETfl (X.Y) 
230.94 461.88 692.82 23.76 1154.70 

THETA (X.Y) 

31 



5. Concluding Remarks 
We have developed multi-grid algorithms for the numerical solution of a cou
pled system of two Stefan type equations representing a two-dimensional 
model of induction heating of large steel slabs. These algorithms allow the 
efficient numerical simulation of the induction heating process in much more 
reasonable CPU-times than by conventional single-grid techniques. What we 
did not consider in this paper was the optimal control of the heating proce
dure using e.g. the physical data H and/or u as control parameters in order 
to achieve an almost uniform temperature distribution in minimal time which 
is much wanted in practice. The presented multi-grid algorithms may serve 
as an important tool in the numerical solution of such a constrained time-
optimal control problem, a subject which will be investigated in subsequent 
work. 
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