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Abstract

In this paper we describe the convex hull of all solutions of the integer bounded
knapsack problem in the special case when the weights of the items are divisible.
The corresponding inequalities are defined via an inductive scheme that can also
be used in a more general setting.
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1 Introduction

In this paper we deal with the integer bounded knapsack problem

max
n∑

i=1

γixi,

(SKP )
n∑

i=1

aixi ≤ a0,

xi ∈ {0, . . . , si} for i = 1, . . . , n,

where 0 < a1 ≤ a2 ≤ . . . ≤ an, a0, ai, si ∈ IN for i = 1, . . . , n and the numbers
ai are divisible, i.e., ai

ai−1
∈ IN for i = 2, . . . , n. In this case we say that the

knapsack problem has the divisibility property. It is also called the sequential
knapsack problem (see [1]). Whenever we are given a knapsack problem having
the divisibility property, we will assume without loss of generality that a1 = 1.
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Our main result is the construction of the system of inequalities that describes
the convex hull of all solutions in this special case.

Since 30 years the knapsack polytope is of particular interest for researchers in
polyhedral combinatorics. This is due to several reasons: one is the increasing
number of applications like in circuit design, telecommunication, vehicle routing
and scheduling that involve the knapsack problem as a subproblem. In order to
apply polyhedral methods to such complex problems, a good understanding of the
knapsack polytope is important. Secondly, the knapsack problem is the “easiest”
case of a number dependent problem. A slight change of the weights of the items
might change the inequalities that describe the polyhedron drastically. There-
fore, it is important to understand “general principles” according to which valid
inequalities are constructed. Examples in this direction are, for instance, Gomory
cutting planes [2], covers [12], (1, k)-configurations [8], the concept of lifting [7],
the weight reduction principle [10] or inequalities based on the Hilbert basis of
a cone of exchange vectors [11]. The knapsack polytope is one of the very in-
teresting and challenging polyhedra for which beautiful results can be discovered.

We present an inductive scheme to construct valid inequalities for the knapsack
polytope and show, in case that the weights of the items have the divisibility
property, that we obtain the complete description of the associated polyhedron.
The special case of the knapsack problem with the divisibility property has been
studied in the literature by several authors.

Hartmann and Olmstead [4] give an O(n log n) algorithm for optimizing a linear
objective function whose bottleneck operation is sorting the ratios γi

ai
, i ∈ N .

The case of the sequential knapsack problem when si = ∞ for all i ∈ N has been
considered by Marcotte [6]. He shows that an optimum solution can be found
in linear time and applies his algorithm to the cutting stock problem. Pochet
and Wolsey [9] give an explicit description of the knapsack polyhedron with the
divisibility property when there are no bounds on the variables. They also refer
to applications in local area networking.

In Section 2 we present a transformation of any given sequential knapsack problem
to a special one such that in terms of feasible solutions and optimization both
formulations are equivalent. In Section 3 we outline a decomposition result for
all the optimal solutions of such a transformed sequential knapsack problem.
Our main result is contained in Section 4. Here we present an inductive scheme
to generate valid inequalities for the sequential knapsack problem. Given an
objective function, we construct an inequality via this scheme whose induced
face contains the set of all optimal solutions. This sufficies to show that our
inductive class of inequalities describes the sequential knapsack polyhedron. How
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inequalities defined via our inductive scheme can be interpreted combinatorially
is the issue of Section 5. The discussions end in Section 6 with some extensions.

Throughout the paper we use the following notation.

For v ∈ IR, we set v+ := max{v, 0}, �v� := min{j ∈ IN : j ≥ v} and 	v
 :=
max{j ∈ IN : j ≤ v}.

The constraint
∑n

i=1 aixi ≤ a0 is called the knapsack inequality. The number
ai ∈ IN is termed the weight of item i and a0 ∈ IN is called the knapsack capacity.
We set N := {1, . . . , n} and we always assume that 0 < a1 ≤ . . . ≤ an ≤ a0.
An integer vector that satisfies the knapsack constraint and the lower and upper
bound constraints is called feasible.

We say, Fc is a face of some polytope P induced by the valid inequality cTx ≤ γ,
if Fc = {x ∈ P | cTx = γ}. Every x ∈ Fc is also called a root of cTx ≤ γ. The
inequalities xi ≤ si, i ∈ N and xi ≥ 0, i ∈ N are called trivial. For real numbers
τj, j = 1, . . . , n we define

∑w
j=v τj := 0 if v > w and, for I ⊆ {1, . . . , n} we use

the notation τ (I) :=
∑

i∈I τi with τ (∅) = 0.

2 A transformation

In this section we present a transformation of the given sequential knapsack pro-
blem to a special sequential knapsack problem that satisfies certain requirements.
We show that in terms of polyhedra and in terms of optimization both formula-
tions are equivalent. We start by introducing the notion of blocks.

Definition 2.1 Let B := {i1, . . . , il}, i1 < . . . < il be a subset of items. B is
called a block if, for every j ∈ {2, . . . , l}, aij ≤

∑j−1
v=1 sivaiv + ai1 holds.

Let B be a block. The above definition implies that for every number τ ∈
{ai1, 2ai1, . . . ,

∑l
v=1 sivaiv} there exists a subset W ⊆ B such that

∑
k∈W λkak = τ

where 0 < λk ≤ sk for all k ∈ W . The number uB :=
∑l

v=1
sivaiv

ai1
is called the

multiplicity of block B. We replace block B by a single itemB with weight ai1 and

multiplicity (upper bound) uB =
∑l

v=1
sivaiv

ai1
. The objective function coefficient

of B is the number γi1 .

Let B1, . . . , Bm be a partition of N into blocks and denote by fw, cw, uw the
weight, objective function coefficient, multiplicity of block Bw, respectively, w =
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1, . . . , m. Now consider the knapsack problem where every block is replaced by
a single item:

max
m∑

w=1

cwzw,

(MSKP )
m∑

w=1

fwzw ≤ a0,

zw ∈ {0, . . . , uw} for w = 1, . . . , m.

From the construction of the blocks it is clear that (MSKP) is a sequential knap-
sack problem (MSKP stands for modified sequential knapsack problem). We now
show that there is a many to one correspondence between the feasible solutions
of the original problem (SKP) and the feasible solutions of its modified version
(MSKP). For ease of notation we assume that f1 ≤ f2 ≤ . . . ≤ fm, and in case
fw = fw+1, then cw ≥ cw+1 holds. By PSKP and PMSKP we denote the convex
hull of all feasible vectors of the problem (SKP) and (MSKP), respectively.

Let z ∈ IRm be a feasible solution of (MSKP), i.e., 0 ≤ zw ≤ uw, zw integer for
all w = 1, . . . , m. By Definition 2.1, for every w ∈ {1, . . . , m} there exist integers
0 ≤ λj ≤ sj, j ∈ Bw such that

∑
j∈Bw

ajλj = fwzw. In fact, for all subsets Iw of
items in Bw with

∑
j∈Iw ajλj = fwzw, 0 ≤ λj ≤ sj, λj ∈ IN, the vector x ∈ IRn

defined via xj = λj if j ∈ Iw for some w = 1, . . . , m and xj = 0, otherwise, is
feasible for problem (SKP).
Conversely, with every vector x ∈ IRn that is feasible for problem (SKP) we

associate a vector z ∈ IRm by setting zw :=

∑
j∈Bw

ajxj

fw
, w = 1, . . . , m. Then,∑n

i=1 aixi =
∑m

w=1 fwzw.
It follows that an integer vector z with zw ∈ {0, . . . , uw} for w = 1, . . . , m is
feasible for (MSKP) if and only if there exist feasible vectors of (SKP) with the
same total weight as z.

Now suppose that
∑m

w=1 bwzw ≤ b0 is a valid inequality for the polytope PMSKP .
By setting βi := bw

ai
fw

if item i belongs to block Bw, the inequality
∑n

i=1 βixi ≤ b0
is valid for PSKP . This statement follows from the fact that if x is feasible

for (SKP) then z = (z1, . . . , zm)
T defined via zw =

∑
j∈Bw

ajxj

fw
, w = 1, . . . , m

is feasible for (MSKP) and satisfies
∑

i∈Bw
βixi = bwzw. This shows that valid

inequalities for PMSKP can be transformed into valid inequalities for PSKP .

In the following we focus on a special partition of the setN into blocksB1, . . . , Bm.
For an item i of (SKP), its gain per unit is defined as γi

ai
. Let g1, . . . , gv denote

the different values of gains per unit for all items of (SKP) (clearly, v ≤ n).
We partition each set Vg := {i ∈ N : γi

ai
= g}, g ∈ {g1, . . . , gv} into blocks

Bg
1 , . . . , B

g
ng

such that Bg
i ∪Bg

j is not a block anymore, for i, j ∈ {1, . . . , ng}, i �= j.
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Let B1, . . . , Bm denote the final blocks constructed this way. Each block Bi,
i = 1, . . . , m is called a maximal block and, by definition, all items belonging to
the block Bi have the same gain per unit.

Example 2.2. Consider the instance of the sequential knapsack problem

max x1 + 3x2 + 6x3 + 18x4 + 6x5 + 50x6 + 200x7,
x1 + 5x2 + 10x3 + 30x4 + 30x5 + 120x6 + 360x7 ≤ 396,

with upper bounds si on the variables xi as follows: s1 = 4, s2 = 4, s3 = 20,
s4 = 4, s5 = 2, s6 = 1 and s7 = 1. The set of items is partitioned into the
5 maximal blocks: V1 = B1 = {1}, V2 = B2 = {2, 3, 4}, V3 = B3 = {5},
V4 = B4 = {6} and V5 = B5 = {7}. After transformation we obtain the instance
of the sequential knapsack problem:

max z1 + 3z2 + 6z3 + 50z4 + 200z5,
z1 + 5z2 + 30z3 + 120z4 + 360z5 ≤ 396,

with upper bounds u1 = 4, u2 = 68, u3 = 2, u4 = 1 and u5 = 1 on the variables
zi, i = 1, . . . , 5.

For a given sequential knapsack problem, the aggregation of items into maximal
blocks is unique. If Vg = {i1, . . . , il} with i1 < i2 < . . . < il is the set of
all items in N with gain per unit equal to g, then the unique maximal block
containing i1 is Bg

1 = {i1, . . . , it} where t + 1 = min{j ∈ {2, . . . , l + 1} : aij >∑j−1
v=1(sivaiv) + ai1} and ail+1

is defined as
∑l

v=1(sivaiv) + ai1 + ε with ε > 0.
No item in this subset {i1, . . . , it} can belong to some maximal block containing
an item ij, l ≥ j > t, because aij ≥ ait+1 >

∑t
v=1(sivaiv) + ai1. By removing

Bg
1 from Vg and iteratively using the same argument, the unique partition of Vg

into maximal blocks Bg
1 , . . . , B

g
ng
, with Bg

j = {is(j), . . . , ie(j)} for j = 1, . . . , ng,
s(1) = 1, e(ng) = l, e(j − 1) + 1 = s(j) for j = 2, . . . , ng can be constructed
easily. This argument applies to all numbers g ∈ {g1, . . . , gv}.

From the above discussions follows that, if we define (MSKP) using the unique
partition into maximal blocks, a vector z is feasible for (MSKP) if and only if
the associated vectors x are feasible for (SKP). As each maximal block contains
items in N with the same gain per unit we obtain in addition: a vector x ∈ IRn

is optimal with respect to (SKP) if and only if the associated vector z ∈ IRm is
optimal with respect to (MSKP) and vice versa, a vector z ∈ IRm is optimal with
respect to (MSKP) if and only if all of its associated vectors x ∈ IRn are optimal
solutions to (SKP).

To simplify notation, we always assume, when transforming (SKP) to (MSKP)
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using maximal blocks, that f1 ≤ f2 ≤ . . . ≤ fm, and in case fw = fw+1, then
cw > cw+1. Moreover, the above arguments for the construction of the unique
partition into maximal blocks show that for the transformed problem (MSKP)
the following property always holds:

fw >
w−1∑

i=1,
ci
fi
= cw

fw

fiui for w = 2, . . . , m.

This property will be used in the next section to derive a decomposition scheme
of all optimal solutions of (MSKP).

3 Decomposition of optimum solutions

In this section, we characterize the optimal solutions of a problem (MSKP) obtai-
ned by the maximal block transformation of an initial (SKP) problem presented
in the previous section.

Let positive rational numbers c1, . . . , cm and positive integers u1, . . . , um, f1, . . . ,
fm be given such that

1 = f1 ≤ f2 ≤ . . . ≤ fm;

fj = fj+1 implies cj > cj+1;

fj+1

fj
∈ IN, for j = 1, . . . m− 1.

We also assume that for every j ∈ {2, . . . , m} , fj >
∑j−1

i=1,
ci
fi
=

cj
fj

fiui holds.

For every F ∈ IN and j ∈ M = {1, . . . , m}, we denote by PF (j) the convex hull
of all solutions of the following (MSKP) problem with knapsack capacity F and
restricted to the variables 1 to j.

PF (j) =
{
z ∈ IRj :

j∑
i=1

fizi ≤ F

0 ≤ zi ≤ ui and zi integer for i = 1, . . . , j
}
.
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The optimization problem OPF (j) is the program

(OPF (j)) max
j∑

i=1

cizi such that z ∈ PF (j).

Note that in this section we only consider optimization problems OPF (j) with
positive objective coefficients. Using this notation we have that PMSKP = Pa0(m)
and MSKP = OPa0(m). By OF (j) we denote the set of all optimal solutions to

OPF (j). Finally, for an item i ∈ M , we define Δi = {u ∈ {1, . . . , i−1} : cu
fu

> ci
fi

}
,

i.e., Δi is the set of all items before i whose gain per unit is strictly better than
the one of i. Let f(Δi) =

∑
j∈Δi

fjuj be the total weight of items in Δi.

For every F and j, we now construct a decomposition tree whose paths from the
root node to the leaves contain all the optimal solutions of OPF (j). The key for
this result is the next lemma showing that for every optimum solution z ∈ OF (j)
the component zj can attain at most two different values.

Lemma 3.1. For the optimization problem OPF (j) with positive cost coefficients
the following statement is true:

z ∈ OF (j) implies that zj ≥ min
{
uj ;

⌊(F − f(Δj))
+

fj

⌋}

and zj ≤ min
{
uj ;

⌈(F − f(Δj))
+

fj

⌉}
.

Proof.We prove this result by contradiction using standard exchange arguments.
Several cases are distinguished.

(i) When f(Δj) ≥ F , the lemma states that zj = 0 for all z ∈ OF (j). By contra-
diction, suppose that there exists z ∈ OF (j) with zj > 0. As

∑
l∈Δj

flzl +
fjzj ≤ F ≤ f(Δj) and zj > 0, we have

∑
l∈Δj

fl(ul − zl) ≥ fjzj > 0. By
the divisibility of the weights, there exist integers λl ∈ {0, . . . , ul − zl} for
all l ∈ Δj such that

∑
l∈Δj

flλl = fjzj. We now define a solution z′ with
z′l = zl for l ∈ {1, . . . , j − 1} \Δj, z

′
l = zl + λl ≤ ul for l ∈ Δj and z′j = 0.

Then, z′ ∈ PF (j) because
∑j

i=1 fizi =
∑j

i=1 fiz
′
i and the solution z′ has

strictly better objective value than z by definition of Δj. This contradicts
the optimality of z.

(ii) When f(Δj) + fjuj ≤ F , we obtain uj ≤
⌊
(F−f(Δj ))

+

fj

⌋
because uj is in-

tegral. In this case the lemma states that zj = uj for all z ∈ OF (j). By
contradiction, suppose that there exists z ∈ OF (j) with zj < uj and set
δ =

∑
i∈{1,...,j−1}\Δj

fizi.
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If δ < fj(uj− zj), the new solution z′ with z′i = 0 for i ∈ {1, . . . , j−1}\Δj,
z′i = zi for i ∈ Δj and z′j = uj belongs to PF (j) and has strictly better
objective value than z, because

cj
fj

≥ ci
fi

for all i ∈ {1, . . . , j − 1} \ Δj, a

contradiction.
Hence, we can assume that δ ≥ fj(uj − zj). By the divisibility of the
weights, there exist integers λl ∈ {0, . . . , zl} for all l ∈ {1, . . . , j − 1} \Δj

with
∑

l∈{1,...,j−1}\Δj
flλl = fj(uj−zj). The new solution z′ with z′l = zl−λl

for l ∈ {1, . . . , j − 1} \Δj, z
′
l = zl for l ∈ Δj and z′j = uj belongs to PF (j).

Let W = {i ∈ {1, . . . , j − 1} \Δj : λi > 0}. As
∑

i∈W fiui ≥ ∑
i∈W fiλi =

fj(uj − zj) ≥ fj >
∑j−1

i=1,
ci
fi
=

cj
fj

fiui (where the last inequality holds by as-

sumption), there exists i ∈ W with ci
fi

<
cj
fj
. Then the solution z′ has

strictly better objective value than z, again a contradiction.

In the remaining cases we have that F − fjuj < f(Δj) < F and the lemma states

zj ≥
⌊
F−f(Δj )

fj

⌋
and zj ≤

⌈
F−f(Δj )

fj

⌉
.

(iii) When F − fjuj < f(Δj) < F , suppose, by contradiction, that there exists

z ∈ OF (j) with zj =
⌊
F−f(Δj )

fj

⌋
− ε, ε ∈ IN and ε > 0. As f(Δj) +⌊

F−f(Δj)

fj

⌋
fj ≤ F , a similar argument as in case (ii) shows that there exists

a solution z′ ∈ PF (j) with z′i = zi for i ∈ Δj, z
′
j =

⌊
F−f(Δj )

fj

⌋
= zj + ε,

∑
i∈{1,...,j−1}\Δj

fiz
′
i =

[∑
i∈{1,...,j−1}\Δj

fizi −εfj
]+

and with a strictly better
objective value than z, a contradiction.

(iv) When F − fjuj < f(Δj) < F , suppose, by contradiction, that there exists

z ∈ OF (j) with zj =
⌈
F−f(Δj )

fj

⌉
+ε, ε ∈ IN and ε > 0. As

∑
l∈Δj

flzl +fjzj ≤
F ≤ f(Δj) +

⌈
F−f(Δj )

fj

⌉
fj , a similar argument as in case (i) shows that

there exists a solution z′ ∈ PF (j) with z′i = zi for i ∈ {1, . . . , j − 1} \ Δj,

z′j =
⌈
F−f(Δj )

fj

⌉
= zj − ε,

∑
i∈Δj

fiz
′
i =

[∑
i∈Δj

fizi + εfj
]
and with a strictly

better objective value than z, a contradiction.

Lemma 3.1 can be applied inductively to build a binary decomposition tree con-
taining all potential optimal solutions in OF (j). We illustrate this on an example.

Example 2.2 Continued. The modified sequential knapsack problem P396(5)
using the maximal block transformation was defined as

max z1 + 3z2 + 6z3 + 50z4 + 200z5,
z1 + 5z2 + 30z3 + 120z4 + 360z5 ≤ 396,
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with upper bounds u1 = 4, u2 = 68, u3 = 2, u4 = 1 and u5 = 1 on the variables
zi, i = 1, . . . , 5.

We have c1
f1

= 1, c2
f2

= 0.6, c3
f3

= 0.2, c4
f4

= 0.42, c5
f5

= 0.56, and hence Δ1 = ∅,
Δ2 = {1}, f(Δ2) = 4, Δ3 = Δ4 = Δ5 = {1, 2}, f(Δ3) = f(Δ4) = f(Δ5) = 344.

Z 2
= 68 Z 2

= 66
Z 2

= 54 Z 2
= 55

Z 2
= 6

P P P P

PPP396

P

P

P

PPPPPPP

(0)P(0)P (0)P (0)P (0)P (0)P (0)P

Z

Z

Z = 0

Z 5
= 0 Z 5

Z Z = 0

Z = 0Z = 0Z

Z

ZZZZZZ

= 1

396

396(5)

4 4
= 1

4

3333
= 1 = 2

22
= 67 = 7

1111111
= 4 = 4 = 1 = 4 = 1 = 4 = 1

(4) (4)

(3) (3) (3)

(2) (2) (2) (2)

(1) (1) (1) (1) (1) (1) (1)

22 2 0 2 0 2 0

16161626

366 336 276 36

276 36

36

Z

Figure 1: Decomposition of Optimal Solutions for Example 2.2

Figure 1 illustrates the decomposition tree that we obtain from applying Lemma
3.1 iteratively. The node labels identify the problems PF (j) to be solved and
the value of zj is fixed on the corresponding branches. For example, Lemma 3.1
applied to P396(5) yields z5 = 0 or z5 = 1. If z5 = 0 we are left with problem
P396(4), and if z5 = 1 we are left with problem P36(4). Potential optimal solutions
of problems P396(4) and P36(4) are further decomposed using Lemma 3.1.

The set S396(5) of potential optimal solutions to P396(5) is defined by all the paths
from the leaves to the root node in the decomposition tree, that is

S396(5) =
{

(4, 68, 1, 0, 0), (4, 66, 2, 0, 0), (1, 67, 2, 0, 0),

(4, 54, 0, 1, 0), (1, 55, 0, 1, 0), (4, 6, 0, 0, 1),

(1, 7, 0, 0, 1)
}

and, by Lemma 3.1, O396(5) ⊆ S396(5).
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For a given problem PF (j) and its associated decomposition tree, we define in
the next section valid inequalities that are satisfied at equality by all solutions in
this decomposition tree, and thus by all optimal solutions in OF (j).

4 The convex hull of all solutions to the sequen-

tial knapsack problem

Let (SKP) be a sequential knapsack problem and suppose that C is a class of valid
inequalities for PSKP . The technique that we use in order to show that C describes
PSKP is due to Lovasz [5]: for every objective function γ we prove that the set of
optimal solutions to (SKP) belongs to the face induced by some inequality in C.
This suffices to show that C describes PSKP , because when an objective function
γ is parallel to a facet defining inequality, then the only inequality satisfied at
equality by all optimal points in (SKP) is this facet defining inequality. Hence,
C contains all the facet defining inequalities.

We first consider the case that all objective function coefficients are positive.
As outlined in Section 2, we partition N into maximal blocks B1, . . . , Bm and
construct the modified sequential knapsack problem (MSKP). Associated with
the transformed problem (MSKP), we use the notations PF (j), OPF (j), OF (j),
Δi and f(Δi) introduced in Section 3.

For every knapsack capacity F ∈ IN and for every j ∈ M = {1, . . . , m}, we now
define an inequality IF (j) satisfying the conditions (i), (ii), (iii) listed below:

(i) The left hand sides of inequalities IF (j) and IF ′(j) are equal if F modulo fj
= F ′ modulo fj holds.

(ii) IF (j) is a valid inequality for PF (j).

(iii) The set of optimal solutions OF (j) is contained in the face induced by the
inequality IF (j).

The inequalities IF (j) are defined inductively on j.

j = 1. We define the inequality IF (1) as z1 ≤ min{F, u1}. This inequality clearly
satisfies all the properties (i) – (iii).
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j−1 → j. Let some number r between 0 and fj −1 be given and assume that for
every number F ∈ IN with F modulo fj = r there exists an inequality IF (j − 1)
that satisfies the properties (i) – (iii).

In particular, property (i) guarantees that this family of inequalities is of the
form

∑j−1
i=1 dizi ≤ gF,j−1, where di, i ∈ {1, . . . , j − 1}, are the coefficients of the

inequalities IF (j − 1) for all F with F modulo fj = r. With the parameter r we
associate a number Fr. We set Fr := r if f(Δj) < r. Otherwise,

Fr := max{F ∈ IN | F ≤ f(Δj) and F modulo fj = r},
i.e., if r ≤ f(Δj), then Fr is the largest number of residuum class r with respect
to fj not exceeding the sum of weights in {1, . . . , j − 1} that have a better gain
per unit than j.

For every F ∈ IN with F modulo fj = r the left hand side of the inequality IF (j)
is of the form

∑j
i=1 dizi with d1, . . . , dj−1 defined as in IF (j − 1) and dj defined

by
dj := gFr+fj ,j−1 − gFr ,j−1.

In order to define the corresponding right hand side – that we denote by gF,j –
we need to distinguish several cases.

First, write F ∈ IN via F = Fr + sfj where s := (F−Fr)
fj

is an integer.

We set

gF,j :=

⎧⎪⎨
⎪⎩

gFr ,j−1 + sdj , if 1 ≤ s ≤ uj ;
gF,j−1, if s ≤ 0;

gF−fjuj ,j−1 + ujdj , if s > uj.

Under these assumptions the inequality IF (j) defined via
∑j

i=1 dizi ≤ gF,j satisfies
the three properties (i), (ii) and (iii). These statements are shown below. We
first illustrate this (inductive) construction on the initial example. Then three
technical lemmas are proved and afterwards applied to show that IF (j) satisfies
(i)-(iii).

Example 2.2 continued.
max z1 + 3z2 + 6z3 + 50z4 + 200z5,

z1 + 5z2 + 30z3 + 120z4 + 360z5 ≤ 396,
with upper bounds u1 = 4, u2 = 68, u3 = 2, u4 = 1 and u5 = 1 on the variables
zi, i = 1, . . . , 5.

The construction of the inequalities is defined for any value of F . If we are only
interested in the inequality I396(5), then we need not find IF (j) for all values of
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F . The node labels in Figure 1 represent the subproblems we have to solve in
order to obtain an optimum solution for the original problem OP396(5). They
also give the F and r values we must consider in order to construct I396(5).

IF (1) : z1 ≤ gF,1 = min{F, 4}

IF (2) with r = F modulo f2 = 396 modulo 5 = 1,
Δ2 = {1}, f(Δ2) = 4, Fr = 1, Fr + fj = 6.

I1(2) : z1 + (g6,1 − g1,1)z2 ≤ g1,2 := g1,1 + 0(g6,1 − g1,1)
z1 + 3z2 ≤ 1

I6(2) : z1 + (g6,1 − g1,1)z2 ≤ g6,2 := g1,1 + 1(g6,1 − g1,1)
z1 + 3z2 ≤ 4

I1+5s(2) : z1 + 3z2 ≤ 1 + 3s for 1 ≤ s ≤ 68
I1+5s(2) : z1 + 3z2 ≤ g1+5(s−68),1 + 68 ∗ 3 = 208 for s > 68

IF (3) with r = F modulo f3 = 396 modulo 30 = 6,
Δ3 = {1, 2}, f(Δ3) = 344, Fr = 336, Fr + fj = 366.

I336(3) : z1 + 3z2 + (g366,2 − g336,2)z3 ≤ g336,3 := g336,2
z1 + 3z2 + 6z3 ≤ 202

I366(3) : z1 + 3z2 + 6z3 ≤ g366,3 := g336,2 + 1(g366,2 − g336,2)
z1 + 3z2 + 6z3 ≤ 208

I396(3) : z1 + 3z2 + 6z3 ≤ 214

IF (4) with r = F modulo f4 = 396 modulo 120 = 36,
Δ4 = {1, 2}, f(Δ4) = 344, Fr = 276, Fr + fj = 396.

I276(4) : z1 + 3z2 + 6z3 + (g396,3 − g276,3)z4 ≤ g276,4 := g276,3 = g276,2
z1 + 3z2 + 6z3 + 48z4 ≤ 166

I396(4) : z1 + 3z2 + 6z3 + 48z4 ≤ g396,4 := g276,3 + 1(g396,3 − g276,3)
z1 + 3z2 + 6z3 + 48z4 ≤ 214

IF (5) with r = F modulo f5 = 396 modulo 360 = 36,
Δ5 = {1, 2}, f(Δ5) = 344, Fr = 36, Fr + fj = 396.

I36(5) : z1 + 3z2 + 6z3 + 48z4 + (g396,4 − g36,4)z5 ≤ g36,5 := g36,4
z1 + 3z2 + 6z3 + 48z4 + 192z5 ≤ 22

I396(5) : z1 + 3z2 + 6z3 + 48z4 + 192z5 ≤ g396,4 := g36,3 + g396,4 − g36,4
z1 + 3z2 + 6z3 + 48z4 + 192z5 ≤ 214

The inequality I396(5) is satisfied at equality by all solutions in S396(5) containing
all optimal solutions in O396(5).

Lemma 4.1. Let F and G be natural numbers such that F ≤ G and F modulo
fj = r = G modulo fj. Then, gF+fj ,j − gF,j ≥ gG+fj ,j − gG,j holds.
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Proof. For j = 1 the statement is certainly true. So assume, it holds for all
numbers that are less or equal than j − 1. We show that it is true for j as well.

We write F = Fr + sfj and G = Fr + tfj. Since F ≤ G, we know that s ≤ t. We
define

F ′ :=

⎧⎪⎨
⎪⎩

Fr, if 0 ≤ s ≤ uj;
F, if s < 0;

F − fjuj, if s > uj.

G′ :=

⎧⎪⎨
⎪⎩

Fr, if 0 ≤ t ≤ uj;
G, if t < 0;

G− fjuj, if t > uj.

Checking all cases we notice that F ′ ≤ G′, F ′ modulo fj = r = G′ modulo fj,
gF+fj ,j − gF,j = gF ′+fj ,j−1 − gF ′,j−1 and gG+fj ,j − gG,j = gG′+fj ,j−1 − gG′,j−1 holds.
As F ′ modulo fj−1 = G′ modulo fj−1, by assumption of the induction

gF ′+fj ,j−1 − gF ′,j−1 ≥ gG′+fj ,j−1 − gG′,j−1,

and the claim follows.

Lemma 4.2. Let F and G be natural numbers such that F ≤ G and F modulo
fj = r = G modulo fj. Then, gG,j + σ(gF+fj ,j − gF,j) ≥ gG+σfj ,j holds for every
σ ∈ IN.

Proof. gG+σfj ,j = gG+(σ−1)fj ,j + [gG+σfj ,j − gG+(σ−1)fj ,j]. Applying Lemma 4.1
yields [gG+σfj ,j − gG+(σ−1)fj ,j ] ≤ [gF+fj ,j − gF,j ]. Therefore, gG+σfj ,j ≤ gG+(σ−1)fj ,j

+ [gF+fj ,j − gF,j ]. Iterating this argument proves Lemma 4.2.

Accordingly, we obtain Lemma 4.3.

Lemma 4.3. Let F and G be natural numbers such that F ≤ G and F modulo
fj = r = G modulo fj. Then, gF−σfj ,j + σ(gG,j − gG−fj ,j) ≤ gF,j holds for every
σ ∈ IN with F − σfj ≥ 0.

Proof. gF,j = gF−fj ,j + [gF,j − gF−fj ,j]. By Lemma 4.1, we conclude that [gF,j −
gF−fj ,j] ≥ [gG,j − gG−fj ,j]. Therefore, gF,j ≥ gF−fj ,j + [gG,j − gG−fj ,j]. Iterating
this argument proves Lemma 4.3.

Using Lemmas 4.1 - 4.3 we are now able to prove the following theorem.

Theorem 4.4. Given a modified sequential knapsack problem with positive
objective function obtained from the maximal block transformation. If the ine-
qualities IF (j − 1) satisfy the three conditions (i), (ii), (iii) with k = j − 1 for all
F ∈ IN, so do the inequalities IF (j) with k = j.

13



(i) The left hand sides of two inequalities IF (k) and IF ′(k) are identical whe-
never F modulo fk = F ′ modulo fk holds;

(ii) IF (k) is valid for PF (k);

(iii) Every optimum solution to problemOPF (k) is contained in the face induced
by the inequality IF (k);

Proof. We write IF (j) as
∑j

i=1 dizi ≤ gF,j.

(i) Let F and F ′ be two natural numbers satisfying F modulo fj = r = F ′

modulo fj. As Δj and Fr are uniquely defined by the residuum class r and the
objective function we obtain – per definition – that the left hand sides of the two
inequalities IF (j) and IF ′(j) are the same.

(ii) The inequality IF (j) is valid for the polyhedron PF (j). Let z ∈ PF (j) be
a feasible point, then

∑j
i=1 dizi ≤ gF−zj fj ,j−1 + zjdj because, by assumption,∑j−1

i=1 dizi ≤ gG,j−1 is a valid inequality for all values of G with G modulo fj−1 =
F modulo fj−1 and (F − zjfj) modulo fj−1 = F modulo fj−1. Again, we write
F = Fr + sfj and distinguish several cases.

(ii) (a) F ≤ Fr. Then s ≤ 0. If zj = 0 it follows from the definition of gF,j =
gF,j−1 that the inequality is valid. Suppose that zj > 0. Then

∑j
i=1 dizi ≤

gF−zj fj ,j−1+zjdj = gF−zj fj ,j−1+zj(gFr+fj ,j−1−gFr ,j−1) ≤ gF,j−1 = gF,j , where the
last inequality follows from Lemma 4.3, and the statement follows.

(ii) (b) F > Fr + fjuj. Then s > uj. If zj = uj, it follows from the definition of
gF,j = gF−fjuj ,j−1 + djuj that the inequality is valid. Suppose that zj < uj. By

applying Lemma 4.2, we obtain:
∑j

i=1 dizi ≤ gF−zj fj ,j−1 + zjdj = gF−zj fj ,j−1 +
zj(gFr+fj ,j−1−gFr ,j−1) ≤ gF−uj fj ,j−1+(uj−zj)(gFr+fj ,j−1−gFr ,j−1)+zj(gFr+fj ,j−1−
gFr ,j−1) = gf−ujfj ,j−1 + ujdj = gF,j .

(ii) (c) What remains is the case where Fr < F ≤ Fr + ujfj . Then, 1 ≤ s ≤ uj

holds and we obtain

(	)
j∑

i=1

dizi ≤ gF−zj fj ,j−1 + zjdj = gFr−(zj−s)fj ,j−1 + (zj − s)dj + sdj .

If zj = s, as gF,j = gFr ,j−1+sdj , the inequality is valid by construction. Otherwise,
if zj > s, then Lemma 4.3 implies that gFr−(zj−s)fj ,j−1 + (zj − s)dj ≤ gFr ,j−1 and
together with (	) we have that IF (j) is valid. Finally, if zj < s, Lemma 4.2
implies that gFr−(zj−s)fj ,j−1 + (zj − s)dj = gFr+(s−zj )fj ,j−1 − (s − zj)dj ≤ gFr ,j−1

which again shows that the inequality IF (j) is valid.
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(iii) It remains to be shown that the set of optimal solution OF (j) is contained
in the face induced by the inequality IF (j).

By definition of Fr, we can always write F = Fr + sfj . Let z ∈ OF (j), then by

Lemma 3.1 and by definition of Fr we have
F−f(Δj )

fj
= s+

Fr−f(Δj )

fj
. If r ≤ f(Δj),

then Fr is the unique number such that Fr ≤ f(Δj) < Fr+fj and F modulo fj =
r. In this case Lemma 3.1 implies that

zj = min{uj, (s− 1)+} or zj = min{uj, s
+}.

If r > f(Δj), then Fr = r < fj, s ≥ 0 and Lemma 3.1 yields

zj = min{uj, s} or zj = min{uj, s+ 1}.
In this case, zj = s+ 1 is impossible, because F − (s+ 1)fj = Fr − fj < 0.

Hence, r > f(Δj) implies that zj = min{uj, s}.
Summarizing all cases yields zj = min{uj, (s− 1)+} or zj = min{uj, s

+}.

In case s ≤ 0, i.e., F ≤ Fr, we have zj = 0 in every optimum solution. Therefore
by assumption of the induction, every optimum solution to problem OPF (j) is
contained in the face

∑j−1
i=1 dizi = gF,j−1. Since gF,j = gF,j−1 in this case, the claim

follows.

In case s ≥ uj + 1, i.e., F > Fr + ujfj, every element in the set OF (j) satisfies
zj = uj. By assumption of the induction, every optimum solution z to problem
OPF (j) satisfies

∑j−1
i=1 dizi = gF−fjuj ,j−1 and as zj = uj, we obtain

∑j
i=1 dizi =

gF−fjuj ,j−1 + djuj = gF,j . This proves the claim in this case.

Finally, we have 1 ≤ s ≤ uj. Then every optimum solution z of OPF (j) satisfies
either zj = s or zj = s − 1. By assumption of the induction we obtain that (a)∑j−1

i=1 dizi = gF−sfj ,j−1 = gFr ,j−1, if zj = s and (b)
∑j−1

i=1 dizi = gF−(s−1)fj ,j−1 =

gFr+fj ,j−1, if zj = s− 1. This yields in case (a):
∑j

i=1 dizi = gFr ,j−1 + sdj = gF,j.

In case (b) we obtain:
∑j

i=1 dizi = gFr+fj ,j−1 + (s− 1)dj = gFr ,j−1 + (gFr+fj ,j−1 −
gFr ,j−1) + (s − 1)dj = gFr ,j−1 + sdj = gF,j . This shows that in both cases the
inequality IF (j) is satisfied at equality by all optimal points.

Let us now present the final theorem describing PSKP as a system of inequalities.
Let W ⊆ N be a subset of items in N , let B = {B1, . . . , Bm} be a partition of W
into blocks and let π be a permutation of {1, . . . , m}. Let f ′

i := minl∈Bi{al} be
the weight of block Bi, ui :=

∑
l∈Bi

alsl
f ′
i
be the multiplicity of block Bi and assume

that f ′
1 ≤ . . . ≤ f ′

m. We set fj =
f ′
j

f ′
1
and Δj = {i ∈ {1, . . . , j − 1} : π(i) < π(j)},
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j = 1, . . . , m.
Denote by P� a0

f ′
1
�(m) the modified knapsack polytope defined with the block par-

tition B of W , weights f1, . . . , fm, multiplicities u1, . . . , um and knapsack capacity
	a0
f ′
1

. That is

P� a0
f ′
1
�(m) =

{
z ∈ IRm :

m∑
i=1

fizi ≤ 	a0
f ′
1



0 ≤ zi ≤ ui and zi integer for i = 1, . . . , m

}

If the inequality I� a0
f ′
1
�(m), written as

∑m
j=1 djzj ≤ g� a0

f ′
1
�,m, denotes the valid ine-

quality developed in this section for P� a0
f ′
1
�(m) using the sets Δj induced by the

permutation π, then the inequality K(W,B, π) is defined as

m∑
j=1

∑
i∈Bj

dj
ai
fjf ′

1

xi ≤ g� a0
f ′
1
�,m.

Theorem 4.5. Given an instance of (SKP), the following system of inequalities
describes the polyhedron PSKP :

0 ≤ xi, for i = 1, . . . , n;
K(W,B, π), for all W ⊆ N, all partitions B = {B1, . . . , Bm} of

W into blocks, and all permutations π of {1, . . . , m}.

Proof. We first show validity of the inequalities K(W,B, π). Given W , B =
{B1, . . . , Bm} and π. It is easy to check that there exists an objective function
γ ∈ IR|W | for which B is the partition of W into maximal blocks and there exists
π such that

Δj = {i ∈ {1, . . . , j − 1} :
γi
fi

>
γj
fj
}.

Then, the inequality I� a0
f ′
1
�(m) is valid for the polyhedron P� a0

f ′
1
�(m) by Theorem

4.4 (i) and (ii). By the arguments on the transformation of valid inequalities for
PMSKP to valid inequalities for PSKP (see Section 2), the inequality K(W,B, π)
is valid for the polyhedron

conv {x ∈ IRn :
∑
i∈W

ai
f ′
1

xi ≤ 	a0
f ′
1


, 0 ≤ xi ≤ si, xi ∈ IN for i ∈ W}.

This polyhedron is a relaxation of PSKP , because f
′
1 is the smallest weight among

all items in W . As K(W,B, π) is valid for this relaxation of PSKP , it is certainly
valid for PSKP .
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Now given any objective function γ = (γ1, . . . , γn)
T , we construct an inequality

satisfied at equality by all optimal solutions of (SKP). If γi < 0 for some i ∈ N ,
then xi = 0 for every optimal solution. Otherwise, γ ≥ 0 and we set W := {i ∈
N : γi > 0}. Let

B = {B1, . . . , Bm} be the partition of W into maximal blocks and let (MSKP)
denote the modified sequential knapsack problem of Section 2. From Theorem
4.4 (iii) we know that I� a0

f ′
1
�(m) is satisfied at equality by all optimal solutions

of (MSKP). By the arguments on the equivalence of optimal solutions beween
problems (SKP) and (MSKP) (see Section 2), K(W,B, π) is satisfied at equality
by all optimal solutions of

max
∑
i∈W

γixi,

∑
i∈W

ai
f ′
1

xi ≤
⌊a0
f ′
1

⌋
,

xi ∈ {0, . . . , si} for i ∈ W.

Now if x is an optimal solution of the original problem with K(W,B, π) not
satisfied at equality (because some i ∈ N \W has value xi > 0), then a solution
with strictly better objective function value can be found by setting xi = 0 for
all i ∈ N \W , a contradiction. This completes the proof.

5 Explicit Inequalities

In the previous section we have inductively defined a class of inequalities that
depends on the choice and ordering of the blocks. Can we find a more explicit
or combinatorial formulation for those inequalities? This question is addressed
now.

Given a sequential knapsack problem of the form

(SKP )
∑
i∈N1

xi +
∑
i∈N2

f2xi + . . .+
∑
i∈Nk

fkxi ≤ F, 0 ≤ x ≤ u, x integer,

where u is the vector of upper bounds on the variables and 1 < f2 ≤ f3 ≤ . . . ≤ fk.

A large class of inequalities for the associated polyhedron PSKP can be described
as follows:
Let ri denote the residuum of the capacity F modulo fi. We choose sets Si ⊆ Ni,
Ti ⊆ Ni \ Si, i = 1, . . . , k with the following properties:
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∑k
j=1 fju(Sj) = F ,

0 < u(T1) < f2,

Tk = Nk \ Sk.

Setting b1 := 1 and, for j ≥ 2,

bj =
j−1∑
w=1

bwu(Tw) if
j−1∑
w=1

fwu(Tw) < fj

bj =
fj
fj−1

bj−1 otherwise,

the inequality

(	)
k∑

j=1

bj
∑

i∈Sj∪Tj

xi ≤
k∑

j=1

u(Sj)bj

is valid for PSKP . This statement can be verified by applying our inductive
scheme: we define a modified sequential knapsack problem and, for every item i
in this modified problem, we choose a set Δi such that the inequality constructed
via our inductive scheme coincides with (	).

We first consider the case where
∑j−1

w=1 fwu(Tw) < fj for all j ≥ 2, i.e., bj =∑j−1
w=1 bwu(Tw) for all j ≥ 2. Here we define the transformation to (MSKP) by

considering k blocks B1, . . . , Bk with Bj = Sj ∪ Tj for i = 1, . . . , k. Thus, the
modified sequential knapsack is of the form

k∑
j=1

fjzj ≤ F, 0 ≤ zj ≤ u(Sj) + u(Tj) and zj integer for j = 1, . . . , k.

The ordering of blocks is defined by Δ1 = ∅ and Δj = {1, . . . , j − 1} for j =
2, . . . , k with f(Δj) =

∑j−1
i=1 fi(u(Si) + u(Ti)). Let

∑k
j=1 djzj ≤ gF,k denote the

inequality IF (k) for this modified problem (MSKP) with sets Δj, j = 1, . . . , k. We
now show that (	) coincides with the inequality

∑k
j=1

∑
i∈Sj∪Tj

djxi ≤ gF,k that is
obtained by transforming IF (k) to a valid inequality for (SKP) (see Section 2).

As
∑k

j=1 fju(Sj) = F , we have that, for any j ≥ 2, rj = F modulo fj =

(
∑j−1

i=1 fiu(Si)) modulo fj and thus
∑j−1

i=1 fiu(Si) = rj + njfj for some nj ∈ IN.
To derive IF (k) using our inductive scheme, we have to compute the num-
bers Frj := max{G ∈ IN : G ≤ f(Δj), G modulo fj = rj}. As f(Δj) =
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∑j−1
i=1 fi(u(Si) + u(Ti)) = rj + njfj +

∑j−1
i=1 fiu(Ti) < rj + njfj + fj, we obtain

Frj =
∑j−1

i=1 fiu(Si).

Starting from d1 = 1, gF,1 = min{F, u(S1) + u(T1)} and going through the
inductive scheme (see Section 4) we obtain for each j = 1, . . . , k − 1

g
[
∑j

i=1
fiu(Si)],j

=
j∑

i=1

diu(Si),

g
[
∑j

i=1
fiu(Si)]+fj+1,j

= g
[
∑j

i=1
fi(u(Si)+u(Ti))],j

=
j∑

i=1

di(u(Si) + u(Ti)),

dj+1 = g
[
∑j

i=1
fiu(Si)]+fj+1,j

− g
[
∑j

i=1
fiu(Si)],j

=
j∑

i=1

diu(Ti)

So, for j = 1, . . . , k, we obtain dj = bj and finally gF,k = g
[
∑k

i=1
fiu(Si)],k

=∑k
i=1 diu(Si) which shows that the inequality (	) is obtained via our inductive

scheme and thus is valid for PSKP when
∑j−1

w=1 fwu(Tw) < fj for all j = 2, . . . , k.

When
∑j−1

w=1 fwu(Tw) ≥ fj for some j ∈ {2, . . . , k}, then we consider Sj−1∪Tj−1∪
Sj ∪ Tj as a single block. Performing this for all j with

∑j−1
w=1 fwu(Tw) ≥ fj,

generating the corresponding modified knapsack problem, constructing the valid
inequality using our inductive scheme and transforming it to a valid inequality
for (SKP) yields the inequality (	).

The inequalities of the form (	) are already a strong generalization of other known
inequalities:
In case that k = 2 and if u is the vector of all ones (the 0/1 case), then the
inequality (	) is of the form

∑
i∈S1

xi +
∑
i∈N2

lxi ≤ |S1|+ 	F − |S1|
f2


l

where ∅ �= S1 ⊆ N1, r2 = F modulo f2, l = (|S1| − r2) modulo f2 and |S1| +
f2|N2| > F . The latter class of inequalities plus the trivial inequalities 0 ≤ xi ≤ 1,
i ∈ N1 ∪ N2 plus the cover inequality

∑
i∈N2

xi ≤ 	 F
f2

 describe the polyhedron

conv {x ∈ {0, 1}N1∪N2 :
∑

i∈N1
xi +

∑
i∈N2

f2xi ≤ F, x integer }. This result was
shown in [11] and, independently in [3].
As a special case we obtain Padberg’s result on (1, k)-configurations [8]: Suppose,
we are given a knapsack problem such that the set of feasible solutions is equal
to

x ∈ {0, 1}N1∪{z} :
∑
i∈N1

xi + fzxz ≤ |N1|.
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The corresponding polyhedron is described by the lower and upper bound cons-
traints plus the inequalities

∑
i∈S1

xi + (|S1|+ fz − |N1|)xz ≤ |S1|

for all subsets S1 ⊆ N1, |S1|+ fz > |N1|.

Summarizing our discussions, the inequalities (	) are only a subclass of the ine-
qualities needed to describe a sequential knapsack polyhedron. Nevertheless, this
subclass is quite large and extends all the explicitly known inequalities for special
cases of the knapsack problem having the divisibility property.

6 Extensions

The previous sections deal exclusively with the sequential knapsack polytope
which is still a restrictive assumption when considering integer programs in gene-
ral. Can we use parts of this polyhedral knowledge presented so far and apply it
within a more general framework? The answer is “yes” and we outline now some
directions.

A first question in using our inductively defined inequalities computationally is
whether we have a combinatorial algorithm for solving the separation problem,
i.e., given a fractional solution y: does there exists an inequality that is violated
by y and if so, then what is the inequality? We did not succeed in solving this
separation problem. “Only” for the subclass of inequalities

∑
i∈S1

xi+
∑

i∈N2
lxi ≤

|S1|+	F−|S1|
f2


l where ∅ �= S1 ⊆ N1, l = (|S1|−r2) modulo f2 and |S1|+f2|N2| > F ,

Hartmann [3] gives a linear time algorithm for solving the separation problem .
The general problem is still open. However, we can use our inductive scheme as
a separation heuristic. For instance, defining every item i ∈ N as a single block,
setting Δi = {t ∈ N : ft ≤ fi, yt > yi}, i ∈ N and generating an inequality
according to this ordering seems to be a promissing approach to end up with a
violated inequality, if one exists. Other reasonable definitions of Δi might be to
set Δi = {t ∈ N : ft ≤ fi,

yt
ft

> yi
fi
}, i ∈ N . Whether those ideas work is

certainly not clear, but similar “greedy type” of procedures work pretty well for
the separation of cover- and (1, k)-configuration inequalities.

Given an integer programming problem Ax ≤ b, 0 ≤ x ≤ u, x integer with
A ∈ IRm×n, b ∈ IRm, u ∈ INn, x ∈ IRn. If there exists some row

∑
j∈N aijxj ≤ bi

such that a subset S of items in {j ∈ {1, . . . , n} : aij > 0} has the divisibility
property, then we can investigate the polyhedron: conv{x ∈ IRS :

∑
i∈S aijxi ≤
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bi, 0 ≤ x ≤ u, x integer } and generate inequalities for this polyhedron. By
computing lifting coefficients for the items in N \ S, we obtain a valid inequality
for the overall polyhedron conv{x ∈ IRn : Ax ≤ b, 0 ≤ x ≤ u, x integer }. This
approach can always be used to apply knowledge about special integer programs
to more general cases.

Another idea is to try to relax a given integer program as a sequential knapsack
problem. Given a row

∑
j∈N aijxj ≤ bi of an integer program, the easiest way to

obtain a relaxation as a sequential knapsack problem is to choose, a priori, a set
of divisible numbers f1, . . . , fk, say. The sequential knapsack problem defined via
the constraint ∑

j∈N
( max
i=1,...,k

{fi : fi ≤ aij})xj ≤ 	 bi
f1

f1

is certainly a relaxation of the given integer program.

A more specific relaxation is obtained by generalizing the concept of (1, k)-
configurations. Consider the 0/1 knapsack problem defined by the constraint∑

i∈N
fixi ≤ F , xi ∈ {0, 1} for i ∈ N

with N := {1, . . . , s + 1}, s ≥ 3 and f1 ≤ f2 ≤ . . . ≤ fs ≤ fs+1. Let S :=
{1, . . . , s}, assume that f(S) ≤ F , f(S) + fs+1 > F and define r := F − f(S).

Define indices 1 = i1 < i2 < . . . < iτ < iτ+1 = s + 1 such that i2 ≥ 3, fij ≥
fij−1 + fij−2 for j = 2, . . . , τ and define a partition S1, S2, . . . , Sτ+1 of the set N
of items as

Sj := {ij, . . . , ij+1 − 1} for j = 1, . . . , τ and Sτ+1 = {iτ+1} = {s+ 1}.

Based on this partition, we define an inequality with the divisibility property that
is valid for the given 0/1 knapsack problem. We set b1 := 1 and, for j = 2, . . . , τ ,
we define

tj := max{t = 1, . . . , ij − ij−1 :
ij−1∑

w=ij−t

fw ≤ fij},

bj = bj−1tj.

Note that tj ≤ |Sj−1| = ij − ij−1. We define finally

tτ+1 := max{t = 1, . . . , iτ+1 − iτ :
iτ+1−1∑

w=iτ+1−t

fw < fiτ+1 − r + f1},
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bτ+1 = bτ tτ+1.

If such a tτ+1 exists (i.e. if fs < fs+1 − r + f1), then the inequality

(	)
τ+1∑
j=1

bj
∑
i∈Sj

xi ≤
τ∑

j=1

bj|Sj|

is valid for the 0/1 knapsack problem. Before verifying this statement, let us
illustrate the above construction on an example.

Example 5.1. Consider the knapsack problem in 0/1 variables defined via the
constraint

x1 + x2 + 2x3 + 3x4 + 3x5 + 3x6 + 4x7 + 7x8 + 7x9 + 7x10 + 8x11 + 25x12 ≤ 49.

Set S := {1, . . . , 11}, Then f(S) = 46 and r = 3. We choose τ = 3, i1 = 1,
i2 = 4, i3 = 8 and i4 = 12. This meets the requirements that the indices i2, i3
must satisfy, because f4 ≥ f3+f2 and f8 ≥ f7+f6. In this example, the inequality
(	) is of the form

x1 + x2 + x3 + 2x4 + 2x5 + 2x6 + 2x7 + 4x8 + 4x9 + 4x10 + 4x11 + 12x12 ≤ 27

and it is valid for the given knapsack polytope.

Let us now show that the inequality (	) is always valid under the above assump-
tions. It is valid if and only if every subset T ⊆ S with f(T ) ≥ fs+1 − r satisfies
b(T ) :=

∑τ
j=1 bj|Sj ∩ T | ≥ bτ+1, or equivalently if and only if the problem

f� := max{
s∑

i=1

fiyi :
τ∑

j=1

bj
∑
i∈Sj

yi ≤ bτ+1 − 1, y ∈ {0, 1}s}.

has an optimal value f � < fs+1 − r.

Setting Yj :=
∑

i∈Sj
yi for j = 1, . . . , τ , we first show that there always exists an

optimal solution to this problem with Yj < tj+1 for j = 1, . . . , τ . First, observe
that Yτ ≥ tτ+1 is infeasible for this problem because bτ+1 = tτ+1bτ , so Yτ < tτ+1.
Now, if Yτ−1 ≥ tτ , as by construction

∑iτ−1
w=iτ−tτ fw ≤ fiτ and bτ = tτbτ−1, the

solution obtained by decreasing Yτ−1 by tτ and increasing Yτ by 1 is at least as
good as the initial solution in terms of objective value

∑s
i=1 fiyi and equivalently in

terms of the knapsack constraint
∑τ

j=1 bjYj ≤ bτ+1 − 1. So, any optimal solution
with Yτ−1 ≥ tτ can be transformed into an optimal solution with Yτ−1 < tτ .
Proceeding in this way for all j = 1, . . . , τ , we can produce an optimal solution
with Yj < tj+1 for j = 1, . . . , τ .
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The objective value of such a solution satisfies

∑
i∈Sj

fiyi ≤ fij+1 − fij for j = 1, . . . , τ − 1,

because Yj < tj+1 ≤ |Sj| implies that there exists z ∈ Sj with yz = 0 and fz ≥ fij
such that fij +

∑
i∈Sj

fiyi ≤ fz +
∑

i∈Sj
fiyi ≤ fij+1 .

Summing these inequalities for j = 1, . . . , τ − 1, we obtain

τ∑
j=1

∑
i∈Sj

fiyi =
τ−1∑
j=1

∑
i∈Sj

fiyi +
∑
i∈Sτ

fτyτ

≤ −f1 + (fiτ +
∑
i∈Sτ

fτyτ)

≤ −f1 + (
iτ+1−1∑

w=iτ+1−tτ+1

fw)

< fiτ+1 − r = fs+1 − r

Hence f� < fs+1 − r and the inequality is valid.

By construction, bj is a multiple of bj−1 for all j ≥ 2. It follows that (	) has the
divisibility property and we can apply all of our information for the sequential
knapsack polytope induced by inequality (	). In case that τ = 1 and if we impose
a “regularity condition” such as “every subset T in S with b(T ) = b(S) − bτ+1

satisfies f(T ) + fs+1 ≤ F ”, then the corresponding inequality defines a facet of
the 0/1 knapsack polytope [8].

For τ ≥ 2 one can also derive sufficient conditions under which inequality (	)
defines a facet of the corresponding polytope. Yet, such conditions are quite
technical and we refrain within this paper from explaining further details.

If one finds such generalized (1, k)-configurations or some subset of the items ha-
ving the divisibility property with respect to some row of a given integer program
Ax ≤ b, then all the knowledge about the sequential knapsack polytope can be
used. Together with lifting this yields a powerful tool that might help solving
integer programs.
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