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Abstract

We study a family of combinatorial optimization problems defined by a parameter p ∈
[0, 1], which involves spectral functions applied to positive semidefinite matrices, and has
some application in the theory of optimal experimental design. This family of problems
tends to a generalization of the classical maximum coverage problem as p goes to 0, and to
a trivial instance of the knapsack problem as p goes to 1.

In this article, we establish a matrix inequality which shows that the objective function
is submodular for all p ∈ [0, 1], from which it follows that the greedy approach, which has
often been used for this problem, always gives a design within 1− 1/e of the optimum. We
next study the design found by rounding the solution of the continuous relaxed problem,
an approach which has been applied by several authors. We prove an inequality which
generalizes a classical result from the theory of optimal designs, and allows us to give a
rounding procedure with an approximation factor which tends to 1 as p goes to 1.

1 Introduction

This work is motivated by a generalization of the classical maximum coverage problem which
arises in the study of optimal experimental designs. This problem may be formally defined as
follows: given s positive semidefinite matrices M1, . . . ,Ms of the same size and an integer N < s,
solve:

max
I⊂[s]

rank
(∑
i∈I

Mi

)
(P0)

s. t. card(I) ≤ N,

where we use the standard notation [s] := {1, . . . , s} and card(S) denotes the cardinality of S.
When each Mi is diagonal, it is easy to see that Problem (P0) is equivalent to a max-coverage
instance, by defining the sets Si = {k : (Mi)k,k > 0}, so that the rank in the objective of
Problem (P0) is equal to card

(
∪i∈I Si

)
.

A more general class of problems arising in the study of optimal experimental designs is
obtained by considering a deformation of the rank which is defined through a spectral function.
Given p ∈ [0, 1], solve:

max
n∈Ns

ϕp (n) (Pp)

s. t.
∑
i∈[s]

ni ≤ N,
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where ϕp(n) is the sum of the eigenvalues of
∑
i∈[s] niMi raised to the exponent p: if the eigenval-

ues of the positive semidefinite matrix
∑
i∈[s] niMi are λ1, . . . , λm (counted with multiplicities),

ϕp(n) is defined by

ϕp(n) = trace
(∑
i∈[s]

niMi

)p
=

m∑
k=1

λpk.

We shall see that Problem (P0) is the limit of Problem (Pp) as p → 0+ indeed. On the other
hand, the limit of Problem (Pp) as p→ 1 is a knapsack problem (in fact, it is the trivial instance
in which the ith item has weight 1 and utility ui = traceMi). Note that a matrix Mi may be
chosen ni times in Problem (Pp), while choosing a matrix more than once in Problem (P0) cannot
increase the rank. Therefore we also define the binary variant of Problem (Pp):

max
n

ϕp (n) : n ∈ {0, 1}s,
∑
i∈[s]

ni ≤ N

 (P bin
p )

We shall also consider the case in which the selection of the ith matrix costs ci, and a total
budget B is allowed. This is the budgeted version of the problem:

max
n

ϕp (n) : n ∈ Ns,
∑
i∈[s]

cini ≤ B

 (P bdg
p )

Throughout this article, we use the term design for the variable n = (n1, . . . , ns) ∈ Ns. We
say that n is a N−replicated design if it is feasible for Problem (Pp), a N−binary design if n is
feasible for Problem (P bin

p ), and a B−budgeted design when it satisfies the constraints of (P bdg
p ).

1.1 Motivation: optimal experimental design

The theory of optimal design of experiments plays a central role in statistics. It studies how to
best select experiments in order to estimate a set of parameters. Under classical assumptions,
the best linear unbiased estimator is given by least square theory, and lies within confidence
ellipsoids which are described by a positive semidefinite matrix depending only on the selected
experiments. The optimal design of experiments aims at selecting the experiments in order to
make these confidence ellipsoids as small as possible, which leads to more accurate estimators.

A common approach consists in minimizing a scalar function measuring these ellipsoids, where
the function is taken from the class of Φp-information functions proposed by Kiefer [Kie75]. This
leads to a combinatorial optimization problem (decide how many times each experiment should
be performed) involving a spectral function which is applied to the information matrix of the
experiments. For p ∈]0, 1], the Kiefer’s Φp-optimal design problem is equivalent to Problem (Pp)
(up to the exponent 1/p in the objective function).

In fact, little attention has been given to the combinatorial aspects of Problem (Pp) in the
optimal experimental design literature. The reason is that there is a natural relaxation of the
problem which is much more tractable and usually yields very good results: instead of deter-
mining the exact number of times ni that each experiment will be selected, the optimization is
done over the fractions wi = ni/N ∈ [0, 1], which reduces the problem to the maximization of a
concave function over a convex set (this is the theory of approximate optimal designs). For the
common case, in which the number N of experiments to perform is large and N > s (where s
is the number of available experiments), this approach is justified by a result of Pukelsheim and
Rieder [PR92], who give a rounding procedure to transform an optimal approximate design w∗
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into an N−replicated design n = (n1, . . . , ns) which approximates the optimum of the Kiefer’s
Φp−optimal design problem within a factor 1− s

N .
The present developments were motivated by a joint work with Bouhtou and Gaubert [BGS08,

SGB10] on the application of optimal experimental design methods to the identification of the
traffic in an Internet backbone. This problem describes an underinstrumented situation, in which
a small number N < s of experiments should be selected. In this case, the combinatorial aspects
of Problem (Pp) become crucial. A similar problem was studied by Song, Qiu and Zhang [SQZ06],
who proposed to use a greedy algorithm to approximate the solution of Problem (Pp). In this pa-
per, we give an approximation bound which justifies this approach. Another question addressed
in this manuscript is whether it is appropriate to take roundings of (continuous) approximate
designs in the underinstrumented situation (recall that this is the common approach when deal-
ing with experimental design problems in the overinstrumented case, where the number N of
experiments is large when compared to s).

Appendix A is devoted to the application to the theory of optimal experimental designs; we
explain how a statistical problem (choose which experiments to conduct in order to estimate a
set of parameters) leads to the study of Problem (Pp), with a particular focus to the underin-
strumented situation described above. For more details on the subject, the reader is referred to
the monographs of Fedorov [Fed72] and Pukelsheim [Puk93].

1.2 Organisation and contribution of this article

The objective of this article is to study some approximation algorithms for the class of prob-
lems (Pp)p∈[0,1]. Several results presented in this article were already announced in the com-
panion papers [BGS08, BGS10], without the proofs. This paper provides all the proofs of the
results of [BGS10] and gives new results for the rounding algorithms. We shall now present the
contribution and the organisation of this article.

In Section 2, we establish a matrix inequality (Proposition 2.3) which shows that a class of
spectral functions is submodular (Corollary 2.4). As a particular case of the latter result, the
objective function of Problem (Pp) is submodular for all p ∈ [0, 1]. The submodularity of this
class of spectral functions is an original contribution of this article for 0 < p < 1, however a
particular case of this result was announced –without a proof– in the companion paper on the
telecom application [BGS08]. In the limit case p = 0, we obtain two functions which were already
known to be submodular (the rank and the log of determinant of a sum of matrices).

Due to a celebrated result of Nemhauser, Wolsey and Fisher [NWF78], the submodularity of
the criterion implies that the greedy approach, which has often been used for this problem, always
gives a design within 1−e−1 of the optimum (Theorem 2.6). We point out that the submodularity
of the determinant criterion was noticed earlier in the optimal experimental design literature,
but under an alternative form [RS89]: Robertazzi and Schwartz showed that the determinant
of the inverse of a sum of matrices is supermodular, and they used it to write an algorithm for
the construction of approximate designs (i.e. without integer variables) which is based on the
accelerated greedy algorithm of Minoux [Min78]. In contrast, the originality of the present paper
is to show that a whole class of criteria satisfies the submodularity property, and to study the
consequences in terms of approximability of a combinatorial optimization problem.

In Section 3, we investigate the legitimacy of using rounding algorithms to construct a
N−replicated design n = (n1, . . . , ns) ∈ Ns or a N -binary design n ∈ {0, 1}s from an optimal
approximate design w∗, i.e. a solution of a continuous relaxation of Problem (Pp). We establish
an inequality (Propositions 3.1 and 3.3) which bounds from below the approximation ratio of any
integer design, by a function which depends on the continuous solution w∗. Interestingly, this
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Algorithm Approximation factor for Problem (Pp) Reference
Greedy 1− e−1 (or 1− (1− 1

N
)N ) 2.6 ([NWF78])

Any N−replicated design n 1
N

∑s
i=1 n

p
i (w

∗
i )1−p 3.3

(posterior bound)

Rounding 3.1
(prior bound)


(
N
s

)1−p
if
(
N
s

)1−p
≤ 1

2−p ;

1− s
N
(1− p)

(
1

2−p

) 2−p
1−p

Otherwise
3.8

Apportionment rounding (1− s
N

)p if N ≥ s [PR92]

Algorithm Approximation factor for Problem (P bin
p ) Reference

Greedy 1− e−1 (or 1− (1− 1
N

)N ) 2.6 ([NWF78])

Any N−binary design n 1
N

∑s
i=1 ni(w

∗
i )1−p 3.1

(posterior bound)

Keep the N largest coord.
of w∗ (prior bound)

(
N
s

)1−p
if p ≤ 1− lnN

ln s
3.7

Algorithm Approximation factor for Problem (P bdg
p ) Reference

Adapted Greedy 1− e−β ' 0.35 (where eβ = 2− β) 2.8([Wol82])

Greedy+triples enumeration 1− e−1 2.8([Svi04])

Any B−budgeted design n 1
B

∑N
i=1 cin

p
i (w

∗
i )1−p 3.5

(posterior bound)

Table 1: Summary of the approximation bounds obtained in this paper, as well as the bound of
Pukelsheim and Rieder [PR92]. The column “Reference” indicates the number of the theorem,
proposition or remark where the bound is proved (a citation in parenthesis means a direct
application of a result of the cited paper, which is possible thanks to the submodularity of ϕp
proved in Corollary 2.5). In the table, posterior denotes a bound which depends on the continuous
solution w∗ of the relaxed problem, while a prior bound depends only on the parameters of the
problem.

inequality generalizes a classical result from the theory of optimal designs (the upper bound on
the weights of a D-optimal design [Puk80, HT09] is a particular case (p = 0) of Proposition 3.1).
The proof of this result is presented in Appendix B ; it relies on matrix inequalities and several
properties of the differentiation of a scalar function applied to symmetric matrices. Then we
point out that the latter lower bound can be maximized by an incremental algorithm which is
well known in the resource allocation community (Algorithm 3.1), and we derive approximation
bounds for Problems (Pp) and (P bin

p ) which do not depend on w∗ (Theorems 3.7 and 3.8). For
the problem with replicated designs (Pp), the approximation factor is an increasing function of
p which tends to 1 as p → 1. In many cases, the approximation guarantee for designs obtained
by rounding is better than the greedy approximation factor 1− e−1.

We have summarized in Table 1 the approximation results proved in this paper (this table
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also includes another known approximability result for Problem (Pp), the efficient apportionment
rounding of Pukelsheim and Rieder [PR92]).

2 Submodularity and Greedy approach

In this section, we study the greedy algorithm for solving Problems (Pp) and (P bin
p ) through

the submodularity of ϕp. We first recall a result presented in [BGS08], which states that the
rank optimization problem is NP-hard, by a reduction from the Maximum Coverage problem. It
follows that for all positive ε, there is no polynomial-time algorithm which approximates (P0) by
a factor of 1− 1

e + ε unless P = NP (this has been proved by Feige for the Maximum Coverage
problem [Fei98]). Nevertheless, we show that this bound is the worst possible ever, and that the
greedy algorithm always attains it.

To this end, we show that a class of spectral functions (which includes the objective function
of Problem (Pp)) is nondecreasing submodular. The maximization of submodular functions over
a matroid has been extensively studied [NWF78, CC84, CCPV07, Von08, KST09], and we shall
use known approximability results.

To study its approximability, we can think of Problem (Pp) as the maximization of a set
function ϕ′p : 2E 7→ R+. To this end, note that each design n can be seen as a subset of E,
where E is a pool which contains N copies of each experiment (this allows us to deal with
replicated designs, i.e. with experiments that are conducted several times; if replication is not
allowed (Problem (P bin

p )), we simply set E := [s]). Now, if S is a subset of E corresponding to
the design n, we define ϕ′p(S) := ϕp(n). In the sequel, we identify the set function ϕ′p with ϕp
(i.e., we omit the prime).

We also point out that multiplicative approximation factors for the Φp−optimal problem
cannot be considered when p ≤ 0, since the criterion is identically 0 as long as the the information
matrix is singular. For p ≤ 0 indeed, the instances of the Φp-optimal problem where no feasible
design lets MF (n) be of full rank have an optimal value of 0. For all the other instances,
any polynomial-time algorithm with a positive approximation factor would necessarily return
a design of full rank. Provided that P 6= NP , this would contradict the NP-hardness of Set-
Cover (it is easy to see that Set Cover reduces to the problem of deciding whether there exists
a set S of cardinal N such that

∑
i∈SMi has full rank for some diagonal matrices Mi, by a

similar argument to the one given in the first paragraph of this article). Hence, we investigate
approximation algorithms only in the case p ∈ [0, 1].

2.1 A class of submodular spectral functions

In this section, we are going to show that a class of spectral functions is submodular. We recall
that a real valued function F : 2E → R, defined on every subset of E is called nondecreasing
if for all subsets I and J of E, I ⊆ J implies F (I) ≤ F (J). We also give the definition of a
submodular function:

Definition 2.1 (Submodularity). A real valued set function F : 2E −→ R is submodular if it
satisfies the following condition :

F (I) + F (J) ≥ F (I ∪ J) + F (I ∩ J) for all I, J ⊆ E.

We next recall the definition of operator monotone functions. The latter are real valued
functions applied to hermitian matrices: if A = U Diag(λ1, . . . , λm)U∗ is a m × m hermi-
tian matrix (where U is unitary and U∗ is the conjugate of U), the matrix f(A) is defined
as U Diag(f(λ1), . . . , f(λm))U∗.
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Definition 2.2 (Operator monotonicity). A real valued function f is operator monotone on R+

(resp. R∗+) if for every pair of positive semidefinite (resp. positive definite) matrices A and B,

A � B =⇒ f(A) � f(B).

We say that f is operator antitone if −f is operator monotone.

The next proposition is a matrix inequality of independent interest; it will be useful to
show that ϕp is submodular. Interestingly, it can be seen as an extension of the Ando-Zhan
Theorem [AZ99], which reads as follows: Let A, B be semidefinite positive matrices. For any
unitarily invariant norm |||·|||, and for every non-negative operator monotone function f on [0,∞),

|||f(A+B)||| ≤ |||f(A) + f(B)|||.

Kosem [Kos06] asked whether it is possible to extend this inequality as follows:

|||f(A+B + C)||| ≤ |||f(A+B) + f(B + C)− f(C)|||,

and gave a counterexample involving the trace norm and the function f(x) = x
x+1 . However,

we show in next proposition that the previous inequality holds for the trace norm and every
primitive f of an operator antitone function (in particular, for f(x) = xp, p ∈]0, 1]). Note that
the previous inequality is not true for any unitarily invariant norm and f(x) = xp either. It is
easy to find counterexamples with the spectral radius norm.

Proposition 2.3. Let f be a real function defined on R+ and differentiable on R∗+. If f ′ is
operator antitone on R∗+, then for all triples (X,Y, Z) of m×m positive semidefinite matrices,

trace f(X + Y + Z) + trace f(Z) ≤ trace f(X + Z) + trace f(Y + Z). (1)

Proof. Since the eigenvalues of a matrix are continuous functions of its entries, and since S++
m is

dense in S+
m, it suffices to establish the inequality when X, Y , and Z are positive definite. Let

X be an arbitrary positive definite matrix. We consider the map:

ψ : S+
m −→ R
T 7−→ trace f(X + T )− trace f(T ).

The inequality to be proved can be rewritten as

ψ(Y + Z) ≤ ψ(Z).

We will prove this by showing that ψ is nonincreasing with respect to the Löwner ordering in the
direction generated by any positive semidefinite matrix. To this end, we compute the Frechet
derivative of ψ at T ∈ S++

m in the direction of an arbitrary matrix H ∈ S+
m. By definition,

Dψ(T )(H) = lim
ε→0

1

ε

(
ψ(T + εH)− ψ(T )

)
. (2)

When f is an analytic function, X 7−→ trace f(X) is Frechet-differentiable, and an explicit form
of the derivative is known (see [HP95, JB06]): D

(
trace f(A)

)
(B) = trace

(
f ′(A)B

)
. Since f ′

is operator antitone on R∗+, a famous result of Löwner [Löw34] tells us (in particular) that f ′

is analytic at all points of the positive real axis, and the same holds for f . Provided that the
matrix T is positive definite (and hence X + T ), we have

Dψ(T )(H) = trace
( (

f ′(X + T )− f ′(T )
)
H
)
.
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By antitonicity of f ′ we know that the matrix W = f ′(X + T )− f ′(T ) is negative semidefinite.
For a matrix H � 0, we have therefore:

Dψ(T )(H) = trace (WH) ≤ 0.

Consider now h(s) := ψ(sY + Z). For all s ∈ [0, 1], we have

h′(s) = Dψ(sY + Z)(Y ) ≤ 0,

and so, h(1) = ψ(Y + Z) ≤ h(0) = ψ(Z), from which the desired inequality follows.

Corollary 2.4. Let M1, . . . ,Ms be m × m positive semidefinite matrices. If f satisfies the
assumptions of Proposition 2.3, then the set function F : 2[s] → R defined by

∀I ⊂ [s], F (I) = trace f(
∑
i∈I

Mi),

is submodular.

Proof. Let I, J ⊆ 2[s]. We define

X =
∑
i∈I\J

Mi, Y =
∑
i∈J\I

Mi, Z =
∑
i∈I∩J

Mi.

It is easy to check that

F (I) = trace f(X + Z),

F (J) = trace f(Y + Z),

F (I ∩ J) = trace f(Z),

F (I ∪ J) = trace f(X + Y + Z).

Hence, Proposition 2.3 proves the submodularity of F .

A consequence of the previous result is that the objective function of Problem (Pp) is sub-
modular. In the limit case p→ 0+, we find two well-known submodular functions:

Corollary 2.5. Let M1, ...,Ms be m×m positive semidefinite matrices.

(i) ∀p ∈]0, 1], I 7→ trace(
∑
i∈IMi)

p is submodular.

(ii) I 7→ rank(
∑
i∈IMi) is submodular.

If moreover every Mi is positive definite, then:

(iii) I 7→ log det(
∑
i∈IMi) is submodular.

Proof. It is known that x 7→ xq is operator antitone on R∗+ for all q ∈ [−1, 0[. Therefore, the
derivative of the function x 7→ xp (which is pxp−1), is operator antitone on R∗+ for all p ∈]0, 1[.
This proves the point (i) for p 6= 1. The case p = 1 is trivial, by linearity of the trace.

The submodularity of the rank (ii) and of log det (iii) are classic. Interestingly, they are
obtained as the limit case of (i) as p → 0+. (For log det, we must consider the second term in
the asymptotic development of X 7→ trace Xp as p tends to 0+, cf. Equation (24)).
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2.2 Greedy approximation

We next present some consequences of the submodularity of ϕp for the approximability of Prob-
lem (Pp). Note that the results of this section hold in particular for p = 0, and hence for the
rank maximization problem (P0). They also hold for E = [s], i.e. for Problem (P bin

p ). We recall
that the principle of the greedy algorithm is to start from G0 = ∅ and to construct sequentially
the sets

Gk+1 := Gk ∪ argmaxi∈E\Gk ϕp(Gk ∪ {i}),

until k = N .

Theorem 2.6 (Approximability of Problem (Pp)). Let p ∈ [0, 1]. The greedy algorithm always
yields a solution within a factor 1− 1

e of the optimum of Problem (Pp).

Proof. We know from Corollary 2.5 that for all p ∈ [0, 1], ϕp is submodular (p = 0 corresponding
to the rank maximization problem). In addition, the function ϕp is nondecreasing, because
X −→ Xp is a matrix monotone function for p ∈ [0, 1] (see e.g. [Zha02]) and ϕp(∅) = 0.

Nemhauser, Wolsey and Fisher [NWF78] proved the result of this theorem for any nonde-
creasing submodular function f satisfying f(∅) = 0 which is maximized over a uniform matroid.
Moreover when the maximal number of matrices which can be selected is N , this approximability

ratio can be improved to 1−
(
1− 1/N

)N
.

Remark 2.7. One can obtain a better bound by considering the total curvature of a given instance,
which is defined by:

c = max
i∈[s]

1−
ϕp
(
E)− ϕp

(
E \ {i}

)
ϕp
(
{i}
) ∈ [0, 1].

Conforti and Cornuejols [CC84] proved that the greedy algorithm always achieves a
1
c

(
1− (1− c

N )N
)
-approximation factor for the maximization of an arbitrary nondecreasing sub-

modular function with total curvature c. In particular, since ϕ1 is additive it follows that the
total curvature for p = 1 is c = 0, yielding an approximation factor of 1:

lim
c→0+

1

c

(
1− (1− c

N
)N
)

= 1.

As a consequence, the greedy algorithm always gives the optimal solution of the problem. Note
that Problem (P1) is nothing but a knapsack problem, for which it is well known that the greedy
algorithm is optimal if each available item has the same weight. However, it is not possible to
give an upper bound on the total curvature c for other values of p ∈ [0, 1[, and c has to be
computed for each instance.

Remark 2.8. The problem of maximizing a nondecreasing submodular function subject to a
budget constraint of the form

∑
i cini ≤ B, where ci ≥ 0 is the cost for selecting the element

i and B is the total allowed budget, has been studied by several authors. Wolsey presented an
adapted greedy algorithm [Wol82] with a proven approximation guarantee of 1 − e−β ' 0.35,
where β is the unique root of the equation ex = 2 − x. More recently, Sviridenko [Svi04]
showed that the budgeted submodular maximization problem was still 1− 1/e−approximable
in polynomial time, with the help of an algorithm which associates the greedy with a partial
enumeration of every solution of cardinality 3.

We have attained so far an approximation factor of 1− e−1 for all p ∈ [0, 1[, while we have a
guarantee of optimality of the greedy algorithm for p = 1. This leaves a feeling of mathematical
dissatisfaction, since intuitively the problem should be easy when p is very close to 1. In the
next section we remedy to this problem, by giving a rounding algorithm with an approximation
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factor F (p) which depends on p, and such that p 7→ F (p) is continuous, nondecreasing and
limp→1 F (p) = 1.

3 Approximation by rounding algorithms

The optimal design problem has a natural continuous relaxation which is simply obtained
by removing the integer constraint on the design variable n, and has been extensively stud-
ied [Atw73, DPZ08, Yu10, Sag11]. As mentioned in the introduction, several authors proposed
to solve this continuous relaxation and to round the solution to obtain a near-optimal discrete
design. While this process is well understood when N ≥ s, we are not aware of any bound
justifying this technique in the underinstrumented situation N < s.

3.1 A continuous relaxation

The continuous relaxation of Problem (Pp) which we consider is obtained by replacing the integer
variable n ∈ Ns by a continuous variable w in Problem (22):

max
w ∈(R+)s∑

k wk≤N

Φp(MF (w)) (3)

Note that the criterion ϕp(w) is raised to the power 1/p in Problem (3) (we have
Φp(MF (w)) = m−1/pϕp(w)1/p for p > 0). The limit of Problem (3) as p → 0+ is hence
the maximization of the determinant of MF (w) (cf. Equation (20)).

We assume without loss of generality that the matrix MF (1) =
∑s
k=1Mk is of full rank

(where 1 denotes the vector of all ones). This ensures the existence of a vector w which is
feasible for Problem (3), and such that MF (w) has full rank. If this is not the case (r∗ :=
rank(MF (1)) < m), we define instead a projected version of the continuous relaxation: Let
UΣUT be a singular value decomposition of MF (1). We denote by Ur∗ the matrix formed with
the r∗ leading singular vectors of MF (1), i.e. the r∗ first columns of U . It can be seen that
Problem (3) is equivalent to the problem with projected information matrices M̄k := UTr∗MkUr∗

(see Paragraph 7.3 in [Puk93]).
The functions X 7→ log(det(X)) and X 7→ Xp (p ∈]0, 1]) are strictly concave on the interior

of S+
m, so that the continuous relaxation (3) can be solved by interior-points technique or multi-

plicative algorithms [Atw73, DPZ08, Yu10, Sag11]. The strict concavity of the objective function
indicates in addition that Problem (3) admits a unique solution if and only if

w1M1 + w2M2 + . . .+ wsMs = y1M1 + y2M2 + . . .+ ysMs ⇒ (w1, . . . , ws) = (y1, . . . , ys),

that is to say whenever the matrices Mi are linearly independent. In this paper, we focus on the
rounding techniques only, and we assume that an optimal solution w∗ of the relaxation (3) is
already known. In the sequel, we also denote a discrete solution of Problem (Pp) by n∗ and a
binary solution of Problem (P bin

p ) by S∗. Note that we always have ϕp(w
∗) ≥ ϕp(n∗) ≥ ϕp(S∗).

3.2 Posterior bounds

In this section, we are going to bound from below the approximation ratio ϕp(n)/ϕp(w
∗) for

an arbitrary discrete design n, and we propose a rounding algorithm which maximizes this
approximation factor. The lower bound depends on the continuous optimal variable w∗, and
hence we refer it as a posterior bound. We start with a result for binary designs (∀i ∈ [s], ni ≤ 1),
which we associate with a subset S of [s] as in Section 2. The proof relies on several matrix

9



inequalities and technical lemmas on the directional derivative of a scalar function applied to a
symmetric matrix, and is therefore presented in Appendix B.

Proposition 3.1. Let p ∈ [0, 1] and w∗ be optimal for the continuous relaxation (3) of Prob-
lem (Pp). Then, for any subset S of [s], the following inequality holds:

1

N

∑
i∈S

(w∗i )1−p ≤ ϕp(S)

ϕp(w
∗)
.

Remark 3.2. In this proposition and in the remaining of this article, we adopt the convention
00 = 0.

We point out that this proposition includes as a special case a result of Pukelsheim [Puk80],
already generalized by Harman and Trnovská [HT09], who obtained:

w∗i
N
≤ rankMi

m
,

i.e. the inequality of Proposition 3.1 for p = 0 and a singleton S = {i}. However the proof is
completely different in our case. Note that there is no constraint of the form wi ≤ 1 in the
continuous relaxation (3), although the previous proposition relates to binary designs S ∈ [s].
Proposition 3.1 suggests to select the N matrices with the largest coordinates w∗i to obtain a
candidate S for optimality of the binary problem (P bin

p ). We will give in the next section a prior
bound (i.e., which does not depend on w∗) for the efficiency of this rounded design.

We can also extend the previous proposition to the case of replicated designs n ∈ Ns (note
that the following proposition does not require the design n to satisfy

∑
i ni = N):

Proposition 3.3. Let p ∈ [0, 1] and w∗ be optimal for the continuous relaxation (3) of Prob-
lem (Pp). Then, for any design n ∈ Ns, the following inequality holds:

1

N

∑
i∈[s]

npi (w
∗
i )1−p ≤ ϕp(n)

ϕp(w
∗)
.

Proof. We consider the problem in which the matrix Mi is replicated ni times:

∀i ∈ [s], ∀k ∈ [ni],Mi,k = Mi.

Since w∗ is optimal for Problem (3), it is clear that (wi,k)(i,k)∈∪j∈[s]{j}×[nj ] is optimal for the
problem with replicated matrices if

∀i ∈ [s],
∑
k∈[ni]

wi,k = w∗i , (4)

i.e. wi,k is the part of w∗i allocated to the kth copy of the matrix Mi. For such a vector,
Proposition 3.1 shows that

ϕp(n)

ϕp(w
∗)
≥ 1

N

s∑
i=1

ni∑
k=1

(w∗i,k)1−p.

Finally, it is easy to see (by concavity) that the latter lower bound is maximized with respect to

the constraints of Equation (4) if ∀i ∈ [s],∀k ∈ [ni], wi,k =
w∗i
ni

:

ϕp(n)

ϕp(w
∗)
≥ 1

N

s∑
i=1

ni∑
k=1

(
w∗i
ni

)1−p

=
1

N

s∑
i=1

npi (w
∗
i )1−p.

10



We next give a simple rounding algorithm which finds the feasible design n which maximizes
the lower bound of Proposition 3.3:

max
n∈Ns∑
ni=N

∑
j∈[s]

npj w
1−p
j . (5)

The latter maximization problem is in fact a ressource allocation problem with a convex separable
objective, and the incremental algorithm which we give below is well known in the resource
allocation community (see e.g. [IK88]).

Algorithm 3.1 [Incremental rounding]

Input: A nonnegative vector w ∈ Rs such that
∑s
i=1 wi = N ∈ N \ {0}.

Sort the coordinates of w; We assume wlog that w1 ≥ w2 ≥ . . . ≥ ws;
n← [1, 0 . . . , 0] ∈ Rs
for k = 2 . . . N do

Select an index imax ∈ argmax
i∈[s]

(
(ni + 1)p − npi

)
w1−p
i

nimax ← nimax + 1
end for
return: a N−replicated design n which maximizes

∑s
i=1 n

p
iw

1−p
i .

Remark 3.4. If w is sorted (w1 ≥ w2 ≥ . . . ≥ ws), then the solution of Problem (5) clearly
satisfies n1 ≥ n2 ≥ . . . ≥ ns. Consequently, it is not necessary to test every index i ∈ [s]
to compute the argmax in Algorithm 3.1. Instead, one only needs to compute the increments(
(ni + 1)p − npi

)
w1−p
i for the i ∈ [s] such that i = 1 or ni + 1 ≤ ni−1.

We shall now give a posterior bound for the budgeted problem (P bdg
p ). We only provide a

sketch of the proof, since the reasoning is the same as for Propositions 3.1 and 3.3. We also point
out that the approximation bound provided in the next proposition can be maximized over the
set of B−budgeted designs, thanks to a dynamic programming algorithm which we do not detail
here (see [MM76]).

Proposition 3.5. Let p ∈ [0, 1] and w∗ be optimal for the continuous relaxation

max
w∈Rs

Φp
(
MF (w)

)
: w ≥ 0,

∑
i∈[s]

ciwi ≤ B

 (6)

of Problem (P bdg
p ). Then, for any design n ∈ Ns, the following inequality holds:

1

B

∑
i∈[s]

cin
p
i (w
∗
i )1−p ≤ ϕp(n)

ϕp(w
∗)
.

Proof. First note that after the change of variable zi := NB−1ciwi, the continuous relax-
ation (6) can be rewritten under the standard form (3), where the matrix Mi is replaced by
M ′i = B(Nci)

−1Mi. Hence, we know from Proposition B.4 that the optimality conditions of
Problem (6) are:

∀i ∈ [s], Bc−1
i trace(MF (w∗)p−1Mi) ≤ ϕp

(
w∗
)
,

with inequality if w∗i > 0. Then, we can apply exactly the same reasonning as in the proof of
Proposition 3.1, to show that

∀S ⊂ [s],
1

B

∑
i∈S

ci(w
∗
i )1−p ≤ ϕp(S)

ϕp(w
∗)
.
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The only change is that the optimality conditions must be multiplied by a factor proportional to
ci(w

∗
i )1−p (instead of (w∗i )1−p as in Equation (25)). Finally, we can apply the same arguments

as in the proof of 3.3 to obtain the inequality of this proposition.

3.3 Prior bounds

In this section, we derive prior bounds for the solution obtained by rounding the continuous
solution of Problem (3), i.e. approximation bounds which depend only on the parameters p, N
and s of Problems (Pp) and (P bin

p ). We first need to state one technical lemma.

Lemma 3.6. Let w ∈ Rs be a nonnegative vector summing to r ≤ s, r ∈ N, and p be an arbitrary
real in the interval [0, 1]. Assume without loss of generality that the coordinates of w are sorted,
i.e. w1 ≥ . . . ≥ ws ≥ 0. If one of the following two conditions holds:

(i) ∀i ∈ [s], wi ≤ 1;

(ii) p ≤ 1− ln r

ln s
,

then, the following inequality holds:

1

r

r∑
i=1

w1−p
i ≥

(r
s

)1−p
.

Proof. We start by showing the lemma under the condition (i). To this end, we consider the
minimization problem

min
w
{
r∑
i=1

w1−p
i :

s∑
i=1

wi = r; 1 ≥ w1 ≥ . . . ≥ ws ≥ 0}. (7)

Our first claim is that the optimum is necessarily attained by a vector of the form w =
[u+α1, . . . , u+αr, u, . . . , u]T , where α1, . . . , αr ≥ 0, i.e. the s− r coordinates of w which are not
involved in the objective function are equal. To see this, assume ad absurbium that w is optimal
for Problem (7), with wi > wi+1 for an index i > r. Define k as the smallest integer such that
w1 = w2 = . . . = wk > wk+1. Then, ei − 1/k

∑
j∈[k] ej is a feasible direction along which the

objective criterion
∑r
i=1 w

1−p
i is decreasing, a contradiction. Problem (7) is hence equivalent to:

min
u,α
{
r∑
i=1

(u+ αi)
1−p :

r∑
i=1

αi = r − su; 0 ≤ u; 0 ≤ αi ≤ 1− u (∀i ∈ [r])}. (8)

It is known that the objective criterion of Problem (8) is Schur-concave, as a symmetric separable
sum of concave functions (we refer the reader to the book of Marshall and Olkin [MO79] for details
about the theory of majorization and Schur-concavity). This tells us that for all u ∈ [0, rs ], the
minimum with respect to α is attained by

α = [1− u, . . . , 1− u︸ ︷︷ ︸
k times

, r − su− k(1− u), 0, . . . , 0]T ,

where k = b r−su1−u c (for a given u, this vector majorizes all the vectors of the feasible set).
Problem (8) can thus be reduced to the scalar minimization problem

min
u∈[0, rs ]

⌊
r − su
1− u

⌋
+
(
u+ r − su−

⌊
r − su
1− u

⌋
(1− u)

)1−p
+
(
r −

⌊
r − su
1− u

⌋
− 1
)
u1−p.
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It is not difficult to see that this function is piecewise concave, on the r− 1 intervals of the form

u ∈
[
r−(k+1)
s−(k+1) ,

r−k
s−k

]
, k ∈ [r − 1], corresponding to the domains where k = b r−su1−u c is constant. It

follows that the minimum is attained for a u of the form r−k
s−k , where k ∈ [r], and the problem

reduces to

min
k∈[r]

k + (r − k)

(
r − k
s− k

)1−p

.

Finally, one can check that the objective function of the latter problem is nondecreasing with
respect to k, such that the minimum is attained for k = 0 (which corresponds to the uniform
weight vector w = [r/s, . . . , r/s]T ). This achieves the first part of this proof.

The proof of the lemma for the condition (ii) is similar. This time, we consider the mini-
mization problem

min
w
{
r∑
i=1

w1−p
i :

s∑
i=1

wi = r; w1 ≥ . . . ≥ ws ≥ 0}. (9)

Again, the optimum is attained by a vector of the form w = [u+α1, . . . , u+αr, u, . . . , u]T , which
reduces the problem to:

min
u,α
{
r∑
i=1

(u+ αi)
1−p :

r∑
i=1

αi = r − su; u, α1, . . . , αr ≥ 0}. (10)

For a fixed u, the Schur-concavity of the objective function indicates that the minimum is attained
for α = [r − su, 0, . . . , 0]T . Finally, Problem (10) reduces to the scalar minimization problem

min
u∈[0, rs ]

(
u+ (r − su)

)1−p
+ (r − 1)u1−p,

where the optimum is always attained for u = 0 or u = r/s by concavity. It now is easy to see
that the inequality of the lemma is satisfied when the latter minimum is attained for u = r/s,
i.e. if r( rs )1−p ≤ r1−p, which is equivalent to the condition (ii) of the lemma.

As a direct consequence of this lemma, we obtain a prior approximation bound for Prob-
lem (P bin

p ) when p is in a neighborhood of 0.

Theorem 3.7 (Approximation bound for N−binary designs obtained by rounding). Let p ∈
[0, 1], N ≤ s and w∗ be a solution of the continuous optimal design problem (3). Let S be the
N−binary design obtained by selecting the N largest coordinates of w∗. If p ≤ 1− lnN

ln s , then we
have

ϕp(S)

ϕp(S∗)
≥ ϕp(S)

ϕp(w
∗)
≥
(N
s

)1−p
.

Proof. This is straightforward if we combine the result of Proposition 3.1 and the one of
Lemma 3.6 for r = N and condition (ii).

In the next theorem, we give an approximation factor for the design provided by Algo-
rithm 3.1. This factor F is plotted as a function of p and the ratio N

s on Figure 1. For every

value of N
s , this theorem shows that there is a continuously increasing difficulty from the easy

case (p = 1, where F = 1) to the most degenerate problem (p = 0, where F = min(Ns , 1−
s

4N )).
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Theorem 3.8 (Approximation bound for N−replicated designs obtained by rounding). Let
p ∈ [0, 1], w∗ be a solution of the continuous optimal design problem (3) and n be the vector
returned by Algorithm 3.1 for the input w = w∗. Then, we have

ϕp(n)

ϕp(n
∗)
≥ ϕp(n)

ϕp(w
∗)
≥ F,

where F is defined by:

F =


(
N
s

)1−p
if
(
N
s

)1−p ≤ 1
2−p (in particular, if N

s ≤ e
−1);

1− s
N (1− p)

(
1

2−p

) 2−p
1−p

Otherwise (in particular, if N
s ≥

1
2 );

1,0
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(a) (b)

Figure 1: Approximation factor F of Theorem 3.8: (a) as a function of p and the ratio N
s (log

scale); (b) as a function of p for selected values of N
s .

Proof. For all i ∈ [s] we denote by fi := w∗i − bw∗i c the fractional part of w∗i , and we assume
without loss of generality that these numbers are sorted, i.e. , f1 ≥ f2 ≥ . . . ≥ fs. We will prove
the theorem through a simple (suboptimal) rounding n̄, which we define as follows:

n̄i =

{
bw∗i c+ 1 if i ≤ N −

∑
i∈[s]bw∗i c;

bw∗i c Otherwise.

We know from Proposition 3.3 and from the fact that Algorithm 3.1 solves Problem (5) the
integer vector n satisfies

N
ϕp(n)

ϕp(w
∗)
≥

s∑
i=1

npi (w
∗
i )1−p ≥

s∑
i=1

n̄pi (w
∗
i )1−p. (11)

We shall now bound from below the latter expression: if n̄i = bw∗i c and bw∗i c 6= 0, then

n̄pi (w
∗
i )1−p = bw∗i c

(
w∗i
bw∗i c

)1−p

≥ bw∗i c. (12)
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Note that Inequality (12) also holds if n̄i = bw∗i c = 0. If n̄i = bw∗i c+ 1, we write

n̄pi (w
∗
i )1−p =

(
w∗i
n̄i

)1−p

+ . . .+

(
w∗i
n̄i

)1−p

︸ ︷︷ ︸
n̄i terms

≥ 11−p + . . .+ 11−p︸ ︷︷ ︸
bw∗i c terms

+f1−p
i = bw∗i c+ f1−p

i , (13)

where the inequality is a consequence of the concavity of w 7→
∑
j w

1−p
j . Combining Inequali-

ties (12) and (13) yields

s∑
i=1

n̄pi (w
∗
i )1−p ≥

s∑
i=1

bw∗i c+

N−
∑s

i=1bw
∗
i c∑

j=1

f1−p
i = N̄ +

N−N̄∑
j=1

f1−p
i ,

where we have set N̄ :=
∑s
i=1bw∗i c ∈ {max(N−s+1, 0), . . . , N}. Since the vector f = [f1, . . . , fs]

sums to N − N̄ , we can apply the result of Lemma 3.6 with condition (i), with r = N − N̄ , and
we obtain

s∑
i=1

n̄piw
1−p
i ≥ N̄ + (N − N̄)

(
N − N̄
s

)1−p

≥ min
u∈[0,N ]

u+ (N − u)

(
N − u
s

)1−p

.

We will compute this lower bound in closed-form, which will provide the approximation bound

of the theorem. To do this, we define the function g : u 7→ u+ (N − u)
(
N−u
s

)1−p
on ]−∞, N ],

and we observe (by differentiating) that g is decreasing on ]−∞, u∗] and increasing on [u∗, N [,
where

u∗ = N − s
(

1

2− p

) 1
1−p

.

Hence, only two cases can appear: either u∗ ≤ 0, and the minimum of g over [0, N ] is attained
for u = 0; or u∗ ≥ 0, and g|[0,N ] attains its minimum at u = u∗. Finally, the bound given in this
theorem is either N−1g(0) or N−1g(u∗), depending on the sign of u∗. In particular, since the
function

h : p 7→
(

1

2− p

) 1
1−p

is nonincreasing on the interval [0, 1], with h(0) = 1
2 and h(1) = e−1, we have:

∀p ∈ [0, 1],
N

s
≤ e−1 =⇒ u∗ ≤ 0 and

N

s
≥ 1

2
=⇒ u∗ ≥ 0.

Remark 3.9. The alternative rounding ñ is very useful to obtain the formula of Theorem 3.8.
However, since ñ differs from the design n returned by Algorithm 3.1 in general, the inequality
ϕp(n)
ϕp(w∗) ≥ F is not tight. Consider for example the situation where p = 0 and N = s, which is a

trivial case for the rank optimization problem (P0): the incremental rounding algorithm always
returns a design n such that (w∗i > 0 ⇒ ni > 0), and hence the problem is solve to optimality
(the design is of full rank). In contrast, Theorem 3.8 only guarantees a factor F = 3

4 for this
class of instances.

Remark 3.10. We point out that Theorem 3.8 improves on the greedy approximation factor
1−e−1 in many situations. The gray area of Figure 2 shows the values of (Ns , p) ∈ R∗+× [0, 1] for
which the approximation guarantee is better with Algorithm 3.1 than with the greedy algorithm
of section 2.
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Figure 2: in gray, values of (Ns , p) ∈ R∗+ × [0, 1] such that the factor F of Theorem 3.8 is larger
than 1− e−1.

Remark 3.11. Recall that the relevant criterion for the theory of optimal design is the positively
homogeneous function w 7→ Φp

(
MF (w)

)
= m−1/pϕp(w)1/p (cf. Equation (20)). Hence, if a

design is within a factor F of the optimum with respect to ϕp, its Φp−efficiency is F 1/p. In the
overinstrumented case N > s, Pukelsheim gives a rounding procedure with a Φp−efficiency of
1− s

N (Chapter 12 in [Puk93]). We have plotted in Figure 3 the area of the domain ( sN , p) ∈ [0, 1]2

where the approximation guarantee of Theorem 3.8 is better.

4 Conclusion

This paper gives bounds on the behavior of some classical heuristics used for combinatorial
problems arising in optimal experimental design. Our results can either justify or discard the use
of such heuristics, depending on the settings of the instances considered. Moreover, our results
confirm some facts that had been observed in the literature, namely that rounding algorithms
perform better if the density of measurements is high, and that the greedy algorithm always
gives a quite good solution. We illustrate these observations with two examples:

In a sensor location problem, Uciński and Patan [UP07] noticed that the trimming of a
Branch and Bound algorithm was better if they activated more sensors, although this led to a
much larger search space. The authors claims that this surprising result can be explained by the
fact that a higher density of sensors leads to a better continuous relaxation. This is confirmed by
our result of approximability, which shows that the larger is the number of selected experiments,
the better is the quality of the rounding.

It is also known that the greedy algorithm generally gives very good results for the optimal
design of experiments (see e.g. [SQZ06], where the authors explicitly chose not to implement a
local search from the design greedily chosen, since the greedy algorithm already performs very
well). Our (1− 1/e)−approximability result guarantees that this algorithm always well behaves
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Figure 3: in gray, values of ( sN , p) ∈ [0, 1]2 such that the factor F of Theorem 3.8 is larger than
(1− s/N)p.

indeed.
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[UP07] D. Uciński and M. Patan. D-optimal design of a monitoring network for parameter
estimation of distributed systems. Journal of Global Optimization, 39(2):291–322,
2007.
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Appendix

A From optimal design of statistical experiments to Prob-
lem (Pp)

A.1 The classical linear model

We denote vectors by bold-face lowercase letters and we make use of the classical notation
[s] := {1, . . . , s} (and we define [0] := ∅). The set of nonnegative (resp. positive) real numbers is
denoted by R+ (resp. R∗+), the set of m ×m symmetric (resp. symmetric positive semidefinite,
symmetric positive definite) is denoted by Sm (resp. S+

m, S++
m ). The expected value of a random

variable X is denoted by E[X].
We denote by θ ∈ Rm the vector of the parameters that we want to estimate. In accordance

with the classical linear model, we assume that the experimenter has a collection of s experiments
at his disposal, each one providing a (multidimensional) observation which is a linear combination
of the parameters, up to a noise on the measurement whose covariance matrix is known and
positive definite. In other words, for each experiment i ∈ [s], we have

yi = Aiθ + εi, E[εi] = 0, E[εiεi
T ] = Σi, (14)

where yi is the vector of measurement of size li, Ai is a (li × m)−matrix, and Σi ∈ S++
li

is a
known covariance matrix. We will assume that the noises have unit variance for the sake of
simplicity: Σi = I. We may always reduce to this case by a left multiplication of the obser-

vation equation (14) by Σ
−1/2
i . The errors on the measurements are assumed to be mutually

independent, i.e.
i 6= j =⇒ E[εiεj

T ] = 0.

As explained in the introduction, the aim of experimental design theory is to choose how
many times each experiment will be performed so as to maximize the accuracy of the estimation
of θ, with the constraint that N experiments may be conducted. We therefore define the integer-
valued design variable n ∈ Ns, where nk indicates how many times the experiment k is performed.
We denote by ik ∈ [s] the index of the kth conducted experiment (the order in which we consider
the measurements has no importance), so that the aggregated vector of observation reads:

y = A θ + ε, (15)

where y =

 yi1
...
yiN

 , A =

 Ai1
...

AiN

 , E[ε] = 0, and E[εεT ] = I.

Now, assume that we have enough measurements, so that A is of full rank. A common
result in the field of statistics, known as the Gauss-Markov theorem, states that the best linear
unbiased estimator of θ is given by a pseudo inverse formula. Its variance is given below:

θ̂ =
(
ATA

)−1

ATy. (16)

Var(θ̂) = (ATA)−1. (17)

We denote the inverse of the covariance matrix (17) by MF (n), because in the Gaussian
case it coincides with the Fisher information matrix of the measurements. Note that it can be
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decomposed as the sum of the information matrices of the selected experiments:

MF (n) = ATA

=

N∑
k=1

ATikAik

=

s∑
i=1

niA
T
i Ai. (18)

The classical experimental design approach consists in choosing the design n in order to make
the variance of the estimator (16) as small as possible. The interpretation is straightforward:
with the assumption that the noise ε is normally distributed, for every probability level α, the
estimator θ̂ lies in the confidence ellipsoid centered at θ and defined by the following inequality:

(θ − θ̂)TQ(θ − θ̂) ≤ κα, (19)

where κα depends on the specified probability level, and Q = MF (n) is the inverse of the

covariance matrix Var(θ̂). We would like to make these confidence ellipsoids as small as possible,
in order to reduce the uncertainty on the estimation of θ. To this end, we can express the inclusion
of ellipsoids in terms of matrix inequalities. The space of symmetric matrices is equipped with
the Löwner ordering, which is defined by

∀B,C ∈ Sm, B � C ⇐⇒ B − C ∈ S+
m.

Let n and n′ denote two designs such that the matrices MF (n) and MF (n′) are invertible.
One can readily check that for any value of the probability level α, the confidence ellipsoid (19)
corresponding to Q = MF (n) is included in the confidence ellipsoid corresponding to Q′ =
MF (n′) if and only if MF (n) � MF (n′). Hence, we will prefer the design n to the design n′ if
the latter inequality is satisfied.

A.2 Statement of the optimization problem

Since the Löwner ordering on symmetric matrices is only a partial ordering, the problem consist-
ing in maximizing MF (n) is ill-posed. So we will rather maximize a scalar information function
of the Fisher matrix, i.e. a function mapping S+

m onto the real line, and which satisfies natural
properties, such as positive homogeneity, monotonicity with respect to Löwner ordering, and
concavity. For a more detailed description of the information functions, the reader is referred to
the book of Pukelsheim [Puk93], who makes use of the class of matrix means Φp, as first proposed
by Kiefer [Kie75]. These functions are defined like the Lp-norm of the vector of eigenvalues of
the Fisher information matrix, but for p ∈ [−∞, 1]: for a symmetric positive definite matrix
M ∈ S++

m , Φp is defined by

Φp(M) =


λmin(M) for p = −∞ ;

( 1
m trace Mp)

1
p for p ∈ ]−∞, 1], p 6= 0;

(det(M))
1
m for p = 0,

(20)

where we have used the extended definition of powers of matricesMp for arbitrary real parameters
p: if λ1, . . . , λm are the eigenvalues of M counted with multiplicities, trace Mp =

∑m
j=1 λ

p
j . For

singular positive semi-definite matrices M ∈ S+
m, Φp is defined by continuity:
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Φp(M) =

{
0 for p ∈ [−∞, 0] ;

( 1
m trace Mp)

1
p for p ∈ ]0, 1].

(21)

The class of functions Φp includes as special cases the classical optimality criteria used in
the experimental design literature, namely E−optimality for p = −∞ (smallest eigenvalue of
MF (n)), D−optimality for p = 0 (determinant of the information matrix), A−optimality for
p = −1 (harmonic average of the eigenvalues), and T−optimality for p = 1 (trace). The case
p = 0 (D-optimal design) admits a simple geometric interpretation: the volume of the confidence

ellipsoid (19) is given by Cmκ
m/2
α det(Q)−1/2 where Cm > 0 is a constant depending only on

the dimension. Hence, maximizing Φ0(MF (n)) is the same as minimizing the volume of every
confidence ellipsoid.

We can finally give a mathematical formulation to the problem of selecting N experiments
to conduct among the set [s]:

max
ni∈N (i=1,...,s)

Φp

( s∑
i=1

niA
T
i Ai

)
(22)

s. t.
∑
i

ni ≤ N,

A.3 The underinstrumented situation

We note that the problem of maximizing the information matrix MF (n) with respect to the
Löwner ordering remains meaningful even when MF (n) is not of full rank (the interpretation of
MF (n) as the inverse of the covariance matrix of the best linear unbiased estimator vanishes, but
MF (n) is still the Fisher information matrix of the experiments if the measurement errors are
Gaussian). This case does arise in underinstrumented situations, in which some constraints may
not allow one to conduct a number of experiments which is sufficient to infer all the parameters.

An interesting and natural idea to find an optimal under-instrumented design is to choose the
design which maximizes the rank of the observation matrix A, or equivalently of MF (n) = ATA.
The rank maximization is a nice combinatorial problem, where we are looking for a subset of
matrices whose sum is of maximal rank:

max
n∈Ns

rank
(∑

i

niA
T
i Ai

)
s. t.

∑
i

ni ≤ N.

When every feasible information matrix is singular, Equation (21) indicates that the max-
imization of Φp(MF (n)) can be considered only for nonnegative values of p. Then, the next
proposition shows that Φp can be seen as a deformation of the rank criterion for p ∈]0, 1]. First
notice that when p > 0, the maximization of Φp(MF (n)) is equivalent to:

max
n∈Ns

ϕp
(
n
)

:= trace
(∑

i

niA
T
i Ai

)p
s. t.

∑
i

ni ≤ N.

If we set Mi = ATi Ai, we obtain the problems (P0) and (Pp) which were presented in the first
lines of this article.
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Proposition A.1. For all positive semidefinite matrix M ∈ S+
m,

lim
p→0+

trace Mp = rank M. (23)

Proof. Let λ1, . . . , λr denote the positive eigenvalues of M , counted with multiplicities, so that
r is the rank of M . We have the first order expansion as p→ 0+:

trace Mp =

r∑
k=1

λpk = r + p log(

r∏
k=1

λk) +O(p2) (24)

Consequently, trace M0 will stand for rank(M) in the sequel and the rank maximization
problem (P0) is the limit of problem (Pp) as p→ 0+.

Corollary A.2. If p > 0 is small enough, then every design n∗ which is a solution of Prob-
lem (Pp) maximizes the rank of MF (n). Moreover, among the designs which maximize this rank,
n∗ maximizes the product of nonzero eigenvalues of MF (n).

Proof. Since there is only a finite number of designs, it follows from (24) that for p > 0 small
enough, every design which maximizes ϕp must maximize in the lexicographical order first the
rank of MF (n), and then the pseudo-determinant

∏
{k:λk>0} λk.

B Proof of Proposition 3.1

The proof of Proposition 3.1 relies on several lemmas on the directional derivative of a scalar
function applied to a symmetric matrix, which we state next. First recall that if f is differentiable
on R∗+, then f is Fréchet differentiable over S++

m , and for M ∈ S++
m , H ∈ Sm, we denote by

Df(M)(H) its directional derivative at M in the direction of H (see Equation (2)).

Lemma B.1. If f is continuously differentiable on R∗+, i.e. f ∈ C1(R∗+), M ∈ S++
m , A,B ∈ Sm,

then
trace(A Df(M)(B)) = trace(B Df(M)(A)).

Proof. Let M = QDQT be an eigenvalue decomposition of M . It is known (see e.g. [Bha97]) that
Df(M)(H) can be expressed as Q(f [1](D) � QTHQ)QT , where f [1](D) is a symmetric matrix
called the first divided difference of f at D and � denotes the Hadamard (elementwise) product
of matrices. With little work, the latter derivative may be rewritten as:

Df(M)(H) =
∑
i,j

f
[1]
ij qiqi

THqjqj
T ,

where qk is the kth eigenvector of M (i.e., the kth column of Q) and f
[1]
ij denotes the (i, j)−element

of f [1](D). We can now conclude:

trace(A Df(M)(B)) =
∑
i,j

f
[1]
ij trace(Aqiqi

TBqjqj
T )

=
∑
i,j

f
[1]
ji trace(Bqjqj

THqiqi
T )

= trace(B Df(M)(A))
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We next show that when f is antitone, the mapping X 7→ Df(M)(X) is nonincreasing with
respect to the Löwner ordering.

Lemma B.2. If f is differentiable and antitone on R∗+, then for all A,B in Sm,

A � B =⇒ Df(M)(A) � Df(M)(B).

Proof. The lemma trivially follows from the definition of the directional derivative:

Df(M)(A) = lim
ε→0+

1

ε

(
f(M + εA)− f(M)

)
and the fact that A � B implies M + εA �M + εB for all ε > 0.

Lemma B.3. Let f be differentiable on R∗+, M ∈ S++
m , A ∈ Sm. If A and M commute, then

Df(M)(A) = f ′(M)A ∈ Sm,

where f ′ denotes the (scalar) derivative of f .

Proof. Since A and M commute, we can diagonalize them simultaneously:

M = QDiag(λ)QT , A = QDiag(µ)QT .

Thus, it is clear from the definition of the directional derivative that

Df(M)(A) = Q Df
(

Diag(λ)
)(

Diag(µ)
)
QT .

By reasoning entry-wise on the diagonal matrices, we find:

Df
(

Diag(λ)
)(

Diag(µ)
)

= Diag
(
f ′(λ1)µ1, . . . , f

′(λm)µm
)

= Diag
(
f ′(λ)

)
Diag(µ)

The equality of the lemma is finally obtained by writing:

Df(M)(A) = QDiag
(
f ′(λ)

)
Diag(µ)QT = QDiag

(
f ′(λ)

)
QTQDiag(µ)QT = f ′(M)A.

Note that the matrix f ′(M)A is indeed symmetric, because f ′(M) and A commute.

Before we give the proof of the main result, we recall an important result from the theory of
optimal experimental designs, which characterizes the optimum of Problem (3).

Proposition B.4 (General equivalence theorem [Kie74]). Let p ∈ [0, 1]. A design w∗ is optimal
for Problem (3) if and only if:

∀i ∈ [s], N trace(MF (w∗)p−1Mi) ≤ ϕp
(
w∗
)
.

Moreover, the latter inequalities become equalities for all i such that w∗i > 0.

For a proof of this result, see [Kie74] or Paragraph 7.19 in [Puk93], where the problem is
studied with the normalized constraint

∑
i wi ≤ 1. In fact, the general equivalence theorem

details the Karush-Kuhn-Tucker conditions of optimality of Problem (3). To derive them, one
can use the fact that when MF (w) is invertible,

∂ϕp(w)

∂wi
= trace(MF (w)p−1Mi) for all p ∈]0, 1],

and
∂ log det(MF (w))

∂wi
= trace(MF (w)−1Mi).

Note that for p 6= 1, the proposition implicitly implies that MF (w∗) is invertible. A proof of this
fact can be found in Paragraph 7.13 of [Puk93].

We can finally prove the main result:

25



Proof of Proposition 3.1. Let w∗ be an optimal solution to Problem (3) and S be a subset of [s]
such that w∗i > 0 for all i ∈ S (the case in which w∗i = 0 for some index i ∈ S will trivially
follow if we adopt the convention 00 = 0). We know from Proposition B.4 that N−1ϕp

(
w∗
)

=
trace(MF (w∗)p−1Mi) for all i in S. If we combine these equalities by multiplying each expression
by a factor proportional to (w∗i )1−p, we obtain:

1

N
ϕp
(
w∗
)

=
∑
i∈S

(w∗i )1−p∑
k∈S(w∗k)1−p trace(MF (w∗)p−1Mi) (25)

⇐⇒ 1

N

∑
k∈S

(w∗k)1−p =

∑
i∈S(w∗i )1−p trace(MF (w∗)p−1Mi)

ϕp(w
∗)

.

We are going to show that for all w ≥ 0 such that MF (w) is invertible,∑
i∈S w

1−p
i trace(MF (w)p−1Mi) ≤ trace(MS)p, where MS :=

∑
i∈SMi, which will complete

the proof. To do this, we introduce the function f defined on the open subset of (R+)s such that
MF (w) is invertible by:

f(w) =
∑
i∈S

w1−p
i trace(MF (w)p−1Mi) = trace

((∑
i∈S

w1−p
i Mi

)
MF (w)p−1

)
.

Note that f satisfies the property f(tw) = f(w) for all positive scalar t; this explains why we do
not have to work with normalized designs such that

∑
i wi = N . Now, let w ≥ 0 be such that

MF (w) � 0 and let k be an index of S such that wk = mini∈S wi. We are first going to show

that ∂f(w)
∂wk

≥ 0. By the rule of differentiation of a product,

∂f(w)

∂wk
= trace

(
(1− p)w−pk MkMF (w)p−1 +

(∑
i∈S

w1−p
i Mi

)∂(MF (w)p−1)

∂wk

)

= trace

(
(1− p)w−pk MkMF (w)p−1 +

(∑
i∈S

w1−p
i Mi

)
D[x 7→ xp−1](MF (w))(Mk)

)

= traceMk

(
(1− p)w−pk MF (w)p−1 +D[x 7→ xp−1]

(
MF (w)

)(∑
i∈S

w1−p
i Mi)

))
, (26)

where the first equality is simply a rewriting of ∂(MF (w)p−1)
∂wk

by using a directional derivative,

and the second equality follows from Lemma B.1 applied to the function x 7→ xp−1. By linearity
of the Fréchet derivative, we have:

wpk D[x 7→ xp−1]
(
MF (w)

)(∑
i∈S

w1−p
i Mi

)
= D[x 7→ xp−1]

(
MF (w)

)(∑
i∈S

wi

(
wk
wi

)p
Mi

)
.

Since wk ≤ wi for all i ∈ S, the following matrix inequality holds:∑
i∈S

wi

(
wk
wi

)p
Mi �

∑
i∈S

wiMi �MF (w).

By applying successively Lemma B.2 (x 7→ xp−1 is antitone on R∗+) and Lemma B.3 (the matrix
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MF (w) commutes with itself), we obtain:

wpk D[x 7→ xp−1]
(
MF (w)

)(∑
i∈S

w1−p
i Mi

)
� D[x 7→ xp−1]

(
MF (w)

)(
MF (w)

)
= (p− 1)MF (w)p−2MF (w)

= (p− 1)MF (w)p−1.

Dividing the previous matrix inequality by wpk, we find that the matrix that is inside the largest

parenthesis of Equation (26) is positive semidefinite, from which we can conclude: ∂f(w)
∂wk

≥ 0.

Thanks to this property, we next show that f(w) ≤ f(v), where v ∈ Rs is defined by vi =
maxk∈S(wk) if i ∈ S and vi = wi otherwise. Assume without loss of generality (after a reordering
of the coordinates) that S = [s0], w1 ≤ w2 ≤ . . . ≤ ws0 , and denote the vector of the remaining
components of w by w̄ (i.e., we have wT = [w1, . . . , ws0 , w̄] and vT = [ws0 , . . . , ws0 , w̄]). The
following inequalities hold:

f(w) = f





w1

w2

w3

...
ws0
w̄




≤ f





w2

w2

w3

...
ws0
w̄




≤ f





w3

w3

w3

...
ws0
w̄




≤ . . . ≤ f





ws0
ws0
ws0

...
ws0
w̄




= f(v).

The first inequality holds because ∂f(w)
∂w1

≥ 0 as long as w1 ≤ w2. To see that the second inequality

holds, we apply the same reasoning on the function f̃ : [w2, w3, . . .] 7→ f([w2, w2, w3, . . .]), i.e.,
we consider a variant of the problem where the matrices M1 and M2 have been replaced by a
single matrix M1 +M2. The following inequalities are obtained in a similar manner.

Recall that we have set MS =
∑
i∈SMi. We have:

MF (v) = ws0MS +
∑
i/∈S

wiMi � ws0MS

and by isotonicity of the mapping x 7→ x1−p, MF (v)1−p � (ws0 MS)1−p.
We denote by X† the Moore-Penrose inverse of X. It is known [PS83] that if Mi ∈ S+

m, the
function X 7→ trace(X†Mi) is nondecreasing with respect to the Löwner ordering over the set of
matrices X whose range contains Mi. Hence, since MF (v) �MF (w) is invertible,

∀i ∈ S, trace(MF (v)p−1Mi) = trace
((
MF (v)1−p)†Mi

)
≤ trace

((
(ws0 MS)1−p)†Mi

)
and

f(v) = w1−p
s0

∑
i∈S

trace(MF (v)p−1Mi)

≤ w1−p
s0

∑
i∈S

trace
((

(ws0 MS)1−p)†Mi

)
= trace

(
M1−p
S

)†
MS

= traceMp
S

Finally, we have f(w) ≤ f(v) ≤ traceMp
S = ϕp(S), and the proof is complete.
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