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Abstract

In this paper we give an analytical description to the structure of so-
lutions in the gas nomination validation problem in gas transportation
networks. These networks are assumed to contain no active devices, only
certain types of pipelines, where the flow of gas is modeled by a gen-
eralized version of the quadratic Weymouth’s equation. The purpose of
considering generalized flow formulas is to be able to adapt our results
to various gas network optimization problems involving gas flow formu-
las beyond Weymouth’s equation. Such formulas can appear in certain
nodes of Branch&Bound trees, or they can stem from discretization and
linearization carried out at active devices. We call a balanced supply —
demand vector a nomination, and the passive nomination validation prob-
lem is to decide whether there exist pressures at the nodes generating a
given nomination. We prove that in our setup the pressure square vec-
tors generating a given nomination form a one-dimensional connected and
continuous curve in the pressure square space, and this curve is a line for
the classical Weymouth’s equation. We also present a visual approach
for the easy comprehension of how this solution curve arises; we give a
short investigation of the set of feasible nominations; and finally we give a
proof that the nomination validation problem in gas networks with active
devices is NP-complete.

Keywords gas transportation network, gas nomination, Weymouth’s equa-
tion

1 Introduction

The efficient transmission of natural gas from producing areas to consump-
tion areas requires an extensive and elaborate gas transportation system. A
gas transportation network consists of several components, namely nodes, like
junctions, entry, and exit nodes; pipelines, connecting long distances, where
the gas is driven by the pressure difference at the end nodes; compressor
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and IBM Research Lab, Ziirich, Saumerstrasse 4, CH-8803 Riischlikon. E-mail:
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stations, which increase the pressure in the network; resistors and control
valves which decrease and regulate the pressure; and valves which can open
or close a pipeline. Pipelines and resistors are called passive, while all other
devices (compressors, control valves, and valves) are called active.

There are lots of optimization problems arising in the operation, mainte-
nance, planning, expansion, and construction of the gas transportation infras-
tructure. One of them is the nomination validation problem, also called gas
transmission or nomination problem, that is to decide if a given nomination,
which is by definition a balanced supply and demand vector at the nodes, can
be delivered in the network or not. If it can, one has to find appropriate pres-
sures at the nodes and configurations of the active devices generating the given
nomination, which minimizes the gas fuel driving the compressor stations (gas
fuel minimization). Deciding whether a set of supplies and demands specified at
the nodes has the property that every nomination below it is feasible is called
the booking validation problem. Finally, if the capacity of the gas network
is not enough, then to decide which possible network expansion to carry out,
like where to route a new pipeline between two nodes of the network, is called
the topology planning problem. More details on these and other optimization
problems can be found in [4, 6, 9, 16, 17].

One the most important of these optimization problems is nomination val-
idation. In the current industry practice the network operator concludes gas
transportation contracts with its clients, giving them the right to feed in up to
a certain amount of gas at a specified entry and to feed out the same amount at
a specified exit. The collection of these bounds is called a booking. This is the
so-called RAC-type contract (restrictively allocable capacity). To start an ac-
tual gas transmission, a pair of clients, a gas supplier and a gas consumer, have
to nominate to the network operator the exact amount of gas they want to feed
in at one node of the network and out of another, obeying the bounds specified
in the RAC-type contract. The network operator has no knowledge of what
nominations will be received, but has to guarantee delivery. The nomination
validation problem is to decide whether there exist pressures at the nodes and
configurations of the active devices without violating physical or operational
constraints, such that the specified nomination is delivered. For more on gas
transmission contracts we refer to [9].

In practice the nomination validation problem is solved by first making the
discrete decisions at the active devices, usually manually, based on some heuris-
tic and the experience of the operator; and then applying simulation techniques
[15], dynamic programming [3], or various nonlinear programming (NLP) tools
[7, 18] to solve the resulting NLP. A more precise and computationally more
challenging approach, which is not widely used yet, is to directly formulate the
whole problem as a mixed integer nonlinear problem (MINLP). To attack these
MINLP’s, advanced Branch&Bound solvers are usually used. At Zuse Institut,
Berlin, one such specially tailored solver was developed for solving gas opti-
mization problems, based on the open source Branch&Bound solver SCIP, that
combines techniques of mixed integer linear programming, nonlinear optimiza-
tion and constraint programming in a unique way. For more details on this
solver see [1, 10, 19].

In this paper we consider the nomination validation problem in gas trans-
portation networks containing no active devices, only certain types of pipelines
where the formula determining the flow of gas is allowed to come from a wide



class of formulas to be defined in Equation (5). This class includes the widely
adapted Weymouth’s equation and the Panhandle formulas. Our main result
in Theorem 2.3 is to prove that in this framework, for every nomination d, the
pressure square vectors generating d form a 1-dimensional connected and contin-
uous curve in the pressure square space. Moreover, this curve is a straight line
for important special cases, like Weymouth’s equation. Theorem 2.3 may find
applications in gas network optimization problems which involve gas flow formu-
las fitting into Equation (5), which is indeed the case in modeling certain active
devices, see Examples 2.12-2.14, or after adapting certain discretization and lin-
earization techniques to gas networks (Example 2.11). Furthermore, most of the
optimization problems arising in gas transportation networks lead to MINLP’s,
which are usually solved by Branch&Bound solvers. Nodes of a Branch&Bound
tree where the discrete decisions at the active devices are already made, in many
cases involve gas flow formulas which fit into our framework.

Theorem 2.3 generalizes a result of Maugis [13], who proved the special case
of Weymouth’s equation. The proof given in the present paper is based on an
alternative proof by DeWolf and Smeers [5] to Maugis’ theorem, which however
contained an error. Thus in the present paper an improved version, applied to
the generalized problem is given.

In Section 3 we give a physical interpretation and visualization of the nom-
ination validation problem in passive gas transportation networks by means of
rubber bands. With the help of the rubber band view we show an example to
the so-called more pipeline — less throughput phenomenon, and we determine
the maximum possible throughput decrease. In Section 4 we consider convex-
ity and topological questions on the set of feasible nominations and bookings,
and finally in Section 5 we prove that nomination validation in gas networks
containing active devices is NP-complete.

There are other physical networks where certain energy heads on the nodes
drive the flow over the edges, like pressure drives gas in a gas transportation
network. In water supply pipe networks this energy head is the water head, and
the Hazen—Williams rule gives the flow on an edge as a function of the head
loss. For other liquids or gases the Darcy—Weisbach formula can be applied.
For electrical networks the role of Weymouth’s equation is played by Ohm’s
law. The methods described in this paper can be also adapted to some extent
to these other networks with similar characteristics.

2 The set of solutions in the pressure square
space to the Generalized Passive Gas Nom-
ination Validation Problem

In this section we consider the gas nomination validation problem in generalized
passive gas transportation networks. These networks contain no active devices,
only certain types of passive pipelines, where the formula determining the flow of
gas is allowed to come from a wide class of formulas to be defined in Equation
(5), including the widely adapted Weymouth’s equation, and the Panhandle
formulas. Such formulas can arise in modelings of active devices to be described
in Examples 2.12-2.14, and in the discretization of compressor characteristic
diagrams in Example 2.11. Branch&Bound trees occur frequently in solution



methods for various gas optimization problems. Nodes in these trees where the
discrete decisions at active devices are already made may also involve gas flow
formulations fitting into our framework. Our goal with this generalized setup is
the potential to adapt our results to these settings.

2.1 The Passive Gas Nomination Validation Problem

First we introduce the classical PASSIVE GAS NOMINATION VALIDATION PROB-
LEM (NVP). We model a gas transportation network as a directed network
G = (V, A), where V is the set of nodes, that is junctions, entry, and exit nodes
of the network, and A is the set of pipelines connecting them. We introduce
gas flow variables g, € R for each pipeline a € A. Although the network is
directed, this is only an auxiliary orientation, as negative flow ¢ on a pipeline
(u,v) connecting u to v simply indicates gas physically flowing from v to u in
the pipeline. G contains no active devices, only pipelines.

We also introduce pressure variables p, € R for all nodes v € V. These are
bounded by minimum and maximum node pressures:

p,<ps <P, WEV. (1)

Upper bounds usually come from physical limitations, to avoid damages of the
network, while lower bounds are either 0 or some positive value determined by
contracts with customers. We point out that in Weymouth’s equation (3) and
in many other formulas determining the amount of gas flowing along a pipeline,
only the squares of the pressures, and not the pressures themselves appear. So
in this paper we use the notation

m:pfj YvoeV

throughout. Accordingly, instead of inequality (1), we will refer to the equivalent
formulation
m, <m <7, YveV. (2)

Although 7 is introduced as a square of the pressure, implicitly implying non-
negativity, later we consider generalizations where this assumption is relaxed.
Thus from now on 7 is also allowed to take negative values.

The most widely adapted model for the amount of gas flowing along a
pipeline is Weymouth’s equation [20]

sgn(qa) - q2 = g - (my — ) Y(u,v) =a € A, (3)

where «, is a positive constant for each a € A, depending on the temperature,
the pressure, and the Reynolds number of the gas; and on the length, diameter,
and roughness of the pipeline. There are several other more detailed physical
models, most notably the Panhandle formulas, but Weymouth’s equation is
widely used because it is a good estimation of the physics and is simple. For a
detailed overview of other gas flow formulas see [14].

In the NVP we are also given a nomination vector d : V. — R with
> wev dv = 0, which prescribes the node-wise net gas outflow, and which is
nonpositive at entry nodes, nonnegative at exit nodes, and 0 at inner junctions.
A nomination specifies the amount of gas that the network operator must de-
liver. If this is possible, the nomination is said to be feasible, otherwise it is



infeasible. In other words, a nomination d is feasible in the NVP if and only if
there exists flow and pressure square vectors ¢ € R4 and 7 € RV such that (2)
and (3) hold, together with the flow conservation constraints

S Y ta=d VeV (4)

a€A, a=(v,u) a€A, a=(u,v)

One can observe that subsystem (3), (4) has the special property that the -
values uniquely determine the ¢g-values by (3), which in turn uniquely determine
the net gas outflow values d by (4). So we may introduce the following notation.

Definition 2.1. For a pressure square vector m € RV, we say that 7 generates
the net gas outflow d, if Equations (3), (4) hold. Then we write h(m) = d.

Thus h: RY — RY is a function mapping the (not necessarily nonnegative)
pressure square vectors to the net gas outflow vectors they generate. Observe
that Y,y h(m), = 0 by (4) for any 7 € RY. The approach we follow in this
section is that we relax the pressure bounds (2), and for every nomination d we
analyze the set of generating pressure square vectors m € RV, that is for which
h(m) =d.

The classical NVP in this sense was first solved by Maugis [13], who proved
that for every nomination d the set of pressure square vectors m € RY for which
h(m) = d forms a line {7% + 8- (1,...,1) : B € R} in RY. He gave a nice
reduction to a certain strictly convex problem with a unique solution, where
the Karush—-Kuhn—Tucker multipliers correspond to the generating 7 variables.
This result of Maugis has several applications in the field of gas transportation
network optimization.

2.2 The Generalized Passive Gas Nomination Validation
Problem

So far we described the classical PASSIVE GAS NOMINATION VALIDATION PROB-
LEM, or NVP, which we generalize in this section and introduce our main prob-
lem we consider, the GENERALIZED PASSIVE GAS NOMINATION VALIDATION
PrOBLEM, or GNVP. We replace Weymouth’s equation by the more general
formula

Qa(ga) = Pa(my,my)  V(u,v) =a€ A, (5)
where we require the following.

Requirement 2.2. For all @ € A the following R — R functions are continuous,
strictly monotone increasing and unbounded from above and below:

* Qa,
o O,(-,z) for all z € R, and
o —P,(x,-) for all x € R.

The GNVP is defined to consist of Equations (4), (5) and the pressure bounds
(2). As the Q’s are strictly monotone increasing, it still holds that 7 uniquely
determines ¢, and thus the net gas outflow vector d is also unique. So we use
Definition 2.1 on the generating function h : RY — RY further on. Our goal now



is to analyze the set of (not necessarily nonnegative) pressure square vectors 7
that generate a given nomination d in the sense of Equations (4), (5).

We call a gas flow formula of type (5) uniform if ®,(m,,m,) = ®°(m, —
m,) for some continuous, strictly monotone increasing function ®% : R — R
unbounded from above and below. For example, the Weymouth gas flow formula
(3) is uniform.

2.3 Main result

Theorem 2.3. If G is connected, then for every nomination d € R the set of
(not necessarily nonnegative) pressure square vectors m € RY generating d in
the sense of (4), (5) forms a 1-dimensional connected and continuous curve in
RY". Moreover, this curve is a line with direction (1,...,1) in the uniform case.

We remark that Maugis’ proof [13] can also be generalized to the uniform
case, but for the general case we need a different approach, based on the Hart-
man — Stampacchia fixed point theorem on finite variational inequalities.

Theorem 2.4. (Hartman, Stampacchia [11]) Let X C R™ be a nonempty, con-
vex, and compact set and F': X — R™ a continuous function. Then there exists
a point z* € X such that

F(a*)(y—a*) 20 (6)

holds for all y € X.

We split the proof of Theorem 2.3 into two parts, by showing that for every
nomination d, node vy € V and a (not necessarily nonnegative) pressure square
value my € R there exists at least one (Claim 2.5) and at most one (Claim 2.6)
7 € RV generating d with 7, = 7.

Claim 2.5. IfG is connected, then for every nomination d € R, node vy € V
and a (not necessarily nonnegative) pressure square value mo € R there exists at
least one ™ € RV with h(n) = d and m,, = 7.

Proof. The following proof is based on a similar approach by DeWolf and Smeers
[5] to the classical NVP. However, that proof contained an error, and thus now
an improved version, applied to the generalized problem follows.

First we show the existence of a (not necessarily continuous) function ¢ :
R — R such that

1. ¢(x) <z for all x € R, and

2. for all z € R and partition V = V;UV; with Vi, Vo nonempty, if 7 € RV is
a pressure square vector with max{m, : v € V1} < ¢(x) and min{m, : v €
Va} > then 35 oy h(m)y < 37, ¢y, dy holds.

We denote the arcs between V3 and V5 by a' € A for 1 < i <k, where we
assume wlog. that a’ is directed from V; to Va. G is connected, so k > 1. Let
r € R. We let ¢* € R be a number such that ®,:(c’, 7) = s where s is defined as
Q;l(s) = min{0, ), cy. dv}. By Requirement 2.2, Q and ®(-,x) are bijective,
so s, and thus ¢! exists. Let ¢(x) = min{z — 1,min{c’ : 1 < i < k}} < z.
Let 7/ € RV be the pressure square vector defined as m/, = ¢(x) for v € Vi,

7! = x for v € Va. Now for any pressure square vector 7 € RV with max{r, :



v € 1} < ¢(z) and min{m, : v € Vo} > = by Requirement 2.2 we have that
Y overy P(m)o <D ey M)y =k -min{0, Y v do} < D7y dy, as required.
Similarly, a function @ : R — R exists for which ¢(z) > x and ), oy, h(7), >
> vev, dv is implied whenever min{r, : v € V1} > ¢(x) and max{m, : v € Va} <
.
Assume the nodes of G are indexed as V = {vg, v1,...,v,-1}. Define

Ty = Ty = 7o,

o =clc(...c(m_q)...), Ti=c@(...e(Ti—1)...))
n times n times
for1<i<n-—1,andlet X = X0<i<n—1[ﬂiaﬁi] C R™, F(ﬂ') = h(ﬂ') —d.

X is compact and convex so Theorem 2.4 gives a point 7* € X satisfying
(6). Tt is enough to prove that 7* satisfies F(7*); = 0 for all 0 < i < n —1,
because then h(7*) = dd and we are done. We prove this by backward induction
oni. Given 1 <1 <n-—1, assume that F(7*); =0foralli+1<j<n-—1 (an
empty assumption for i =n — 1).

First assume that 7, < 77 < 7; holds. Now we can choose an € > 0 such
that yy :=7*+¢e-x; € X andy_ := 71" —e-x; € X (x; € RV is the unit vector
with a 1 at coordinate i and 0 elsewhere), and so applying (6) to y™, y~ we get
that F(7*); = 0.

Next assume that 7} = m;. With similar trick as above F'(7*); > 0 follows.
Observe that by the choice of = we can partition V into V;UV, such that v; €
Vi C{vi, Vg1, y0n-1}, o € Vo and max{m, : v € Vi} < ¢(x), min{m, : v €
Va} > x for some z € R. By the choice of ¢ we have that ) .y h(m), <
> vey, dv. However, this contradicts the fact that h(7*),, = d,, for all j > i,
h(ﬂ*)vi Z dv.; and V1 g {’Ui,’UiJrl, [P ,’Unfl}.

The case 7] = 7; can be handled analogously.

Finally, if F(7*),, = 0 for all 1 <4 < n — 1 then F(7*),, = 0 as well, so
h(7*) = d as required. O

Claim 2.6. If G is connected, then for every nomination d, node vog € V and a
(not necessarily nonnegative) pressure square value mo € R there exists at most
one ™ € RV with h(r) = d and 7., = mo.

Proof. Assume to the contrary that there exist two distinct pressure square
vectors 7!, 72 € RY generating the same nomination d with 7T11}0 = ﬂgo = mp.
Let Vs ={veV:nl<a2l,V=={veV:rl=nr},and V> = {v e V:
7l > 72} vy € V= and as w! # 72, either V< or V> is nonempty. Assume
that V< # (. By the properties of @ and ®, necessarily Y .y < h(m1), <
> wev< h(m2)y, contradicting the fact that both equal ) i - d,. The case

V> # () can be handled analogously. O

Proof. (of Theorem 2.3) Summarizing, by Claims 2.5 and 2.6, if G is connected
then for every nomination d, node vg € V and a (not necessarily nonnegative)
pressure square value mg € R there exists exactly one m € R generating d with
Ty, = 7To. This function we denote by jq : mo — 7, R — RY. Now we prove
that j4 is continuous, which implies that the points 7w generating nomination d
form a one-dimensional, connected and continuous curve in RY.



Lemma 2.7. If G is connected, then for every nomination d, ) < ) € R
implies ja(m}) < ja(m() (coordinate-wise).

To verify Lemma 2.7, observe that if U := {v € V : jaq(n}) < ja(n)} #V
then by vg € U and the connectivity of G, we have > ., d, = >, iy h(7)) <
> wer M7 )o = X cp do, a contradiction.

First we show that whenever x; — x for z,2; € R (i € N) and jg(x;) is con-
vergent, then jq(x;) — ja(x). Indeed, h(jq(x;)) = d holds, thus A(lim ji(x;)) =
d as h is continuous and jg(x;) is convergent. As (lim jq(x;))o = x, lim j4(z;) =
ja(x) follows by the definition of jg.

Now assume that j; is not continuous at a point x € R. By definition,
there exists an € > 0, and a sequence z; — x such that ||jq(z;) — ja(2)|] >
€. By Lemma 2.7 and the existence of jg itself, the set {ja(z;)} is bounded,
so we can choose a convergent subsequent jq(z;, ) from it. However, by our
previous statement, now jq(x;, ) — ja(z) holds, which is a contradiction. So j4
is continuous and thus a 1-dimensional connected curve in RY.

That the jq curve is a line with direction (1,...,1) in the uniform case is
obvious. (|

We point out that an alternative proof to Theorem 2.3 can be given based
on the Brouwer fixed point theorem.

2.4 Analyzing the solution curve

The same argument as in the proof of Claim 2.6 gives that curve jq is coordinate-
wise strictly monotone increasing. To calculate the gradient of jg, defined in
the proof of Theorem 2.3 as {m € RV : h(n) = d}, we can sometimes apply the
implicit function theorem.

Theorem 2.8 (Implicit function theorem). Let F : RXYY — RY be a contin-
wously differentiable function. Assume F(xo,yo) = 0. If %—5 }(:m,yo) is regular
then there exists an environment U of xy, an environment V' of yo, and a unique
continuously differentiable function G : U — V such that

{(z,G(@))|lz € U} ={(z,y) € U x V|f(z,y) = 0}.

—1
_ (6_F ) oF
o ay (z0,Y0) Oz

Observe that the h : R® — R™ function can be deemed an R" — R"~!
mapping, as ), .y h(7), = 0 always holds for the gas net outflow vector h().
So next we try to apply the implicit function theorem to the R™ — R"~! 7+
(h(m) — d)|v v, function. Call the point m € R™ non-singular if the function

Moreover,
0G
ox

o

P Gy (e ¢/ B exists and is continuous in a neighborhood of 7/, and
a(V 'UO) ! V—vo
the Jacobian (% ‘ is regular. If 7 is nonsingular we can apply the
7w/ 1V —vg

implicit function theorem and for the gradient of the curve j; we get that

(o T
o N 6(V — ’Uo) 7/ 1V —wo a’l}o

Bja
61}0

o



Next we characterize when the Jacobian at m € RV is regular.

Theorem 2.9. If G is connected, %h ezists and is finite for everyv € V —uyp,

then ) ‘ s regular.
7w/ IV —vg

oh
a(V—U())

Note that the assumption in this theorem implies that 66—7510|7T (with v = vp)
exists and is finite, because ) . h(7), =0

Proof. Let us denote the node sets of the connected components of G — vy
by Vi,..., Vi, kK > 1. We recall some definitions from linear algebra. Let
A € R¥*X be a square matrix. A is called diagonally dominant if |4;;| >
>z [Aiy| for all i € X, A is irreducible if the (X, {(i,7) : A;; # 0} directed
graph is strongly connected, and A is irreducibly diagonally dominant if
irreducible, diagonally dominant, and in at least one row ¢ € X is strictly
diagonally dominant, that is [A;| > >°.; [4i;]. A result of Horn and Johnson
[12] states that irreducibly diagonally dominant matrices are regular.
Clearly,

oh 0 if u # v and they are not adjacent in G,
(8_ ) = 0 if u # v and they are adjacent in G,
V) (*1)'Zw¢v(%ﬂ)w>0 if u=w.

As a consequence, b’ € RV*V is diagonally dominant, and even more, the
oh
OV
oh

trices together, we get that (m

)’ matrices are irreducibly diagonally dominant. Putting these ma-
s Vk

) ‘ is also regular. O
7w/ 1V —vg

Although at singular 7’s we cannot specify the gradient by this approach, in
some cases it is still possible to get the gradient. For example, for the uniform
case, the curve guaranteed by Theorem 2.3 is a line {m + 3(1,...,1) : 8 € R},
and thus has gradient (1,...,1) everywhere, even if 7 is singular. Note that for
the classical Weymouth’s equation (3), 7 is singular if and ouly if 7, = m, for
an adjacent node pair u,v.

From an algorithmic point of view, we briefly mention that the Newton—
Raphson method is quite efficient for finding the line in the classical Weymouth
case (3). This is because the Jacobian can be explicitly calculated, and as it
is negative semidefinite, one can use Cholesky-decomposition in calculating a
Newton-step.

2.5 Examples

We enumerate some examples to models of gas network components fitting into
our framework.

Example 2.10. The classical Weymouth’s equation (3) clearly satisfies Re-
quirement 2.2. There exists a more complex and exact version of Weymouth’s
equation:

se0(ga)q2 = g - (T — bg - m,)  Ya = (u,v) € A (7)



where o, and b, > 0 are constants and b, accumulates the height difference
between nodes u and v. Although not uniform, this gas flow formula also obeys
Requirement 2.2.

The Panhandle-formulas, which have the form

sen(qa)qs = g - (my — my) Va = (u,v) € A (8)
with ¢ ~ 2 constant also fit into our framework.

In practice the gas transportation networks, in which nomination validation
problems are solved, almost always contain active devices as well. These active
devices are to regulate the flow of gas in the network, and they are modeled
as directed edges a = (u,v) € A. They involve discrete decisions to make
during operation, for example, should a compressor be used or bypassed? Be-
cause of this discrete nature, usually the nomination validation problem and
several other optimization problems in gas transportation networks are solved
by Branch&Bound. We call a node of the Branch&Bound tree where the discrete
decisions at the active devices are already made, and possibly other discretiza-
tions and linearizations already took place, a fractional node. Fractional nodes
often involve a continuous mathematical program with constraints of the form
(4), (5), together with pressure square bounds (2). By Theorem 2.3, the set of 7
vectors generating the nomination d in the sense of (4), (5) forms a curve, pos-
sibly violating the pressure bounds (2). If we can explicitly describe this curve,
and for a uniform GNVP this is the case by Theorem 2.3, we can decide if also
a solution satisfying the pressure bounds (2) exists at that particular fractional
node. If yes, the fractional node is feasible, otherwise not. For the uniform case,
the set of pressure square vectors m € RV generating the nomination d is the
line {m + B(1,...,1) : B € R}, and this line intersects the pressure bound box
[r,7] C RV if and only if

rglea‘i((ﬂv —my) < gréi‘r/l(ﬁv — ).
Thus, in the uniform case, though model (2), (4), (5) is neither linear, nor con-
vex, a certificate for the infeasibility of a nomination still exists. This certificate
consists of an arbitrary point 7 in the preimage line and a pair of nodes u, v for
which 7, — 7, > 7, — m,. Naturally, there can be many such node pairs.

Even if we cannot describe the solution curve or cannot calculate its gradient,
the knowledge of having always one curve as a solution can be of theoretical help
when NLP solvers are applied to the nonlinear program present at the fractional
node.

Now we list some models of active devices, which are either models of them
in themselves, or they result from appropriate discretization or linearization at a
fractional node of the Branch&Bound tree. More details on modeling the active
devices in a gas network can be found in [9].

Example 2.11. Compressors are the most important active devices in a gas
transportation network, being able to increase the pressure between their two
end nodes. They are a central source of nonlinear behavior of gas networks, and
due to discrete decisions on activating or bypassing a compressor they introduce
a further source of discontinuity. The most basic features of a compressor are
described in its characteristic diagram. This is an area in the R? plane, bordered

10



by four parabolas, consisting of the allowed (p,/pu, ¢a/pv) value pairs, where p,,
is the entry pressure, p, is the exit pressure and g, is the amount of gas flowing
through the compressor. One way to circumvent the high nonlinearity of the
characteristic diagram is to discretize it in an appropriate way such that for every
value of a certain integral parameter, the relation between 1, = p2, m, = p2
and ¢, is expressed by the linear equality

d g, =m, — T +ec. (9)

Here d and c¢ are appropriate positive constants depending on the integral pa-
rameter and the characteristic diagram of the compressor. As a uniform gas
flow formula, it nicely fits into the GNVP.

Example 2.12. A control valve a = (u,v) € A is an active device reducing the
pressure between u and v. It can be closed or open. Being closed is equivalent
to ¢, = 0, and is tantamount to deleting a from the network. Being open means

4, <00 < Qoy Tg STy — Ty ST

with appropriate bounds 4, Qo> Tg» Ta- One possible discretization of this
model is to define a range of possible pressure reductions, and for every fixed
reduction level D, to take

D, =7y, — Ty (10)

as a constant. Equation (10) does not directly fit into the GNVP, as the left
hand side is not strictly monotone in ¢,. Still, if the gas network contains such
an edge, then one can contract it to a new node w, and define d,, = d,, + d,
and T, = Ty, Ty, = Tw + Do. Now, for every solution 7, q of this contracted
system, there is only one way to define ¢,, determined by d,, and d, (unless
u = v, which is indeed possible if other such edge contracting steps already took
place). Finally, we check whether 9, <0 <7, is also satisfied.

Example 2.13. A valve a = (u,v) € A can be open or closed. Being closed is
equivalent to requiring g, = 0 and to deleting a from the network, and being
open means p, = p,. This latter state is equivalent to shrinking w and v to a
single node.

Example 2.14. There are two types of resistors. A simplistic model of the
first type leads to the formula

sg0(¢a)qa = @a - (Pu — Po); (11)

where p,,, p, are the pressures at the end nodes. Clearly, this formulation fits
into the GNVP, by replacing p, by &Y, and p, by 587, with the notation

son—~_ | VT if x>0,
%{ —/—x ifz<O.

This is a strictly monotone increasing function, thus obeying Requirement 2.2.
Recall that we temporarily ignore the pressure bounds (2), so p and = may have
arbitrary negative value as well.

A more refined model of this type of resistor is as follows. Let (, denote
a resistor specific constant. First, p,, > p, is required, and the amount of gas
flowing through the resistor is given by

o DY — Dubv

Sgn(qa)qa - 1 + C P . (12)
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In the region p, > p,, with the transformation p, = “&/m,, p, = /7,
the functions ®(-,z), ®(x,-) given by (12) satisfy Requirement 2.2. So we can
extend ® to the whole RV*V keeping Requirement 2.2, and thus Theorem 2.3
can be applied.

The other type of a resistor is in fact a measuring system that causes a fixed
pressure decrease

D, = Pu — Pv; (13)

where D, is a constant, and in addition, also g, > 0 is required. Equation (13)
does not directly fit into the GNVP, but we can use the idea of contracting
the edge, in exactly the same way as we did at the control valve (Example
2.12). However, in this case we also need to apply the bijective transformations
Pu = /Ty, Py = “&/m,, keeping Requirement 2.2. Then for every solution 7, ¢
of the contracted system we check whether the uniquely determined variable g,
is nonnegative, similarly as we did at a control valve.

3 Rubber band view

In this section we describe an efficient way for visualizing system (4), (5), making
it possible to analyze the process of how a pressure square vector generates a
gas net outflow vector. We call it the rubber band view, as pipelines will be
modeled by rubber bands with a certain property to be defined in (14). The
rubber band view may prove to be helpful in the visualization and thus in
the design of gas distribution networks; it directly gives rise to a combinatorial
algorithm yielding a solution to system (4), (5); and in Subsection 3.1 we apply it
to explain the so called more pipeline — less throughput phenomenon, occurring
in gas networks. For simplicity, in what follows we consider only the classical
Weymouth’s equation (3), but the results of this section can also be applied to
the GNVP involving gas flow formulas of the form (5).

We think of the network G = (V,A) as an undirected graph located in
the real line R, in such a way that the position of a node v in the real line
corresponds to the pressure square m, € R at node v. We think of the pipelines
of the network as rubber bands with force constant «. In physics Hooke’s law
determines the restoring force of a rubber band, which we replace now by a
reformulation of Weymouth’s equation:

q=a- Vi, (14)

where ¢ is the restoring force of the rubber band (u,v) and ¢ = |m, — 7| is its
length. Finally, let every node v be pulled by an additional force of d,.

We call a position vector 7 : V' — R a balanced state if under the additional
force d and the restoring force vector ¢ : A — R every node is in balance, i.e.,

Z Ga = Z Ga + dy (15)
a=(u,v)EA, Ty, <Ty a=(u,v)EA, T, >Ty

is satisfied for all v € V. Clearly, any shift of a balanced state on the real line is
also a balanced state, because Weymouth’s equation is shift-invariant. As (15)
is equivalent to (4), the fact that position vector 7 € RV is a balanced state
under the additional force d is tantamount to that 7 as a pressure square vector
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Figure 1: Balanced state of a network.
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Figure 2: Balanced states when adding a new (dashed) pipeline

generates nomination d in the sense of system (3), (4). Furthermore, it is easy
to see that Theorem 2.3 is equivalent to that for every additional force vector d
there exists exactly one balanced state of the system (plus its shifts).

An example of a balanced state can be seen in Figure 1. The values of a
nomination d are shown near the nodes, and the force determined by d are
shown as arrows.

3.1 The more pipeline — less throughput phenomenon

Rubber bands make it possible to visualize the so-called more pipeline — less
throughput phenomenon. Adding a new pipeline (a new rubber band) between
nodes u and v to the network, it is intuitively clear that the whole network
shrinks in the rubber band view — at least u and v get closer to each other, see
Figure 2.

That the new rubber band nears its end nodes is really true, however, the
range of the balanced state 7, defined to be (7)) = max m—min 7, may increase.
This is shown in Figure 3.

This means that if, say, the pressure square bounds were [0, 100] at all nodes,
then the nomination in Figure 3 is feasible in the left hand side network, but
becomes infeasible after building a new pipeline in the right hand side network.
However, we prove that this range increment is bounded. The next theorem is
formulated in the terms of the NVP instead of rubber bands.

t —t H > t } H
0 34.844.0 88.092.0 0 43.944.0 925 1011

Figure 3: The more pipeline — less throughput phenomenon
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Theorem 3.1. Let the pressure square vector m generate nomination d in net-
work G = (V, A) in the sense of (3), (4). Assume that we add to G a new
pipeline n from node v to w with some capacity constant o > 0, and let pressure
square vector T generate d in the new network Gt := G +n. Then

r(m®) —r(m)] < |mp — mul.
This bound is strict.

The more pipeline — less throughput phenomenon resembles to Braess’s para-
dox on traffic flow [8], the first paradox of this type, which states that building
a new road may increase the traveling time for everyone participating in the
traffic. Similar results were proved by Calvert and Keady on water flows [2].

We mention that Theorem 3.1 holds for any uniform GNVP as well.

Proof. Let §(z) = w(x) — n*(z) for x € V. As the balanced state pressure
square vectors can be shifted, we may assume that 7, = 7y = 0. Wlog. we may
also assume that m, > 0. With these assumptions it is enough to prove that
0 <d(x) <m, — my for all nodes z € V.

First we prove that if x # wu,v is a node maximizing § over V then every
neighbor of x also maximizes §. Indeed, as m generates d in G, we have that

Z Ga — Z Ga = d(:L') (16)

a=(z,y)€A(G) a=(y,z)€EA(G)

holds, with the flow ¢ defined as in Weymouth’s equation (3). In addition, as
7% generates d in G, we have that

Yoooow— Y di=d), (17)

a=(z,y)€EA(GT) a=(y,z)EA(GT)

with the flow ¢ defined as in (3) (with 7 instead of 7). As Weymouth’s
equation (3) is shift-invariant and the function *®Ya = sgn(a)+/|a| is monotone
increasing, we have that ¢¢ > ¢, for a = (y,x) and ¢% < g, for a = (z,y).
Thus, as the pipelines in (16) and (17) are the same, we have that ¢, = ¢% for
all pipelines incident to y, and hence that §(y) = d(z) for all neighbors y of =
in G.

Similarly, it can be proved that if y # u,v is a node minimizing § over V
then every neighbor of y also minimizes ¢.

Thus, as G is connected, both the maximum and the minimum of ¢ is
achieved at the set {u,v}. By our choice, §, = 0. As for d,, there are three
possibilities.

e m, > my, that is 0, < 0. Now g > 0. Note that v minimizes § over V, so
by the same argument as above, we have that

dv: Z qg_ Z qg:

a=(v,z)EA(GT) a=(z,v)EA(GT)
Yoo Y S +q) > dy,
a=(v,z)€A(G) a=(z,v)€A(G)

a contradiction.
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e 0 < 7% <m,. Now v maximizes and v minimizes § over V, so 0 < 6(z) <
my, — Ty, for all x € V), as required.

e my <0, that is 6, > m,. Now ¢ < 0. Note that v maximizes ¢ over V' so
by the same argument as above, we have that

dy = Z do — Z g =

a=(v,x)€EA(GT) a=(z,v)€A(GT)
Yoo — ) @t <dy,
a=(v,z)€A(G) a=(z,v)€A(G)

a contradiction.

Next we show that the bound of |m, — m,]| is strict, and can be arbitrarily
approximated if @ — oo. First, we show that & — oo implies 7 — 7 = 0.
Indeed, otherwise my > ¢ by some € > 0 and so ¢; — oo. However, as we saw,
qq is bounded for all a € A, and so ¢;7 — oo implies that the net outflow at
v tends to infinity, which is impossible. Now consider the network in Figure 3.
As 18, — 7l and 7y — 7§, are constant functions of a, 7§ — 7 implies that
r(n®) =7 — 7% — r(m) + ™ — Ty, as required. O

4 The frontier

In this section we consider passive gas transportation networks G = (V, A)
containing only pipelines where the flow of gas is determined by Weymouth’s
equation (3), and give observations and statements on the convexity and con-
nectedness of the set of feasible nominations and bookings. As before, a nom-
ination d : V' — R is feasible if there exist pressure square and flow vectors
m € RY, ¢ € R? such that (2), (3), (4) are satisfied. Bookings, already
mentioned in the introduction, are formally defined as follows. For vectors
d,d € RV we write d =< d, and say that d’ is closer to 0 than d, if there
exists a vector o : V' — [0, 1] such that d}, = d, - o, for all v € V. We call d a
booking if d’ is feasible for all nominations d’ < d.
Next we show that

e the set of bookings is not always convex,

e if d =< d are nominations, then feasibility of d does not imply feasibility
of d’, in other words, not every nomination is a booking,

e the set of feasible nominations is not always convex,
e the set of feasible nominations and bookings are connected.

Consider the directed network in Figure 4. What is shown next to every node
are two nominations separated by a '/’ sign, and the allowed pressure square
interval. Let o = 1 for all three edges. It is easy to check that both nominations
are actually bookings. However, their average, denoted by d, which is clearly
a feasible nomination, is not a booking. Indeed, d' < d with d;, = d,, = 0,
d, = —d/, = g+ 1/2 is not a feasible nomination. Especially, in this example,
the set of bookings is not convex, and the feasibility of d, together with d’ < d
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~1/0 u v —(g+1)/—q

[0,¢+1] [1,1]
(¢+1)/q 1/0
[l,g+1] = Y [1,2]

Figure 4: The set of bookings is not convex, and an example to a feasible
nomination which is not a booking

[y, 71] (75, 2]

[ﬂﬁ;v f3]

Figure 5: The set of feasible nominations is not convex

does not imply the feasibility of d’ — in other words, not every nomination is a
booking.

Note that in this example one can choose ¢ arbitrary big, yielding a network
with a very large throughput. On the other hand, choosing ¢ = 0 gives an
example where the union of two nominations, which are bookings in their own
networks if considered separately, is not a booking any more if we put the two
networks together.

The set of feasible nominations is not necessarily convex, as shown by the
example in Figure 5. Assuming that « =1 and m; = 7; > 73 for i = 1,2, we
get that the set of feasible nominations is a curve

(Vm1 — 73, /mg — w3, —(vV/m — 73+ /72 — 7m3)),

parametrized by ms < m3 < 3. The image of this curve is clearly not a linear
segment, and hence not convex.

Turning to connectivity, the continuity of the h function in Section 2 implies
that the set of feasible nominations is connected. Moreover, the set of bookings
is connected, as every booking can by definition be connected by a path to the
0-booking.

5 The gas nomination validation problem with
active devices is N'P-complete

Beneath pipelines, a real life gas transportation network also contains active
devices. In the gas nomination validation problem for active networks, the net-
work operator has to find pressures at the nodes and appropriate configurations
for all active components such that exactly the nominated amount of gas is
transmitted through the network. The active devices are modeled as edges of
the network. Every active device can be either closed or open, and being closed
is equivalent to that the flow on it is 0. There are several models for open active
devices in the literature, but as we need only valves in the proof to follow, we
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[0.0]

Figure 6: The ANVP is N"P-complete

only consider the modeling of an open valve. In this regard there is consensus
in the literature, and an open valve (u,v) is always modeled as

Ty = Ty- (18)

Thus we call the ACTIVE GAS NOMINATION VALIDATION PROBLEM (ANVP)
the problem of deciding whether a nomination is feasible in a gas transporta-
tion network with active devices, with arbitrary modeling of the active devices,
except the valve, whose open state is modeled as in (18), and closed state is
tantamount to having 0 flow.

Theorem 5.1. The ANVP is N'P-complete.

Proof. We reduce the NP-complete SUBSET SUM PROBLEM to the ANVP
in a network containing pipelines and valves only. Let 0 < a; € Zy,1 € I =
{1,...,k} and n,m € Z with n +m = }_,_; a; be an instance of the SUBSET
SUM PROBLEM. The question is whether I has a partition {I, I,} such that
Zielz a; = n and Ziely a; = m. Now we create an instance of the ANVP as
seen in Figure 6.

The gas transportation network has k+2 nodes, z, y, v;,7 € I, and 2k valves
2v;, yv;, 1 € I (not all are denoted as a valve in the figure due to clarity). The
pressure square bounds are written near the nodes, that is w;; = 0 for every
u € V except that 7 (z) = 1, and 7, = 1 for every u € V except that 7, = 0.
The nomination is as follows: d, = n, dy, = m and d,, = —a; for i € I. Assume
that this instance of the ANVP has a feasible configuration, that is a pressure
square vector m and a configuration of the valves which generates the given
nomination d. As m, = m, for an open valve between u and v, every node v; is
incident to at most one open valve. On the other hand, as a; # 0, it is incident
to at least one open valve. So with the notation I, = {i € I : v;x is open, v;y
is closed} and I, = {i € I : vy is open, v;x is closed} we have that {I,,I,}
is a partition of I, and by the feasibility of the configuration, we have that
>ier, @ =nand >, a; = m. Thus the answer to the given instance of the
SUBSET SUM PROBLEM is “yes”. On the other hand, using the same argument,
it is easy to see that if the the answer to the given instance of the SUBSET SUM
PROBLEM is “yes” then the nomination d has a feasible configuration in the
network. (|
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