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Abstract

The paper considers an improved variant of the contact-stabilized
Newmark method by Deuflhard et al., which provides a spatiotem-
poral numerical integration of dynamical contact problems between
viscoelastic bodies in the frame of the Signorini condition. Up no now,
the question of consistency in the case of contact constraints has been
discussed for time integrators in function space under the assumption
of bounded total variation of the solution. Here, interest focuses on
the consistency error of the Newmark scheme in physical energy norm
after discretization both in time and in space. The resulting estimate
for the local discretization error allows to prove global convergence of
the Newmark scheme under an additional assumption on the active
contact boundaries.
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1 Introduction

Dynamical contact problems play an important role in different application
areas such as structural mechanics and biomechanics. Typically, they are
modelled via Signorini’s classical contact conditions, which lead to nonlin-
ear variational inequalities that are highly nonsmooth at contact interfaces
between bodies.

In view of the numerical treatment of dynamical contact problems, a
reliable integrator should mainly achieve two properties: a tight energy con-
servation or at least dissipativity and the avoidance of numerical instabilities
during phases of active contact. Since the most wide-spread algorithms in
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engineering do not satisfy these demands, a large variety of alternative inte-
grators has been designed in the last years. The fundamental difficulty is to
adequately cope with the interaction of space and time discretization, which
has turned out to be the main cause for the spurious oscillations in many ap-
proaches. In this paper, an improved variant of the contact-stabilized New-
mark method suggested by Deuflhard, Krause, and Ertel [3] is considered.
Compared to the original Newmark scheme with contact–stabilization, the
method is not only energy dissipative and free of any artificial oscillations,
but also produces velocities equal to zero at active contact boundaries.

In the unconstrained situation, the Newmark method is well-known to
have consistency and convergence order two with respect to the timestep
size (see, e.g., the textbook [9]). In the constrained situation, the intrinsic
discontinuities at contact interfaces make the question of consistency and
convergence much more difficult. As a result, a consistency result under
contact constraints necessitates a novel regularity assumption on the solu-
tion, which has only recently been addressed in [16] for the first time. The
authors presented a local discretization error analysis within the physical en-
ergy norm studied in [14], where the solution and its derivatives are required
to be of bounded total variation. Furthermore, a novel proof technique for
convergence has been developed in [13], which allows to show that the global
discretization error of the scheme tends to zero with order 1/2.

However, the consistency and convergence theory presented in these pub-
lications has been performed within the method of time layers, i.e. for the
corresponding contact-stabilized Newmark scheme in function space. In
this framework, the effect of the contact–stabilization completely vanishes.
Hence, its benefits in space-and-time discretization are not reflected by the
results in [16, 13]. For this reason, the present paper fills this gap by analyz-
ing the consistency and convergence error of the improved contact-stabilized
Newmark method after discretization both in time and in space.

The paper will start with the mathematical formulation of the under-
lying dynamical contact problem in Section 2. In Section 3, an improved
variant of the contact-stabilized Newmark method by Deuflhard et al. will
be presented and its conservation and stabilization features will be discussed.
After a review of existing consistency results within the method of time lay-
ers, the central Section 4 will contain the novel consistency result for the
improved contact-stabilized Newmark method with discretization both in
time and in space. The section will be concluded by a discussion of both the
consistency and the convergence behavior of the spatiotemporal integrator.

2 Notation and Background

The paper at hand is concerned with a contact-stabilized Newmark method
for dynamical contact problems between two bodies. In this initial section,
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the classical problem formulation based on linearized Signorini’s contact
conditions is written down in order to set notations and definitions. In view
of existing perturbation and consistency results [15, 16], the model utilizes
linear viscoelastic materials fulfilling the Kelvin-Voigt constitutive law.

Notation. Let the two bodies be identified with the union of two domains
which are understood to be bounded subsets in R

d with d = 2, 3. Each of the
boundaries are assumed to be Lipschitz and decomposed into three disjoint
parts: ΓD, the Dirichlet boundary, ΓN , the Neumann boundary, and ΓC ,
the possible contact boundary. The actual contact boundary is not known
in advance, but is assumed to be contained in a subset of ΓC . The Dirichlet
boundary conditions give rise to H1

D := {v ∈ H1 |v|ΓD
= 0}.

For given Banach spaceV and time interval t0 < T < ∞, let C([t0, T ],V)
be the continuous functions v : [t0, T ] → V. The space L2(t0, T ;V) con-
sists of all measurable functions v : (t0, T ) → V for which ‖v‖2

L2(t0,T ;V) :=
∫ T
t0
‖v(t)‖2

V
dt < ∞ holds. The space L2 is identified with its dual space,

and this yields the evolution triple H1 ⊂ L2 ⊂ (H1)∗ where (H1)∗ denotes
the dual space of H1. With reference to this evolution triple, the Sobolev
space W1,2(t0, T ;H

1,L2) means the set of all functions v ∈ L2(t0, T ;H
1)

that have generalized derivatives v̇ ∈ L2(t0, T ; (H
1)∗), see, e.g., [28].

For the sake of clear arrangement, the abbreviation v̄ = (v, v̇) will be
used for a function and its first time derivative.

Non-penetration condition. At the contact interface ΓC , the two bodies
may come into contact but must not penetrate each other. Assuming a
bijective mapping φ : ΓS

C −→ ΓM
C between the two possible contact surfaces

to be given, linearized non-penetration can be defined with respect to φ
by [6]

[u · ν]φ(x, t) = uS(x, t) · νφ(x)−uM (φ(x), t) · νφ(x) ≤ g(x) , x ∈ ΓS
C . (1)

This condition is given with respect to the initial gap

ΓS
C ∋ x 7→ g(x) = |x− φ(x)| ∈ R (2)

between the two bodies in the reference configuration and the normalized
vector

νφ =











φ(x)− x

|φ(x)− x| , if x 6= φ(x) ,

µS(x) = −µM (x) , if x = φ(x) .

(3)

Variational problem formulation. For the weak formulation of the dy-
namical contact problem, the convex set of all admissible displacements is
denoted by

K = {v ∈ H1
D | [v · ν]φ ≤ g} . (4)
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The materials under consideration are assumed to be linearly viscoelas-
tic, i.e. the stresses satisfy the Kelvin-Voigt constitutive relation. Both
elasticity and viscoelasticity tensors should be sufficiently smooth, symmet-
ric, and uniformly positive definite. In this case, the internal forces can be
written as a bilinear form a in H1 for the linearly elastic part, respectively
b for the viscous part. Both bilinear forms are bounded in H1 and give rise
to seminorms ‖ · ‖2a = a(·, ·) and ‖ · ‖2b = b(·, ·).

The external forces are represented by a linear functional fext on H1
D

which accounts for the volume forces and the tractions on the Neumann
boundary. The sum of internal elastic and external forces can be represented
by

〈F(w),v〉(H1)∗×H1 = a(w,v)− fext(v) , v,w ∈ H1 , (5)

and the viscoelastic forces can be written as

〈G(w),v〉(H1)∗×H1 = b(w,v) , v,w ∈ H1 . (6)

In the weak formulation [5, 12], the dynamical contact problem can be writ-
ten as the following variational inequality: For almost every t ∈ [0, T ], find
u ∈ K with u(·, t) ∈ C([0, T ],H1) and u̇ ∈ W1,2(0, T ;H1,L2) such that for
all v ∈ K

〈ü,v−u〉(H1)∗×H1+〈F(u),v−u〉(H1)∗×H1+〈G(u̇),v−u〉(H1)∗×H1 ≥ 0 (7)

and
u(0) = u0 , u̇(0) = u̇0 . (8)

Incorporating the constraints v(t) ∈ K for almost every t ∈ [0, T ] by the
characteristic functional IK(v), the variational inequality (7) can equiva-
lently be formulated as the variational inclusion

0 ∈ ü+ F(u) +G(u̇) + ∂IK(u) (9)

utilizing the subdifferential ∂IK of IK [7]. As shown for instance in [2], the
unilateral contact problem between a viscoelastic body and a rigid founda-
tion has at least one weak solution.

3 The Contact-Stabilized Newmark Method

In the community of computational mechanics, the most popular family of
time discretization schemes are the classical Newmark methods [24]. Due
to their excellent characteristics in the absence of contact constraints, these
methods are often transferred into time-stepping schemes for solving prob-
lems from contact mechanics. However, the classical handling of the addi-
tional non-penetration condition causes an uncontrollable behavior of the
total energy during time integration. Moreover, the methods evoke spurious
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instabilities at dynamical contact boundaries, which show up as unwanted
oscillations in displacements, velocities, and contact stresses [3, 21, 13].

In the last years, several variants of the classical Newmark method for dy-
namical contact problems have been designed to avoid these deficits. In order
to overcome the poor energy conservation, Kane, Repetto, Ortiz, and Mars-
den [11] developed an energy-dissipative version of the scheme by proposing
a fully implicit treatment of the contact forces. In 2007, Deuflhard, Krause,
and Ertel [3] designed a contact-stabilized variant of this algorithm, which
completely removes the spurious oscillations at contact boundaries and is
still energy dissipative in the presence of contact. Both methods have orig-
inally been formulated in pure linear elasticity, but they have been general-
ized to the viscoelastic case in [16].

Unfortunately, the original contact-stabilization by Deuflhard et al. leads
to constant normal velocities at active contact boundaries although van-
ishing normal components of the velocities are expected by reason of the
well-known persistency condition [23, 13]. Hence, in this section, a further
improvement of the contact-stabilized Newmark method will be presented,
which overcomes this unsatisfactory behavior. As it will turn out later, the
vanishing normal velocities are crucial for a beneficial behavior regarding
the consistency of the spatiotemporal discretization.

Discretization in space. In a first step, the space is discretized by piece-
wise linear finite elements. Let Ωh be a polyhedral domain partitioned into
triangles or tetrahedra with h > 0 the maximal diameter, and let the se-
quence of triangulations be shape regular. Denote the corresponding finite
element space by Sh and the set of vertices contained in Ωh ∪ Γh,N ∪ Γh,C

by Nh. In this setting, the discrete approximation Kh ⊂ Sh of the set of
admissible displacements is the set

Kh :=
{

vh ∈ Sh

∣

∣ [vh · νh]φh
≤ gh ∀ p ∈ Nh ∩ Γh,C

}

, (10)

where νφh
, φh, and gh are suitable approximations of νφ, φ, and g. Details

of the spatial discretization can be found in [12, 18, 19, 20, 27].

Discretization in time. For the temporal discretization, let the con-
tinuous time interval [0, T ] be subdivided by N + 1 discrete timepoints
0 = t0 < t1 < · · · < tN = T with tn = n · τ for n = 0, . . . , N and τ
denoting a given timestep.

With these algorithmic preparations, both the contact-implicit Newmark
method by Kane et al. and a novel version of the contact-stabilized Newmark
method by Deuflhard et al. can be given.
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Contact-implicit Newmark method (N-CI)h.

u0
h,CI = u(t0) (11a)

u̇0
h,CI = u̇(t0) (11b)

0 ∈ un+1
h,CI − un

h,CI − τ u̇n
h,CI +

τ2

2

(

F
(un

h,CI + un+1
h,CI

2

)

(11c)

+G
(un+1

h,CI − un
h,CI

τ

)

+ ∂IK
(

un+1
h,CI

)

)

u̇n+1
h,CI = u̇n

h,CI +
2

τ

(

un+1
h,CI − un

h,CI − τ u̇n
h,CI

)

(11d)

Improved contact-stabilized Newmark method (N-CS++)h.

u0
h = u(t0) (12a)

u̇0
h,pred = u̇(t0) (12b)

0 ∈ u̇0
h − u̇0

h,pred + ∂IK
(

u0
h + τ u̇0

h

)

(12c)

0 ∈ un+1
h − un

h − τ u̇n
h +

τ2

2

(

F
(un

h + un+1
h

2

)

(12d)

+G
(un+1

h − un
h

τ

)

+ ∂IK
(

un+1
h

)

)

u̇n+1
h,pred = u̇n

h +
2

τ

(

un+1
h − un

h − τ u̇n
h

)

(12e)

0 ∈ u̇n+1
h − u̇n+1

h,pred + ∂IK
(

un+1
h + τ u̇n+1

h

)

. (12f)

Variational problem. In (11c) and (12d), both Newmark methods re-
quire the solution of a nonlinear variational inclusion, which is equivalent to
a convex minimization problem under non-penetration constraints [13, 25].
A suitable algorithm for solving these stationary contact problems in each
timestep is the adaptive monotone multigrid method by Kornhuber and
Krause [20, 18, 19, 17] or its recent improvement by Gräser and Kornhuber,
the so-called truncated nonsmooth Newton multigrid method (TNNMG) [8].

Once the variational problem is solved, the contact forces Fcon(u
n+1
h,(CI))

are defined as the residuals of the variational inequalities, i.e.

τ2

2

〈

Fcon(u
n+1
h,(CI)),vh

〉

:=
〈

un+1
h,(CI) − un

h,(CI) − τ u̇n
h,(CI) +

τ2

2

(

F
(un

h,(CI) + un+1
h,(CI)

2

)

(13)

+G
(un+1

h,(CI) − un
h,(CI)

τ

))

,vh

〉

, vh ∈ H1 ,

and the variational problems (11c) and (12d) can equivalently be formulated
as

〈

Fcon(u
n+1
h,(CI)),u

n+1
h,(CI) − vh

〉

(H1)∗×H1 ≤ 0 , ∀ vh ∈ Kh . (14)
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L2-projection. The contact–stabilization procedure in the novel version
(N-CS++)h of the Newmark method by Deuflhard et al. adds a special non-
linear corrector step (12f) to the linear velocity update (11d) and (12e). In
addition, the velocities u̇0

h at initial time are given by the corrector step (12b)
instead of the prescribed velocities u̇(t0) from the variational problem (7).
These variational inclusions can equivalently be written as the constrained,
convex minimization problems

min
vh∈Kh

∥

∥vh − un+1
h − τ u̇n+1

h,pred

∥

∥

L2(Ωh)
. (15)

Hence, the corrector steps can be considered as the L2-projections of the
finite element functions un+1

h + τ u̇n+1
h,pred ∈ Sh onto the discrete set Kh of ad-

missible displacements in each timestep. In the case of a full mass matrix,
the L2-projection can be solved by a monotone multigrid method [19]. If
a lumped mass matrix is used instead, the L2-projection can even be real-
ized by a pointwise projection of the normal trace on the possible contact
boundaries.

If the L2-projection is carried out, the predictor step can be rewritten
as

(

Gcon(u
n+1
h + τ u̇n+1

h ),un+1
h + τ u̇n+1

h − vh

)

L2
≤ 0 , ∀vh ∈ Kh (16)

with Gcon defined via
(

Gcon(u
n+1
h + τ u̇n+1

h ),vh

)

L2
=

(

u̇n+1
h − u̇n+1

h,pred,vh

)

L2
, vh ∈ Kh . (17)

The positive effects of this L2-projection in view of conservation and stabi-
lization properties will be discussed in detail in the following two sections.

3.1 Conservation properties

In the absence of contact constraints, the symmetric classical Newmark
method preserves the linear momentum and the total energy of the dis-
crete evolution [22, 9, 13]. In the constrained case, however, the situation
must be reexamined due to the nonlinearity of the contact forces.

For the original contact-stabilized Newmark method by Deuflhard et al.,
conservation of linear momentum as well as dissipativity of total energy has
be proven in [3]. These results can easily be translated to the novel variant
of this scheme presented above. However, the proofs will be skipped here,
since the calculations are very similar to those performed in [13] for the
original contact-stabilized Newmark scheme.

Linear momentum conservation. The improved version of the contact-
stabilized Newmark method preserves the linear momentum of the system
both in the absence and in the presence of contact.

Theorem 3.1. The improved contact-stabilized Newmark method
(N-CS++)h conserves the linear momentum if fext = 0 and ΓD = ∅.
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Energy dissipativity. The energy of the discrete evolution of the im-
proved contact–stabilized Newmark method is still preserved in the absence
of contact (including the viscous energy). In the presence of contact, the
implicit handling of the non-penetration constraints leads to a dissipative
behavior, which is preserved by the contact–stabilization even for the latest
variant presented above.

Theorem 3.2. Consider the improved contact-stabilized Newmark method
(N-CS++)h with fext = 0. If un+1

h and un+1
h +τ u̇n+1

h are not in contact, the
algorithm is energy conserving (including the viscous energy). Otherwise,
the algorithm is energy dissipative.

3.2 The contact–stabilization

As mentioned above, numerical instabilities arise in many discretization
schemes for dynamical contact problems. The main cause for this unde-
sirable effect is that discretization in space assigns a mass to the discrete
contact boundaries, while the boundaries in the continuous problem have
measure zero. In consequence, the entries of the discrete mass matrix are
transferred into contributions to the contact forces at contact interfaces,
which destroy the force equilibrium on account of Newton’s third law of
motion. Therefore, the key idea of the contact–stabilization procedure by
Deuflhard et al. is to remove the unphysical part of the discrete contact
forces. As a result, the spurious oscillations in displacements and contact
forces disappear, see the numerical examples in [3, 13].

The original contact–stabilization by Deuflhard et al. can be shown to
produce constant normal components of the velocities during phases of active
contact [3, 13]. However, the solution of the continuous problem fulfills the
well-known persistency condition [23, 13] meaning that the normal velocities
are equal to zero in the case of active contact constraints. The presented
modification (N-CS++)h overcomes the lack of non-vanishing velocity values
by performing the L2-projection of the contact–stabilization at the end and
not at the beginning of a timestep.

Vanishing normal velocity components and avoidance of artificial
oscillations. Assume that contact is found on a part of the possible con-
tact boundaries in some timestep, i.e.

[

un+1
h · νh

]

φh
= gh on Γ∗

C,h ⊂ ΓC,h . (18)

In a first step, the variational inequality (16) is evaluated for an admissible
finite element function vh defined by vh = un+1

h ∈ Kh at the nodes of Γ∗
C,h

and vh = un+1
h + τ u̇n+1

h ∈ Kh at the nodes of Ωh/ Γ∗
C,h. This gives the

inequality
(

Gcon(u
n+1
h + τ u̇n+1

h ), τ u̇n+1
h

)

L2(S∗
C,h)

≤ 0 ,
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where S∗
C,h denotes the stripe of finite elements along the active contact

boundary Γ∗
C,h. A second admissible test function is given by vh = un+1

h +

2τ u̇n+1
h at the nodes of Γ∗

C,h and vh = un+1
h +τ u̇n+1

h at the nodes of Ωh/ Γ∗
C,h

since

τ
[

u̇n+1
h ·νh

]

φh
=

[

un+1
h +τ u̇n+1

h ·νh

]

φh
−
[

un+1
h ·νh

]

φh
≤ 0 on Γ∗

C,h ⊂ ΓC,h .

This choice leads to

(

Gcon(u
n+1
h + τ u̇n+1

h ),un+1
h + τ u̇n+1

h − vh

)

L2

=
(

Gcon(u
n+1
h + τ u̇n+1

h ),−τ u̇n+1
h

)

L2(S∗
C,h)

≤ 0 ,

and finally, the combination of the two inequalities yields

(

Gcon(u
n+1
h + τ u̇n+1

h ), u̇n+1
h

)

L2(Γ∗
C,h)

= 0 . (19)

This expression is interpretable in the sense that the improved contact-
stabilized Newmark method (N-CS++)h enables vanishing normal veloci-
ties on the active parts of the possible contact boundaries. This physically
reasonable behavior even covers the first timestep with active contact con-
straints, which is in contrast to an earlier variant suggested by the author
in [13].

The vanishing normal velocities of (N-CS++)h at active contact nodes
finally guarantee that the displacements remain uninterrupted in phases of
permanent active contact. This geometric argument explains the desired
removal of artificial oscillations at discrete contact interfaces by means of
the contact–stabilization.

The contact–stabilization in function space. In view of a consistency
and convergence analysis for a spatiotemporal integration scheme, there are
two principal choices differing in the sequence of discretization (compare
e.g., [4]): the popular method of lines (MOL), in which discretization is
performed first in space and then in time, and the method of time layers
(MOT), also known as Rothe method, which discretizes first the time and
then the space. Regarding Newmark methods for dynamical contact prob-
lems, the focus in the literature has been on the method of time layers up to
now. Here, the results of this approach shall be briefly collected for a later
comparison with the novel theory presented in this paper.

In the framework of the method of time layers, the spatial grid is refined
initially, a process analyzed for the contact-stabilized and for the contact-
implicit Newmark method in [16, 13]. The spatiotemporal algorithm (N-
CS++)h differs from (N-CI)h in the additional variational inclusion in the
velocity update. As noted above, this corrector step can equivalently be
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formulated as the L2-projection of a finite element function onto the dis-
crete admissible set Kh, which is related to the pointwise behavior along the
possible contact boundaries, cf. (10). Hence, the corrector mainly acts as a
modification of the velocities near the contact interfaces, while the nodes in
the interior of the domain are only slightly changed. As a result, the effect
of the projection completely vanishes, if h tends to zero, due to the mea-
sure zero of the contact boundaries in the continuous problem [16, 13]. In
consequence, the modified update formula for the improved velocities u̇n+1

h

converges to u̇n+1
h,pred in L2 if the spatial grid vanishes.

In addition to this result, the analysis in [16, 13] has turned out a conver-
gence result concerning the spatial limit of the space-discretized Newmark
schemes: if h tends to zero, the solution of the contact-stabilized Newmark
method possesses the same limit as the contact-implicit variant. The iden-
tical continuous counterpart of both Newmark algorithms in function space
reads:

Contact-implicit/improved contact-stabilized Newmark method in
function space (N-CI/CS++).

u0 = u(t0)

u̇0 = u̇(t0)

0 ∈ un+1 − un − τ u̇n +
1

2
τ2
(

F1/2
(

un,un+1
)

+G
(un+1 − un

τ

)

+ ∂IK
(

un+1
)

)

u̇n+1 = u̇n +
2

τ

(

un+1 − un − τ u̇n
)

.

(20)

In view of the convergence result, the admissible set K ⊂ H1
D is assumed

to be approximated by the sets Kh ⊂ Sh in the following way.

Assumption 3.3.

(i) ∀ v ∈ K , ∃ vh ∈ Kh such that ‖vh − v‖H1 → 0 as h → 0 , and

(ii) for wh ∈ Kh “wh → w weakly as h → 0” implies w ∈ K
These preparations allow to formulate the following theorem on the con-

vergence behavior of the spatiotemporal Newmark schemes for fixed tempo-
ral step size τ .

Theorem 3.4. ([16, 13]) Assume SH to be fixed, un
H , u̇n

H ∈ SH , and Sh

a family of quasiuniform refinements of SH with h → 0. Let Assump-
tion 3.3 hold. Then, (N-CI)h and (N-CS++)h converge to the same limit
(N-CI/CS++) for h → 0, i.e.,

lim
h→0

(
∥

∥un+1
h,(CI) − un+1

∥

∥

H1 +
∥

∥u̇n+1
h,(CI) − u̇n+1

∥

∥

L2

)

= 0 . (21)
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4 Consistency Error in Physical Energy Norm

By means of the preceding preparations, this section of the paper contains
the main results concerning the consistency error of the improved contact-
stabilized Newmark method in time and space.

In the unconstrained case, the symmetric Newmark method is well-
known to be pointwise second-order consistent [22]. In the presence of
contact constraints, however, the situation is completely different due to
the high non-linearity and non-regularity of the arising contact forces. In
this case, the consistency and convergence behavior of the contact-stabilized
Newmark method has been discussed within the framework of the method
of time layers up to now [16, 13]. These results cover both the contact-
stabilized and the contact-implicit Newmark scheme in function space, since
the L2-projection of the contact–stabilization vanishes in the spatial limit
as mentioned above. Hence, the error estimates in this approach can not
benefit from the advantages of the contact–stabilization, which motivates
the following consistency theory including both spatial and temporal dis-
cretization parameters.

After a brief recall of the consistency results in function space in Sec-
tion 4.1, an estimate for the spatiotemporal consistency error of the improved
contact-stabilized Newmark method will be derived in the subsequent Sec-
tion 4.2. In the last Section 4.3, the novel consistency results will be dis-
cussed in view of convergence properties of the spatiotemporal Newmark
scheme.

4.1 Consistency error in function space

For the sake of comparison and for using similar results in the proofs to
follow, the consistency theory for the common counterpart of the contact-
implicit and of the contact-stabilized Newmark method in function space
will be revealed in this section. As a preparatory step, some basics concepts
will be given.

In order to estimate the local and global discretization errors of the New-
mark schemes, the physical energy norm suggested in [15] will be exploited.

Physical energy norm. For a function v̄ = (v, v̇) : [t, t+ τ ] → H1 × L2

with v̇ ∈ L2(t, t+ τ ;H1), the physical energy norm is defined as

‖v̄‖2
E(t,τ) := ‖v̄(t+ τ)‖2E +

t+τ
∫

t

‖v̇(s)‖2b ds (22)

in terms of the reduced norm

‖v̄(t+ τ)‖2E :=
1

2
‖v̇(t+ τ)‖2L2

+
1

2
‖v(t+ τ)‖2a . (23)

11



This norm may be interpreted as a sum of the kinetic energy, measured in
L2, and the potential energy, measured in the energy norm in H1, including
the viscous part. For the later consistency theory, the following variant using
a finite difference for the velocities in H1 will become important:

‖ūn+1
h −ū(t+τ)‖2

Ẽ(t,τ)
:=

∥

∥ūn+1
h −ū(t+τ)

∥

∥

2

E
+

t+τ
∫

t

∥

∥

∥

un+1
h − u(t)

τ
−u̇(t+s)

∥

∥

∥

2

b
ds.

(24)

In the presence of active contact constraints, the velocities, accelerations,
and contact forces of the variational problem (7) become highly irregular.
However, with respect to adequate Sobolev spaces, these quantities might
be continuous with respect to time except at countable many timepoints. In
general, such a behavior is shown by functions of bounded total variation.

Bounded variation. Let (V; ‖ · ‖V) be a Banach space. The total varia-
tion of a function v : [t0, t] → V is defined as

TV(v, [t0, t],V) := sup
{

n
∑

j=1

‖v(tj)− v(tj−1)‖V : t0 < t1 < . . . < tn = t
}

,

and the set of functions from [t0, t] into V that have bounded variation is
denoted by BV([t0, t],V). Moreover, the intriguing property

TV(v, [t0, t1],V) + TV(v, [t1, t],V) = TV(v, [t0, t],V) , for t0 < t1 < t
(25)

holds for every function of bounded variation (compare, e.g., [26]).

In this paper, the considerations are restricted to dynamical contact
problems satisfying the following regularity assumptions.

Assumption 4.1.

u̇ ∈ BV
(

[0, T ],H1
)

, ü ∈ BV
(

[0, T ],
(

H1
)∗)

Due to this assumption, the quantity

R(u, [t, t+ τ ]) := TV
(

u, [t, t+ τ ],H1
)

+TV
(

u̇, [t, t+ τ ],H1
)

+TV
(

ü, [t, t+ τ ],
(

H1
)∗) (26)

will arise in all results on the error behavior of Newmark schemes in the
presence of contact constraints. The following theorem presents a previ-
ous estimate for the consistency error of the common contact-implicit and
contact-stabilized Newmark method in function space.
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Theorem 4.2. ([16]) Let Assumption 4.1 hold. Then, for initial values
un = u(t) and u̇n = u̇(t), the local error ūn+1 − ū(t + τ) = (un+1 − u(t +
τ), u̇n+1 − u̇(t+ τ)) of (N-CI/CS++) satisfies

‖ūn+1 − ū(t+ τ)‖
Ẽ(t,τ) = R(u, [t, t+ τ ]) ·O

(

τ1/2
)

. (27)

In general, the term R(u, [t, t+ τ ]) on the right-hand side of the consis-
tency result does not to contribute to any order in τ . In fact, the consistency
order of the scheme may only be of order 1/2 at single timepoints. Therefore,
applying standard proof techniques (as “Lady Windermere’s Fan”, [9]) does
not allow to show convergence of the method due to the principle loss of one
order in τ . However, by means of the telescoping property (25), the terms
R(u, [t, t+ τ ]) on the right-hand side sum up to R(u, [0, T ]) over the whole
time interval. Hence, the common Newmark method in function space can
be shown to be globally convergent of order 1/2. For more details see [13].

4.2 Consistency error in time and space

This section is finally devoted to the main topic of the paper, the consistency
error of the improved contact-stabilized Newmark method after discretiza-
tion in time and in space.

In general, the consistency error of a spatiotemporal discretization only
tends to zero if both the timestep τ and the spatial parameter h tend to
zero. In the following considerations, interest is mainly on the τ -dependence
of the error. If h is fixed, the Newmark scheme is expected to converge to
the original dynamical contact problem formulated on the finite dimensional
admissible set Kh ⊂ Sh instead of K ⊂ H1.

Variational problem on Kh. For almost every t ∈ [0, T ], find uh ∈ Kh

with uh(·, t) ∈ C([0, T ],H1) and u̇h ∈ W1,2(0, T ;H1,L2) such that for all
vh ∈ Kh

0 ∈ üh + F(uh) +G(u̇h) + ∂IK(uh) (28)

and

uh(0) = u0 , u̇h(0) = u̇0 . (29)

The solution of this variational problem as well as the algorithmic so-
lution of the improved contact-stabilized Newmark method depend on the
spatial discretization parameter h. Both the h-dependent problem (28) and
the spatiotemporal Newmark method (N-CS++)h are formulated by using
Sobolev spaces, although all norms are equivalent in the finite dimensional
case. Please note that this is in view of the later investigations of the con-
vergence behavior for h → 0.

By means of the auxiliary dynamical contact problem (28), the consis-
tency error of the spatiotemporal Newmark algorithm measured in physical

13



energy norm can be split up as follows:

∥

∥ūn+1
h − ū(t+ τ)

∥

∥

Ẽ(t,τ)

≤
∥

∥ūh(t+ τ)− ū(t+ τ)
∥

∥

Ẽ(t,τ)
+
∥

∥ūn+1
h − ūh(t+ τ)

∥

∥

Ẽ(t,τ)
. (30)

The first part of this estimate describes the difference between the h-
dependent solution of (28) and the continuous solution of the original contact
problem (9). This term is expected to converge to zero if the spatial param-
eter h tends to zero. Since the quantity does not depend on the timestep τ
in a special way, it will not be discussed further. The second part of the es-
timate can be interpreted as the consistency error of (N-CS++)h compared
to the h-dependent solution of (28). Hence, this is the quantity of interest
in the following investigations.

Due to the high correspondence of the variational problems (9) and (28),
the regularity assumptions for the space-continuous dynamical contact prob-
lem are also reasonable for the space-discretized problem. This observation
refers to the requirement of total bounded variation.

Assumption 4.3.

u̇h ∈ BV
(

[0, T ],H1
)

, üh ∈ BV
(

[0, T ],
(

H1
)∗)

Under this assumption, the second component of the error estimate (30)
can be further estimated as follows.

Lemma 4.4. Let Assumption 4.3 hold. Then, for initial values un
h = uh(t)

and u̇n
h,pred = u̇h(t), the local error ūn+1

h − ūh(t + τ) = (un+1
h − uh(t +

τ), u̇n+1
h − u̇h(t+ τ)) of (N-CS++)h satisfies

∥

∥ūn+1
h − ūh(t+ τ)

∥

∥

Ẽ(t,τ)
(31)

≤ C
(

R(uh, [t, t+ τ ]) · τ1/2 +
∥

∥u̇n
h − u̇n

h,pred

∥

∥

L2
+
∥

∥u̇n+1
h − u̇n+1

h,pred

∥

∥

L2

)

.

Proof. As a start, the local error in velocities can be split up via

u̇n+1
h − u̇h(t+ τ) =

(

u̇n+1
h,pred − u̇h(t+ τ)

)

+
(

u̇n+1
h − u̇n+1

h,pred

)

.

Using the triangle inequality, this expression allows to estimate the energy
norm of the discretization error via

∥

∥ūn+1
h − ūh(t+ τ)

∥

∥

Ẽ(t,τ)

≤
(1

2

∥

∥u̇n+1
h,pred − u̇h(t+ τ)

∥

∥

2

L2
+

1

2

∥

∥un+1
h − uh(t+ τ)

∥

∥

2

a

+

t+τ
∫

t

∥

∥

∥

un+1
h − un

h

τ
− u̇h(t+ s)

∥

∥

∥

2

b
ds
)1/2

+
1√
2

∥

∥u̇n+1
h − u̇n+1

h,pred

∥

∥

L2
.
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In a next step, the discrete solution
(

un+1
h,CI, u̇

n+1
h,CI

)

of the contact-implicit
Newmark method is inserted into the physical energy norm on the right-
hand side of this inequality:

(1

2

∥

∥u̇n+1
h,pred − u̇h(t+ τ)

∥

∥

2

L2
+

1

2

∥

∥un+1
h − uh(t+ τ)

∥

∥

2

a

+

t+τ
∫

t

∥

∥

∥

un+1
h − un

h

τ
− u̇h(t+ s)

∥

∥

∥

2

b
ds
)1/2

≤
(1

2

∥

∥u̇n+1
h,pred − u̇n+1

h,CI

∥

∥

2

L2
+

1

2

∥

∥un+1
h − un+1

h,CI

∥

∥

2

a
+ τ

∥

∥un+1
h − un+1

h,CI

∥

∥

2

b

)1/2

+
∥

∥ūn+1
h,CL − ūh(t+ τ)

∥

∥

Ẽ(t,τ)
.

By means of

u̇n+1
h,pred − u̇n+1

h,CI = −
(

u̇n
h − u̇n

h,pred

)

+
2

τ

(

un+1
h − un+1

h,CI

)

,

the defining equations of the Newmark algorithms lead to

1

2

∥

∥u̇n+1
h,pred − u̇n+1

h,CI

∥

∥

2

L2
+

1

2

∥

∥un+1
h − un+1

h,CI

∥

∥

2

a
+ τ

∥

∥un+1
h − un+1

h,CI

∥

∥

2

b

= −1

2

(

u̇n+1
h,pred − u̇n+1

h,CI, u̇
n
h − u̇n

h,pred

)

L2

+
1

τ

(

u̇n+1
h,pred − u̇n+1

h,CI,u
n+1
h − un+1

h,CI

)

L2

+
1

2

∥

∥un+1
h − un+1

h,CI

∥

∥

2

a
+ τ

∥

∥un+1
h − un+1

h,CI

∥

∥

2

b

= −1

2

(

u̇n+1
h,pred − u̇n+1

h,CI, u̇
n
h − u̇n

h,pred

)

L2

+
1

τ

(

u̇n
h − u̇n

h,pred,u
n+1
h − un+1

h,CI

)

L2

+
〈

Fcon(u
n+1
h )− Fcon(u

n+1
h,CI),u

n+1
h − un+1

h,CI

〉

H1×(H1)∗

=
1

2

∥

∥u̇n
h − u̇n

h,pred

∥

∥

2

L2

+
〈

Fcon(u
n+1
h )− Fcon(u

n+1
h,CI),u

n+1
h − un+1

h,CI

〉

H1×(H1)∗

≤ 1

2

∥

∥u̇n
h − u̇n

h,pred

∥

∥

2

L2
.

Combining this with the result of Theorem 4.2 applied to the variational
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problem (28) gives

(1

2

∥

∥

∥
u̇n+1
h,pred − u̇h(t+ τ)

∥

∥

∥

2

L2

+
1

2
‖un+1

h − uh(t+ τ)‖2a

+

t+τ
∫

t

∥

∥

∥

un+1
h − un

h

τ
− u̇h(t+ s)

∥

∥

∥

2

b
ds
)1/2

(32)

≤ CR(uh, [t, t+ τ ])τ1/2 +
1√
2

∥

∥u̇n
h − u̇n

h,pred

∥

∥

L2
,

which yields the result of the lemma.
In summary, the local discretization error of the improved contact-sta-

bilized Newmark method can be split up into one component describing the
consistency error of the contact-implicit Newmark scheme and a second one
containing the error contributions of the L2-projections.

Now, the main challenge is to find a sharp estimate for the contribu-
tions of the L2-projections to the consistency error estimate (31). For this
purpose, the interpretation of the discrete L2-projections as minimization
problems gives valuable insights.

Lemma 4.5. Let Assumption 4.1 hold. Then, for initial values un
h = uh(t)

and u̇n
h,pred = u̇h(t), the L2-projections satisfy

∥

∥u̇n
h − u̇n

h,pred

∥

∥

L2
≤ min

vh∈Kh

∥

∥

∥

vh − uh(t)

τ
− u̇h(t)

∥

∥

∥

L2

(33)

and

∥

∥u̇n+1
h − u̇n+1

h,pred

∥

∥

L2
≤ min

vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

+ min
vh∈Kh

∥

∥

∥

vh − uh(t)

τ
− u̇h(t)

∥

∥

∥

L2

(34)

+ CR(uh, [t, t+ τ ]) · τ1/2

with

(i)

min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

≤ CR1/2(uh, [t+ τ, t+ 2τ ]) · τ1/2

(35)

(ii)

min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

≤ C(h ·measΓ∗
h,C [t+ τ, t+ 2τ ])

1
2
−

1
pR(uh, [t+ τ, t+ 2τ ]) (36)
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where 0 < 1
2 − 1

p < 1
d and

Γ∗
h,C [t+ τ, t+ 2τ ] :=

{

[uh(t+ τ) · ν]φh
< gh (37)

and [(uh(t+ τ) + τ u̇h(t+ τ)) · νh]φh
> gh

}

.

Proof. Due to the minimization property (15) of the discrete L2-projections
in (12c) and (12f) of (N-CS++)h,

‖u̇k
h − u̇k

h,pred

∥

∥

L2
≤ min

vh∈Kh

∥

∥

∥

vh − uk
h

τ
− u̇k

h,pred

∥

∥

∥

L2

, for k = n, n+ 1 .

For k = n, the initial values un
h = uh(t) and u̇n

h,pred = u̇h(t) give the first
estimate of the lemma. For k = n + 1, equation (12e) for the velocities in
(N-CS++)h yields

∥

∥u̇n+1
h − u̇n+1

h,pred

∥

∥

L2

≤ min
vh∈Kh

∥

∥

∥

vh − un+1
h

τ
− u̇n+1

h,pred

∥

∥

∥

L2

≤ min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

+
∥

∥u̇h(t+ τ)− u̇n+1
h,pred

∥

∥

L2

+
1

τ

∥

∥

∥
uh(t+ τ)− un+1

h

∥

∥

∥

L2

= min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

+
∥

∥u̇h(t+ τ)− u̇n+1
h,pred

∥

∥

L2

+
1

τ

∥

∥

∥
uh(t+ τ)− u(t)− τ

2

(

u̇n
h + u̇n+1

h,pred

)∥

∥

∥

L2

≤ min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

+
1

2

∥

∥

∥
u̇n
h − u̇n

h,pred

∥

∥

∥

L2

+
3

2

∥

∥

∥
u̇h(t+ τ)− u̇n+1

h,pred

∥

∥

∥

L2

+
1

τ

∥

∥

∥
uh(t+ τ)− uh(t)−

τ

2

(

u̇h(t) + u̇h(t+ τ)
)∥

∥

∥

L2

.

Using the previous estimate (33), the consistency result (32), and

∥

∥

∥
uh(t+ τ)− uh(t)−

τ

2

(

u̇h(t) + u̇h(t+ τ)
)
∥

∥

∥

2

L2

=
∥

∥

∥

∫ t+τ

t

(

u̇h(t+ s)− u̇h(t)
)

− 1

2

(

u̇h(t+ τ)− u̇h(t)
)

ds
∥

∥

∥

2

L2

=
〈

∫ t+τ

t

(

∫ t+s

t
üh(t+ η) dη − 1

2

∫ t+τ

t
üh(t+ ζ) dζ

)

ds,

∫ t+τ

t

(

u̇h(t+ s)− u̇h(t)
)

− 1

2

(

u̇h(t+ τ)− u̇h(t)
)

ds
〉

(H1)∗×H1
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=
〈

∫ t+τ

t

(

∫ t+s

t
(üh(t+ η)− üh(t)) dη − 1

2

∫ t+τ

t
(üh(t+ ζ)− üh(t)) dζ

)

ds,

∫ t+τ

t

(

u̇h(t+ s)− u̇h(t)
)

− 1

2

(

u̇h(t+ τ)− u̇h(t)
)

ds
〉

(H1)∗×H1

≤
∫ t+τ

t

(

∫ t+s

t

∥

∥üh(t+ η)− üh(t)
∥

∥

(H1)∗
dη

+
1

2

∫ t+τ

t

∥

∥üh(t+ ζ)− üh(t)
∥

∥

(H1)∗
dζ

)

ds ·
∫ t+τ

t

(

∥

∥u̇h(t+ s)− u̇h(t)
∥

∥

H1 +
1

2

∥

∥u̇h(t+ τ)− u̇h(t)
∥

∥

H1

)

ds

≤ CR(uh, [t, t+ τ ])2 · τ3 ,

the validity of the second estimate (34) is proven.

(i) Since vh = uh(t+ 2τ) ∈ Kh,

min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

≤
∥

∥

∥

uh(t+ 2τ)− uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

≤ 1

τ

∫ τ

0

∥

∥u̇h(t+ τ + s)− u̇h(t+ τ)
∥

∥

L2
ds

≤ sup
s∈[0,τ ]

∥

∥u̇h(t+ τ + s)− u̇h(t+ τ)
∥

∥

L2
ds

holds where

1

2

∥

∥u̇h(t+ τ + s)− u̇h(t+ τ)
∥

∥

2

L2

=
1

2

∥

∥u̇h(t+ τ + ζ)− u̇h(t+ τ)
∥

∥

2

L2

∣

∣

∣

ζ=s

ζ=0

=

∫ s

0

〈

üh(t+ τ + ζ), u̇h(t+ τ + ζ)− u̇h(t+ τ)
〉

(H1)∗×H1 dζ

≤
∫ s

0

∥

∥üh(t+ τ + ζ)
∥

∥

(H1)∗

∥

∥u̇h(t+ τ + ζ)− u̇h(t+ τ)
∥

∥

H1 dζ

≤ s sup
ζ∈[0,s]

∥

∥üh(t+ τ + ζ)
∥

∥

(H1)∗
sup

ζ∈[0,s]

∥

∥u̇h(t+ τ + ζ)− u̇h(t+ τ)
∥

∥

H1

≤ CR(uh, [t+ τ, t+ 2τ ]) · τ .

This yields the first estimate (35) for the minimum.

(ii) Let S∗
h[t + τ, t + 2τ ] denote the small stripe of finite elements along

the possible contact boundaries where [uh(t + τ) · νh]φh
< gh, but

[(uh(t+ τ)+ τ u̇h(t+ τ)) ·νh]φh
> gh. Choose vh = uh(t+2τ) ∈ Kh at

this part of the contact boundaries and vh = uh(t+ τ)+ τ u̇h(t+ τ) at
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the remaining parts of the contact boundaries as well as in the interior
of the domain. Then, vh is admissible since the first derivatives u̇h of
the continuous solution are equal to zero in active contact due to the
persistency condition [23, 13]. This leads to

min
vh∈Kh

∥

∥

∥

vh − uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2

≤
∥

∥

∥

uh(t+ 2τ)− uh(t+ τ)

τ
− u̇h(t+ τ)

∥

∥

∥

L2(S∗
h[t+τ,t+2τ ])

≤ 1

τ

∫ 2τ

τ

∥

∥u̇h(t+ s)− u̇h(t+ τ)
∥

∥

L2(S∗
h[t+τ,t+2τ ])

ds ,

and applying Hölder’s inequality gives

∥

∥u̇h(t+ s)− u̇h(t+ τ)
∥

∥

L2(S∗
h[t+τ,t+2τ ])

≤ (meas(S∗
h[t+ τ, t+ 2τ ]))

1
2
−

1
p
∥

∥u̇h(t+ s)− u̇h(t+ τ)
∥

∥

Lp(S∗
h[t+τ,t+2τ ])

with the Lebesgue space Lp for p > 2 (see, e.g., [1, Theorem 2.14]). De-
noting by Γ∗

h,C [t+τ, t+2τ ] the part of the possible contact boundaries
where [uh(t+τ) ·νh]φh

< gh, but [(uh(t+τ)+τ u̇h(t+τ)) ·νh]φh
> gh,

the rough estimate

meas(S∗
h[t+ τ, t+ 2τ ]) = O(h) ·meas(Γ∗

h,C [t+ τ, t+ 2τ ])

leads to

∥

∥u̇h(t+ s)− u̇h(t+ τ)
∥

∥

L2(S∗
h[t+τ,t+2τ ])

≤ C(h ·meas(Γ∗
h,C [t+ τ, t+ 2τ ]))

1
2
−

1
p
∥

∥u̇h(t+ s)− u̇h(t+ τ)
∥

∥

Lp(Ωh)
.

Since u̇h ∈ H1 and H1 →֒ Lp for p < 2d
d−2 with the space dimension

d = 2, 3 (Sobolev embedding, cf., e.g., [1]), there exists a constant C
independent of h such that

‖u̇h(t+ s)− u̇h(t+ τ)
∥

∥

L2(S∗
h[t+τ,t+2τ ])

≤ C(h ·meas(Γ∗
h,C [t+ τ, t+ 2τ ]))

1
2
−

1
p
∥

∥u̇h(t+ s)− u̇h(t+ τ)
∥

∥

H1(Ωh)

≤ C(h ·meas(Γ∗
h,C [t+ τ, t+ 2τ ]))

1
2
−

1
pR(uh, [t+ τ, t+ 2τ ])

for 2 < p < 2d
d−2 . This gives the last estimate (36) of the lemma.

The lemma above contains two different possibilities for estimating the
contributions of the L2-projections to the consistency error estimate of
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Lemma 4.4. The first one mainly bounds the L2-norm against the quan-
tity R(uh)

1/2τ1/2, which is equal to τ1/2 in the worst case that the total
variations do not contribute to any order. Unfortunately, this estimate does
not allow to prove the convergence of the scheme for τ → 0 since the square
roots of total variations do not sum up. The second estimate additionally
shows a dependency of the L2-projections on the measure of the critical
boundary set Γ∗

h,C . This set represents those points at the possible contact
boundaries where uh(t + τ) at the beginning of the timestep is not active,
but uh(t + τ) + τ u̇h(t + τ) ≈ uh(t + 2τ) is active. Therefore, the term
(

measΓ∗
h,C

)
1
2
−

1
pR(uh) does not need to tend to zero for τ → 0 in every sin-

gle time interval, but it may be of higher order than the first one in many
intervals.

In order to cope with these observations adequately, a combination of
the two error estimates of Lemma 4.5 shall be inserted into the result of the
preceding Lemma 4.4. This directly leads to the following central theorem
on the local discretization error of the improved contact-stabilized Newmark
method in space and time.

Theorem 4.6. Let Assumption 4.1 hold. Then, for initial values un
h = uh(t)

and u̇n
h,pred = u̇h(t), the local error ūn+1

h − ūh(t + τ) = (un+1
h − uh(t +

τ), u̇n+1
h − u̇h(t+ τ)) of (N-CS++)h satisfies

∥

∥ūn+1
h − ūh(t+ τ)

∥

∥

Ẽ(t,τ)

= R(uh, [t, t+ τ ]) ·O
(

τ1/2
)

(38)

+
(

Sα(uh, [t, t+ τ ]) + Sα(uh, [t+ τ, t+ 2τ ])
)

·O
(

τ (1−α)/2
)

where

Sα(uh, [t, t+ τ ]) :=
(

h ·measΓ∗
h,C [t, t+ τ ]

)α( 1
2
−

1
p
)
R

1+α
2 (uh, [t, t+ τ ]) (39)

with α ∈ [0, 1], 0 < 1
2 − 1

p < 1
d and

Γ∗
h,C [t+ τ, t+ 2τ ] :=

{

[uh(t+ τ) · ν]φh
< gh

and [(uh(t+ τ) + τ u̇h(t+ τ)) · νh]φh
> gh

}

. (40)

Proof. Weighting (35) and (36) of Lemma 4.4 with the factor α ∈ [0, 1] and
(1−α) ∈ [0, 1], respectively, and inserting the results into the error estimate
of Lemma 4.5.

The theorem above provides an estimate for the consistency order of
the improved contact-stabilized Newmark method in time and space that
depends on the total variations of the h-dependent continuous solution and
the measure of the critical boundary Γ∗

h,C . Under the assumption of bounded
total variation, both quantities do not need to provide an order of τ at every
single timepoint, but they may show a certain order at most timepoints. The
behavior of the local discretization error as well as its consequences on the
global error of the scheme will be discussed in the following section.
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4.3 Discussion of consistency and convergence order

The final section of this paper is devoted to a detailed discussion of the con-
sistency and convergence behavior of the improved contact-stabilized New-
mark method after discretization both in time and in space.

Focussing on the local discretization error first, the quantities R(uh)
and measΓ∗

h,C arising in Theorem 4.6 do not need to contribute to any
consistency order of the Newmark scheme in each timestep. In fact, the
regularity assumption of bounded total variation only provides

R(u, [t, t+ τ ]) < C , R(u, [t+ τ, t+ 2τ ]) < C , (41)

and
measΓ∗

C([t+ τ, t+ 2τ ]) ≤ measΓC , (42)

in general. With these bounds, the best error estimate is obtained by the
choice α = 0 leading to

∥

∥ūn+1
h − ūh(t+ τ)

∥

∥

Ẽ(t,τ)
= O

(

τ1/2
)

. (43)

Thus, the improved contact-stabilized Newmark method in time and space
shows the same worst case consistency order 1/2 as the corresponding New-
mark method in function space, cf. Section 4.1. But, fortunately, the con-
tinuous solution of bounded variation may be of much higher regularity at
most of the timepoints, which also results in a higher consistency order.

In view of the global discretization error of the spatiotemporal Newmark
algorithm, the natural idea is to utilize the same proof technique as for
the convergence of the corresponding time discretization in function space,
compare [13]. This approach is based on a less popular version of the classical
Lady Windermere’s fan by Hairer, Nørsett, and Wanner [10] which needs the
stability of the algorithmic solution under perturbations of the initial data.
Up to now, the existence of such a perturbation result has only been analyzed
for the common Newmark method in function space [13]. A perturbation
analysis for the improved contact-stabilized Newmark method in time and
space shall not be the content of this paper. Instead, the existence of such
a perturbation result will just be assumed in the following.

The modified Lady Windermere’s fan means to sum up the consistency
errors along the solution of the dynamical contact problem over the whole
time interval of interest. With regard to the telescoping property of the
total variations, the first attempt is to bound the measures of the critical
sets Γ∗

h,C against the whole contact boundaries and to choose the parameter
α = 1. Then, Theorem 4.6 yields

∥

∥ūn+1
h − ūh(t+ τ)

∥

∥

Ẽ(t,τ)

= R(uh, [t, t+ τ ]) ·O
(

τ1/2
)

+
(

R(uh, [t, t+ τ ]) +R(uh, [t+ τ, t+ 2τ ])
)

·O
(

h
1
2
−

1
p
)
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for the local error, and the telescoping property

N−1
∑

n=0

R(uh, [tn, tn+1]) = R(uh, [t0, T ])

leads to the global error

‖ūN
h − ūh(T )‖E = R(uh, [t0, T ]) ·O

(

τ1/2 + h
1
2
−

1
p
)

. (44)

Unfortunately, this estimate yields convergence of the improved contact-
stabilized Newmark method only if both the spatial parameter h and the
timestep τ tend to zero. A proof of convergence for τ → 0 but for fixed h
requires a more advanced concept.

For this purpose, the measures measΓ∗
h,C of the critical boundary sets

play a substantial role. Instead of being only bounded, the sum of critical
measures over the whole time interval has to fulfill the following assumption.

Assumption 4.7.

N−1
∑

n=0

measΓ∗
h,C [tn, tn+1] ≤ Cmeas

The assumption reflects the expectable behavior of the possible contact
boundaries to become critical only at a finite number of time intervals.
Hence, the sum of critical measures over time should be uniformly bounded,
which corresponds to the earlier Assumption 4.3 of bounded variation for
the continuous solution.

By means of Hölder’s inequality, Assumption 4.3 leads to

N−1
∑

n=0

Sα(uh, [tn, tn+1])

=
N−1
∑

n=0

(

h ·measΓ∗
h,C [tn, tn+1]

)α( 1
2
−

1
p
)
R

1+α
2 (uh, [tn, tn+1])

≤
(

N−1
∑

n=0

measΓ∗
h,C [tn, tn+1]

2α
1−α

( 1
2
−

1
p
)
)

1−α
2
(

N−1
∑

n=0

R(uh, [tn, tn+1])
)

1+α
2
h
α( 1

2
−

1
p
)

=
(

N−1
∑

n=0

measΓ∗
h,C [tn, tn+1]

2α
1−α

( 1
2
−

1
p
)
)

1−α
2
R(uh, [t0, T ])

1+α
2 h

α( 1
2
−

1
p
)
.

Setting α = 1
2(1−1/p) and using the novel Assumption 4.7 for the critical
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measures gives

N−1
∑

n=0

Sα(uh, [tn, tn+1])

≤
(

N−1
∑

n=0

measΓ∗
h,C [tn, tn+1]

)
1−α
2
R(uh, [t0, T ])

1+α
2 · h 1−α

2

≤ CmeasR(uh, [t0, T ])
1+α
2 · h 1−α

2 .

Finally, by means of a discrete perturbation result for the algorithmic solu-
tion of (N-CS++)h, Lady Windermere’s fan yields a sharpened convergence
result for the improved contact-stabilized Newmark method:

‖ūN
h − ūh(T )‖E = O

(

τ1/2
)

+O
(

(hτ)
1
2

(

1− 1
2(1−1/p)

)

)

. (45)

In the special case of space dimension d = 3 <
(

1
2 − 1

p

)−1
, this estimate

provides the global convergence of the Newmark algorithm in time and space
for τ → 0 with an order less than 1/5.

5 Conclusion

In this paper, a consistency theory for an improved version of the contact-
stabilized Newmark method after discretization in time and in space has
been worked out. The error estimate in physical energy norm is given for
solutions of bounded total variation and depends on the measure of the
boundary parts, where active contact is gained in the considered timestep.
Under an additional assumption for these critical sets, the consistency re-
sult even allows to prove the convergence of the improved contact-stabilized
Newmark method if the timestep tends to zero.
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