
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD

RENS
the optimal rounding

Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

ZIB-Report 12-17 (April 2012) revised version February 2013

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

RENS

the optimal rounding

Timo Berthold∗

14/Feb/2013♥

(revised version)

Abstract

This article introduces rens, the relaxation enforced neighborhood search, a large neigh-
borhood search algorithm for mixed integer nonlinear programs (MINLPs). It uses a sub-
MINLP to explore the set of feasible roundings of an optimal solution x̄ of a linear or
nonlinear relaxation. The sub-MINLP is constructed by fixing integer variables xj with
x̄j ∈ Z and bounding the remaining integer variables to xj ∈ {bx̄jc, dx̄je}. We describe two
different applications of rens: as a standalone algorithm to compute an optimal rounding
of the given starting solution and as a primal heuristic inside a complete MINLP solver.

We use the former to compare different kinds of relaxations and the impact of cutting
planes on the so-called roundability of the corresponding optimal solutions. We further
utilize rens to analyze the performance of three rounding heuristics implemented in the
branch-cut-and-price framework scip. Finally, we study the impact of rens when it is
applied as a primal heuristic inside scip.

All experiments were performed on three publically available test sets of mixed integer
linear programs (MIPs), mixed integer quadratically constrained programs (MIQCPs), and
MINLPs, using solely software which is available in source code.

It turns out that for these problem classes 60% to 70% of the instances have roundable
relaxation optima and that the success rate of rens does not depend on the percentage of
fractional variables. Last but not least, rens applied as primal heuristic complements nicely
with existing root node heuristics in scip and improves the overall performance.

Keywords: mixed integer programming, mixed integer nonlinear programming, primal
heuristic, large neighborhood search, rounding

Mathematics Subject Classification: 90C11, 90C20, 90C30, 90C59

1 Introduction

Primal heuristics are algorithms that try to find feasible solutions of good quality for a given
optimization problem within a reasonably short amount of time. There is typically no guarantee
that they will find any solution, let alone an optimal one.

For mixed integer linear programs (MIPs) it is well known that general-purpose primal heuris-
tics like the Feasibility Pump [3, 29, 32] are able to find high-quality solutions for a wide range of
problems. Over time, primal heuristics have become a substantial ingredient of state-of-the-art
MIP solvers [10, 19]. Discovering good feasible solutions at an early stage of the MIP solving
process has several advantages:

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, berthold@zib.de

1

berthold@zib.de

• The bounding step of the branch-and-bound [41] algorithm depends on the quality of the
incumbent solution; a better primal bound leads to more nodes being pruned and hence to
smaller search trees.

• The same holds for certain presolving and domain propagation strategies such as reduced
cost fixing. Better solutions can lead to tighter domain reductions, in particular more vari-
able fixings. This, as a consequence, might lead to better dual bounds and the generation
of stronger cutting planes.

• In practice, it is often sufficient to compute a heuristic solution whose objective value is
within a certain quality threshold. For hard MIPs that cannot be solved to optimality
within a reasonable amount of time, it might still be possible to generate good primal
solutions quickly.

• Improvement heuristics such as rins [28] or Local Branching [30] need a feasible solution
as starting point.

Similar statements hold for other classes of mathematical programs. Often, techniques such
as reduced cost fixing or cutting planes are more heavily or even exclusively applied at the root
node of a branch-and-bound search tree. Therefore, already knowing good solutions during root
node processing is significantly more beneficial than finding them later during tree search.

The last fifteen years have seen several publications on general-purpose heuristics for MIPs,
including [3, 6, 7, 9, 11, 12, 32, 33, 36, 38, 43, 44, 48, 53]. For an overview, see [10, 34, 35]. For
mixed integer nonlinear programming, the last three years have shown a rising interest in the
research community for general-purpose primal heuristics [13, 14, 16, 21, 22, 25, 26, 42, 46, 47].

A mixed integer nonlinear program (MINLP) is an optimization problem of the form

min dTx

s.t. gi(x) ≤ 0 for all i ∈M
Lj ≤ xj ≤ Uj for all j ∈ N
xj ∈ Z for all j ∈ I,

(1)

where I ⊆ N := {1, . . . , n} is the index set of the integer variables, d ∈ Rn, gi : Rn → R
for i ∈ M := {1, . . . ,m}, and L ∈ (R ∪ {−∞})n, U ∈ (R ∪ {+∞})n are lower and upper
bounds on the variables, respectively. Note that a nonlinear objective function can always be
reformulated by introducing one additional variable and constraint, hence form (1) is general.
We assume without loss of generality that Lj ≤ Uj for all j ∈ N and Lj , Uj ∈ Z for all j ∈ I.

There are many subclasses of MINLP, the following four will be considered in this article:

• If all constraint functions gi are quadratic, problem (1) is called a mixed integer quadratically
constrained program (MIQCP).

• If all constraint functions gi are linear, problem (1) is called a mixed integer program (MIP).

• If I = ∅, problem (1) is called a nonlinear program (NLP).

• If I = ∅ and all gi are linear, problem (1) is called a linear program (LP).

With a slight abuse of notation, we will use the abbreviation LP for the term linear program-
ming as well as for the term linear program. The same holds for MINLP, MIQCP, MIP, and
NLP.

2

At the heart of many MIP improvement heuristics, such as Local Branching [30], rins [28],
and dins [33], lies large neighborhood search (LNS), the paradigm of solving a small sub-MIP
which promises to contain good solutions. Recently, those LNS improvement heuristics have
been extended to the more general case of MINLP [16, 22, 47]. In contrast, Undercover [13, 14]
is an LNS start heuristic for MINLP that does not have an equivalent in MIP.

In this paper, we introduce the relaxation enforced neighborhood search (rens), a large neigh-
borhood search algorithm for MINLP. It constructs a sub-MINLP of a given MINLP based on the
solution of a relaxation. rens is designed to compute the optimal – w.r.t. the original objective
function – rounding of a relaxation solution.

Many LNS heuristics, diving and of course all rounding heuristics are based on the idea of
fixing some of the variables that take an integer value in the relaxation solution. Therefore, the
question of whether a given solution of a relaxation is roundable, i.e., all fractional variables can
be shifted to integer values without losing feasibility for the constraint functions, is particularly
important for the likelihood of other primal heuristics to succeed.

We use rens to analyze the roundability of instances from different classes of mathematical
programs, demonstrate the computational impact of using different relaxations, and use these
results to evaluate the performance of several rounding heuristics from the literature. Finally, we
investigate the effectiveness of rens applied as a start heuristic at the root node of a branch-and-
cut solver. For these experiments, we use general, publically available MIP, MIQCP and MINLP
test sets obtained from the MIPLIB 3.0 [18], the MIPLIB 2003 [4], the MIPLIB 2010 [40], the
MINLPLib [23] and the MIQCP test set compiled in [15].

The remainder of the paper is organized as follows. Section 2 introduces the generic scheme of
the rens algorithm. In Section 3, we discuss the algorithmic design and describe implementation
details, in particular for the application of rens as a subsidiary method inside a complete solver.
The setup for the computational experiments is presented in Section 4. Section 5 provides
detailed computational results and Section 6 contains our conclusions.

2 A scheme for an LNS rounding heuristic

Given a mixed integer program, the paradigm of fixing a subset of the variables in order to obtain
subproblems that are easier to solve has proven successful in many MIP improvement heuristics
such as rins [28], dins [33], Mutation, and Crossover [10, 48]. These strategies can be directly
extended to MINLP, see [16].

For a given MINLP, the NLP which arises by omitting the integrality constraints (xj ∈
Z for all j ∈ I) is called the NLP relaxation of the MINLP. The LP relaxation of a MIP is
defined analogously. For a point x̄ ∈ [L,U] (i.e., Lj ≤ x̄j ≤ Uj for all j ∈ N) the set of all
fractional variables is defined as F := {j ∈ I | x̄j /∈ Z}.

Before we formulate the rens algorithm, let us formalize the notion of an (optimal) rounding:

Definition 2.1 (rounding). Let x̄ ∈ [L,U]. The set

R(x̄) := {x ∈ Rn | xj ∈ {bx̄jc, dx̄je} for all j ∈ I, Lj ≤ xj ≤ Uj for all j ∈ N}

is called the set of roundings of x̄.

In general, R(x̄) is a mixed integer set, a disjoint union of 2|F| polyhedra. Note that in the
special case of I = N , so-called pure integer problems, the set of roundings of x̄ is a 2|F|-elemen-
tary lattice, the vertices of an |F|-dimensional unit hypercube:

R(x̄) = {x ∈ Zn | xI\F = x̄I\F , xF ∈×
j∈F
{bx̄jc, dx̄je}} ⊆×

j∈I
{Lj , . . . , Uj}.

3

Here, xF and xI\F denote the projection of x to the space of fractional and integral variables,
respectively.

Definition 2.2 (optimal rounding). Let x̄ ∈ [L,U] and x̃ ∈ R(x̄).

1. We call x̃ a feasible rounding of x̄, if gi(x̃) ≤ 0 for all constraints i ∈M of MINLP (1).

2. We call x̃ an optimal rounding of x̄, if x̃ ∈ argmin{dTx | x ∈ R(x), gi(x) ≤ 0 for all i ∈
M}.

3. We call x̄ roundable if it has a feasible rounding.

Because R(x̄) is bounded, x̄ either has an optimal rounding or is not roundable.

Figure 1: rens for MIP: original MIP (light), sub-MIP received by fixing (dark, left) and 0-1
sub-MIP by additional bound reduction (dark, right)

The idea of our newly proposed LNS algorithm is to define a sub-MINLP that optimizes over
the set of roundings of a relaxation optimum x̄. This is done by fixing all integer variables that
take an integral value in x̄. For the remaining integer variables, the bounds get tightened to
the two nearest integral values, see Figure 1. Note that in the case of a completely fractional
relaxation solution to a problem where all integer variables are binary, the subproblem would be
identical to the original. We will therefore use a threshold for the percentage of integral variables,
see next section.

If the sub-MINLP is solved by using a linear outer approximation, tightening the variable
bounds to the nearest integers often improves the dual bound, since reduced domains give rise to
a tighter linear relaxation. Technically, all integer variables with tightened bounds can be easily
transformed to binary variables, by substituting x′

j = xj − Lj . Binary variables are preferable
over general integers since many MIP-solving techniques such as probing [49], knapsack cover
cuts [5, 37, 54], or the Octane heuristic [6] are only used for binary variables.

As the sub-MINLP is completely defined by the relaxation solution x̄, we call the procedure
relaxation enforced neighborhood search, or shortly rens. Figure 2 shows the basic algorithm,
which by construction has some important properties:

Lemma 2.3. Let the starting point x̄ be feasible for the NLP relaxation.

1. A point x̃ is a feasible solution of the sub-MINLP if and only if it is a feasible rounding of
x̄, in particular:

2. the optimum of the sub-MINLP is the optimal rounding of x̄, and

3. if the sub-MINLP is infeasible, then no feasible rounding of x̄ exists.

Two major features distinguish rens from other MIP and MINLP primal heuristics known
from the literature. Firstly, the rens algorithm does not require a known feasible solution,

4

Figure 2: Generic rens algorithm

Input: MINLP P as in (1)
Output: feasible solution x̃ for P or ∅
begin1

/* compute optimal solution of the NLP relaxation of P */

x̄← argmin{dTx | gi(x) ≤ 0 for all i ∈M, x ∈ [L,U]};2

forall j ∈ I do3

if x̄j ∈ Z then4

fix xj : Lj ← x̄j , Uj ← x̄j ;5

else6

change to binary bounds: Lj ← bx̄jc, Uj ← dx̄je;7

8

/* solve the resulting sub-MINLP of P */

x̃← argmin{dTx | gi(x) ≤ 0 for all i ∈M, x ∈ [L,U], xj ∈ Z for all j ∈ I};9

return x̃;10

end11

unlike other large neighborhood search heuristics that have been described for MIP, namely
rins [28], Local Branching [30], Crossover [10, 48], dins [33], or Proximity Search [31]. It is a
start heuristic, not an improvement heuristic. The same holds for nonlinear variants of these
heuristics [16, 22, 47].

Secondly, rens solves a single sub-MINLP. In contrast, most primal heuristics for MINLP,
in particular the various nonlinear feasibility pump versions [21, 22, 25, 26], recipe [42] and
Iterative Rounding [46], solve a series of auxiliary MIPs, often alternated with a sequence of
NLPs, to produce a feasible start solution. The number of iterations is typically not fixed, but
depends on the instance at hand.

3 Design and implementation details

In this section, we discuss the details of our rens implementation. A particular focus is set on
the application of rens as a subsidiary method inside a complete branch-and-bound solver.

In principle, an arbitrary point may be used as starting point in line 2 of the rens algorithm,
see Figure 2. Most complete solvers for MINLP are based on branch-and-bound and involve
the solution of an NLP relaxation or a linear outer approximation. Their optima are natural
choices as starting points. While the NLP optimum is supposed to be “closer” to the feasible
region of the MINLP, the LP can usually be computed faster and often gives rise to smaller
subproblems. More precisely, the NLP fulfills all nonlinear constraints gi(x) ≤ 0, whereas the
LP, if solved with the simplex algorithm, tends to fulfill more integrality constraints, which
reduces the computational complexity of the rens subproblem. Thus, both relaxations have
their pros and cons; which one proves better in practice will be investigated in our empirical
studies, see Section 5.

When using a linear outer approximation (the LP relaxation in case of MIP), an important
question is whether we should use the optimum of the initial LP relaxation or the LP solution
after cutting planes have been applied. As before, cutting planes strengthen the formulation, but
it is generally assumed that they tend to produce more fractional LP values. Which relaxation

5

works best in practice shall be examined in the computational experiments in Section 5.
If rens is used as a primal heuristic embedded in a complete solver, further modifications

are necessary to obtain a good overall performance. When primal heuristics are considered as
standalone solving procedures, e.g., the Feasibility Pump [3, 9, 21, 25, 26, 29, 32], the algorithmic
design typically aims at finding feasible solutions for as many instances as possible, even if this
takes substantial running time. However, if they are used as supplementary procedures inside a
complete solver, the overall performance of the solver is the main objective. To this end, it is
often worth sacrificing success on a small number of instances for a significant saving in average
running time. The Stage 3 of the Feasibility Pump1 is a typical example of a component that is
crucial for its impressive success rate as a standalone algorithm, but it will not be applied when
the Feasibility Pump is used inside a complete solver, see [10]. rens principally is an expensive
algorithm that solves an NP-hard problem; therefore, the decision of when to call it should
made carefully to avoid slowing down the overall solving process. The remainder of this section
describes some algorithmic enhancements, most of which are concerned with identifying which
subproblems are the most promising for calling rens and on which subproblems it should be
skipped.

First, rens should only be called if the resulting sub-MINLP seems to be substantially easier
than the original one. This means that at least a specific ratio of all integer variables, say
r1 ∈ (0, 1), or a specific ratio of all variables including the continuous ones, say r2 ∈ (0, 1),
should be fixed. The first criterion limits the difficulty of the discrete part of the sub-MINLP
itself, the second one limits the total size of the relaxations that will have to be solved. For
example, think of a MIP which consists of 20 integer and 10 000 continuous variables. Even if
one fixes 50% of the integer variables, rens would be a time-consuming heuristic since solving
the LPs of the sub-MIP would be nearly as expensive as solving the ones of the original MIP.
Since by propagation, fixing integer variables might also lead to fixed continuous variables, e.g.,
for variable bound constraints, we check the latter criterion only after presolving the subproblem.

Second, the sub-MINLP does not have to be solved to proven optimality. Therefore, we
decided to use limits on the solving nodes and the so-called stalling nodes of the sub-MINLP.
The absolute solving node limit l1 is a hard limit on the maximum number of branch-and-bound
nodes that should be processed. The stalling node limit l2 indicates how many nodes should at
most be processed without an improvement to the incumbent solution of the sub-MINLP.

Third, the partial solution of the sub-MINLP aims at finding a good primal solution quickly.
Hence, algorithmic components that mainly improve the dual bound, such as cutting plane sep-
aration, and that are computationally very expensive, such as strong branching, can be disabled
or reduced to a minimum. Further on this list are conflict analysis, pairwise presolving of con-
straints, probing and other LNS heuristics. As branching and node selection strategies we use
inference branching and best estimate search, see, e.g. [1].

rens could be either used as a pure start heuristic, calling it exclusively at the root node,
or frequently throughout the branch-and-bound search to find rounded solutions of local LP
optima. In particular when the integrality of the root LP relaxation falls below the minimum
fixing ratio r1, it seems reasonable to employ rens at deeper levels of the tree where the number
of fractional variables tends to be smaller. For the case of repeated calls of rens, we implemented
a few strategies to determine the points at which rens should be called.

How often rens should be called mainly depends on two factors: how expensive is it for
a particular instance and how successful has it been in previous calls for that instance? The
first can be estimated by the sum nrens of branch-and-bound nodes rens used in previous calls

1Stage 3 of the Feasibility Pump solves (a reformulation of) the original MIP with a new objective function.
It minimizes the distance to an infeasible point gained from the pumping algorithm; more precisely to the one
which was closest to the polyhedron associated to the LP relaxation. For details, see [29].

6

in comparison to nall, the number of branch-and-bound nodes already searched in the master
problem. The second can be measured by the success rate s = nsols+1

ncalls+1 , where ncalls denotes the
number of times rens has been called and nsols denotes the number of times it contributed an
improving solution, respectively. In our implementation, we computed the stalling nodes limit
as

l2 = 0.3nall · s− nrens + 500− 100ncalls.

The last term represents the setup costs for the subproblem which accrue even if subproblem
solving terminates quickly. The offset of 500 nodes ensures that the limit is reasonable for the
first few calls of rens. We only start rens if l2 is sufficiently large.

In an LP-based branch-and-bound search, consecutive nodes tend to have similar LP optima.
This is due to the similarity of the solved problems as well as to the warm-starting technique of
the simplex algorithm, which is typically used for this purpose. Since similar LP optima most
likely lead to similar results for the quite expensive rens heuristic, it should not be called in
consecutive nodes, but the calls should rather be spread equally over the tree. Therefore, we use
a call frequency f : rens only gets called at every f -th depth of the tree.

4 Experimental setup

This section proposes three computational experiments that evaluate the potential of rens to
find optimal rounded solutions, compare rens to other rounding heuristics, and demonstrate the
impact of rens inside a full-scale branch-and-bound solver. We conduct these experiments on
three different test sets of MIPs, MIQCPs, and MINLPs in order to analyze rens on different
classes of mathematical programs. All test sets are compiled from publically available libraries.

Few existing softwares solve nonconvex MINLPs to global optimality, including baron [50],
couenne [8], and LindoGlobal [59]. Others, such as bonmin [20] and sbb [60], guarantee
global optimality only for convex problems, but can be used as heuristic solvers for nonconvex
problems. For a comprehensive survey of available MINLP solver software, see [24, 27]. Recently,
the solver scip [2, 61] was extended to solve nonconvex MIQCPs [17] and MINLPs [51] to
global optimality. scip is currently one of the fastest noncommercial solvers for MIP [40, 45],
MIQCP [45] and MINLP [51].

For all computational experiments, we used scip 2.1.1.1 compiled with SoPlex 1.6.0 [55,
62] as LP solver, Ipopt 3.10 [52, 58] as NLP solver, and CppAD 20110101 [57] as expression
interpreter for evaluating general nonlinear constraints. The results were obtained on a cluster of
64bit Intel Xeon X5672 CPUs at 3.20GHz with 12 MB cache and 48 GB main memory, running
an openSuse 11.4 with a gcc 4.5.1 compiler. Hyperthreading and Turboboost were disabled. In
all experiments, we ran only one job per node to avoid random noise in the measured running
time that might be caused by cache-misses if multiple processes share common resources.

Test sets. We used all instances from MIPLIB3.0 [18], MIPLIB2003 [4], and MIPLIB2010 [40]
as MIP test set. We excluded instances air03, ex9, gen, manna81, p0033, vpm1, for which the
optimum of the LP relaxation (after scip presolving) is already integral, instance stp3d, for
which SoPlex cannot solve the LP to optimality within the given time limit and instances
sp97ar, mine-166-5, for which SoPlex 1.6.0 fails in computing an optimal LP solution. This
leaves 159 instances. We will refer to this test set as MIPLIB.

For MIQCP, we used the test set described in [15] that is comprised of instances from several
sources. We excluded instances ex1263, ex1265, sep1, uflquad-30-100, for which the LP
optimum is already integral (but in none of the cases feasible for the quadratic constraints),
instances nuclear14, isqp1, nuclearva, for which the LP relaxation is unbounded, instance

7

200bar, for which SoPlex produces an error, 108bar, isqp0, for which scip’s separation loop
has not terminated within the time limit, and those 18 instances that are linear after scip
presolving, see [15]. This test set contains 70 instances.

We further tested rens on general MINLPs from MINLPLib [23], excluding those that
are MIQCPs, that are linear after scip presolving, or that contain expressions which cannot
be handled by scip, e.g., sin and cos. We also excluded 4stufen, csched1a, st e35, st e36,
waters, for which the optimum of the LP relaxation is integral, and instances csched2, minlphix,
uselinear, for which the LP relaxation is unbounded, leaving 105 instances. It remains to be
said that this test set is not as balanced as the others, since there are many instances of similar
type.2

Analyzing roundability and computing optimal roundings. In a first test, we employ
rens to analyze the roundability of an optimal relaxation solution. For this, we run rens without
any node limits or variable fixing thresholds on the test sets described above. A time limit of
two hours, however, was set for solving the rens subproblem.

We used the optimum of the LP relaxation as starting point for the MIP test. We compare
the performance of rens using the “original” LP optimum before the cutting plane separation
loop versus the one after cuts. One question of interest here is how the integrality of the LP
solution interacts with the feasibility of the sub-MIP. The desired situation is that the LP
solution contains a lot of integral values, but still gives rise to a feasible rens problem.

For the MIQCP and the MINLP test run, we further evaluate how different types of relax-
ations, the LP and the NLP relaxation, behave w.r.t. the roundability of their optima and the
quality of the rounded solutions. The results shall give an insight into which solutions should be
used as starting points for rens and other primal heuristics. Here, the performance in terms of
running time of the rens heuristic has to be weighed up against the success rate and quality of
solutions produced with different relaxations.

Evaluating the performance of rounding heuristics. In a second test, we use rens for
the analysis of several rounding heuristics. The results shall give an insight into how often these
heuristics find a feasible rounding and how good the quality of this solution is w.r.t. the optimal
rounding.

All considered rounding heuristics iteratively round all variables that take a fractional value in
the optimum of the relaxation. One rounding is performed per iteration step, without resolving
the relaxation.

• Simple Rounding only performs roundings, that maintain feasibility;

• ZI Round conducts roundings, using row slacks to maintain primal feasibility;

• Rounding conducts roundings, that potentially violate some constraints and reduces ex-
isting violations by further roundings;

ZI Round and Rounding both are extensions of Simple Rounding. Both are more powerful, but
also more expensive in terms of running time.

For more details on ZI Round, see [53], for details on the other rounding heuristics imple-
mented in scip, see [10].

Note that these heuristics are quite defensive, in the sense that they often round opposite to
the variable’s objective function coefficient and sacrifice optimality for feasibility. Hence, we do
not expect them to often detect the optimal rounding computed by rens. The question is rather

2This holds, to a certain extent, for all general MINLP test sets that the author is aware of.

8

for how many of the roundable instances these heuristics find any feasible solution and only as
a second point how big the gap to the optimal rounding is.

rens compared to other primal heuristics. In a third test, we compare rens to other
primal heuristics embedded in scip and called at the root node. We measure rens against the
complete portfolio of root node heuristics and against the single best heuristic (as implemented
in scip). In the case of MIP, this was the Feasibility Pump [29, 3]; in the case of MIQCP and
MINLP, this turned out to be Undercover [13, 14].

scip applies eleven primal heuristics at the root node: three rounding heuristics (see previous
experiment), three propagation heuristics, a trivial one, a feasibility pump, an improvement
heuristic, a large neighborhood search, and a repair heuristic. The latter two only come into
play for nonlinear problems. This experiment is done to check whether scip is competitive with
heuristics that are more involved than the rounding heuristics from the previous experiment.

Impact of rens on the overall performance of scip. In our final experiment, we evaluate
the usefulness of rens when applied as a primal heuristic inside a branch-and-bound solver. For
comparison see the rins algorithm [28], an improvement heuristic which is applied in Cplex and
Gurobi. The advantage of rens in contrast to rins is that it does not require a given primal
solution and that it always fixes at least the same number of variables as rins, if applied to the
same relaxation solution. The advantage of rins is that the rins subproblem is guaranteed to
contain at least one feasible solution, namely the given starting solution.

To assess rens as a primal heuristic, we run scip with rens applied exclusively as a root
node heuristic and scip with rens applied both at the root and throughout the search. For this
experiment, we used a reduced version of rens which requires a minimal percentage of variables
to be fixed and which stops after a certain number of branch-and-bound nodes, see Section 3.
For comparison, we ran scip with rens deactivated.

The main criteria to analyze in this test are the impact of rens on the quality of the primal
bound early in the search and the impact of rens on the overall performance. While we hope for
improvements in the former, a major improvement in the latter is not to be expected. Different
studies show that the impact of primal heuristics on time to optimality often is slim. Bixby et al.
report a deterioration of only 9% if deactivating all primal heuristics in Cplex 6.5, Achterberg [1]
presents a performance loss of 14% when performing a similar experiment with scip 0.90i, in [10]
differences of at most 5% for deactivating single primal heuristics are given. Therefore, a good
result for this experiment would be an improvement on the primal bound side, coming with no
deterioration to the overall performance.

5 Computational results

As a first test, we ran rens without node or variable fixing limits, to evaluate its potential to
find optimal roundings of optimal LP and NLP solutions.

The results for MIP can be seen in Tables 4 and 5, those for MIQCP in Tables 6 and 7, those
for MINLP in Tables 8 and 9; aggregated results can be found in Table 1. Each table presents the
names of the instances, Int, the percentage of integer variables that were fixed by rens, All, the
percentage of all variables that were fixed after presolving of the rens subproblem, TimeS, the
time scip needed before rens was called, Time and Nodes, the running time and the number of
branch-and-bound nodes needed to solve the subproblem to optimality, Solution, the best solution
found in the rens subproblem, and Found At, the node in the subproblem’s branch-and-bound

9

tree at which it has been found. Note that these values are rounded, e.g., the 100.0% given in
column Int of Table 4 for nw04 represents a ratio of 87460/87482.

If the subproblem was proven to be infeasible or no solution was found within the time limit,
this is depicted by an “–” in the column Solution. When the time limit of two hours was hit
in the rens subproblem, this is indicated by the term limit in the Time column. Hence, for all
instances that do not hit the time limit, the column Solution depicts the proven optimal rounding
of the relaxation solution and “–” indicates that it was proven that no feasible rounding exists.
Instances for which the optimal rounding is an optimal solution of the original MINLP are marked
by a star.

The correlation between the percentage of fixed variables and the success of rens is de-
picted in Figures 3–6. Each instance is represented by a cross, with the fixing rate being the
x-coordinate, and 0 or 1 representing success or failure as y-coordinate. The dotted blue line
shows a moving average taken over ten consecutive points and the dashed red line shows a mov-
ing average taken over 30 consecutive points. A thin gray line is placed at the average success
rate taken over all instances of the corresponding test set.

If we have to average running times or number of branch-and-bound nodes, we use a shifted
geometric mean. The shifted geometric mean of values t1, . . . , tn with shift s is defined as
n
√∏

(ti + s) − s. We use a shift of s = 10 for time and s = 100 for nodes in order to re-
duce the effect of very easy instances in the mean values. Further, using a geometric mean
prevents hard instances at or close to the time limit from having a huge impact on the measures.
Thus, the shifted geometric mean has the advantage that it reduces the influence of outliers in
both directions.3 In the given mean numbers, instances hitting the time limit are accounted for
with the time limit and the number of processed nodes at termination.

In Table 1, Columns “> 90%” and “avg” show the number of instances for which more than
90% of the integer variables were integral and the average percentage of integer variables taking
integral values, respectively. Column “succ” depicts the percentage of instances for which rens
found a feasible rounding. Columns “nodes” and “time (s)” give the shifted geometric means of
the branch-and-bound nodes and running time required for solving the rens subproblem.

Unless otherwise noted, the term variables always refers to integer variables for the remainder
of this section.

Computing optimal roundings: MIP. In Table 4, we see that for roughly one third (55/159)
of the instances, more than 90% of the variables took an integral solution in the optimal LP
solution. In contrast to that, there are only 22 instances for which the portion of integral solution
values is less than 40%. The average percentage of variables with integral LP solution value is
71.7%. There are a few cases with many continuous variables for which fixing the majority of
the integer variables did not result in a large ratio of all variables being fixed, see, e.g., dsbmip
or p5 34. This is the reason that we will use two threshold values for later tests, see Section 3.

For 59.7% (95/159) of the instances, rens found a feasible rounding of the LP optimum. For
15 of these instances, the rens subproblem hit the time limit, eleven of them are from MIPLIB
2010. For the remaining 80 instances, the solutions reported in Table 4 are the optimal roundings
of the given starting solutions. For 34 instances, the optimal rounding coincides with the global
optimal solution.

We further observe that the success rate is only weakly correlated to the ratio of fixed vari-
ables. The success rate on the instances with more than 90% fixed variables was nearly the same
as on the whole test set, namely 58.2%. This is an encouraging result for using rens as a start
heuristic inside a complete solver: very small subproblems contain feasible solutions.

3For a detailed discussion of the shifted geometric mean, see Achterberg [1, Appendix A3].

10

Figure 3: Moving averages of success rate, MIPLIB instances, after cuts

0 10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

% integral variables

%
su

cc
es

s
ra

te

single instances

mov. average (10 inst.)

mov. average (30 inst.)
average

Figure 4: Moving averages of success rate, MIPLIB instances, before cuts

0 10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

% integral variables

%
su

cc
es

s
ra

te

single instances

mov. average (10 inst.)

mov. average (30 inst.)
average

The connection between the fixing rate and the success rate is also depicted in Figure 3.
We see that the success rate decreases slightly, at about 75% fixed variables, but the difference
between low and high fixing rates is not huge.

We further observe that proving the non-existence of a feasible rounding is relatively easy
in most cases. For 59 out of 64 infeasible rounding subproblems, infeasibility could be proven
in presolving or while root node processing of the subproblem. There is only one instance,
pigeon-10, for which proving infeasibility takes more than 600 nodes. Considering the running
time, infeasibility could be proven in less than a second in 56 of 64 cases, with only one instance,
app1-2, taking more than 15 seconds. The instance neos-1601936 is the only one for which
feasibility could not be decided within the given time limit; hence, it is the only instance for
which we could not decide whether the optimal LP solution is roundable or not.

The results for using the LP optimum before cutting plane separation are shown in Table 5.
Even more instances, 62 compared to 55, have an integral LP solution for more than 90% of
the variables. However, there is one more (24 vs. 23) instance, for which the portion of integral
solution values is less than 40%. Contrary to what one might expect, the average percentage of
variables with integral LP value is hardly affected by cutting plane separation: it is 73.6% before

11

Figure 5: Moving averages of success rate, MIQCP instances, LP sol., after cuts

0 10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

% integral variables

%
su

cc
es

s
ra

te

single instances

mov. average (10 inst.)

mov. average (30 inst.)
average

separation and 71.7% after.
The number of instances for which rens found a solution, however, goes down: 80 instead

of 95, which is only half of the test set. This is particularly due to those instances with many
variables that take an integral value. Consequently, the success rate of rens drops with an
increase in the ratio of fixed variables. When rens is called before cutting planes are added,
fewer of the optimal roundings are optimal solutions to the original problem: 20 compared to
34, when called after cuts.

We conclude that, although the fractionality is about the same, LP solutions before cuts are
less likely to be roundable and the rounded solutions are often of inferior quality. In other words:
before cutting planes, integral solution values are more likely to be misleading (in the sense that
they cannot be extended to a good feasible solution). This is an important result for the design
of primal heuristics in general and confirms the observation that primal heuristics work better
after cutting plane separation, see, e.g., [32].

Computing optimal roundings: MIQCP. For MIQCP, we tested rens with LP solutions,
see Table 6, and with NLP solutions, see Table 7, as starting points. We also experimented with
the LP solution before cuts; the results were much worse and are therefore not shown.

The ratio of integral LP values is smaller compared to the MIP problems: there are only 9 out
of 70 instances for which more than 90% of the variables were integral, but there are 10 instances
for which all variables were fractional. Note that this does not necessarily mean that the rens
sub-MIQCP is identical to the original MIQCP, cf. the presence of general integer variables. In
this case, the rens subproblem corresponds to the original problem intersected with the integral
lattice-free hypercube around the starting solution. On average, 59.9% of the variables took an
integral value. The success rate of rens is even better than for MIPs: In 49 out of 70 instances
(70%), rens found a feasible rounding. Note that this is not due to the 10 instances for which
all variables were fractional: three of them also fail. Moreover, the success rate appears not to
depend on the percentage of fixed variables, see Figure 5.

Deciding feasibility, however, seems to be more difficult. Out of ten instances hitting the
time limit, there were eight for which rens did not find a feasible rounding. For 13 instances,
infeasibility of the rounding problem was proven, mostly in presolving or within a few branch-
and-bound nodes. Nine times, the optimal rounding was identical to the optimal solution of the
MIQCP.

12

Figure 6: Moving averages of success rate, MINLP instances, LP sol., after cuts

0 10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

% integral variables

%
su

cc
es

s
ra

te

single instances

mov. average (10 inst.)

mov. average (30 inst.)
average

The next observation we made is that the NLP solution tends to be much less integral than
the LP solution, on average only 13.8% of the variables take an integral value, see Table 7 and
Figure 5. This is due to the fact that in our experiments the LP solution was computed with
the simplex algorithm which tends to leave variables at their bounds, whereas the NLP solution
was computed with an interior point algorithm that tends to choose values from the interior of
the variables’ domains.

Surprisingly, this did not enhance the roundability. For 48 instances, rens found a feasible
rounding of the NLP optimum, compared to 49 for the LP. Worth mentioning, this was nearly
the same set of instances, and there were 46 on which both versions found a solution. The solution
quality, however, was typically better when using an NLP solution: 27 times the NLP solution
yielded a better rounding, only once the LP was superior. 26 times, the optimal rounding was
even an optimal solution of the original MIQCP.

The higher fractionality of the NLP relaxation is expressed in a much larger search space. In
shifted geometric mean, rens processed 628 search nodes if starting from an LP solution, 7078
if starting from an NLP solution. The geometric mean of the running time (Time) is roughly 5.5
times larger: 30.9 vs. 168.1 seconds.

We conclude that the same observation holds as in the MIP case: small subproblems generate
high-quality feasible solutions. Although the solution quality is improved by using an NLP
relaxation, the computational overhead and the success rate are not encouraging to make this a
standard setting if using rens inside a complete solver.

Computing optimal roundings: MINLP. For MINLP, we again compared two versions of
rens: one using the LP solution and one using the NLP solution as starting point, see Tables 8
and 9, respectively. For the same reason as in the MIQCP case we omitted the results for the
LP solution before cuts.

The integrality of the LP solutions is comparable to the MIQCP case. On average, 63.5% of
the variables take an integral value; there are 6 out of 105 instances for which more than 90% of
the variables are integral, and only four instances for which all variables are fractional. For this
test set, we see a clearer connection between the ratio of fractional variables and the success rate
of rens. The more variables are integral, the lower the chance for rens to succeed, see Figure 6.

For seven instances, the rens subproblem hit the time limit of two hours, always without
having found a feasible solution. Overall, 65 out of 105 (62%) of the LP solutions proved to be

13

Table 1: Computing optimal roundings (aggregated results)

integrality comp. effort
>90% avg succ nodes time (s)

MIP + cuts 55/159 71.7% 59.7% 814.4 22.6
MIP − cuts 62/159 73.6% 50.3% 719.9 21.7
MIQCP (LP) 9/70 59.9% 70.0% 627.7 30.9
MIQCP (NLP) 1/70 13.8% 68.6% 7078.8 168.1
MINLP (LP) 6/105 63.5% 61.9% 11175.6 83.0
MINLP (NLP) 1/105 15.0% 69.5% 93908.0 262.7

roundable, which is similar to the MIP results. In all cases, rens found the optimal rounding.
Generally, rens needs much more nodes to solve the rounding problem as compared to the other
tests.

Using the NLP instead of the LP relaxation slightly increases the success rate: 73 times,
rens finds a feasible rounding. As for MIQCPs, the quality is typically better (37 vs. 2 times),
which comes with a much lower integrality of 15% on average, 68 instances having all variables
fractional, and a huge increase in running time: a factor of more than three in shifted geometric
mean.

Computing optimal roundings: summary. Interestingly, the fractionality and roundability
of LP solutions is very similar for MIPs, MIQCPs and MINLPs: on average, only 30–40% of the
variables are fractional and for 60–70% of the instances rens found a feasible rounding. We
further observed that most often the rens subproblem could be solved to proven optimality and
that the success rate of rens is only weakly correlated to the fractionality. These three insights
are very encouraging for applying rens as a start heuristic inside a complete solver, see below.
A summary of the results on computing optimal roundings can be found in Table 1.

We further performed a McNemar test to analyze the statistical significance of the results.
As null hypothesis we assume that the LP and the NLP solution (or the LP before and after
cuts) are equally likely to yield a feasible rounding. For the MIP test set, the null hypothesis
gets rejected with a p-value of 0.0011 and for MINLP with 0.0114. For MIQCP, the p-value is
0.6547. This means that for MIP the LP solution after cuts is more likely to be roundable with
very high probability, for MINLP the NLP solution is more promising with high probability, for
MIQCP there is no statistically significant difference.

We conclude that the solutions found by rens are usually better when it is applied after
cutting plane separation and that using an NLP instead of an LP relaxation does not give a good
trade-off between solution quality and running time: it might be better, but the computational
overhead is huge.

Analyzing rounding heuristics. Our next experiment compares rens applied to the LP
solution after cuts with the three pure rounding heuristics that are implemented in scip. The
results for the MIPLIB instances are shown in Table 10. Instances for which none of the
compared methods could provide a solution are omitted in the presentation.

As implied by definition, the solutions found by rens (if the subproblem has been solved
to optimality) are always better or equal to the solutions produced by any rounding heuris-
tic. As expected, the solution quality of Rounding and ZI Round is always better or equal
to Simple Rounding, and ZI Round often is superior to Rounding. Since Simple Rounding,

14

Rounding, and ZI Round all endeavor to feasibility and neglect optimality, it is not too surpris-
ing that there are only three instances, for which Simple Rounding and Rounding find an optimal
rounding; four in the case of ZI Round.

A comparison of the number of solutions, however, shows that there is a big discrepancy
between the number of instances which have a roundable LP optimum (95) and the number of
instances for which these heuristics succeed (37 for ZI Round, 36 for Rounding, and 27 for
Simple Rounding). Of course, this has to be seen under the fact that these heuristics are
much faster than rens. The maximum running time was attained by Rounding on instance
opm2-z7-s2; it was only 0.09 seconds.

For the MIQCP and MINLP test sets, the situation was even more extreme. The rounding
heuristics were unable to produce a feasible solution for any of the instances – even though
the previous experiments proved that 60–70% of the LP solutions are roundable. This is most
likely due to the special design of these heuristics – they solely work on the LP relaxation – and
demonstrates the need for rounding heuristics that take the special requirements of nonlinear
constraints into consideration.

rens compared to other primal heuristics. This experiment compares rens to other primal
heuristics embedded in scip and called at the root node. For each of the three test sets, we
evaluated three different settings of scip: One for which all default root node heuristics except
rens are employed, one for which only rens is called, and one for which only the Feasibility
Pump (for MIP) or only Undercover (for MIQCP and MINLP) is used.

Based on the results from our first experiment, considering the running times and the node
numbers at which the rens subproblems find their optimal solutions, we decided to use 50% as
a threshold value for r1, the minimal fixing rate for integer variables, in this run. The minimal
fixing rate for all variables r2 was set to 25%. We used an absolute node limit l1 of 5000 and
computed the stalling node limit l2 as given in Section 3. Because of the long running times, we
refrained from using an NLP relaxation, although it might produce better solutions. We always
used the LP solution after cutting planes as a starting solution.

The results are shown in Tables 11–13. Instances for which none of the compared methods
could provide a solution are omitted in the presentation.

We observe that for all three test sets, rens alone is inferior to the portfolio of root node
heuristics, but superior to the single best heuristic in terms of problem instances for which
a solution could be found. For the MIP instances, scip’s root node heuristics found feasible
solutions for 106 instances, rens (with the described settings) for 56, the Feasibility Pump for
51. For MIQCP, the portfolio succeeded 56 times, rens 33 times, Undercover 29 times. For
MINLP the result was 28 for all, 12 for rens, 6 for Undercover. Note that on this test set, as
is typical for nonconvex MINLPs, finding a feasible solution is generally harder than for MIPs.
Other solvers perform comparably: we additionally performed this root node test with the default
settings and a time limit of two hours for couenne 0.4 [8] and baron 11.1 [50]. They found
feasible solutions for 35 and 40 instances, respectively.

There were two MIP instances, two MIQCP instances, and three MINLP instances, for which
rens found a feasible solution but the other scip root node heuristics did not. For a further 40,
17, and 5 instances, respectively, the solution found by rens was better than the best solution
produced by the other heuristics. We conclude that rens is a valuable extension of scip’s primal
heuristic portfolio. Further, in terms of the number solutions it produced when run as the only
heuristic, it is comparable to other state-of-the-art primal heuristics, such as the Feasibility Pump
(in an embedded version, compare Section 3) or Undercover.

15

Table 2: rens as primal heuristic inside scip (aggregated results), numbers of instances for which
rens was called and succeeded at least once

at root in tree
called found called found

MIP (of 160) 124 63 154 87
MIQCP (of 70) 45 31 60 42
MINLP (of 105) 45 9 99 39

Table 3: rens as primal heuristic inside scip (aggregated results), computational effort

arithmetic geometric shifted geom
nodes time(s) nodes time(s) nodes time(s)

MIP No rens 1 446 078 2461.4 7 155 220.3 11 248 377.2
MIP Root rens 1 442 400 2427.0 5 870 209.6 10 390 366.3
MIP Tree rens 1 443 404 2414.3 5 810 209.4 10 346 365.8
MIQCP No rens 659 740 2872.3 3 823 84.5 6 457 229.9
MIQCP Root rens 677 123 2927.0 3 742 86.4 6 361 232.0
MIQCP Tree rens 664 117 2888.6 3 561 86.2 6 193 229.9
MINLP No rens 2 338 903 3274.5 45 334 288.0 58 758 466.5
MINLP Root rens 2 324 208 3274.7 44 723 291.4 58 406 467.1
MINLP Tree rens 1 925 902 3168.7 38 568 267.9 51 066 431.3

Impact of rens on the overall performance of scip. Finally, we evaluate whether a
reduced version of the full rens algorithm is suited to serve as a primal heuristic applied inside
a complete solver. We use the same threshold settings as in the previous experiment. For this
experiment, interactions of different primal heuristics among each other and with other solver
components come into play. scip applies eleven primal heuristics at the root node. Of course, a
primal heuristic called prior to rens might already have found a solution which is better than
the optimal rounding, or in an extreme case, the solution process might already terminate before
rens is called. Further, any solution found before rens is called might change the solution path.
It might trigger variable fixings by dual reductions, which lead to a different LP and hence to a
different initial situation for rens.

The results are shown in Tables 14–16. We compare scip without the rens heuristic (No
RENS) against scip with rens applied at most once at the root node (Root RENS) and scip
with rens applied at every tenth depth of the branch-and-bound tree (Tree RENS). Columns
Nodes and Time show the number of branch-and-bound nodes and the running time scip needs
to solve an instance to proven optimality. If a limit was hit, this is indicated by the term limit
in the time column and the node number at which the solution process stopped is preceded by
a ’>’-symbol. At the bottom of the table, the arithmetic means, the geometric means, and the
shifted geometric means of the number of branch-and-bound nodes and the running time are
given.

A summary of the results is given in Tables 2 and 3. The Columns “called” and “found” in
Table 2 show for how many instances rens was called and found a feasible solution, respectively.
Table 3 depicts the arithmetic means, the geometric means, and the shifted geometric means of
the number of branch-and-bound nodes and the running time for each combination of the three
different settings and the three test sets.

16

First, let us consider the results for MIP, see Table 14. Due to the a-priori limits, rens was
called at the root node for only 124 out of the 160 instances. Out of these, rens found a feasible
solution in 63 cases, which corresponds to a success rate of 50%, compared to 59% without
any limits, see above. In 61 cases, this solution was the best solution found at the root node.
Considering that there are ten other primal heuristics applied at the root node, this appears to
be a very strong result. When rens was additionally used during search, it was called on 154
instances, finding feasible solutions for 87 of them.

As is typical for primal heuristics, the impact on the overall performance is not huge. Never-
theless, we see that both versions, calling rens only at the root and all over the tree, give slight
decreases in the arithmetic and geometric means of the node numbers and the running time.
Both versions were about 3% faster and took 8% less nodes in shifted geometric mean. For the
time-outed instances, Root RENS and Tree RENS provided a better primal bound than No RENS
eight and nine times, respectively, whereas both were inferior in two cases.

For the MIQCP test set, rens was called at the root for 45 out of 70 instances, finding a
feasible solution in 31 cases. This was always the best solution scip found at the root node.
The overall performance was about the same: the running time stayed constant for Tree RENS
and was increased by less than one percent for Root RENS, whereas the number of branch-and-
bound nodes was reduced by 7% and 2%, respectively. When rens is called during search tree
processing, there are four instances with a better primal bound at timeout, once it was worse.
For calling rens exclusively at the root, this ratio was 2:0. Also, there is one instance, namely
nuclear14a, for which only Tree RENS provided a feasible solution.

For MINLP, the lower success rate for the root LPs with large ratios of integral variables is
confirmed by this experiment. For 45 out of 105 instances, rens was called, but in only 9 cases
it could improve the incumbent solution. Interestingly, the version that calls rens during the
tree performs really well. There were 42 instances, for which rens could improve the incumbent
at least once during search, ghg 3veh being the front-runner with 27 improving solutions in 44
calls of rens.

The overall performance reflects that situation. The Root RENS setting shows the same
behavior as No RENS, the running time is nearly equal on average and in geometric mean, the
number of branch-and-bound nodes goes down by one percent, there are hardly any instances
for which we see any change in performance. For Tree RENS, however, the geometric mean
of the running time and the number of branch-and-bound nodes goes down by 8% and 13%,
respectively. One might argue that this is mainly because of enpro48pb and fo8 ar4 1 which
show a dramatic improvement in performance. But even if we excluded these two instances (and
for fairness reasons also enpro48 and enpro56pb, two outliers in the opposite direction), the
mean performance gain is 3% for running time and 8% for number of branch-and-bound nodes.

We further performed a variant of the Wilcoxon signed rank test to analyze the statistical
significance of the results, using the Stats package of the SciPy project [39]. We ranked the
results by the running time factors per instance and calculated one rank sum from the improving
instances and one from those which showed a degradation. Instances that showed no or hardly any
performance difference (less than one second or less than 1%) were excluded. As null hypothesis,
we assume that a version of scip using rens at the root or throughout the tree does perform
equally w.r.t. running time as scip without rens. For the MIP test set, the null hypothesis gets
rejected with a p-value of 0.0236 (for Root RENS) and 0.0178 (for Tree RENS) which is below the
standard threshold of 0.05 used as level of significance. Not surprisingly, the results for MIQCP
indicate that there are no performance differences for this test set: the p-values are 0.6465 and
0.8753 for Root RENS and for Tree RENS, respectively. For MINLP, p-values of 0.3980 and 0.2862
are achieved. Although failing to reject the null hypothesis when a standard threshold is applied,
at least the latter could be taken as an indicator that it is more likely that the results are not

17

simply acquired by chance.
Altogether, these experiments show that rens, in particular for MIP and MIQCP, helps

to improve the primal bound at the root node, and hence the initial gap before the branch-
and-bound search starts. Applying rens exclusively at the root node had a neutral to slightly
positive effect on the overall performance, while giving a user the advantage of finding good
solutions early. Applying rens throughout the search was at least as good for all three test sets
and showed a nice improvement in the case of MINLP– which was partly due to two outliers.
Consequently, rens is used in the default settings of scip. Furthermore, versions of rens have
been recently integrated into bonmin [20] and cbc [56].

6 Conclusion

We introduced rens, a large neighborhood search algorithm that, given a MIP or an MINLP,
solves a subproblem whose solution space is the feasible roundings of a relaxation solution. We
showed that most MIP, MIQCP, and MINLP instances have roundable LP and NLP optima and
in most cases, the optimal roundings can be computed efficiently. Surprisingly, the roundabil-
ity seems not to be related to the fractionality of the starting solution. Knowing the optimal
roundings provides us with a benchmark for rounding heuristics; we discovered that the rounding
heuristics implemented in scip often fail in finding a feasible solution, even though the provided
starting point is roundable. They rarely find the optimal rounding.

We further investigated the impact of a reduced version of rens if applied as a primal heuristic
inside a complete solver. rens directly helps to improve the primal bound known at the root
node. The impact on the overall performance is minor but measurable, which is typical for primal
heuristics.

rens is part of the scip standard distribution and employed by default. The implementation
presented in this article can be accessed in source code at [61].

Acknowledgments

Many thanks go to Ambros M. Gleixner and Daniel E. Steffy for their thorough proof-reading
and to two anonymous reviewers for their helpful comments. This research has been supported
by the DFG Research Center Matheon Mathematics for key technologies4 in Berlin.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007.

[2] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[3] T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization,
Special Issue 4(1):77–86, 2007.

[4] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):1–12, 2006. http://miplib.zib.de.

4http://www.matheon.de

18

http://miplib.zib.de
http://www.matheon.de

[5] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146–164, 1975.

[6] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. Octane: A new heuristic for
pure 0-1 programs. Operations Research, 49, 2001.

[7] E. Balas, S. Schmieta, and C. Wallace. Pivot and shift - a mixed integer programming
heuristic. Discrete Optimization, 1(1):3–12, June 2004.

[8] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods & Software, 24:597–634, 2009.

[9] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general mixed-integer
problems. Discrete Optimization, Special Issue 4(1):77–86, 2007.

[10] T. Berthold. Primal heuristics for mixed integer programs. Diploma thesis, Technische
Universität Berlin, 2006.

[11] T. Berthold. Heuristics of the branch-cut-and-price-framework SCIP. In J. Kalcsics and
S. Nickel, editors, Operations Research Proceedings 2007, pages 31–36. Springer-Verlag, 2008.

[12] T. Berthold, T. Feydy, and P. J. Stuckey. Rapid learning for binary programs. In A. Lodi,
M. Milano, and P. Toth, editors, Proc. of CPAIOR 2010, volume 6140 of LNCS, pages
51–55. Springer, June 2010.

[13] T. Berthold and A. M. Gleixner. Undercover – a primal heuristic for MINLP based on sub-
MIPs generated by set covering. In P. Bonami, L. Liberti, A. J. Miller, and A. Sartenaer,
editors, Proceedings of the EWMINLP, pages 103–112, April 2010.

[14] T. Berthold and A. M. Gleixner. Undercover – a primal MINLP heuristic exploring a
largest sub-MIP. ZIB-Report 12-07, Zuse Institute Berlin, 2012. Accepted for publication
in Mathematical Programming.

[15] T. Berthold, A. M. Gleixner, S. Heinz, and S. Vigerske. Analyzing the computational impact
of MIQCP solver components. Numerical Algebra, Control and Optimization, 2(4):739–748,
2012.

[16] T. Berthold, S. Heinz, M. E. Pfetsch, and S. Vigerske. Large neighborhood search be-
yond MIP. In L. D. Gaspero, A. Schaerf, and T. Stützle, editors, Proceedings of the 9th
Metaheuristics International Conference (MIC 2011), pages 51–60, 2011.

[17] T. Berthold, S. Heinz, and S. Vigerske. Extending a CIP framework to solve MIQCPs. In
J. Lee and S. Leyffer, editors, Mixed Integer Nonlinear Programming, volume 154 of The
IMA Volumes in Mathematics and its Applications, pages 427–444. Springer, 2011.

[18] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, (58):12–15, 1998.

[19] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory and practice
– closing the gap. In M. Powell and S. Scholtes, editors, Systems Modelling and Optimization:
Methods, Theory, and Applications, pages 19–49. Kluwer Academic Publisher, 2000.

[20] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex mixed integer
nonlinear programs. Disc. Opt., 5:186–204, 2008.

19

[21] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming, 119(2):331–352, 2009.

[22] P. Bonami and J. Gonçalves. Heuristics for convex mixed integer nonlinear programs. Com-
putational Optimization and Applications, pages 1–19, 2010.

[23] M. Bussieck, A. Drud, and A. Meeraus. MINLPLib – a collection of test models for mixed-
integer nonlinear programming. INFORMS Journal on Computing, 15(1):114–119, 2003.

[24] M. R. Bussieck and S. Vigerske. MINLP solver software. In J. J. Cochran, L. A. Cox,
P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia of Operations
Research and Management Science. Wiley and Sons, Inc., 2010.

[25] C. d’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. Experiments with a feasibility pump
approach for nonconvex MINLPs. In P. Festa, editor, Experimental Algorithms, volume 6049
of Lecture Notes in Computer Science, pages 350–360. Springer Berlin / Heidelberg, 2010.

[26] C. d’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. A storm of feasibility pumps for
nonconvex MINLP. Mathematical Programming, 136:375–402, 2012.

[27] C. d’Ambrosio and A. Lodi. Mixed integer nonlinear programming tools: a practical
overview. 4OR: A Quarterly Journal of Operations Research, 9:329–349, 2011.

[28] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to
improve MIP solutions. Mathematical Programming A, 102(1):71–90, 2004.

[29] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming A,
104(1):91–104, 2005.

[30] M. Fischetti and A. Lodi. Local branching. Mathematical Programming B, 98(1-3):23–47,
2003.

[31] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex programming.
Technical report, DEI, University of Padova, 2012.

[32] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical Programming C, 1:201–
222, 2009.

[33] S. Ghosh. DINS, a MIP improvement heuristic. In M. Fischetti and D. P. Williamson,
editors, Integer Programming and Combinatorial Optimization (IPCO 2007), volume 4513
of LNCS, pages 310–323, 2007.

[34] F. Glover and M. Laguna. General purpose heuristics for integer programming – part I.
Journal of Heuristics, 2(4):343–358, 1997.

[35] F. Glover and M. Laguna. General purpose heuristics for integer programming – part II.
Journal of Heuristics, 3(2):161–179, 1997.

[36] F. Glover, A. Løkketangen, and D. L. Woodruff. Scatter search to generate diverse MIP
solutions. OR Computing Tools for Modeling, Optimization and Simulation: Interfaces in
Computer Science and Operations Research, 2000.

[37] P. L. Hammer, E. L. Johnson, and U. N. Peled. Facets of regular 0-1 polytopes. Mathematical
Programming, 8:179–206, 1975.

20

[38] P. Hansen, N. Mladenović, and D. Urošević. Variable neighborhood search and local branch-
ing. Computers and Operations Research, 33(10):3034–3045, 2006.

[39] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001–.

[40] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation,
3(2):103–163, 2011.

[41] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[42] L. Liberti, N. Mladenović, and G. Nannicini. A recipe for finding good solutions to MINLPs.
Mathematical Programming Computation, 3(4):349–390, 2011.

[43] A. Løkketangen. Heuristics for 0-1 mixed integer programming. Handbook of Applied Opti-
mization, 2002.

[44] A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems using
tabu search. European Journal of Operations Research, 106:624–658, 1998.

[45] H. Mittelmann. Decision tree for optimization software: Benchmarks for optimization soft-
ware. http://plato.asu.edu/bench.html.

[46] G. Nannicini and P. Belotti. Rounding-based heuristics for nonconvex MINLPs. Mathemat-
ical Programming Computation, 4(1):1–31, 2012.

[47] G. Nannicini, P. Belotti, and L. Liberti. A local branching heuristic for MINLPs. ArXiv
e-prints, 2008.

[48] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007.

[49] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6:445–454, 1994.

[50] M. Tawarmalani and N. Sahinidis. Global optimization of mixed-integer nonlinear programs:
A theoretical and computational study. Mathematical Programming, 99:563–591, 2004.

[51] S. Vigerske. Decomposition in Multistage Stochastic Programming and a Constraint Integer
Programming Approach to Mixed-Integer Nonlinear Programming. PhD thesis, Humboldt-
Universität zu Berlin, 2012.

[52] A. Wächter and L. Biegler. On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57, 2006.

[53] C. Wallace. ZI round, a MIP rounding heuristic. Journal of Heuristics, 16(5):715–722, 2010.

[54] L. A. Wolsey. Faces for a linear inequality in 0-1 variables. Mathematical Programming,
8:165–178, 1975.

[55] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin, 1996.

21

http://plato.asu.edu/bench.html

[56] CBC user guide – COIN-OR. http://www.coin-or.org/Cbc.

[57] CppAD. A Package for Differentiation of C++ Algorithms. http://www.coin-or.org/

CppAD/.

[58] Ipopt (Interior Point OPTimizer). http://www.coin-or.org/Ipopt/.

[59] LindoGlobal. Lindo Systems, Inc. http://www.lindo.com.

[60] SBB. ARKI Consulting & Development A/S and GAMS Inc. http://www.gams.com/

solvers/solvers.htm#SBB.

[61] SCIP. Solving Constraint Integer Programs. http://scip.zib.de/.

[62] SoPlex. An open source LP solver implementing the revised simplex algorithm. http:

//soplex.zib.de/.

22

http://www.coin-or.org/Cbc
http://www.coin-or.org/CppAD/
http://www.coin-or.org/CppAD/
http://www.coin-or.org/Ipopt/
http://www.lindo.com
http://www.gams.com/solvers/solvers.htm#SBB
http://www.gams.com/solvers/solvers.htm#SBB
http://scip.zib.de/
http://soplex.zib.de/
http://soplex.zib.de/

List of Tables

1 Computing optimal roundings (aggregated results) 14
2 rens as primal heuristic inside scip (aggregated results), numbers of instances for

which rens was called and succeeded at least once 16
3 rens as primal heuristic inside scip (aggregated results), computational effort . 16
4 Computing optimal roundings for MIPLIB instances, after cuts 24
5 Computing optimal roundings for MIPLIB instances, before cuts 27
6 Computing optimal roundings for MIQCP instances, using LP solution, after cuts 30
7 Computing optimal roundings for MIQCP instances, using NLP solution, after cuts 32
8 Computing optimal roundings for MINLP instances, using LP solution, after cuts 34
9 Computing optimal roundings for MINLP instances, using NLP solution, after cuts 36
10 Analyzing rounding heuristics for MIPLIB instances 38
11 rens compared to other primal heuristics, MIPLIB instances 40
12 rens compared to other primal heuristics, MIQCP instances 42
13 rens compared to other primal heuristics, MINLP instances 44
14 Impact of rens on overall solving process for MIPLIB instances 45
15 Impact of rens on overall solving process for MIQCP instances 48
16 Impact of rens on overall solving process for MINLP instances 50

23

Table 4: Computing optimal roundings for MIPLIB instances, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10teams 86.9 92.6 0.8 0.0 0 – –
30n20b8 97.3 98.1 42.0 0.0 0 – –
a1c1s1 18.8 7.9 6.6 limit 404552 13209.1836 271570
acc-tight5 58.8 78.1 6.0 0.7 0 – –
aflow30a 78.9 80.4 4.4 3.6 3777 1158? 357
aflow40b 91.8 92.6 13.1 43.1 67215 1179 19497
air04 96.0 99.6 7.0 0.0 0 – –
air05 96.1 98.9 2.4 0.0 0 – –
app1-2 96.1 48.5 52.8 115.7 598 – –
arki001 85.7 68.5 1.5 0.2 1 – –
ash608gpia-3col 28.0 53.5 22.1 0.0 0 – –
atlanta-ip 88.6 97.0 59.8 2.6 27 98.0096 22
bab5 97.2 99.4 56.3 0.1 0 – –
beasleyC3 63.7 73.4 3.5 1.5 779 789 428
bell3a 96.2 90.2 0.0 0.0 1 878430.316? 1
bell5 72.3 77.5 0.1 0.0 0 – –
biella1 90.5 92.0 5.6 limit 1439186 3278480.58 904043
bienst2 0.0 0.0 1.1 1634.4 459071 54.6? 49778
binkar10 1 48.8 48.7 0.9 270.9 407041 6746.64 89429
blend2 90.6 90.8 0.3 0.1 35 7.599? 22
bley xl1 27.5 64.2 226.5 3.9 18 190? 18
bnatt350 50.4 66.3 4.2 0.0 0 – –
cap6000 99.9 100.0 1.8 0.0 1 -2443599 1
core2536-691 94.6 94.8 11.5 3289.1 544659 695 10446
cov1075 25.0 25.0 0.9 35.0 10410 20? 506
csched010 88.7 84.3 2.9 1.0 38 – –
dano3mip 67.4 64.6 30.6 limit 14384 762.75 2737
danoint 5.4 0.6 1.2 450.3 109479 65.6667? 5463
dcmulti 29.7 21.9 0.7 0.4 180 188186.5 68
dfn-gwin-UUM 38.9 13.4 0.5 819.3 307149 39920 4343
disctom 97.5 99.5 2.1 0.0 0 – –
ds 99.0 99.4 105.5 0.6 0 – –
dsbmip 84.5 21.5 0.8 0.2 34 -305.1982? 34
egout 85.7 85.7 0.0 0.0 1 568.1007? 1
eil33-2 98.5 99.7 6.3 0.0 0 – –
eilB101 88.9 99.0 13.5 0.1 0 – –
enigma 83.0 92.0 0.0 0.0 0 – –
enlight13 66.6 96.2 0.2 0.0 0 – –
enlight14 68.4 95.9 0.3 0.0 0 – –
fast0507 99.5 99.5 14.3 14.4 10302 177 4218
fiber 91.9 95.0 0.9 0.1 78 411151.82 48
fixnet6 88.6 82.3 1.1 0.4 32 3997 26
flugpl 11.1 35.7 0.0 0.0 0 – –
gesa2 88.0 82.4 1.1 0.0 5 25780031.4? 3
gesa2-o 92.9 88.9 1.0 0.0 5 25780031.4? 3
gesa3 78.6 82.0 1.3 0.0 36 27991430.1 33
gesa3 o 85.0 85.6 1.2 0.0 19 27991430.1 17
glass4 70.8 74.4 0.3 1.6 2622 2.2666856e+09 2491
gmu-35-40 93.5 93.7 0.5 0.1 61 -2399398.21 57
gt2 90.8 100.0 0.0 0.0 1 21166? 1
harp2 91.1 98.3 0.8 0.0 0 – –
iis-100-0-cov 0.0 0.0 2.6 1700.5 120842 29? 30
iis-bupa-cov 57.8 57.8 8.8 3819.8 537082 36? 1634
iis-pima-cov 82.3 82.3 17.9 54.6 12823 33? 4545
khb05250 66.7 32.6 0.3 0.1 7 106940226? 4

24

Table 4 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

l152lav 97.2 99.4 0.1 0.0 0 – –
lectsched-4-obj 28.7 31.0 6.8 0.0 0 – –
liu 49.0 46.2 10.8 limit 6040599 3418 4613091
lseu 74.4 77.9 0.1 0.1 22 1148 18
m100n500k4r1 73.2 73.2 0.4 0.8 848 -22 180
macrophage 43.5 45.8 2.3 0.0 0 – –
map18 63.6 76.6 48.8 128.7 2896 -847? 711
map20 63.6 75.7 38.9 104.5 2408 -922? 888
markshare1 76.0 76.0 0.0 0.0 107 142 59
markshare2 78.3 78.3 0.1 0.0 101 131 94
mas74 91.3 90.7 0.2 0.4 90 14343.468 67
mas76 91.9 91.3 0.2 0.3 42 40560.0541 35
mcsched 15.9 18.4 3.0 limit 1721772 213768 54512
mik-250-1-100-1 62.4 62.2 0.2 0.2 172 -66729? 172
mine-90-10 20.6 27.8 4.2 limit 2667271 -784302338? 2445697
misc03 78.3 99.3 0.2 0.0 0 – –
misc06 90.2 38.4 0.2 0.1 19 12850.8607? 17
misc07 82.8 94.0 0.3 0.0 0 – –
mitre 99.6 100.0 4.8 0.0 1 115155? 1
mkc 92.6 93.5 2.9 0.3 389 -539.866 160
mod008 94.4 94.4 0.7 0.1 19 309 4
mod010 98.6 100.0 0.3 0.0 0 – –
mod011 53.1 12.6 7.2 64.1 387 -54219145.9 129
modglob 60.2 56.8 0.2 1.3 5795 20799458.8 4360
momentum1 76.7 73.0 11.8 0.2 0 – –
momentum2 74.8 76.5 50.9 0.7 0 – –
momentum3 78.4 77.1 1034.8 0.5 0 – –
msc98-ip 82.0 85.5 145.8 0.1 0 – –
mspp16 99.0 99.1 1202.2 13.1 0 – –
mzzv11 83.4 82.9 74.8 0.0 0 – –
mzzv42z 86.5 86.1 75.4 0.1 0 – –
n3div36 99.9 99.9 6.7 0.1 1 151600 1
n3seq24 99.6 99.7 82.8 63.1 24054 68000 3536
n4-3 56.9 10.0 2.8 limit 415575 9010 112840
neos13 78.6 78.1 26.8 limit 75103 -65.6552 51090
neos18 70.8 78.1 0.9 0.0 0 – –
neos-1109824 94.5 97.0 3.2 0.0 0 – –
neos-1337307 45.1 45.2 4.7 limit 767115 -202133 4868
neos-1396125 45.0 48.0 3.5 11.4 2026 3000.0553? 1867
neos-1601936 80.8 77.1 7.9 limit 252812 – –
neos-476283 99.0 93.0 147.4 3.0 130 406.8123 71
neos-686190 96.0 98.3 1.3 0.0 0 – –
neos-849702 70.8 80.0 1.6 0.1 0 – –
neos-916792 87.1 89.3 13.1 0.1 0 – –
neos-934278 76.8 75.1 49.9 limit 105271 1332 9576
net12 41.8 56.3 31.7 0.1 0 – –
netdiversion 96.1 99.9 301.9 1.1 0 – –
newdano 0.0 0.0 2.9 limit 1160686 66.5 774340
noswot 47.4 64.2 0.1 0.0 0 – –
ns1208400 78.2 82.5 6.2 0.1 0 – –
ns1688347 99.4 99.9 20.1 0.0 0 – –
ns1758913 91.4 92.1 5385.0 6.4 5 -457.7183 5
ns1766074 77.8 87.0 0.1 0.0 1 – –
ns1830653 57.8 72.8 4.6 0.1 0 – –
nsrand-ipx 98.3 98.4 19.7 569.0 2061551 55360 31084
nw04 100.0 100.0 14.1 0.4 0 – –
opm2-z7-s2 9.9 10.1 10.9 limit 52398 -10271 50719
opt1217 95.2 96.9 0.3 0.0 1 -16? 1

25

Table 4 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

p0201 63.1 92.8 0.4 0.0 1 7805 1
p0282 71.5 72.5 0.3 0.1 1 258411? 1
p0548 96.6 100.0 0.2 0.0 1 8763 1
p2756 98.9 99.6 1.1 0.0 1 3152 1
pg5 34 97.0 46.0 3.8 1.5 7 -14287.7021 4
pigeon-10 44.6 77.2 1.3 7.7 27538 – –
pk1 72.7 46.5 0.0 0.2 460 29 376
pp08a 46.9 33.8 0.3 0.6 319 7360 148
pp08aCUTS 48.4 32.1 0.2 0.6 434 7370 405
protfold 65.8 88.4 3.8 0.2 0 – –
pw-myciel4 58.4 60.4 7.6 0.0 0 – –
qiu 25.0 25.0 0.2 47.6 23791 -132.8731? 1149
qnet1 92.0 95.1 0.9 0.0 1 21237.6552 1
qnet1 o 91.7 95.0 1.1 0.1 261 22600.83 168
rail507 99.5 99.5 14.8 41.2 23871 178 230
ran16x16 71.1 71.5 1.1 138.7 464014 3846 4332
rd-rplusc-21 55.5 66.0 57.7 4.3 415 – –
reblock67 17.6 26.6 3.7 limit 5552244 -34629815.5 700261
rentacar 75.0 7.6 1.2 0.6 9 30356761? 6
rgn 96.0 54.9 0.2 0.0 1 82.2? 1
rmatr100-p10 49.0 49.2 2.8 16.5 686 424 322
rmatr100-p5 63.0 63.6 4.1 13.0 258 976? 118
rmine6 65.5 67.0 8.2 5266.1 4687190 -457.1727 811719
rocII-4-11 81.6 88.4 18.4 0.0 0 – –
rococoC10-001000 82.1 85.8 2.7 33.5 42970 12067 4679
roll3000 65.2 78.3 2.7 0.4 94 14193 12
rout 83.2 93.7 0.6 0.0 0 – –
satellites1-25 89.2 99.4 68.2 0.0 0 – –
set1ch 96.2 90.2 0.7 0.0 3 54537.75? 2
seymour 52.7 55.5 15.1 limit 1067621 427 917345
sp98ic 99.3 99.3 4.8 12.2 37885 469766019 12687
sp98ir 93.9 96.0 3.2 0.0 0 – –
stein27 11.1 11.1 0.0 0.3 1202 18? 50
stein45 17.8 17.8 0.2 0.9 3597 30? 313
swath 99.2 98.3 3.4 0.0 0 – –
t1717 99.2 99.4 27.3 0.4 0 – –
tanglegram1 99.1 99.1 14.4 0.2 0 – –
tanglegram2 96.4 96.7 1.3 0.0 0 – –
timtab1 14.4 15.9 0.8 8.3 16082 827609 4701
timtab2 12.6 14.7 1.7 2.4 151 – –
tr12-30 73.6 50.7 1.5 408.3 909211 131438 17370
triptim1 87.0 99.5 127.3 0.2 0 – –
unitcal 7 81.6 59.7 63.9 2.8 1 – –
vpm2 55.4 50.8 0.4 0.4 336 13.75? 301
vpphard 97.6 98.1 28.4 0.6 0 – –
zib54-UUE 17.5 21.5 2.6 limit 1126102 10334015.8? 392023

26

Table 5: Computing optimal roundings for MIPLIB instances, before cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10teams 90.1 92.5 0.4 0.0 0 – –
30n20b8 98.1 98.8 2.2 0.0 0 – –
a1c1s1 15.6 10.4 3.6 limit 2174731 – –
acc-tight5 56.8 84.4 2.0 0.1 0 – –
aflow30a 92.6 97.9 0.2 0.0 0 – –
aflow40b 97.2 98.0 1.0 0.0 0 – –
air04 96.1 98.2 6.2 0.0 0 – –
air05 96.4 98.7 1.8 0.0 0 – –
app1-2 96.7 48.9 14.9 60.3 492 -23 492
arki001 84.9 72.6 0.5 0.0 0 – –
ash608gpia-3col 33.4 67.3 3.3 0.0 0 – –
atlanta-ip 88.9 97.3 30.2 1.8 196 99.0098 195
bab5 98.8 99.1 29.0 0.1 0 – –
beasleyC3 82.4 100.0 0.1 0.0 1 945 1
bell3a 84.6 80.4 0.0 0.0 13 878651.068 12
bell5 70.2 87.5 0.0 0.0 1 9082700.02 1
biella1 90.5 92.0 5.2 limit 1251065 3253217.92 682395
bienst2 0.0 0.0 0.3 1133.6 514667 54.6? 248177
binkar10 1 77.6 77.6 0.1 1.1 2688 6796.71 1565
blend2 97.4 99.3 0.0 0.0 0 – –
bley xl1 47.4 82.2 171.8 0.4 11 210 11
bnatt350 58.9 59.4 1.3 0.0 0 – –
cap6000 100.0 100.0 0.6 0.0 1 -2442801 1
core2536-691 94.6 94.8 11.2 5427.0 951274 695 30373
cov1075 0.0 0.0 0.6 limit 1622177 20? 184
csched010 94.2 91.6 0.3 0.0 1 – –
dano3mip 77.5 74.4 22.1 limit 25874 761.9286 118
danoint 7.1 0.8 0.6 152.0 50018 65.6667? 40513
dcmulti 35.1 41.4 0.1 9.4 40800 188182? 12687
dfn-gwin-UUM 50.0 4.8 0.1 54.1 108721 41040 20493
disctom 97.5 99.5 1.8 0.0 0 – –
ds 99.2 99.5 27.0 0.5 0 – –
dsbmip 74.1 20.6 0.5 0.2 7 – –
egout 71.4 100.0 0.0 0.0 1 625.3192 1
eil33-2 99.3 99.9 3.6 0.0 0 – –
eilB101 96.8 97.8 1.6 0.0 0 – –
enigma 88.0 99.0 0.0 0.0 0 – –
enlight13 99.1 99.1 0.0 0.0 0 – –
enlight14 99.2 99.2 0.0 0.0 0 – –
fast0507 99.5 99.5 13.2 15.6 12207 177 5197
fiber 96.2 100.0 0.0 0.0 0 – –
fixnet6 96.8 90.6 0.0 0.0 3 4435 3
flugpl 11.1 21.4 0.0 0.0 0 – –
gesa2 89.7 91.6 0.2 0.0 5 26038337.6 5
gesa2-o 89.9 96.0 0.2 0.0 6 26038337.6 5
gesa3 81.5 88.1 0.2 0.0 29 27991430.1 24
gesa3 o 84.6 90.6 0.2 0.0 29 27991430.1 24
glass4 75.8 83.9 0.1 0.1 49 – –
gmu-35-40 98.3 98.6 0.3 0.0 0 – –
gt2 91.3 96.5 0.0 0.0 0 – –
harp2 97.8 99.3 0.1 0.0 0 – –
iis-100-0-cov 0.0 0.0 0.6 2902.6 186105 29? 47
iis-bupa-cov 55.1 55.1 1.3 6150.5 745491 36? 1989
iis-pima-cov 82.1 82.1 1.8 50.7 11558 33? 1363
khb05250 20.8 4.3 0.0 1.6 3364 106940226? 87

27

Table 5 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

l152lav 97.2 99.9 0.2 0.0 0 – –
lectsched-4-obj 78.2 78.8 1.5 0.0 0 – –
liu 51.4 48.4 36.3 limit 8755631 4762 2865
lseu 90.7 100.0 0.0 0.0 0 – –
m100n500k4r1 80.0 80.0 -0.0 0.5 650 -21 102
macrophage 70.0 70.5 0.1 0.0 0 – –
map18 58.5 71.5 33.3 3299.9 61952 -847? 52
map20 66.1 80.4 27.0 404.2 17845 -922? 617
markshare1 88.0 92.0 0.0 0.0 1 204 1
markshare2 88.3 88.3 0.0 0.0 3 131 2
mas74 91.9 91.3 0.0 0.0 58 14372.8713 20
mas76 92.6 92.0 0.0 0.0 21 40560.0541 12
mcsched 15.8 18.2 0.9 limit 1966420 214792 1088285
mik-250-1-100-1 60.0 59.8 0.1 0.0 32 0 31
mine-90-10 20.6 27.8 3.8 limit 2556662 -782117611 1315502
misc03 87.0 97.1 0.1 0.0 0 – –
misc06 92.9 39.0 0.1 0.1 43 12854.0023 33
misc07 91.4 98.3 0.2 0.0 0 – –
mitre 99.6 100.0 4.5 0.0 1 116745 1
mkc 97.6 99.1 1.1 0.0 1 -284.55 1
mod008 98.4 100.0 0.0 0.0 1 308 1
mod010 98.4 99.8 0.4 0.0 0 – –
mod011 83.3 21.2 0.6 1.6 153 -53656254.1 50
modglob 69.4 76.6 0.1 0.0 174 20784597.9 174
momentum1 80.3 78.6 5.1 155.3 76443 109169.397 19330
momentum2 78.9 83.1 26.2 0.3 0 – –
momentum3 77.3 78.4 497.4 0.6 0 – –
msc98-ip 86.8 89.4 6.6 0.1 0 – –
mspp16 99.9 100.0 1001.5 13.0 0 – –
mzzv11 86.4 85.7 51.5 0.0 0 – –
mzzv42z 88.2 87.8 51.9 0.0 0 – –
n3div36 99.9 99.9 2.0 0.1 3 149800 2
n3seq24 99.8 99.9 23.0 1.5 0 – –
n4-3 74.1 31.8 0.1 359.6 215073 9395 12131
neos13 78.2 77.7 12.2 39.6 267 -66.8793 267
neos18 71.4 71.7 0.3 0.0 0 – –
neos-1109824 96.8 99.9 1.1 0.0 0 – –
neos-1337307 50.0 50.1 2.4 742.6 154344 -202143 12623
neos-1396125 47.3 53.1 1.1 2.2 510 3000.0556? 489
neos-1601936 83.7 77.2 6.5 0.0 0 – –
neos-476283 99.0 93.0 141.6 2.7 121 406.8123 74
neos-686190 96.9 99.0 0.2 0.0 0 – –
neos-849702 74.5 80.9 1.2 0.0 0 – –
neos-916792 87.1 89.3 1.1 0.1 0 – –
neos-934278 79.5 78.0 18.6 limit 215616 346 201165
net12 60.4 79.8 7.9 0.1 0 – –
netdiversion 96.5 100.0 199.6 1.0 0 – –
newdano 3.6 0.4 0.4 1900.2 1332691 66.8333 800380
noswot 50.5 47.5 0.0 0.0 0 – –
ns1208400 84.1 87.6 2.3 0.0 0 – –
ns1688347 65.8 77.8 8.0 0.1 0 – –
ns1758913 97.4 98.7 1437.2 1.3 41 -862.2649 37
ns1766074 77.8 86.0 0.0 0.0 7 – –
ns1830653 57.8 50.3 1.2 0.0 0 – –
nsrand-ipx 99.0 99.2 1.1 0.2 1381 61760 109
nw04 100.0 100.0 10.4 0.4 0 – –
opm2-z7-s2 9.9 10.1 7.6 limit 52408 -10271 50719
opt1217 96.2 98.8 0.1 0.0 13 -16? 13

28

Table 5 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

p0201 78.5 98.5 0.1 0.0 0 – –
p0282 96.0 100.0 0.0 0.0 1 320465 1
p0548 91.7 97.8 0.1 0.0 0 – –
p2756 95.6 98.8 0.3 0.0 0 – –
pg5 34 12.0 0.5 28.3 limit 5836732 -14232.4589 1862706
pigeon-10 69.5 99.3 0.1 0.0 0 – –
pk1 72.7 46.5 0.0 0.1 402 29 247
pp08a 17.2 9.4 125.6 limit 33411470 7360 395800
pp08aCUTS 28.1 16.5 0.1 134.2 557900 7350? 29979
protfold 72.2 90.0 2.0 0.1 0 – –
pw-myciel4 46.0 56.9 1.0 0.0 0 – –
qiu 25.0 25.0 0.2 47.5 23791 -132.8731? 1149
qnet1 96.3 99.3 0.2 0.0 1 21396.52 1
qnet1 o 99.2 100.0 0.1 0.0 1 28462.14 1
rail507 99.5 99.5 13.7 100.5 66744 178 341
ran16x16 92.2 100.0 0.0 0.0 1 4333 1
rd-rplusc-21 77.9 78.8 46.0 0.2 0 – –
reblock67 17.6 26.6 3.1 limit 6367150 -34629815.5 540746
rentacar 70.8 8.4 0.8 0.6 15 30356761? 13
rgn 85.0 48.6 0.1 0.0 109 82.2? 9
rmatr100-p10 49.0 49.2 2.6 16.4 686 424 322
rmatr100-p5 63.0 63.6 3.9 13.0 258 976? 118
rmine6 64.7 66.9 2.3 2730.2 2638869 -457.1727 1416590
rocII-4-11 85.9 89.6 14.3 0.0 0 – –
rococoC10-001000 93.4 100.0 0.3 0.0 1 23730 1
roll3000 67.5 72.3 1.1 0.0 0 – –
rout 88.9 93.9 0.2 0.0 0 – –
satellites1-25 90.2 98.8 35.6 0.0 0 – –
set1ch 45.1 44.6 1077.1 limit 41287842 – –
seymour 48.3 48.9 3.4 limit 700335 428 607424
sp98ic 99.3 99.3 2.1 19.2 70178 469766019 478
sp98ir 94.3 97.1 2.3 0.0 0 – –
stein27 22.2 22.2 0.1 0.0 224 18? 18
stein45 22.2 22.2 0.0 0.4 1507 30? 510
swath 99.3 98.7 2.6 0.0 0 – –
t1717 99.2 99.4 7.4 0.4 0 – –
tanglegram1 99.2 99.2 2.0 0.2 0 – –
tanglegram2 96.9 97.1 0.3 0.0 0 – –
timtab1 36.3 51.7 0.1 0.0 1 – –
timtab2 22.8 42.8 0.0 0.1 1 – –
tr12-30 7.4 6.2 70.5 limit 11643684 – –
triptim1 87.1 99.7 103.8 0.2 0 – –
unitcal 7 80.1 48.3 29.3 0.1 0 – –
vpm2 63.9 77.3 0.0 0.0 14 15.25 12
vpphard 97.8 98.0 17.1 0.2 0 – –
zib54-UUE 26.3 25.4 3.4 limit 1588278 10334015.8? 64873

29

Table 6: Computing optimal roundings for MIQCP instances, using LP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10bar2 77.3 76.0 0.2 0.0 14 2691.7039 13
25bar 83.9 49.2 0.1 0.1 20 – –
classical 200 0 92.0 59.8 1.6 1.7 31 -0.0848 26
classical 200 1 90.5 59.0 1.5 6.3 313 -0.097 195
classical 20 0 60.0 25.0 0.1 0.1 15 -0.0686 11
classical 20 1 55.0 23.3 0.0 0.3 40 -0.0698 16
classical 50 0 72.0 42.7 0.4 0.9 116 -0.0818 99
classical 50 1 82.0 49.3 0.2 0.6 69 -0.0737 6
clay0203m 20.0 14.8 0.1 0.0 55 41573.0147? 10
clay0205m 35.6 32.0 0.1 0.4 341 8672.5 184
clay0303m 21.1 22.6 0.1 0.1 61 41573.0276 53
clay0305m 29.4 25.9 0.2 0.5 724 8488.3117 716
du-opt5 54.5 5.3 0.1 0.2 29 – –
du-opt 30.8 0.0 0.1 1.8 335 – –
ex1263 69.0 69.2 0.2 0.0 1 28.3 1
ex1266 81.7 97.6 0.2 0.0 1 21.3 1
fac3 0.0 0.0 0.1 0.1 25 31982309.8? 13
feedtray2 41.7 29.7 24.4 limit 2358782 – –
ibell3a 88.3 85.2 0.1 0.0 1 878785.031? 1
icvxqp1 99.7 100.0 454.9 0.6 1 914601 1
ilaser0 0.0 5.7 1.2 limit 237295 – –
imod011 71.1 23.4 233.9 6341.0 345627 362636789 333111
iportfolio 80.1 64.5 4.3 283.9 26983 – –
isqp 62.0 2.4 3.9 limit 97291 – –
itointqor 86.0 94.1 0.0 0.0 1 53624064.4 1
ivalues 68.8 40.9 0.8 0.0 1 9026.4463 1
meanvarx 83.3 66.7 0.0 0.0 5 14.3692? 4
netmod dol1 16.7 16.7 1.3 4622.7 82905 -0.5562 99
netmod dol2 47.4 36.1 1.9 774.4 24560 -0.545 3448
netmod kar1 0.0 0.0 0.3 1.9 327 -0.4198? 8
netmod kar2 0.0 0.0 0.3 1.8 327 -0.4198? 8
nous1 0.0 0.0 290.7 limit 6203637 – –
nous2 0.0 0.0 393.2 limit 5777698 – –
nuclear14a 83.5 63.6 16.7 limit 94439 – –
nuclear14b 92.7 71.7 2.0 3.7 111 – –
nvs19 0.0 0.0 0.0 0.0 9 -1098.4? 9
nvs23 0.0 0.0 0.1 0.0 1 -1124.2 1
product2 81.2 26.9 162.5 limit 5890550 – –
product 67.4 50.4 0.7 389.8 650612 -2130.6323 255299
robust 100 0 88.1 41.9 1.1 0.7 23 -0.0888 12
robust 100 1 86.1 41.2 0.9 1.6 123 -0.0525 63
robust 200 0 89.6 43.8 2.0 1.9 121 -0.0944 20
robust 20 0 85.7 32.5 0.1 0.0 5 -0.0759 2
robust 50 0 82.4 37.4 0.5 0.3 38 -0.0671 16
robust 50 1 82.4 37.4 0.5 0.4 50 -0.0714 34
shortfall 100 0 76.2 35.9 0.9 0.9 45 -1.0737 36
shortfall 100 1 83.2 39.4 1.1 0.8 33 -1.0657 32
shortfall 200 0 88.6 43.2 2.5 3.0 45 -1.0803 45
shortfall 20 0 71.4 25.0 0.0 0.1 11 -1.0811 10
shortfall 50 0 72.5 31.9 0.4 0.7 27 -1.0799 21
shortfall 50 1 78.4 34.8 0.3 0.5 21 -1.0806 18
SLay05H 67.5 60.6 0.3 0.3 33 24809.6753 31
SLay05M 55.0 43.7 0.1 0.1 33 33732.8607 9
SLay07M 71.4 48.9 0.1 0.4 63 73105.8847 33
SLay10H 41.1 38.2 19.6 limit 754162 131656.989 105106

30

Table 6 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

SLay10M 68.3 51.9 0.4 1.9 415 185502.124 392
space25a 96.7 82.5 0.2 0.0 5 – –
space25 94.6 80.1 0.4 0.7 8407 – –
spectra2 80.0 70.6 0.4 0.1 26 13.9783? 14
tln12 48.2 52.2 0.2 0.0 0 – –
tln5 74.3 77.1 0.0 0.0 0 – –
tln6 64.6 68.8 0.1 0.0 0 – –
tln7 42.9 49.2 0.1 0.0 0 – –
tloss 69.6 82.6 0.0 0.0 0 – –
tltr 25.5 39.3 0.1 0.0 0 – –
uflquad-15-60 0.0 0.0 2.8 2679.7 1052 1063.1929? 237
uflquad-20-50 0.0 0.0 25.1 limit 128 474.9019 64
uflquad-40-80 97.5 85.1 1.7 limit 2 – –
util 91.7 46.9 0.0 0.0 10 1000.9676 10
waste 97.5 91.5 0.4 0.1 426 692.7824 291

31

Table 7: Computing optimal roundings for MIQCP instances, using NLP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10bar2 0.0 0.0 0.2 5.1 2678 1960.4104 2571
25bar 23.0 12.5 0.2 5.2 1199 400.3246 1192
classical 200 0 0.0 0.0 21.5 limit 157452 -0.1042 19694
classical 200 1 0.0 0.0 24.2 limit 184429 -0.1092 67634
classical 20 0 0.0 0.0 0.1 1.0 1354 -0.0823? 834
classical 20 1 0.0 0.0 -0.0 2.4 1835 -0.0757? 1747
classical 50 0 0.0 0.0 0.4 784.7 199803 -0.0907? 133471
classical 50 1 0.0 0.0 0.2 61.8 20511 -0.0948? 17026
clay0203m 0.0 0.0 0.1 0.1 110 41573.0265? 95
clay0205m 0.0 0.0 0.2 3.0 10442 8092.5? 1759
clay0303m 0.0 0.0 0.1 0.2 167 26669.0752 156
clay0305m 0.0 0.0 0.2 6.1 17597 8092.5? 1579
du-opt5 45.5 5.3 0.1 0.1 25 – –
du-opt 0.0 0.0 0.1 34.0 6827 – –
ex1263 45.1 52.7 0.3 0.2 70 20.3 49
ex1266 65.9 69.6 0.2 0.1 40 16.3? 40
fac3 8.3 1.5 1.0 0.0 23 31982309.8? 13
feedtray2 0.0 0.0 0.1 247.5 96287 0? 96287
ibell3a 60.0 82.8 0.1 0.0 1 879009.262 1
icvxqp1 97.6 98.1 580.3 0.6 1 375878 1
ilaser0 0.0 7.7 1.0 0.0 0 – –
imod011 – – 1346.6 – – – –
iportfolio 0.0 0.0 6.9 limit 276015 – –
isqp 0.0 0.0 331.7 limit 800472 – –
itointqor 0.0 0.0 60.4 limit 31848641 -1145.95 30734174
ivalues 51.5 6.4 0.7 45.2 262102 -1.1657? 20497
meanvarx 58.3 56.7 0.1 0.0 5 14.3692? 4
netmod dol1 0.0 0.0 13.8 limit 70283 -0.56? 197
netmod dol2 24.4 24.1 4.7 12.3 365 -0.5208 216
netmod kar1 0.0 0.0 0.4 1.9 327 -0.4198? 8
netmod kar2 0.0 0.0 0.2 1.9 327 -0.4198? 8
nous1 0.0 0.0 295.1 limit 6189939 – –
nous2 0.0 0.0 401.9 limit 5775976 – –
nuclear14a 0.0 0.0 18.4 limit 98876 – –
nuclear14b 0.0 0.0 39.2 limit 122109 – –
nvs19 0.0 0.0 0.0 0.1 53 -1098.2 52
nvs23 0.0 0.0 0.0 0.2 75 -1124.8 73
product2 9.4 11.5 226.2 limit 5344387 – –
product 67.4 41.6 159.1 limit 3714246 – –
robust 100 0 0.0 0.0 36.0 limit 643608 -0.0964 432103
robust 100 1 0.0 0.0 28.5 limit 749339 -0.0716 500948
robust 200 0 0.0 0.0 20.3 limit 194374 -0.1359 57193
robust 20 0 0.0 0.0 0.1 0.1 11 -0.0798? 6
robust 50 0 0.0 0.0 0.6 1.2 270 -0.0861? 156
robust 50 1 0.0 0.0 0.3 12.3 3064 -0.0857? 754
shortfall 100 0 0.0 0.0 51.8 limit 418270 -1.1023 57765
shortfall 100 1 0.0 0.0 60.5 limit 459850 -1.094 168978
shortfall 200 0 0.0 0.0 32.9 limit 130390 -1.1096 10874
shortfall 20 0 0.0 0.0 0.1 0.6 624 -1.0905? 157
shortfall 50 0 0.0 0.0 74.0 limit 1248837 -1.095 930028
shortfall 50 1 0.0 0.0 0.5 1975.5 520190 -1.1018? 427638
SLay05H 0.0 0.0 0.2 7.0 3094 22664.678? 1400
SLay05M 0.0 0.0 0.1 1.7 878 22664.6781? 536
SLay07M 0.0 0.0 0.0 59.6 29886 64748.8243? 9877
SLay10H 0.0 0.0 18.5 limit 468624 130031.675 129100

32

Table 7 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

SLay10M 0.0 0.0 16.4 limit 834497 129771.879 740342
space25a 41.7 32.5 0.3 limit 6254 – –
space25 41.7 34.4 0.5 limit 894 – –
spectra2 80.0 70.6 0.5 0.1 26 13.9783? 14
tln12 2.4 0.0 0.5 0.0 0 – –
tln5 22.9 40.0 0.1 0.0 0 – –
tln6 18.8 35.4 0.1 0.0 0 – –
tln7 19.0 31.7 0.1 0.0 0 – –
tloss 69.6 82.6 0.1 0.0 0 – –
tltr 27.7 73.2 0.1 0.0 0 – –
uflquad-15-60 0.0 0.0 2.9 2701.2 1052 1063.1929? 237
uflquad-20-50 0.0 0.0 25.1 limit 128 474.9019 64
uflquad-40-80 0.0 0.0 3.0 limit 1083 – –
util 0.0 0.0 0.0 0.1 455 999.5788? 224
waste 86.3 75.1 401.5 limit 13736796 – –

33

Table 8: Computing optimal roundings for MINLP instances, using LP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

beuster 76.5 40.2 118.1 7049.7 15735321 – –
cecil 13 25.0 19.4 18.5 7010.4 6032779 -115599.148 6497
chp partload 35.7 2.8 4.5 7158.7 13536 – –
contvar 89.7 13.6 2.6 limit 89028 – –
csched1 95.0 78.7 0.1 0.0 45 -29775.9885 45
csched2a 60.0 38.5 76.1 7059.7 5436390 -94800.4303 2043936
eg all s 28.6 53.0 589.3 6598.6 80557 – –
eg disc2 s 0.0 13.4 286.4 6970.9 22 – –
eg disc s 50.0 36.6 316.1 6886.8 858 – –
eg int s 0.0 14.3 501.2 6723.7 5 – –
eniplac 30.4 26.2 0.1 0.1 151 -132117.083? 37
enpro48 80.4 77.3 0.1 15.5 111594 241150.752 111594
enpro48pb 79.3 71.4 0.0 1.1 4634 264032.12 4634
enpro56 67.1 56.0 0.2 17.7 147897 279702.866 147897
enpro56pb 65.7 53.6 0.1 5.4 41063 279704.1 41063
ex1233 20.0 7.2 1.6 limit 189292 – –
ex1244 40.0 36.7 0.2 0.0 28 84035.1235 23
ex1252a 77.8 57.8 0.0 0.0 0 – –
ex1252 71.4 55.4 0.1 1.2 5342 – –
feedtray 42.9 1.2 68.9 7115.3 874824 – –
fo7 2 19.0 9.8 0.1 3.3 14805 17.7493? 627
fo7 ar2 1 24.4 12.3 0.1 291.9 2381312 26.9425 2381312
fo7 ar25 1 36.6 18.5 0.1 0.4 755 25.6421 326
fo7 ar3 1 43.9 22.2 0.0 0.5 976 25.6421 316
fo7 ar4 1 29.3 14.8 0.1 2.3 9622 24.3794 4178
fo7 ar5 1 34.1 17.3 0.0 0.9 2147 19.6229 566
fo7 16.7 8.5 0.0 120.9 558800 30.6572 382347
fo8 ar2 1 36.4 20.8 0.2 2.1 6262 41.8507 3493
fo8 ar25 1 16.4 8.9 0.2 108.1 453566 28.0452? 84041
fo8 ar3 1 38.2 20.8 0.1 2.9 8133 – –
fo8 ar4 1 30.9 16.8 0.1 146.9 975930 32.5005 968495
fo8 ar5 1 30.9 16.8 0.2 6.1 21065 24.4077 3434
fo8 21.4 11.8 0.2 592.2 2279417 37.2612 216937
fo9 ar2 1 23.9 13.8 0.1 1.7 5290 45.8141 3577
fo9 ar25 1 35.2 20.3 0.2 15.5 46324 32.6795 23480
fo9 ar3 1 22.5 13.0 0.1 598.5 1658625 37.5937 8325
fo9 ar4 1 25.4 14.6 0.2 879.3 2599259 37.1576 29588
fo9 ar5 1 28.2 16.3 0.2 65.9 196069 26.9217 134598
fo9 19.4 11.3 34.7 7053.4 20841677 34.6228 6480181
fuzzy 71.8 42.6 86.8 7126.7 4547053 – –
gasnet 50.0 23.6 0.1 limit 3063 – –
ghg 1veh 0.0 0.0 386.4 7108.6 6426635 – –
ghg 2veh 18.8 7.6 109.5 7130.6 1936310 – –
ghg 3veh 51.4 21.3 37.6 7163.3 1587865 – –
hda 28.6 18.0 6.6 limit 588838 – –
m6 3.3 1.6 0.0 2.2 11390 82.2569? 3883
m7 ar2 1 13.3 5.9 0.1 1.5 10467 195.035 9794
m7 ar25 1 18.8 8.6 0.1 0.2 443 143.585? 204
m7 ar3 1 34.2 17.1 0.1 0.5 772 152.5792 330
m7 ar4 1 34.1 17.7 0.2 0.3 730 130.46 287
m7 ar5 1 26.8 13.9 0.1 1.0 4354 148.6199 1740
m7 33.3 17.5 0.1 0.1 341 126.4312 196
mbtd – – limit – – – –
no7 ar2 1 36.6 17.2 0.2 0.8 1772 150.7814 740
no7 ar25 1 26.8 12.6 0.0 2.7 9032 107.8663 7186

34

Table 8 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

no7 ar3 1 26.8 12.6 0.2 1.2 3223 119.3432 2131
no7 ar4 1 43.9 20.7 0.0 1.1 3492 117.8947 2278
no7 ar5 1 24.4 11.5 0.1 28.6 104622 100.8113 10082
nvs09 60.0 55.0 534.1 6969.9 77479321 -11.1518 15924294
nvs20 20.0 6.1 0.0 1.2 1948 230.9221? 1580
o7 2 31.0 14.4 0.1 8.6 33559 129.4105 2060
o7 ar2 1 31.7 14.6 0.2 2.8 10741 140.4119? 188
o7 ar25 1 36.6 16.9 0.1 29.0 182612 143.1372 182612
o7 ar3 1 26.8 12.4 0.1 10.9 34069 – –
o7 ar4 1 26.8 12.4 0.1 7.2 27844 143.8912 24195
o7 ar5 1 46.3 21.3 0.1 31.0 213317 135.7148 213317
o7 19.0 8.9 0.1 428.8 1812739 139.4551 207218
o8 ar4 1 32.7 15.4 0.2 28.0 65139 – –
o9 ar4 1 39.4 20.4 0.1 119.5 311859 – –
oil2 50.0 0.5 1.6 limit 1205253 – –
oil 57.9 8.3 24.3 7177.6 165976 – –
parallel 20.0 14.7 8.1 7184.6 899801 924.225 834864
pump 77.8 57.8 0.0 0.0 0 – –
risk2b 66.7 5.6 0.2 0.0 11 -55.8761? 9
spring 91.7 67.9 0.0 0.0 0 – –
st e32 88.9 29.7 0.1 0.0 3 – –
stockcycle 86.8 91.3 0.8 0.0 51 334280.188 46
super1 83.9 10.0 1.2 0.0 0 – –
super2 71.0 8.4 1.1 0.0 0 – –
super3 67.6 8.6 1.2 0.0 0 – –
super3t 35.1 6.2 8.8 7157.6 76873 – –
synheat 20.0 8.0 17.7 limit 3475310 – –
synthes1 0.0 0.0 0.0 0.0 5 6.0098? 4
synthes2 50.0 36.4 0.0 0.0 6 73.0353? 6
synthes3 42.9 29.4 0.1 0.0 11 68.0097? 10
tls12 93.7 81.0 1.7 0.0 0 – –
tls4 55.3 53.2 0.2 0.2 417 11.5 338
tls5 64.1 64.0 0.5 0.4 2073 12.5 2043
tls6 86.1 83.1 0.3 0.0 0 – –
tls7 90.7 64.9 0.5 0.0 0 – –
water3 67.9 35.3 0.1 292.7 972217 907.0153 779595
waterful2 92.9 76.4 0.2 4.8 14332 944.0185 13167
watersbp 25.0 19.8 0.3 695.4 2039425 925.5489 1871298
watersym1 71.4 57.1 0.1 13.6 53787 914.5702 48361
watersym2 83.3 55.6 0.1 10.8 28608 1056.1449 25709
waterx 78.6 24.0 0.1 limit 91 – –
detf1 81.5 1.2 1579.0 5733.5 367 – –
gear2 70.8 57.6 0.0 0.0 20 0? 13
gear3 50.0 11.1 0.0 0.0 2 0.0164 2
gear4 50.0 22.2 0.0 0.0 4 495720.675 4
gear 50.0 11.1 0.0 0.0 2 0.0164 2
johnall 98.9 9.0 63.2 13.0 18 -224.7302? 16
saa 2 81.5 1.2 1579.0 5733.3 367 – –
water4 65.1 48.3 0.8 5.5 12624 926.9473 10394
waterz 75.4 58.0 0.2 0.1 63 – –

35

Table 9: Computing optimal roundings for MINLP instances, using NLP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

beuster – – 0.1 – – – –
cecil 13 37.5 30.8 1.2 775.6 1225350 -115630.852 720438
chp partload 21.4 1.5 17.6 7146.9 9859 – –
contvar – – 1.9 – – – –
csched1 26.7 20.0 0.1 6864.6 51911752 -30639.353? 510093
csched2a 60.0 52.2 3.6 limit 58208 – –
eg all s 85.7 83.1 682.2 6529.9 1220160 – –
eg disc2 s – – 798.3 – – – –
eg disc s – – 546.0 – – – –
eg int s – – 1011.3 – – – –
eniplac 47.8 42.6 0.2 0.0 28 -130450.77 22
enpro48 82.6 73.4 0.1 3.5 28731 198547.396 28731
enpro48pb 82.6 73.4 0.2 2.3 17748 198547.384 17748
enpro56 68.6 56.8 0.2 8.0 75178 271493.619 75178
enpro56pb 68.6 56.8 0.1 4.7 41949 271496.644 41949
ex1233 0.0 0.0 436.5 7042.5 8215104 – –
ex1244 0.0 0.0 0.2 0.4 562 82042.2724? 307
ex1252a 0.0 60.0 4.0 0.0 0 – –
ex1252 28.6 33.9 1.6 1.4 317 131123.771 292
feedtray 14.3 0.4 25.3 limit 406512 – –
fo7 2 0.0 0.0 0.1 135.9 704358 17.7493? 2293
fo7 ar2 1 0.0 0.0 0.2 46.8 247054 24.8398? 19889
fo7 ar25 1 0.0 0.0 0.1 24.6 115558 23.0936? 105003
fo7 ar3 1 0.0 0.0 0.1 136.1 668929 22.5175? 17122
fo7 ar4 1 0.0 0.0 0.1 155.0 733240 20.7298? 350369
fo7 ar5 1 0.0 0.0 0.1 151.7 767719 17.7493? 68937
fo7 0.0 0.0 0.1 497.1 2372596 20.7298? 240205
fo8 ar2 1 0.0 0.0 0.2 934.6 3788852 30.3406? 1263812
fo8 ar25 1 0.0 0.0 0.2 1106.3 4787074 28.0452? 1555470
fo8 ar3 1 0.0 0.0 0.2 231.3 898814 23.9101? 126001
fo8 ar4 1 0.0 0.0 0.2 234.6 969121 22.3819? 214458
fo8 ar5 1 0.0 0.0 0.1 1432.4 5813287 22.3819? 1898654
fo8 0.0 0.0 6.5 7001.8 26796040 22.3819? 316351
fo9 ar2 1 0.0 0.0 12.1 7024.9 22193275 32.625? 1452885
fo9 ar25 1 0.0 0.0 24.3 7023.6 22803832 32.25 20506093
fo9 ar3 1 0.0 0.0 0.2 1052.7 3352680 24.8155? 336767
fo9 ar4 1 0.0 0.0 16.7 7033.6 28964871 23.4643? 1012573
fo9 ar5 1 0.0 0.0 13.7 7024.4 20112356 23.4643? 1774865
fo9 0.0 0.0 30.3 7040.1 22676841 26.4643 15213281
fuzzy 16.4 6.3 7.8 0.0 3 – –
gasnet 90.0 39.9 6.3 limit 191339 – –
ghg 1veh 0.0 0.0 382.9 7085.1 6381143 – –
ghg 2veh 0.0 0.0 56.0 7146.3 1083873 – –
ghg 3veh 17.1 21.3 33.2 7164.7 1775681 – –
hda 14.3 7.1 32.8 7149.4 1682642 – –
m6 0.0 0.0 0.1 4.1 24562 82.2569? 6680
m7 ar2 1 0.0 0.0 0.2 2.1 10276 190.235? 3930
m7 ar25 1 0.0 0.0 0.2 1.1 3726 143.585? 138
m7 ar3 1 0.0 0.0 0.0 6.3 28008 143.585? 1817
m7 ar4 1 0.0 0.0 0.1 9.3 44016 106.7569? 15850
m7 ar5 1 0.0 0.0 0.0 32.8 173785 106.46? 53909
m7 0.0 0.0 0.1 8.2 48013 106.7569? 20018
mbtd – – limit – – – –
no7 ar2 1 0.0 0.0 0.2 219.9 1033148 107.8153? 325747
no7 ar25 1 0.0 0.0 0.1 379.1 1545736 107.8153? 548721

36

Table 9 continued

% Vars Fixed RENS
Instance Int All TimeS TimeR NodesR Solution Found At

no7 ar3 1 0.0 0.0 0.1 506.6 1988914 107.8153? 118955
no7 ar4 1 0.0 0.0 0.1 2571.1 13791699 98.5184? 9316640
no7 ar5 1 0.0 0.0 0.2 3548.9 14641250 90.6227? 2261480
nvs09 – – 0.2 – – – –
nvs20 0.0 0.0 0.0 1.2 1668 230.9221? 1585
o7 2 0.0 0.0 42.7 7032.6 26786207 116.9459? 19601790
o7 ar2 1 0.0 0.0 0.2 403.4 1959250 140.4119? 360093
o7 ar25 1 0.0 0.0 0.2 1184.8 4608236 140.7327 293836
o7 ar3 1 0.0 0.0 0.2 2486.6 9747119 137.9318? 3672646
o7 ar4 1 0.0 0.0 4.4 7040.1 26611055 131.6531? 3627436
o7 ar5 1 0.0 0.0 0.9 6992.7 30028960 116.9458? 3480829
o7 0.0 0.0 27.8 7014.7 26516141 131.6531? 544651
o8 ar4 1 0.0 0.0 23.1 7088.4 18402307 245.4744 8887518
o9 ar4 1 0.0 0.0 46.7 7025.3 19840728 250.1082 9730833
oil2 0.0 0.0 35.8 7133.9 1001767 – –
oil 0.0 0.1 33.7 7149.0 119377 – –
parallel 20.0 14.7 14.4 limit 900521 924.225 834864
pump 33.3 40.0 0.9 5.7 146 131123.769 143
risk2b 0.0 0.0 0.1 0.1 53 -55.8761? 25
spring 0.0 0.0 0.1 0.0 44 0.9876 34
st e32 83.3 40.6 0.1 0.0 1 – –
stockcycle 24.3 21.8 2.6 7159.6 6417875 128864.597 3237213
super1 16.1 1.1 13.5 0.0 1 – –
super2 16.1 1.2 10.8 0.0 1 – –
super3 21.6 2.7 16.6 0.0 1 – –
super3t 0.0 0.0 7.4 7196.9 48370 – –
synheat 0.0 0.0 3.6 limit 512341 – –
synthes1 0.0 0.0 0.0 0.0 5 6.0098? 4
synthes2 0.0 0.0 0.0 0.0 16 73.0353? 12
synthes3 0.0 0.0 0.0 11.4 172409 68.0098? 172409
tls12 29.6 67.2 45.9 7125.8 8583097 – –
tls4 27.1 28.2 0.3 14.0 85190 11.5 4135
tls5 34.4 36.4 0.4 136.8 663149 12.1 49484
tls6 45.5 50.7 0.3 275.6 1106419 – –
tls7 72.4 78.5 0.5 0.3 965 – –
water3 3.6 6.3 51.4 6929.7 20651925 908.5771 11154642
waterful2 64.3 58.0 233.9 6956.7 21237400 1727.7383 12114
watersbp 3.6 6.3 139.1 6965.6 21701297 926.9473 1393039
watersym1 42.9 38.0 41.6 6934.4 24032000 945.8494 823376
watersym2 50.0 41.2 0.6 1649.9 5395774 955.728 1697926
waterx 0.0 0.0 7.4 6967.9 983262 – –
detf1 41.0 0.6 1599.0 5649.0 608 – –
gear2 0.0 0.0 0.0 0.2 896 -0? 896
gear3 0.0 0.0 0.0 0.0 5 0? 4
gear4 0.0 0.0 0.0 0.0 5 333.1514 4
gear 0.0 0.0 0.0 0.0 5 0? 4
johnall 0.0 0.0 63.6 8.2 1 -224.7302? 1
saa 2 41.0 0.6 1601.4 5649.3 608 – –
water4 64.3 54.6 0.7 0.8 2430 1008.4471 1819
waterz 65.1 44.4 0.6 36.6 98729 2600.6081 98389

37

Table 10: Analyzing rounding heuristics for MIPLIB instances

Instance rens ZI Round Rounding Simple Rounding

a1c1s1 13209.184 – – –
aflow30a 1158 – – –
aflow40b 1179 – – –
atlanta-ip 98.009586 – – –
beasleyC3 789 1690 1730 1730
bell3a 878430.32 880414.28 – –
biella1 3278480.6 – – –
bienst2 54.6 – – –
binkar10 1 6746.64 – – –
blend2 7.598985 – – –
bley xl1 190 – – –
cap6000 -2443599 -2443599 -2441736 -2441736
core2536-691 695 1103 1651 –
cov1075 20 43 90 90
dano3mip 762.75 – – –
danoint 65.666667 – – –
dcmulti 188186.5 – – –
dfn-gwin-UUM 39920 199352 209984 209984
dsbmip -305.19817 – – –
egout 568.1007 597.46403 597.46403 597.46403
fast0507 177 315 540 540
fiber 411151.82 – – –
fixnet6 3997 10723.928 10723.928 10723.928
gesa2-o 25780031 – – –
gesa2 25780031 – – –
gesa3 27991430 – – –
gesa3 o 27991430 – – –
glass4 2.2666856e+09 – – –
gmu-35-40 -2399398.2 – – –
gt2 21166 21166 – –
iis-100-0-cov 29 55 100 100
iis-bupa-cov 36 71 144 144
iis-pima-cov 33 66 130 130
khb05250 1.0694023e+08 1.1688827e+08 1.1688827e+08 1.1688827e+08
liu 3418 – – –
lseu 1148 – – –
m100n500k4r1 -22 -9 0 0
map18 -847 – – –
map20 -922 – – –
markshare1 142 584 2108 2108
markshare2 131 531 2288 2288
mas74 14343.468 – – –
mas76 40560.054 – – –
mcsched 213768 – – –
mik-250-1-100-1 -66729 -66409 -66409 -66409
mine-90-10 -7.8430234e+08 – – –
misc06 12850.861 12920.927 12920.927 12920.927
mitre 115155 – – –
mkc -539.866 – – –
mod008 309 452 1212 1212
mod011 -54219146 – – –
modglob 20799459 21051934 21051934 21051934
n3div36 151600 230600 562600 –
n3seq24 68000 – – –
n4-3 9010 20686.357 23686.357 23686.357
neos-1337307 -202133 – – –

38

Table 10 continued

Instance rens ZI Round Rounding Simple Rounding

neos-1396125 3000.0553 – – –
neos13 -65.655161 – – –
neos-476283 406.81233 – – –
neos-934278 1332 – – –
newdano 66.5 – – –
ns1758913 -457.71835 – – –
nsrand-ipx 55360 – 114560 –
opm2-z7-s2 -10271 -3937 – –
opt1217 -16 – – –
p0201 7805 – – –
p0282 258411 400676 373318 –
p0548 8763 – – –
p2756 3152 – – –
pg5 34 -14287.702 – – –
pk1 29 – – –
pp08a 7360 12657.971 12657.971 12657.971
pp08aCUTS 7370 13128.015 13128.015 13128.015
qiu -132.87314 1805.1771 1805.1771 1805.1771
qnet1 21237.655 – – –
qnet1 o 22600.83 – 45561.556 –
rail507 178 319 550 –
ran16x16 3846 10305.599 10305.599 10305.599
reblock67 -34629816 – – –
rentacar 30356761 – – –
rgn 82.199998 – – –
rmatr100-p10 424 – – –
rmatr100-p5 976 – – –
rmine6 -457.17275 -435.70014 – –
rococoC10-001000 12067 – 87872 –
roll3000 14193 – – –
set1ch 54537.75 59480.277 59480.277 59480.277
seymour 427 590 757 757
sp98ic 4.6976602e+08 6.9404931e+08 1.3685495e+09 –
stein27 18 20 27 27
stein45 30 37 45 45
timtab1 827609 – – –
tr12-30 131438 – – –
vpm2 13.75 – – –
zib54-UUE 10334016 19016948 19016948 19016948

39

Table 11: rens compared to other primal heuristics, MIPLIB instances

Instance all heuristics rens Feasibility Pump

a1c1s1 16631.684 – –
aflow30a 4606 1158 –
aflow40b 8300 – –
app1-2 -23 – -23
beasleyC3 945 – 877
bell3a 880414.28 878430.32 912403.02
bell5 8975498.7 – 11608253
biella1 2.794433e+08 3630095.5 3309837.4
bienst2 85.5 – –
blend2 – 7.598985 –
cap6000 -2451186 -2443599 -2448325
core2536-691 819 701 694
cov1075 27 – 33
dano3mip 847.81818 763.625 –
dcmulti 189453.4 – 189453.4
dfn-gwin-UUM 100020 – 138300
disctom -5000 – -5000
ds 5418.56 – –
dsbmip -305.19817 – -305.19817
egout 568.1007 568.1007 610.22138
eil33-2 3376.7853 – –
eilB101 3109.9773 – –
fast0507 240 177 198
fiber 514321.26 411151.82 964345.33
fixnet6 4536 3997 4536
flugpl 1322700 – –
gesa2-o 26755195 25780031 –
gesa2 26443646 25780031 –
gesa3 28239091 27991430 –
gesa3 o 28465633 27991430 –
glass4 – 2.2666856e+09 –
gmu-35-40 -2312990.2 -2399398.2 –
gt2 21166 21166 –
harp2 -44025501 – –
iis-100-0-cov 35 – 52
iis-bupa-cov 49 – 101
iis-pima-cov 45 34 110
khb05250 1.0875131e+08 1.0694023e+08 1.0921306e+08
liu 4762 – –
lseu 1252 1148 –
m100n500k4r1 -18 -22 -18
macrophage 608 – –
map18 -608 -847 –
map20 -702 -918 –
markshare1 204 142 133
markshare2 308 131 217
mas74 13755.892 14343.468 –
mas76 45030.693 40560.054 –
mcsched 267801 – 264722
mik-250-1-100-1 -66409 -66729 -10125
mine-90-10 0 – –
misc06 12864.57 12850.861 12866.961
mitre 115155 115155 –
mkc -392.358 – –
mod008 307 309 363
mod011 0 – –

40

Table 11 continued

Instance all heuristics rens Feasibility Pump

modglob 20786787 – 20762355
momentum3 598721.83 – –
mspp16 363 – –
mzzv11 0 – –
mzzv42z 0 – –
n3div36 199000 151600 –
n3seq24 133800 75800 –
n4-3 15375 – 14195
neos13 -73.31727 -54.293292 -60.800922
neos18 57 – 21
neos-476283 434.22373 406.81233 –
neos-934278 64298 – 316
newdano 92.5 – –
noswot -35 – –
ns1758913 -387.30071 -457.71835 –
nsrand-ipx 73920 57120 185760
nw04 17526 – 17526
opm2-z7-s2 -2444 – -1480
opt1217 -15 -16 0
p0201 8735 7805 8185
p0282 281009 258411 –
p0548 35561 8763 –
p2756 3220 3152 –
pg5 34 -10357.263 -14287.702 –
pigeon-10 0 – –
pk1 79 29 –
pp08a 9540 – 8550
pp08aCUTS 10040 – 8250
qiu 1691.1431 – -40.870237
qnet1 16430.489 21237.655 29903.897
qnet1 o 18484.148 22600.83 26283.04
rail507 263 185 –
ran16x16 4333 4034 4271
reblock67 0 – –
rgn 82.199998 82.199998 153.6
rmatr100-p10 725 – –
rmatr100-p5 1448 976 –
rmine6 -292.59425 -449.05697 –
rococoC10-001000 21783 14338 –
rout 2375.25 – –
set1ch 55351.5 54537.75 61488.25
seymour 482 443 468
sp98ic 6.7634404e+08 – –
sp98ir 2.9455711e+08 – –
stein27 19 – 21
stein45 33 – 39
tanglegram1 34171 – –
tanglegram2 1577 – –
tr12-30 151095 – –
triptim1 22.9021 – 22.9031
vpm2 17.75 13.75 26.5
zib54-UUE 18338824 – 12987543

41

Table 12: rens compared to other primal heuristics, MIQCP instances

Instance all heuristics rens Undercover

10bar2 – 2691.7039 –
25bar – 1045.1823 –
classical 200 0 -0.071487129 -0.084829963 –
classical 200 1 -0.083770619 -0.097035729 –
classical 20 0 -0.063051702 -0.068648323 –
classical 20 1 -0.067785964 – –
classical 50 0 -0.078004908 -0.081834178 –
classical 50 1 -0.068876528 -0.073682814 –
clay0305m 81611.329 – –
du-opt5 45.028201 – 546.27998
du-opt 30.48344 – 632.89142
ex1263 30.1 28.3 30.1
ex1266 27.3 21.3 27.3
fac3 38310066 – 38310066
feedtray2 0 – –
ibell3a 890253.14 878785.03 915693.16
icvxqp1 526240 914601 526240
imod011 0 – 4.0558269e+08
iportfolio 0 – –
itointqor 0 53624064 71120986
ivalues 0 9026.4463 23155.091
meanvarx 14.824808 14.369221 14.824808
netmod dol1 0 – 0
netmod dol2 0 – 0
netmod kar1 0 – 0
netmod kar2 0 – 0
nous1 1.6521101 – –
nous2 1.3843168 – –
nvs19 -1097.8 – 0
nvs23 -1124.2 – 484.2
robust 100 0 -0.07383209 -0.088786652 –
robust 100 1 -0.030068722 -0.052515237 –
robust 200 0 -0.083079202 -0.094355298 –
robust 20 0 -0.075867238 -0.075868453 –
robust 50 0 -0.074184525 -0.067067685 –
robust 50 1 -0.05304023 -0.07143226 –
shortfall 100 0 -1.0737261 -1.0737263 –
shortfall 100 1 -1.0459995 -1.0656589 –
shortfall 200 0 -1.0803073 -1.0803069 –
shortfall 20 0 -1.0782714 -1.0810933 –
shortfall 50 0 -1.0799126 -1.0799127 –
shortfall 50 1 -1.0711488 -1.0806174 –
SLay05H 66202.063 24809.675 –
SLay05M 64352.815 33732.861 112668.04
SLay07M 139187.44 73105.885 –
SLay10H 527790 – –
SLay10M 972591.88 270920.73 –
spectra2 19.284089 13.978303 306.3343
tln5 15.1 – 15.1
tln6 32.3 – 32.3
tln7 30.3 – 30.3
tloss 27.3 – 27.3
tltr 61.133333 – 61.133333
uflquad-15-60 1440.866 – 1440.866
uflquad-20-50 409.43207 – 409.43207
uflquad-40-80 522.98402 – 879.81492

42

Table 12 continued

Instance all heuristics rens Undercover

util 1012.1654 1000.9676 1012.18
waste 672.99221 692.78243 672.99221

43

Table 13: rens compared to other primal heuristics, MINLP instances

Instance all heuristics rens Undercover

csched1 -29279.168 -29775.988 –
csched2a -137442.84 – –
eg all s 16.772411 – –
eg int s 100000 – –
enpro48 281126.48 241151.11 –
enpro48pb 276126.83 264033.48 –
enpro56 280379.39 289617.34 –
enpro56pb 280379.39 279704.74 –
ex1244 87646.293 – 87646.293
ex1252a 152875.46 – –
fo7 2 26.12553 – –
ghg 1veh 7.8438354 – –
m7 ar5 1 200.46001 – –
nvs09 -9.7637013 – 28.865663
pump 152875.46 – –
risk2b -32.04093 – -32.04093
stockcycle 306163.25 334280.19 357714.33
synthes1 6.0097585 – 6.0097589
synthes2 83.388996 73.035308 –
synthes3 85.513943 – –
tls4 – 11.5 –
tls5 – 21.6 –
watersym1 – 950.1639 –
detf1 12.881782 – –
gear2 1.3353082e-05 0 –
gear3 0.41851773 – –
gear4 855720.67 – –
gear 0.41851773 – –
johnall -224.73017 – -224.73016
saa 2 12.881782 – –
water4 1209.0444 1012.1499 –

44

Table 14: Impact of rens on overall solving process for MIPLIB instances

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

10teams 2 766 33.8 2 766 33.8 2 766 33.8
30n20b8 >13 609 limit >13 098 limit >13 480 limit
a1c1s1 >444 580 limit >445 106 limit >355 340 limit
acc-tight5 2 414 388.9 2 414 389.5 2 414 389.5
aflow30a 3 617 20.8 1 931 13.2 1 931 13.3
aflow40b 366 800 3221.7 230 705 1087.1 230 705 1085.1
air04 272 77.8 272 77.5 272 77.8
air05 478 45.8 478 44.5 478 44.5
app1-2 76 1139.8 76 1300.6 76 1302.4
arki001 2 703 497 4529.0 2 703 497 4527.6 2 703 497 4526.7
ash608gpia-3col 10 69.7 10 70.0 10 69.9
atlanta-ip >8 841 limit >8 520 limit >8 520 limit
beasleyC3 >1 897 819 limit >1 890 444 limit >1 767 779 limit
bab5 >21 663 limit >21 663 limit >21 636 limit
bell3a 47 240 13.2 46 910 11.2 46 910 11.1
bell5 1 069 0.6 1 069 0.7 1 069 0.5
biella1 10 546 2284.0 2 607 939.9 2 607 953.5
bienst2 73 759 394.5 73 759 396.7 82 826 454.9
binkar10 1 105 531 158.8 105 531 159.3 129 286 204.9
blend2 2 135 1.9 164 0.7 164 0.9
bley xl1 18 372.2 1 214.1 1 206.8
bnatt350 7 866 972.6 7 866 970.9 7 866 972.6
cap6000 3 005 2.5 3 005 2.6 3 005 2.8
core2536-691 204 383.3 281 652.9 281 653.5
cov1075 >1 719 951 limit >1 721 430 limit >1 697 293 limit
csched010 940 018 6394.7 940 018 6395.9 940 018 6397.6
dano3mip >2 838 limit >3 064 limit >2 384 limit
danoint 1 063 562 5251.8 1 063 562 5237.1 1 063 562 5256.0
dcmulti 130 1.8 130 1.8 130 1.7
dfn-gwin-UUM 77 613 148.8 77 613 146.7 77 613 148.1
disctom 1 3.5 1 3.6 1 3.5
ds >465 limit >460 limit >460 limit
dsbmip 1 0.7 1 0.6 1 0.6
egout 1 0.5 1 0.5 1 0.5
eil33-2 10 571 98.0 10 571 99.3 10 571 99.7
eilB101 9 239 773.3 9 239 777.1 9 239 776.3
enigma 1 289 0.6 1 289 0.6 1 289 0.7
enlight13 1 099 066 655.3 1 099 066 658.3 1 099 066 658.8
enlight14 156 998 108.9 156 998 108.3 156 998 108.1
fast0507 1 477 1474.5 2 774 3501.8 2 774 3509.4
fiber 78 1.9 32 1.3 32 1.2
fixnet6 54 1.8 14 1.8 14 1.9
flugpl 121 0.5 121 0.5 121 0.5
gesa2-o 55 1.8 4 1.5 4 1.5
gesa2 42 1.7 7 1.4 7 1.3
gesa3 147 2.3 16 1.7 16 1.6
gesa3 o 119 3.1 12 2.1 12 2.0
glass4 >10 167 913 limit 1 795 478 1454.2 1 795 478 1459.6
gmu-35-40 >5 151 788 limit >11 990 260 limit >13 431 923 limit
gt2 1 0.5 1 0.5 1 0.5
harp2 360 980 301.6 360 980 301.2 364 890 308.2
iis-100-0-cov 106 874 1706.4 106 874 1705.5 106 389 1828.4
iis-bupa-cov 183 185 6723.2 189 467 6655.7 189 467 6690.3
iis-pima-cov 13 766 952.6 13 011 953.7 13 011 966.1
khb05250 11 0.5 11 0.5 11 0.5

45

Table 14 continued

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

l152lav 52 3.0 52 2.9 52 3.1
lectsched-4-obj 11 988 246.4 11 988 246.4 11 988 247.4
liu >1 835 353 limit >1 832 824 limit >1 965 400 limit
lseu 329 0.5 552 0.5 552 0.5
m100n500k4r1 5 272 016 4732.9 >8 222 511 limit >8 183 822 limit
macrophage >929 901 limit >925 398 limit >928 739 limit
map18 607 649.6 293 463.1 293 463.8
map20 1 180 496.4 353 549.0 353 548.5
markshare1 >75 355 137 limit >78 655 002 limit >78 886 991 limit
markshare2 >63 825 711 limit >62 613 242 limit >62 433 221 limit
mas74 2 955 765 500.1 2 955 765 499.8 2 955 765 502.1
mas76 243 004 43.5 281 857 42.2 281 857 42.3
mcsched 16 113 222.9 16 113 222.2 20 712 256.3
mik-250-1-100-1 1 920 723 373.9 1 021 375 205.6 1 021 375 206.1
mine-90-10 469 802 1753.4 359 569 1156.5 359 569 1157.1
misc03 131 1.1 131 1.2 131 1.1
misc06 18 0.5 6 0.5 6 0.5
misc07 38 363 20.5 38 363 20.5 38 363 20.9
mitre 1 4.5 1 4.6 1 4.7
mkc >3 288 146 limit >3 186 952 limit >3 223 059 limit
mod008 192 0.9 192 0.9 192 0.9
mod010 4 0.9 4 0.7 4 0.8
mod011 1 596 206.1 1 596 206.0 1 596 205.8
modglob 1 408 1.3 1 408 1.5 1 408 1.6
momentum1 >21 781 limit >21 733 limit >21 781 limit
momentum2 >63 180 limit >61 812 limit >62 495 limit
momentum3 >44 limit >43 limit >44 limit
msc98-ip >756 limit >756 limit >756 limit
mspp16 >750 limit >382 limit >736 limit
mzzv11 2 734 341.8 2 734 343.5 2 734 342.3
mzzv42z 1 557 364.5 1 557 364.2 1 557 365.0
n3div36 >200 784 limit >257 302 limit >264 668 limit
n3seq24 >2 290 limit >2 094 limit >2 114 limit
n4-3 53 959 835.6 53 959 835.3 53 959 844.5
neos-1109824 24 162 185.9 24 162 185.4 24 162 186.1
neos-1337307 >415 472 limit >416 447 limit >413 169 limit
neos-1396125 54 219 3981.6 54 219 3981.4 54 219 3982.6
neos13 >28 166 limit >26 778 limit >25 527 limit
neos-1601936 >31 161 limit >30 882 limit >30 831 limit
neos18 9 133 41.4 9 133 41.4 9 133 41.5
neos-476283 466 326.9 609 323.2 609 327.1
neos-686190 9 894 114.1 9 894 114.7 9 894 114.3
neos-849702 137 579 1652.0 137 579 1651.7 137 579 1653.2
neos-916792 57 471 228.0 57 471 227.3 57 471 227.3
neos-934278 >2 951 limit >4 825 limit >4 708 limit
net12 3 838 2650.2 3 838 2647.9 3 838 2649.5
netdiversion >72 limit >72 limit >72 limit
newdano >1 570 960 limit >1 574 108 limit >1 138 936 limit
noswot 525 460 148.2 525 460 147.8 525 460 147.4
ns1208400 15 050 1960.2 15 050 1957.1 15 050 1956.6
ns1688347 17 807 1979.0 17 807 1978.5 17 807 1979.6
ns1758913 >23 limit >17 limit >5 limit
ns1766074 946 987 514.1 946 987 515.2 946 987 516.1
ns1830653 57 234 584.3 57 234 585.5 57 234 585.9
nsrand-ipx >1 097 182 limit >1 154 058 limit >1 158 945 limit
nw04 5 51.1 5 52.0 5 51.9
opm2-z7-s2 4 401 1154.7 4 401 1153.8 4 401 1154.5
opt1217 >16 012 029 limit >12 726 890 limit >12 478 488 limit

46

Table 14 continued

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

p0201 169 1.9 65 1.6 65 1.8
p0282 26 0.8 3 0.6 3 0.5
p0548 96 0.8 14 0.5 14 0.5
p2756 403 3.2 153 2.6 153 2.5
pg5 34 348 765 1717.1 318 742 1501.1 306 428 1374.3
pigeon-10 >7 056 792 limit >7 034 031 limit >6 972 773 limit
pk1 213 670 46.8 226 780 50.0 206 727 44.4
pp08a 590 1.5 590 1.5 670 1.7
pp08aCUTS 403 1.5 403 1.4 480 1.6
protfold >6 866 limit >6 865 limit >6 862 limit
pw-myciel4 647 355 5306.6 647 355 5310.9 647 355 5311.9
qiu 11 012 56.2 11 012 56.3 10 301 55.9
qnet1 7 2.4 7 2.5 7 2.3
qnet1 o 29 3.9 29 4.0 29 3.9
rail507 1 704 1494.8 1 472 1269.2 1 472 1268.4
ran16x16 348 556 196.6 331 635 195.2 331 635 195.3
reblock67 111 964 279.5 111 964 279.1 111 964 279.7
rd-rplusc-21 >58 623 limit >58 592 limit >58 592 limit
rentacar 14 3.0 14 3.0 14 3.1
rgn 62 0.5 62 0.5 62 0.5
rmatr100-p10 901 197.3 901 197.7 864 201.0
rmatr100-p5 420 668.8 385 553.4 385 553.4
rmine6 541 456 2814.6 727 632 4044.6 523 315 2760.6
rocII-4-11 40 353 544.4 40 353 545.6 40 353 545.7
rococoC10-001000 662 755 3313.2 488 147 2372.7 495 582 2404.2
roll3000 >1 390 052 limit >1 479 602 limit >1 482 101 limit
rout 29 656 39.7 29 656 39.9 19 937 33.3
satellites1-25 9 089 2148.3 9 089 2146.1 9 089 2148.0
set1ch 28 0.9 6 0.8 6 0.9
seymour >122 156 limit >130 095 limit >116 911 limit
sp98ic >135 751 limit >209 889 limit >208 547 limit
sp98ir 4 912 64.8 4 912 64.9 4 912 65.1
stein27 4 045 0.9 4 045 1.1 4 045 1.0
stein45 52 523 13.1 52 523 13.1 52 523 13.3
swath >1 448 548 limit >1 460 957 limit >1 433 029 limit
t1717 >734 limit >720 limit >734 limit
tanglegram1 27 867.6 27 866.3 27 860.5
tanglegram2 3 7.0 3 7.0 3 6.9
timtab1 925 706 412.1 925 706 413.2 925 706 414.5
timtab2 >8 939 001 limit >8 943 388 limit >8 926 669 limit
tr12-30 1 518 459 1986.3 1 685 757 2280.3 1 532 831 2052.5
triptim1 30 2002.7 30 1984.3 30 1993.2
unitcal 7 11 624 1173.8 10 569 1137.6 10 569 1138.7
vpm2 945 1.2 143 1.1 143 1.1
vpphard >5 521 limit >5 524 limit >5 525 limit
zib54-UUE 951 366 5701.2 951 366 5708.5 865 298 4910.0

arithm. mean 1 446 078 2461.4 1 442 400 2427.0 1 443 404 2414.3
geom. mean 7 155 220.3 5 870 209.6 5 810 209.4
sh. geom. mean 11 248 377.2 10 390 366.3 10 346 365.8

47

Table 15: Impact of rens on overall solving process for MIQCP instances

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

10bar2 369 2.3 653 2.8 653 2.9
25bar >7 936 limit >3 402 limit >3 402 limit
classical 200 0 >100 675 limit >109 742 limit >109 204 limit
classical 200 1 >152 012 limit >134 651 limit >131 226 limit
classical 20 0 172 0.7 127 0.9 127 0.9
classical 20 1 866 1.7 897 1.9 897 2.1
classical 50 0 243 420 1068.1 1 260 971 5287.2 940 699 3782.0
classical 50 1 20 929 74.4 29 760 106.3 29 760 107.9
clay0203m 55 0.5 55 0.5 55 0.5
clay0205m 10 494 4.0 10 494 4.1 10 492 4.5
clay0303m 99 0.5 99 0.5 99 0.5
clay0305m 9 361 4.5 9 361 4.5 9 361 4.5
du-opt5 86 0.5 86 0.5 86 0.5
du-opt 322 0.7 322 0.7 322 0.8
ex1263 199 0.7 199 0.8 199 0.8
ex1266 37 0.7 255 1.1 255 1.1
fac3 6 0.5 6 0.5 6 0.5
feedtray2 1 0.5 1 0.5 1 0.5
ibell3a 44 048 12.9 42 066 13.8 42 066 13.8
icvxqp1 >1 897 limit >1 893 limit >1 903 limit
ilaser0 169 3.2 169 3.0 169 3.2
imod011 1 319.2 1 319.4 1 319.4
iportfolio >21 555 limit >21 527 limit >21 279 limit
isqp >1 706 210 limit >1 706 576 limit >1 706 619 limit
ivalues >153 470 limit >153 572 limit >153 088 limit
meanvarx 7 0.5 3 0.5 3 0.5
netmod dol1 62 794 6077.4 62 794 6049.4 62 028 6115.3
netmod dol2 192 49.6 192 49.7 150 47.8
netmod kar1 288 5.9 288 5.9 288 5.8
netmod kar2 288 6.0 288 5.9 288 5.9
nous1 >5 156 737 limit >5 154 877 limit >5 149 665 limit
nous2 2 821 2.2 2 821 2.0 2 821 2.2
nuclear14a >36 917 limit >36 932 limit >53 127 limit
nuclear14b >73 331 limit >73 976 limit >73 751 limit
nvs19 105 0.5 105 0.5 105 0.5
nvs23 96 0.5 96 0.5 96 0.5
product2 >6 014 234 limit >6 225 476 limit >5 740 865 limit
product 5 562 11.7 7 747 15.7 7 853 15.9
robust 100 0 86 362 1307.3 79 523 1234.3 79 523 1245.8
robust 100 1 13 780 207.9 16 517 235.9 16 517 239.9
robust 200 0 >139 784 limit >74 872 limit >73 339 limit
robust 20 0 8 0.5 8 0.5 8 0.5
robust 50 0 91 1.4 91 1.8 91 1.8
robust 50 1 228 3.0 200 2.8 200 2.8
shortfall 100 0 >495 750 limit >497 757 limit >503 010 limit
shortfall 100 1 356 687 3926.5 311 239 3382.3 226 505 2414.0
shortfall 200 0 >104 110 limit >103 692 limit >103 523 limit
shortfall 20 0 102 0.8 120 0.9 120 0.8
shortfall 50 0 343 829 1738.6 695 205 3628.8 690 262 3615.6
shortfall 50 1 9 259 43.2 11 106 46.0 11 106 47.4
SLay05H 254 2.1 75 1.6 75 1.6
SLay05M 79 0.6 150 1.0 150 1.0
SLay07M 1 930 6.9 377 3.0 377 3.1
SLay10H >532 368 limit >532 759 limit >498 710 limit
SLay10M 229 809 1828.4 28 848 233.2 28 856 241.4

48

Table 15 continued

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

space25a >21 026 limit >21 026 limit >21 026 limit
space25 >8 751 limit >8 751 limit >8 751 limit
spectra2 33 0.7 23 0.7 23 0.8
tln12 >2 590 652 limit >2 587 580 limit >2 589 049 limit
tln5 44 527 26.2 44 527 26.1 44 527 26.3
tln6 >12 370 474 limit >12 372 692 limit >12 367 087 limit
tln7 >9 474 819 limit >9 482 513 limit >9 493 095 limit
tloss 60 0.5 60 0.5 60 0.5
tltr 24 0.5 24 0.5 24 0.5
uflquad-15-60 904 2857.7 904 2862.1 827 2491.9
uflquad-20-50 >201 limit >201 limit >34 limit
uflquad-40-80 >105 limit >105 limit >39 limit
util 371 0.5 375 0.5 375 0.5
waste >4 005 594 limit >3 983 731 limit >3 964 173 limit

arithm. mean 659 740 2872.3 677 123 2927.0 664 117 2888.6
geom. mean 3 823 84.5 3 742 86.4 3 561 86.2
sh. geom. mean 6 457 229.9 6 361 232.0 6 193 229.9

49

Table 16: Impact of rens on overall solving process for MINLP instances

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

beuster >243 limit >243 limit >243 limit
cecil 13 >2 557 284 limit >2 553 413 limit >2 568 736 limit
contvar >10 024 limit >10 024 limit >10 024 limit
csched1 44 649 17.2 44 649 17.5 44 649 17.6
csched2a >26 250 limit >26 250 limit >26 250 limit
detf1 >331 limit >330 limit >331 limit
eg all s >446 limit >440 limit >440 limit
eg disc2 s >83 limit >83 limit >48 limit
eg disc s >136 limit >136 limit >34 limit
eg int s >5 limit >5 limit >5 limit
eniplac 172 0.7 172 0.6 98 0.6
enpro48 84 0.8 54 982 11.9 12 571 4.3
enpro48pb 249 160 42.9 36 0.9 36 0.8
enpro56pb 4 048 1.8 85 265 17.6 85 265 17.6
ex1233 >11 127 294 limit >11 141 457 limit >11 144 945 limit
ex1244 492 1.0 492 1.1 504 1.4
ex1252 >88 limit >88 limit >88 limit
ex1252a >204 limit >204 limit >204 limit
feedtray >640 421 limit >638 931 limit >639 220 limit
fo7 163 542 68.1 163 542 67.8 163 542 68.6
fo7 2 45 627 22.2 45 627 22.2 48 697 23.8
fo7 ar25 1 43 715 16.9 43 715 17.3 49 960 19.5
fo7 ar2 1 39 986 17.3 39 986 17.3 39 986 17.6
fo7 ar3 1 47 741 17.9 47 741 17.9 50 563 19.5
fo7 ar4 1 58 884 28.5 58 884 28.2 58 884 29.2
fo7 ar5 1 20 509 9.1 20 509 9.0 20 509 9.1
fo8 538 828 277.3 538 828 277.3 538 828 279.3
fo8 ar25 1 337 708 141.8 337 708 141.4 149 658 59.9
fo8 ar2 1 643 114 168.7 643 114 168.6 192 277 75.0
fo8 ar3 1 75 943 43.8 75 943 43.8 75 943 44.6
fo8 ar4 1 >46 231 801 limit >46 093 488 limit 86 646 43.3
fo8 ar5 1 55 953 27.9 55 953 28.4 55 953 29.2
fo9 2 155 434 1140.4 2 155 434 1143.8 10 127 873 2879.5
fo9 ar25 1 4 702 715 1731.2 4 702 715 1733.8 4 881 081 1843.4
fo9 ar2 1 2 615 019 1089.9 2 615 019 1092.5 2 615 019 1092.2
fo9 ar3 1 532 025 284.5 532 025 284.9 331 077 172.6
fo9 ar4 1 284 985 133.1 284 985 134.6 284 985 133.7
fo9 ar5 1 729 300 405.2 729 300 408.4 729 300 409.3
fuzzy >2 161 178 limit >2 156 389 limit 408 344 1883.2
gasnet >1 382 limit >1 382 limit >1 382 limit
gear 2 828 2.0 2 828 2.0 2 828 2.0
gear2 591 0.5 506 0.5 506 0.5
gear3 2 828 2.2 2 828 2.1 2 828 2.0
gear4 105 0.5 105 0.5 105 0.5
ghg 1veh >18 013 454 limit >18 137 988 limit >18 188 182 limit
ghg 2veh >737 048 limit >87 992 limit >853 625 limit
ghg 3veh >420 745 limit >420 693 limit >211 106 limit
hda >848 500 limit >847 241 limit >824 623 limit
johnall 1 64.0 1 72.3 1 63.8
m6 955 1.1 955 1.0 955 1.2
m7 14 053 6.5 14 053 6.4 14 053 6.6
m7 ar25 1 2 848 2.0 2 848 2.1 2 055 1.4
m7 ar2 1 22 707 5.7 22 707 5.6 22 707 5.8
m7 ar3 1 9 390 4.6 9 390 4.5 9 390 4.6
m7 ar4 1 2 134 1.8 2 134 1.8 2 134 2.1

50

Table 16 continued

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

m7 ar5 1 25 814 6.8 25 814 6.9 25 814 7.2
no7 ar25 1 107 048 51.4 107 048 50.7 87 297 42.4
no7 ar2 1 27 667 14.9 27 667 14.8 27 667 14.9
no7 ar3 1 423 874 187.2 423 874 185.8 423 874 186.9
no7 ar4 1 228 710 108.6 228 710 108.3 252 173 120.5
no7 ar5 1 103 053 52.5 103 053 52.2 103 053 52.0
nvs09 >4 697 821 limit >6 241 826 limit >6 342 072 limit
nvs20 355 0.8 355 0.8 355 1.0
o7 4 566 673 2343.0 4 566 673 2345.9 4 566 673 2357.2
o7 2 1 730 061 756.5 1 730 061 754.7 1 708 453 755.9
o7 ar25 1 489 625 241.3 489 625 239.7 489 625 244.1
o7 ar2 1 176 585 88.0 176 585 86.2 151 581 69.9
o7 ar3 1 1 230 419 616.6 1 230 419 616.7 1 230 419 618.9
o7 ar4 1 1 854 132 991.8 1 854 132 994.0 1 854 132 994.5
o7 ar5 1 795 136 371.7 795 136 372.3 613 092 282.3
o8 ar4 1 11 782 816 6666.4 11 782 816 6688.3 12 722 339 6984.3
o9 ar4 1 >12 507 230 limit >12 514 424 limit >12 415 746 limit
oil >589 974 limit >589 231 limit >589 208 limit
oil2 >1 027 176 limit >1 028 096 limit >1 024 608 limit
parallel 735 814 2599.6 735 814 2592.5 735 814 2591.3
pump >47 limit >47 limit >47 limit
risk2b 2 0.6 2 0.6 2 0.6
saa 2 >331 limit >331 limit >331 limit
spring 90 0.5 90 0.5 90 0.5
st e32 12 153 13.6 12 153 13.7 12 153 13.6
stockcycle 32 340 222.0 32 340 222.2 32 340 223.2
super1 >88 353 limit >88 400 limit >88 430 limit
super2 >90 554 limit >89 681 limit >90 164 limit
super3 >102 297 limit >100 310 limit >102 024 limit
super3t >71 449 limit >71 272 limit >68 820 limit
synheat >68 710 limit >68 710 limit >68 710 limit
synthes1 4 0.5 4 0.5 4 0.5
synthes2 5 0.5 4 0.5 4 0.5
synthes3 >56 469 781 limit >54 499 711 limit >57 219 056 limit
tls12 >622 812 limit >629 179 limit >628 973 limit
tls4 9 520 11.7 12 723 13.4 12 723 13.5
tls5 >3 950 998 limit >3 941 413 limit >3 943 467 limit
tls6 >2 741 985 limit >2 729 799 limit >2 732 632 limit
tls7 >1 805 765 limit >1 797 325 limit >1 804 162 limit
water3 >6 706 261 limit >6 698 169 limit >6 578 939 limit
water4 1 692 444 1860.5 1 692 444 1863.9 1 642 038 1816.3
waterful2 >4 169 416 limit >4 164 237 limit >4 148 024 limit
watersbp >4 032 620 limit >4 032 620 limit >155 142 limit
watersym1 >6 705 227 limit >6 453 837 limit >6 730 378 limit
watersym2 >8 127 217 limit >8 123 253 limit >8 059 966 limit
waterx >1 425 limit >1 425 limit >1 425 limit
waterz >1 094 883 limit >1 094 883 limit >1 094 883 limit

arithm. mean 2 338 903 3274.5 2 324 208 3274.7 1 925 902 3168.7
geom. mean 45 334 288.0 44 723 291.4 38 568 267.9
sh. geom. mean 58 758 466.5 58 406 467.1 51 066 431.3

51

	Introduction
	A scheme for an LNS rounding heuristic
	Design and implementation details
	Experimental setup
	Computational results
	Conclusion
	References
	List of Tables

