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Characterization of Facets of the Hop

Constrained Chain Polytope via Dynamic

Programming

Martin Grötschel and Rüdiger Stephan

Abstract

In this paper, we study the hop constrained chain polytope, that is, the
convex hull of the incidence vectors of (s, t)-chains using at most k arcs of
a given digraph, and its dominant. We use extended formulations (implied
by the inherent structure of the Moore-Bellman-Ford algorithm) to derive
facet defining inequalities for these polyhedra via projection. Our findings
result into characterizations of all facet defining 0/±1-inequalities for the
hop constrained chain polytope and all facet defining 0/1-inequalities for
its dominant. Although the derived inequalities are already known, such
classifications were not previously given to the best of our knowledge.
Moreover, we use this approach to generalize so called jump inequalities,
which have been introduced in a paper of Dahl and Gouveia in 2004.

1 Introduction

Let D = (V,A) be a directed graph without parallel arcs. An (s, t)-chain is a
sequence of arcs C = (a1, a2, . . . , ar) such that ai = (ip−1, ip) for p = 1, . . . , r,
with i0 = s and ir = t. The nodes i1, i2, . . . , ir−1 are the internal nodes of C.
If all arcs ai are distinct, then C is called a walk; If all nodes ip are distinct,
then C is called a path. In what follows, chains will be usually denoted only
as a sequence of nodes, but their incidence vectors are defined in the arc spaceRA. Here, for any chain C, its incidence vector χC ∈ RA is defined by

χCa := number of times the arc a is used by C,

for a ∈ A. Note that different chains may have the same incidence vector.
Given a length function d : A→ R, the length of a chain C = (i0, i1, i2, . . . , iq)

is defined as d(C) :=
∑q

p=1 d((ip−1, ip)). In the hop constrained shortest chain
(walk, path) problem we are looking for a chain (walk, path) using at most k
arcs of minimum length. The hop constrained shortest path problem, which is
known to be NP-hard, arises, for instance, in the design of telecommunication
networks when data have to be sent along paths that must not contain more
than a certain number of intermediate nodes in order to guarantee a minimum
level of service quality [14, 8].

The corresponding chain problem is a combinatorial relaxation of this prob-
lem which can be solved in polynomial time with the Moore-Bellman-Ford algo-
rithm [3, 11, 23], see Algorithm 1. Using an integer programming approach for
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2 Martin Grötschel and Rüdiger Stephan

the hop constrained path problem, valid inequalities for the easier chain prob-
lem are of interest, since they are also valid inequalities for the harder problem.
Thus, a branch-and-cut algorithm for solving the path problem, for example,
directly benefits from efficient separation routines for the polyhedron associated
with the chain problem.

Algorithm 1: Moore-Bellman-Ford

Input:

Output:

A digraph D = (V,A), a
fixed node s ∈ V , and a
length function d : A →R.
For each node j ∈
V and each number
ℓ ∈ {0, . . . , |V | − 1}, the

length u
(ℓ)
j of a short-

est (s, j)-chain using at
most ℓ arcs and its pre-
decessor p(j, ℓ) on such a
chain. If j is not reach-

able from s, then u
(ℓ)
j =

+∞ and p(j, ℓ) is unde-
fined for all ℓ.

(1) Set u
(0)
s := 0 and u

(0)
j := +∞ for all j ∈ V \ {s}.

(2) for ℓ := 1 to |V | − 1 do

Set tj := u
(ℓ−1)
j for all j ∈ V .

forall (i, j) ∈ A do

if tj > u
(ℓ−1)
i + d((i, j)) then

Set tj := u
(ℓ−1)
i + d((i, j)) and p(j, ℓ) := i.

Set u
(ℓ)
j := tj for all j ∈ V .

In this paper, we present some results on the hop constrained chain polytope
C≤k, that is, the convex hull of the incidence vectors of chains using at most k
arcs, and its dominant dmt(C≤k) := C≤k + RA+, where RA+ is the nonnegative
orthant. In the last years, closely related polyhedra have been investigated, see,
for instance, [2, 6, 7, 9, 10, 12, 16, 17, 18, 19, 22, 24, 25], in particular the hop
constrained path polytope P≤k defined as the convex hull of the incidence vectors
of hop constrained (s, t)-paths. Important for our context are the following three
results.
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Characterization of Facets of the Hop Constrained Chain Polytope 3

Fact 1 ([25]). The integer points of P≤k are characterized by the system

xii = 0, (i, i) ∈ A, (1)

x(δin(s)) = 0, (2)

x(δout(t)) = 0, (3)

x(δout(s)) = 1, (4)

x(δin(t)) = 1, (5)

x(δout(i))− x(δin(i)) = 0, i ∈ V \ {s, t}, (6)

x(A) ≤ k, (7)

x(δout(i)) ≤ 1, i ∈ V \ {s, t}, (8)

x(δout(S))− x(δout(j)) ≥ 0, S ⊂ V, s, t ∈ S (9)

j ∈ V \ S,

xij ∈ {0, 1}, (i, j) ∈ A. (10)

Here, for any S ⊆ V , δout(S) := {(i, j) ∈ A : i ∈ S, j ∈ V \ S} and
δin(S) := {(i, j) ∈ A : i ∈ V \ S, j ∈ S}. For nodes j ∈ V , we write δout(j) and
δin(j) instead of δout({j}) and δin({j}), respectively. Moreover, for any B ⊆ A,
x(B) :=

∑

a∈B xa.

Fact 2 (Dahl and Gouveia [7]). The nonnegativity constraints xij ≥ 0 for all
(i, j) ∈ A, the equations (2)-(6), and the inequalities

xsi −
∑

j∈V \{s,t}

xij ≥ 0 for all i ∈ V \ {s, t}

provide a complete linear description of P≤3
s,t-path(D).

Fact 3 (Dahl, Foldnes, and Gouveia [6]). The 4-hop constrained walk
polytope W≤4(D) is determined by the equations (2)-(6), the nonnegativity con-
straints xij ≥ 0 for all (i, j) ∈ A, and the inequalities

∑

i∈I

xsi +
∑

j∈J

xjt −
∑

i∈I,j∈J

xij ≥ 0 (11)

for all I, J ⊆ V \ {s, t}.

As the optimization problem corresponding to C≤k can be solved in polyno-
mial time, there is some hope to find a complete linear description of both C≤k

and dmt(C≤k). Our results indicate, however, that these linear characterizations
must be quite complicated.

Our contribution consists of four aspects, the first two of them are complete-
ness results. For a better understanding, we first introduce two classes of facet
defining inequalities for dmt(C≤k): cut inequalities

x(C) ≥ 1 for all (s, t)-cuts C (12)
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4 Martin Grötschel and Rüdiger Stephan

and r-jump inequalities introduced by Dahl and Gouveia [7]. Given a partition
{Sp : p = 0, 1, . . . , k + r} of V , where r ∈ N, 1 ≤ r ≤ n − k, S0 = {s}, and
Sk+r = {t}. The r-jump inequality associated with this partition is defined as

k+r−2
∑

p=0

k+r
∑

q=p+2

αpqx((Sp : Sq)) ≥ r, (13)

where for any U,W ⊆ V , we define (U : W ) := {(u,w) ∈ A : u ∈ U,w ∈ W}.
Moreover, for p < q, αpq := min{q − p− 1, r}. The results are:

(i) Each 0/1-facet defining inequality for dmt(C≤k) is either a cut inequality (12)
or an r-jump inequality (13) with r = 1.

(ii) For t ∈ V , an inequality τTx ≥ τ0 (or equation τTx = τ0) with τ ∈ RA
is said to be t-rooted if τit = 0 for all i ∈ V \ {t}. Each 0/ ± 1-facet defining
t-rooted inequality for C≤k has one of the two following forms:

k−3
∑

p=0

k−1
∑

q=p+2

x((Sp : Sq))− x((Sk−1 : S1 ∪ S2)) ≥ 0, (14)

where {Sp : p = 0, 1, . . . , k − 1} is a partition of V \ {t} with S0 = {s};

x(δout(s) \ {(s, t)}) +
k−4
∑

p=1

k−2
∑

q=p+2
x((Sp : Sq))

−x((Sk−2 : S1)) ≥ 0,

(15)

where {Sp : p = 1, . . . , k − 2} is a partition of V \ {s, t}.

(iii) We present a class of facet defining inequalities for dmt(C≤k) that generalize
r-jump inequalities.

(iv) We address an open problem (in terms of chains) raised by Dahl and Gou-
veia [7] how to transform an r-jump inequality (13) that defines a facet of the
dominant of P≤k into a facet defining inequality for P≤k itself by decreasing
coefficients. (Note that dmt(P≤k) = dmt(C≤k).) We provide a systematic way
to transform r-jump inequalities (or the generalization in (iii)) into facet defin-
ing inequalities for C≤k. Moreover, we give sufficient conditions for the resulting
inequalities to be facet defining for P≤k.

The above results are obtained on the basis of the following standard proof
technique. We first provide extended formulations for both polyhedra and then
derive facet defining inequalities for them by characterizing extreme rays of the
associated projection cones. Here is a brief outline.

Given a polyhedron in x-y-space Q := {(x, y) ∈ Rp ×Rq : Ax + By ≥ a},
the projection of Q onto the x-space is defined as Projx(Q) := {x ∈ Rp : ∃ y ∈Rq with (x, y) ∈ Q}. The polyhedral cone K := {v : vTB = 0T , v ≥ 0} is called
the projection cone. Conversely, a system of the form Ax + Bx ≥ a is said to
be an extended formulation for a polyhedron P ⊆ Rp if P = Projx(Q), where
Q := {(x, y) ∈ Rp×Rq : Ax+Bx ≥ a}. The system is said to be compact if the
number of rows and columns of the matrix (A,B, a) and if the encoding length
of each entry is polynomial in p.

Given an extended formulation for a polyhedron P ⊆ Rp, the following the-
orem due to Balas [1] addresses the task to derive a complete linear description
(in the space Rp) for this polyhedron.
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Characterization of Facets of the Hop Constrained Chain Polytope 5

Theorem 1.1 (Balas [1]). Let Q = {(x, y) ∈ Rp × Rq : Ax + By ≥ a} be a
polyhedron. Then, Projx(Q) = {x ∈ Rp : (vTA)x ≥ vT a for all v ∈ extr(K)},
where extr(K) denotes the set of extreme rays of the projection cone K. �

It is usually quite difficult to determine all extreme rays of K or all those
extreme rays v ∈ extr(K), whose corresponding inequalities (vTA)x ≥ vT a
define facets of Projx(Q). However, sometimes the extreme rays or a subset of
them have a convenient structure.

Martin, Rardin, and Campbell [21] provided a framework to derive linear
characterizations of dynamic programs, which can be used to derive (compact)
extended formulations of the hop constrained chain polytope and its dominant.
Our extended formulations are very similar to those given in [8, 13]. The authors
there, however, do not distinguish between walks and chains which leads to
somewhat misleading and wrong statements.

The results (iii) and (iv) are obtained as follows. We identify the extreme
rays associated with the known r-jump inequalities (13) and derive new facets
of the dominant by relaxing a certain structure common to all extreme rays
that yield the r-jump inequalities. Between extreme rays for the chain polytope
on the one hand and its dominant on the other hand seems to exist a strong
relationship, which we, however, do not understand in general yet. We use this
relationship to transform the known facet defining inequalities for the dominant
into facet defining inequalities for the hop constrained chain polytope itself. This
relationship and the easier access to facet defining inequalities for dmt(C≤k) is,
in fact, the reason why we are not only interested in the facial structure of the
hop constrained chain polytope but also in that of the dominant.

The remainder of this paper is structured as follows. In Section 2, we derive
the extended formulations, give a partial characterization of the corresponding
extreme rays, and introduce some well-known polyhedral techniques in order to
simplify the presentation of our main results given in Section 3. We close the
paper in Section 4 with some remarks regarding future research.

2 Compact extended formulations and prelimi-

nary results

Let Dn = (Vn, An) be the digraph obtained from the complete digraph including
loops defined on the node set Vn := {s, t, 1, 2, . . . , n} by deleting the arcs (s, t)
and a ∈ δin(s) ∪ δout(t). In what follows, our results will be presented on this
graph. Moreover, C≤k will be denoted by C≤k(Dn).

Theorem 2.1.

(a) dim dmt(C≤k(Dn)) = |An|.

(b) For k ≥ 4, dim C≤k(Dn) = dimP≤k
walk(Dn) = |An| − (n+ 1).

(c) For k ≥ 4, dimP≤k(Dn) = |An| − (2n+ 1).

Proof. (a) is clear; (b) and (c) follow from Theorem 2.3 in [19]. Notice that
dimP≤k(Dn) = dim C≤k(Dn) − n, since paths do not use loops, by definition.

5



6 Martin Grötschel and Rüdiger Stephan

Figure 1: A digraph D = (V,A) on node set V = {0, 1, . . . , 7} and associated
DP-graph D = (V ,A) for (D, 0, 7, 5); arc sets are omitted. Illustration of a
(0, 7)-chain and one of its counterparts in D.

2.1 Compact formulations and the projection mechanism

Using the framework of Martin, Rardin, and Campbell [21] for linear charac-
terizations of dynamic programs, we obtain a compact extended formulation
of C≤k(Dn) as follows. We define a so-called dynamic programming digraph
Dn = (Vn,An) associated with (Dn, s, t, k). It consists of the nodes [s, 0], [t, k],
and [i, ℓ] for i = 1, . . . , n, ℓ = 1, . . . , k − 1. With each node i ∈ Vn \ {s, t}, we
associate the set Ai

n of arcs ([i, ℓ− 1], [i, ℓ]) and with each (i, j) ∈ An, we intro-
duce the set Aij

n of arcs ([i, ℓ− 1], [j, ℓ]), where ℓ = 1 if i = s, ℓ = k if j = t, and
ℓ ∈ {2, 3, . . . , k − 1} otherwise. The arc set An is defined as the disjoint union
of all arc sets Ai

n and Aij
n . Notice that Dn has two arcs connecting [i, ℓ− 1] and

[i, ℓ], for ℓ = 2, 3, . . . , k− 1. For an illustration of the construction, see Figure 1.

Dn is acyclic. Hence, the convex hull of the incidence vectors of ([s, 0], [t, k])-
paths (or chains), denoted by P(Dn), is determined by the flow conservation
and nonnegativity constraints:

y(δin([i, ℓ]))− y(δout([i, ℓ])) =







−1 if [i, ℓ] = [s, 0],
1 if [i, ℓ] = [t, k],
0 otherwise,

(16)

y ≥ 0. (17)

Moreover, connecting the arc sets An and An via the set function ϕ : A →
A ∪∅,

ϕ(([i, ℓ − 1], [j, ℓ])) =

{

∅ if ([i, ℓ− 1], [j, ℓ]) ∈ Ai,
(i, j) else,

we see that each (s, t)-chain in Dn using at most k arcs corresponds to at
least one ([s, 0], [t, k])-path in Dn and, conversely, each ([s, 0], [t, k])-path in Dn
corresponds to an (s, t)-chain in Dn using at most k arcs. By coupling x-
and y-variables via a transformation matrix T ∈ RA×A that represents the set
function ϕ, we obtain compact extended formulation of the hop constrained
chain polytope and its dominant. The proof of the following theorem, based on
standard polyhedral techniques, will be omitted.

6
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Theorem 2.2. Let Dn = (Vn,An) be the DP-graph associated with (Dn, s, t, k).
Moreover, define the polyhedra Q= := {(x, y) ∈ RA × P[s,0],[t,k]-path(D) : x −
Ty = 0} and Q≥ := {(x, y) ∈ RA × P[s,0],[t,k]-path(D) : x − Ty ≥ 0}. Then,

C≤k(Dn) = Projx(Q
=) and dmt(C≤k(Dn)) = Projx(Q

≥). �

Projecting out the y-variables, we obtain complete linear descriptions of the
relaxations only in terms of x-variables. The projection cone associated with
Q= and C≤k(Dn), denoted by C=, is the set of all (π, ρ, σ) ∈ RVn ×RAn ×RAn

satisfying the equations

ρa ≥ 0, a ∈ An, (18’)

πi,ℓ−1 − πiℓ − ρa = 0, a = ([i, ℓ− 1], [i, ℓ]) ∈ Ai
n,

i ∈ Vn \ {s, t}, (19’)

σij + πi,ℓ−1 − πjℓ − ρa = 0,

a = ([i, ℓ− 1], [j, ℓ]) ∈Aij , (i, j) ∈ An, (20’)

while that associated with Q≥ and dmt(C≤k(Dn)), denoted by C≥, is the set of
all (π, ρ, σ) ∈ RVn ×RAn ×RAn satisfying the equations (18’)- (20’) and

σij ≥ 0 ∀ (i, j) ∈ An. (21)

By Theorems 1.1 and 2.2, it follows that C≤k(Dn) is the set of all x ∈ RAn

satisfying
∑

a∈An

σaxa ≥ πtk − πs0

for all (π, ρ, σ) ∈ C=, and dmt(C≤k(Dn)) is the set of all x ∈ RAn satisfying
∑

a∈An

σaxa ≥ πtk − πs0

for all (π, ρ, σ) ∈ C≥}.
We now show that the essential part of the projection mechanism can be

described only in terms of π-variables. The variables ρa, a ∈ An, only act as
slack variables. Projecting them out, we see that every (π, ρ, σ) ∈ C= satisfies
the inequalities

πi,ℓ−1 − πiℓ ≥ 0, i ∈ Vn \ {s, t},

ℓ = 2, . . . , k − 1, (19)

σij + πih − πjℓ ≥ 0, a = ([i, h], [j, ℓ]) ∈ Aij
n ,

(i, j) ∈ An, (20)

while every (π, ρ, σ) ∈ C≥ satisfies the inequalities (19)-(21).
For fixed π satisfying (19), denote by C=

π the set of all σ ∈ RAn satisfy-
ing (20). By construction, all σ ∈ C=

π provide a valid inequality for C≤k(Dn)
with the same right hand side πtk − πs0:

σTx ≥ πtk − πs0.

Moreover, (20) implies that each coefficient σij of such an inequality satisfies

σij ≥ max{πjℓ − πih : a = ([i, h], [j, ℓ]) ∈ Aij
n }.

7



8 Martin Grötschel and Rüdiger Stephan

Conversely, define σπ by

σπij := max{πjℓ − πih : a = ([i, h], [j, ℓ]) ∈ Aij
n }

for all (i, j) ∈ An. Then, σ
π ∈ C=

π and σπ ≤ σ for all σ ∈ C=
π . Thus, σ

π provides
the strongest valid inequality under all inequalities σTx ≥ πtk−πs0 with σ ∈ C=

π

unless the inequality
∑

a∈An

σπaxa ≥ πtk − πs0

is an implicit equation. If so, it could be the case that, for some σ ∈ C= with
σ 6= σπ, the inequality σTx ≥ πtk − πs0 induces a facet of C≤k(Dn).

An analogous argumentation holds for C≥. For fixed π satisfying (19), denote
by C≥

π the set of all σ ∈ RAn satisfying (20) and (21). Then, the inequality

∑

a∈An

σπ,+a xa ≥ πtk − πs0,

where σπ,+ ∈ RA is defined by

σπ,+a := max{σπa , 0}

for all a ∈ An, is the strongest valid inequality w.r.t. dmt(C≤k(Dn)) under all
inequalities σTx ≥ πtk − πs0 with σ ∈ C≥

π , unless it is an implicit equation.
Denote by Πn the set of π ∈ RVn satisfying (19). For any π ∈ Πn, we denote

by F (π) and F (π,+) the faces of C≤k(Dn) and dmt(C≤k(Dn)) induced by the
inequalities

∑

(i,j)∈An

σπijxij ≥ πtk − πs0

and
∑

(i,j)∈An

σπ,+ij xij ≥ πtk − πs0,

respectively.
A facet of C≤k(Dn) or dmt(C≤k(Dn)) is called nontrivial if it cannot be

induced by a nonnegativity constraint.

Lemma 2.1. Let π ∈ Πn.

(a1) If F (π,+) = dmt(C≤k(Dn)), then, for each σ ∈ C≥
π , the inequality σTx ≥

πtk − πs0 is a conical combination of nonnegativity constraints.

(a2) Let F (π,+) be a facet of dmt(C≤k(Dn)). Then, F (π,+) is nontrivial if
and only if πtk − πs0 > 0.

(b) If F (π) = C≤k(Dn), then for each internal node i ∈ Vn, there exists
λi ∈ R such that πiℓ = λi for all ℓ ∈ {1, 2, . . . , k − 1}. Moreover, in this
case, the equation

∑

a∈An
σπaxa = πtk − πs0 is a linear combination of the

equations (4)-(6), and the inequality σTx ≥ πtk − πs0 is the sum of this
equation and a conical combination of nonnegativity constraints xij ≥ 0,
for every σ ∈ C=

π .

8



Characterization of Facets of the Hop Constrained Chain Polytope 9

Proof. (a1) Let F (π,+) = dmt(C≤k(Dn)). This means that the inequality
∑

a∈An
σπ,+a xa ≥ πtk−πs0 is an implicit equation. On the other hand, the only

equation satisfied by all x ∈ dmt(C≤k(Dn)) is 0
Tx = 0, since dmt(C≤k(Dn)) is

fulldimensional. This implies πi1 = πs0 and πi,k−1 = πtk for all internal nodes
i of Vn. Moreover, since π satisfies (19), it follows that π = λ1 for some λ ∈ R,
where 1 denotes the vector of all ones. Thus, for every σ ∈ C≥

π , the inequality
σTx ≥ πtk − πs0 is a conical combination of nonnegativity constraints, since
πtk − πs0 = 0 and σ ≥ 0.

(a2) is clear.

(b) Assume that the inequality
∑

a∈An
σπaxa ≥ πtk−πs0 is an implicit equa-

tion and πi,ℓ−1 6= πiℓ for some i ∈ Vn\{s, t} and ℓ ∈ {2, . . . , k−1}. Since π ∈ Πn,
it follows that πi,ℓ−1 > πiℓ. Consider the paths P := ([s, 0], [i, 1], [i, 2], . . . , [i, k−
1], [t, k]) and P ′ := ([s, 0], [i, 1], . . . , [i, ℓ − 1],∅, [i, ℓ], . . . , [i, k − 1], [t, k]). Then,
σπ(ϕ(P )) < σπ(ϕ(P ′)), since σπii < 0. This is a contradiction. Thus, for each
i ∈ Vn \ {s, t}, there exists λi ∈ R such that πiℓ = λi for all ℓ ∈ {1, 2, . . . , k− 1}.

Next, it follows from Theorem 2.1 (b) that each equation, which is satisfied
by all x ∈ C≤k(Dn), is a linear combination of the equations (4)-(6), and hence
also the equation

∑

a∈An
σπaxa = πtk − πs0.

Finally, let σ ∈ C=
π . Since σ ≥ σπ , the inequality τTx ≥ 0, where τ := σ−σπ ,

is a conical combination of nonnegativity constraints. Moreover, by construc-
tion, the inequality σTx ≥ πtk − πs0 is the sum of the equation

∑

a∈An
σπaxa =

πtk − πs0 and the inequality τTx ≥ 0.

Let F be a face of C≤k(Dn) or its dominant. Then, a chain C ∈ C≤k
s,t (Dn) is

said to be tight w.r.t. F if χC ∈ F . Moreover, if C is tight, it will be also called
tight w.r.t to any valid inequality bTx ≥ b0 defining F .

The ith component vector πi := (πi1, . . . , πi,k−1) associated with any internal
node i ∈ V , is called a row of π. Furthermore, define the sets: Πn := {π ∈ Πn :
0 ≤ π ≤ πtk, πs0 = 0, πtk > 0} and Π0

n := {π ∈ Πn : 0 6= π ≥ 0, πs0 = πtk =
πi,k−1 = 0 for all i ∈ Vn \ {s, t}}.

Two valid inequalities for C≤k(Dn) are said to be equivalent if one can be
obtained from the other by multiplication with a positive scalar and adding
appropriate multiples of the equations (4)-(6). Equivalent inequalities induce
the same face of C≤k(Dn). Due to the equations (4)-(6), every valid inequality
for C≤k(Dn) can be brought in t-rooted form. Two vectors π, π̃ ∈ Π are said to
be equivalent w.r.t. C≤k(Dn) if the corresponding inequalities

∑

a∈An
σπaxa ≥

πtk −πs0 and
∑

a∈An
σπ̃axa ≥ π̃tk − π̃s0 are equivalent. It is easy to see that two

vectors π, π̃ ∈ Π are equivalent if exist λ > 0 and µi ∈ R, i ∈ Vn \ {s, t} such
that πi = λπ̃i + µi1T for each internal node i ∈ Vn.

Theorem 2.3. (a) dmt(C≤k(Dn)) is the set of all x ∈ RAn

+ satisfying

∑

a∈An

σπ,+a xa ≥ πtk, ∀π ∈ Πn,

or equivalently,

∑

a∈An

σπ,+a xa ≥ πtk − πs0, ∀π ∈ Πn.

9
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(b) C≤k(Dn) is the set of all x ∈ RAn

+ satisfying equations (4)-(6) and the
inequalities

∑

a∈An

σπaxa ≥ 0 ∀π ∈ Π0
n,

or equivalently,
∑

a∈An

σπaxa ≥ πtk − πs0 ∀π ∈ Πn.

Proof. (a) By Theorems 1.1 and 2.2, Lemma 2.1 (a1) and (a2), and the remarks
made in the previous paragraphs, we see that dmt(C≤k(Dn)) is the set of all
x ∈ RAn

+ satisfying
∑

a∈An

σπ,+a xa ≥ πtk − πs0 ∀π ∈ Π
′

n,

where Π
′

n := {π ∈ Πn : πs0 < πtk}. Next, observing that σπ,+ is invariant under
shifting π by a constant, it follows that the above inequalities can be replaced
by

∑

a∈An

σπ,+a xa ≥ πtk ∀π ∈ Π
′′

n,

where Π
′′

n := {π ∈ Πn : 0 = πs0 < πtk}. Finally, consider the case that π ∈ Π
′′

n

and πiℓ > πtk for some internal node [i, ℓ] ∈ V . Then, inequalities (19) imply
πi1 > πtk, and hence, σπ,+si > πtk, that is, greater than the right hand side of
the inequality

∑

a∈An

σπ,+a xa ≥ πtk.

Thus, none of the chains C ∈ C≤k
s,t (Dn) using the arc (s, i) is tight, which

implies that F (π,+) is strictly contained in the face induced by the nonneg-
ativity constraint xsi ≥ 0. Similarly, the inequality does not induce a facet
of dmt(C≤k(Dn)) if πiℓ < 0 for some internal node [i, ℓ] ∈ V . Hence, we may
assume that π ∈ Πn.

The second equality in Theorem 2.3 holds, since Πn ⊆ Πn.
(b) Using Theorems 1.1 and 2.2, Lemma 2.1 (b), and the remarks made

in the previous paragraphs, it follows that C≤k(Dn) is the set of all x ∈ RAn

+

satisfying equations (4)-(6) and the inequalities
∑

a∈An

σπaxa ≥ πtk − πs0 ∀π ∈ Πn.

Next, σπ is invariant under shifting π by a constant. Moreover, adding a linear
combination of the equations (4)-(6) to the inequality

∑

a∈An

σπaxa ≥ πtk − πs0,

results in an equivalent inequality. Hence, it is easy to see that C≤k(Dn) is
determined by (4)-(6), x ≥ 0, and

∑

a∈An

σπaxa ≥ 0 ∀π ∈ Π
0

n.

10
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We summarize: the task to identify extreme rays of C= (C≥) turns out to
be the task to find those π ∈ Π such that F (π) (F (π,+)) is a facet of C≤k(Dn)
(dmt(C≤k(Dn))).

2.2 Preliminary results

In this subsection, we use some techniques in order to present π-vectors in a
canonical form.

Let π ∈ RVn . The restriction of π to any subset S of RVn will be denoted by
π|S . The restriction of π ∈ RVn to RVn\{[s,0],[t,k]} can be perceived as a matrix
in space Rn×(k−1). Let ≺ be the lexicographic ordering of RVn with respect to
the ordering

[s, 0] < [1, 1] < [1, 2] < . . . < [1, k − 1] < [2, 1]
< [2, 2] < . . . < [n, k − 1] < [t, k]

of vector positions. This means, π ≺ π̃ if and only if there is some position [j, ℓ]
such that πjℓ < π̃jℓ and πih = π̃ih for all vector positions [i, h] < [j, ℓ]. For any
π ∈ RVm , π̃ ∈ RVn , we call π a subvector of π̃ and write π ⊆ π̃ if πs0 = π̃s0,
πtk = π̃tk, and π|V′

n
is a submatrix of π̃|V′

n
. Here, V ′

n := Vn \ {[s, 0], [t, k]}.
Clearly, π ⊆ π̃ implies m ≤ n. If π ⊆ π̃ and π̃ is obtained by copying rows of π,
π̃ is said to be a clone of π.

A vector π ∈ RVn is said to be primitive if all rows of π are different. Each
π ∈ RVn contains a unique primitive subvector πprim ⊆ π such that π is a clone
of πprim. A vector π̃ ∈ RVm is called a (minimal) primitive representative of π
if π̃ (is lexicographic minimal and) can be obtained by permuting rows of πprim.
The unique minimal primitive representative of π is denoted by πmpr.

Given π, the way to derive πmpr can be explained with well-known polyhedral
techniques. To obtain πmpr, we introduced two operations: row permutation
and row deletion.

Permuting the rows of π equates to permuting the internal nodes of Vn.
Thus, if π̃ is a permutation of π, then the vectors σπ and σπ̃ (as well as σπ,+

and σπ̃,+) have the same coefficient structure.

Proposition 2.1. Let π, π̃ ∈ Πn such that π̃ is a permutation of the rows of π.

(a) F (π̃,+) is a facet of dmt(C≤k(Dn)) if and only if F (π,+) is a facet of
dmt(C≤k(Dn)).

(b) F (π̃) is a facet of C≤k(Dn) if and only if F (π) is a facet of C≤k(Dn).

�

Next, row deletion, as used here, equates to the deletion of those internal
nodes i ∈ Vn for which exists another internal node j with the same coefficient
structure: σπir = σπjr for all nodes r ∈ Vn \ {s} and σπri = σπrj for all nodes
r ∈ Vn \ {t}. The reverse operation is known as “lifting by node cloning”. To
make use of row deletion and cloning in facet proofs, we need deeper polyhedral
insights as for row permutation.

Lemma 2.2. For any π ∈ Πn and any internal node i of Vn, σ
π,+
si = σπsi = πi1,

σπ,+it = σπit = πtk − πi,k−1, σ
π,+
ii = 0, and σπii ≤ 0. �

11



12 Martin Grötschel and Rüdiger Stephan

For any j ∈ Vn, we denote by δ(j) := δin(j)∪ δout(j) the set of arcs entering
and leaving j. Moreover, for any a ∈ An, we denote by u

a,n the ath unit vector.

Lemma 2.3. Let j be an internal node of Vn, and let π ∈ Πn such that F (π,+)
is a facet of dmt(C≤k(Dn)). Then, there are x1, . . . , x2n+1 ∈ F (π,+) such that
x1|δ(j), . . . , x

2n+1|δ(j) are linearly independent.

Proof. We adapt the proof of Lemma 7 of Hartmann and Özlük [16].
Consider the following procedure.

1. Set p := 1, T := {a ∈ δ(j) : σπ,+a > 0}, and label all the arcs in T
unmarked.

2. Find a point x ∈ F (π,+) ∩ C≤k(Dn) such that xa > 0 for exactly one
unmarked arc a ∈ T .

3. If no such x exists, STOP. Otherwise, set xp := x, ap := a, and label arc
a marked. Set p := p+ 1 and go back to 2.

Our claim is that this algorithm stops only if all arcs in T are marked.
Suppose not, and let ∅ 6= T ⋆ ⊂ T be the set of arcs labeled unmarked at the
end of the algorithm. Clearly, (j, j) /∈ T ⋆, since (j, j) /∈ T by Lemma 2.2.

Moreover, P ∩ δ(j) ⊆ T ⋆ or P ∩ δ(j) ⊆ δ(j) \ T ⋆ for each P ∈ P≤k
s,t (Dn) with

χP ∈ F (π,+). Consequently, each x ∈ F (π,+) satisfies the equation

x(T ⋆ ∩ δin(j)) − x(T ⋆ ∩ δout(j)) = 0.

However, none of the inequalities obtained by replacing the equality sign with
“≤” or “≥” is valid for dmt(C≤k(Dn)) unless T

⋆∩δin(j) = ∅ or T ⋆∩δout(j) = ∅.
W.l.o.g. assume that T ⋆ ∩ δin(j) = ∅. Let a ∈ T ⋆ ∩ δout(j). Since F (π,+) is

a nontrivial facet by Lemma 2.1 (a2), there is some tight path P ∈ P≤k
s,t (Dn)

using a. By construction, χP ∈ F (π,+) ∩ C≤k(Dn) and χ
P
a > 0 for exactly one

unmarked arc a ∈ T , a contradiction. Thus, T ⋆ = ∅.
The procedure generates a sequence of points xp ∈ F ∩ C≤k(Dn), p =

1, . . . , |T | such that xpap > 0 and xp|Tp = 0, where T p := T \ {a1, . . . , ap}.
Next, define ya := x1 + ua,n for each a ∈ δ(j) \ T . Clearly, since σa = 0 for
all a ∈ δ(j) \ T , it follows that y ∈ F (π,+). Furthermore, the points xp|δ(j),
p = 1, . . . , |T |, ya|δ(j), a ∈ δ(j) \ T , are linearly independent.

For any internal node j of Vn, we say that a chain C = (v0, v1, . . . , vr) ∈

C≤k
s,t (Dn) has the loop-path property in node j if vℓ−1 = vℓ = j for some index
ℓ ∈ {2, 3, . . . , r − 1} and vh 6= j for the remaining indices.

Lemma 2.4. Let π ∈ Πn such that F (π) is a nontrivial facet of C≤k(Dn), and
let j be any internal node of Vn.

(i) For each a = (i, j) ∈ δin(j) \ {(j, j)}, there exists a tight chain C =

(v0, v1, . . . , vr) ∈ C≤k
s,t (Dn) such that (i, j) = (vℓ−1, vℓ) and (vℓ, vℓ+1) =

(j, j) for some ℓ ∈ {1, 2, . . . , r − 1}.

(ii) For each a = (j, i) ∈ δout(j) \ {(j, j)}, there exists a tight chain C =

(v0, v1, . . . , vr) ∈ C≤k
s,t (Dn) such that (j, j) = (vℓ−1, vℓ) and (vℓ, vℓ+1) =

(j, i) for some ℓ ∈ {1, 2, . . . , r − 1}.

12



Characterization of Facets of the Hop Constrained Chain Polytope 13

(iii) There is a tight chain C ∈ C≤k
s,t (Dn) visiting j that does not have the

loop-path property in j.

Proof. (i) and (ii) Suppose, for the sake of contradiction, that the set of arcs
T ⊆ δ(j) \ {(j, j)}, for which statements (i) or (ii) are not true, is nonempty.

Then, the incidence vectors of all tight chains C ∈ C≤k
s,t (Dn) satisfy the equation

x(δout(j) ∩ T )− x(δin(j) ∩ T ) = 0. (∗)

Assume that δout(j)∩T = ∅. Then, F (π) is contained in the face induced by
the inequality x(δin(j)∩T ) ≥ 0, in contradiction to the assumption that F (π) is
nontrivial. Similarly, we obtain a contradiction if we assume that δin(j)∩T = ∅.
Thus, δin(j) ∩ T 6= ∅ 6= δout(j) ∩ T . Next assume that T = δ(j) \ {(j, j)},
which implies that (∗) is the flow conservation constraint associated with j.
Then, by definition of T , no tight chain uses the loop (j, j), and hence, F is
contained in the face induced by the nonnegativity constraint xjj ≥ 0. Thus,
T ( δ(j) \ {(j, j)}. However, this means that none of the inequalities obtained
by replacing the equality sign in (∗) with “≤” or “≥” is valid, which implies
that F intersects C≤k(Dn) in its relative interior, again a contradiction.

(iii) Assume that each tight chain in C≤k
s,t (Dn) that visits j has the loop-path

property. This implies that the incidence vectors of all tight chains in C≤k
s,t (Dn)

satisfy the equation
x(δ(j) \ {(j, j)})− 2xjj = 0. (∗∗)

This means that F is contained in a hyperplane that intersects C≤k(Dn) in its
relative interior, a contradiction.

Let π ∈ Πn and P ∈ Ps,t(Dn). Let either (F, σ) = (F (π), σπ) or (F, σ) =
(F (π,+), σπ,+). P is said to be tight w.r.t. F if ϕ(P ) is tight w.r.t F . Let
P ∈ Ps,t(Dn) be tight w.r.t. F , and let a = ([i, ℓ−1], [j, ℓ]) ∈ P . Then, it follows
that σϕ(a) = πjℓ−πi,ℓ−1 if a ∈ Aij

n , and πjℓ−πi,ℓ−1 = 0 if a ∈ Ai
n. Consequently,

if P ∈ Ps,t(Dn) is a tight path, we always may assume that all arcs of P are
in An \

⋃

Ai
n. Let P = ([v0, 0], [v1, 1], . . . , [vk, k]) ∈ Ps,t(Dn) be a tight path.

Then, each subpath P q,r = ([vq, q], . . . , [vr, r]) satisfies σ(ϕ(P
q,r)) = πvrr−πvqq.

For any x ∈ RAn and any permutation α = (α(s), α(t), α(1), α(2), . . . , α(n))
of Vn with α(s) = s and α(t) = t, we define α(x) ∈ RAn by

α(x)ij := xα−1(i),α−1(j) for all (i, j) ∈ An.

Proposition 2.2 (cf. Theorems 8 in [16], 6 in [25]). Let π̃ ∈ Πn be a clone of
π ∈ Πm.

(a) F (π̃,+) is a nontrivial facet of dmt(C≤k(Dn)) if and only if F (π,+) is a
nontrivial facet of dmt(C≤k(Dm)).

(b) F (π̃) is a nontrivial facet of C≤k(Dn) if and only if F (π) is a nontrivial
facet of C≤k(Dm).

Proof. W.l.o.g. we may assume that n = m+ 1, π̃|Vm
= π, and π̃m+1 = πm.

(a) To show the sufficiency, let F (π,+) be a facet of dmt(C≤k(Dm)). By
Theorem 2.1 (a), the polyhedron dmt(C≤k(Dm+1)) is fulldimensional. Hence,
we have to show that there are |Am+1| affinely independent points in F (π̃,+).

13
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Since dmt(C≤k(Dm)) is fulldimensional, there are |Am| = |Am+1| − 2m− 3
affinely independent points xij ∈ F (π,+) ∩ ZAm ; each point xij corresponds
to an arc (i, j) ∈ Am. Define the points x̃ij ∈ RAm+1 by x̃ij |Am

:= xij and
x̃ij |Am+1\Am

:= 0 for (i, j) ∈ Am. By construction, the points x̃ij with (i, j) ∈
Am are affinely independent, and they are in F (π̃,+).

To construct the remaining points, let B := Am \Am−1. By Lemma 2.3, we
may assume w.l.o.g. that the points xij |B, (i, j) ∈ B, are linearly independent.
Define the permutation α := (s, t, 1, 2, . . . ,m − 1,m + 1,m). Note that α is
idempotent, that is, α2 = id. It follows that the points

x̃ij := α(x̃α(i),α(j)) ∈ F (π̃,+), (i, j) ∈ B̃,

where B̃ := (Am+1 \Am)\{(m,m+1), (m+1,m)}. Moreover, they are linearly
independent, and they are affinely independent of the former points. Finally,
due to condition (19), σπ̃,+m,m+1 = σπ̃,+m+1,m = 0. This implies the existence of two

further linearly independent points, for instance, x̃m,m+1 := x̃s1+u(m,m+1),m+1

and x̃m+1,m := x̃s1 + u(m+1,m),m+1.
The necessity will be shown by contraposition. Suppose that the face F (π,+)

is not a facet of dmt(C≤k(Dm)). Then, exists ρ ∈ Πm such that the face F (ρ,+)
strictly contains F (π,+). Define ρ̃ ∈ RVm+1 by ρ̃|Vm

:= ρ and ρ̃m+1 := ρm. We
show that F (π̃,+) ( F (ρ̃,+).

Let x̃ ∈ F (π̃,+). Then,

x := x̃|Am
+

∑

(i,j)∈B

x̃iju
(α(i),α(j)),m ∈ F (π,+),

which implies x ∈ F (ρ,+). We conclude that

∑

a∈Am+1

σρ̃,+a x̃a =
∑

a∈Am

σρ,+a xa = ρtk = ρ̃tk,

since σρ̃,+m,m+1 = σρ̃,+m+1,m = 0. Consequently, x̃ ∈ F (ρ̃,+).
Finally, by hypothesis, there is some x ∈ F (ρ,+) \ F (π,+). Then, x̃ ∈

F (ρ̃,+) \ F (π̃,+), where x̃ is defined by x̃|Am
:= x and x̃|Am+1\Am

:= 0.

(b) To show the sufficiency, let F (π) be a facet of C≤k(Dm)). By Theo-
rem 2.1 (b), we have to construct |Am+1−(m+2)| affinely independent points in

F (π̃). By the same theorem, there are |Am−(m+1)| tight chains Ci ∈ C≤k
s,t (Dm)

whose incidence vectors are affinely independent. Clearly, their incidence vec-
tors defined in RAm+1 remain affinely independent.

Next, let B := Am \ Am−1. By Lemma 2.4 (i), for each arc a = (i,m) ∈

B \ {(m,m)}, there exists a tight chain (va0 , v
a
1 , . . . , v

a
ra
) ∈ C≤k

s,t (Dm) such that
(i,m) = (vaℓ−1, v

a
ℓ ) and (vaℓ , v

a
ℓ+1) = (m,m) for some ℓ ∈ {1, 2, . . . , ra−1}. Thus,

C(i,m+1) := (va0 , v
a
1 , . . . , v

a
ℓ−1,m + 1, vaℓ+1, . . . , v

a
ra
) ∈ C≤k

s,t (Dm+1) is tight w.r.t.
F (π̃). Similarly, for each arc a = (m, i) ∈ B\{(m,m)}, there exists a tight chain

(va0 , v
a
1 , . . . , v

a
ra
) ∈ C≤k

s,t (Dm) such that (m,m) = (vaℓ−1, v
a
ℓ ) and (vaℓ , v

a
ℓ+1) =

(m, i) for some ℓ ∈ {1, 2, . . . , ra − 1}. Thus, C(m+1,i) := (va0 , v
a
1 , . . . , v

a
ℓ−1,m +

1, vaℓ+1, . . . , v
a
ra
) ∈ C≤k

s,t (Dm+1) is tight w.r.t. F (π̃). Furthermore, the chain

C(m+1,m+1) := (s,m + 1,m + 1, va3 , . . . , v
a
ra
) for a = (s,m) is tight. Clearly,

the incidence vectors of all chains Ca, a ∈ δ(m+ 1) \ {(m,m+ 1), (m+ 1,m)}

14



Characterization of Facets of the Hop Constrained Chain Polytope 15

are linearly independent, and they are linearly independent from the incidence
vectors of the chains Ci, i = 1, 2, . . . , |Am − (m+ 1)|.

To finish this part of the proof, we have to give one further tight chain whose
incidence vector is linearly independent of the previously constructed vectors.
By Lemma 2.4 (iii), there exists a chain C = (v0, v1, . . . , vr) ∈ C≤k

s,t (Dm), which
is tight w.r.t. F (π), visits node m, and does not has the loop-path property in
m. Let J ⊆ {1, 2, . . . , r − 1} be the set of indices ℓ with vℓ = m. Then, at least
one of the following cases holds:

(α) g ∈ J , g − 1, g + 1 /∈ J for some g ∈ {1, 2, . . . , r − 1},

(β) g, g + 1, g + 2 ∈ J for some g ∈ {1, 2, . . . , r − 3}.

In both cases, we set C′ := (v0, v1, . . . , vg−1,m+ 1, vg+1, . . . , vr). Then, C
′ is a

tight chain, which in case (α) does not use the arcs (m,m+ 1) and (m+ 1,m),
and in case (β) uses only the arcs (m,m + 1) and (m + 1,m) among all arcs
incident with m+ 1. Thus, in either case, the incidence vector of C′ is linearly
independent of the previous vectors.

To show the necessity, we assume that F (π̃) is a facet of C≤k(Dm+1). Define
the mapping ψ : Vm+1 → Vm by

ψ(v) :=

{

v if v ∈ Vm
m v=m+1.

By definition of π̃ and σπ̃, σπψ(v),ψ(w) = σπ̃vw for all (v, w) ∈ Am+1. Since

F (π̃) is a nontrivial facet, for any (i, j) ∈ Am, there exists a tight chain C =

(v0, v1, . . . , vr) ∈ C≤k
s,t (Dm+1) w.r.t. F (π̃) containing (i, j). Then, the chain

C′ := (ψ(v0), ψ(v1), . . . , ψ(vr)) ∈ C≤k
s,t (Dm) also contains (i, j) and is tight w.r.t.

F (π). Thus, F (π) is not induced by a nonnegativity constraint.
Suppose now, for the sake of contradiction, that F (π) is not a facet of

C≤k(Dm). Since F (π) is nontrivial, there exists ρ ∈ Πm such that F (π) ( F (ρ).
Define ρ̃ ∈ RVm+1 by ρ̃|Vm

:= ρ and ρ̃m+1 := ρm. It follows immediately that
σρ
ψ(v),ψ(w) = σρ̃vw for all (v, w) ∈ Am+1. We show that F (π̃) ( F (ρ̃).

By hypothesis, there is some x ∈ F (ρ)\F (π). Then, x̃ ∈ F (ρ̃)\F (π̃), where
x̃ is defined by x̃|Am

:= x and x̃|Am+1\Am
:= 0.

Finally, let x̃ ∈ F (π̃). W.l.o.g. we may assume that x̃ is the incidence

vector of a tight chain C = (v0, v1, . . . , vr) ∈ C≤k
s,t (Dm+1). As we have already

mentioned, then C′ := (ψ(v0), ψ(v1), . . . , ψ(vr)) ∈ C≤k
s,t (Dm) is tight w.r.t. F (π),

and since F (π) ⊆ F (ρ), it is also tight w.r.t. to F (ρ). This, in turn, implies
that C is tight w.r.t. to F (ρ̃), which means that x̃ ∈ F (ρ̃).

By Propositions 2.1 and 2.2, to show that a class K of nontrivial inequalities
define facets of C≤k(D) (dmt(C≤k(D))), it suffices to prove that its minimal
primitive member induces a facet.

3 Main results

In this section, we use the result of Dahl, Foldnes, and Gouveia [6] that r-jump
inequalities (13) define facets of dmt(C≤k(Dn)) in two respects.
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16 Martin Grötschel and Rüdiger Stephan

First, identifying a certain structure of the extreme rays of the projection
cone in terms of π-vectors corresponding to r-jump inequalities (13), we derive
a rich class of facet defining inequalities for dmt(C≤k(Dn)) that contains these
inequalities. We call the resulting inequalities shifting inequalities.

Second, we show that the π-vectors corresponding to shifting inequalities
give also facet defining inequalities

∑

a∈An

σπaxa ≥ πtk − πs0

for C≤k(Dn). We also give sufficient conditions for these inequalities to be facet
defining for P≤k(Dn).

Finally, we present a complete characterization of all 0/ ± 1-facet defining
inequalities for C≤k(Dn) and one of all 0/1-facet defining inequalities for its
dominant.

3.1 Shifting inequalities

In what follows, we exploit the special diagonal structure of lexicographic min-
imal primitive members of π-vectors corresponding to r-jump inequalities (13)
to derive a generalization of these inequalities.

Given a partition {Sp : p = 0, 1, . . . , k+r} of Vn, where r ∈ N, 1 ≤ r ≤ n−k,
S0 = {s}, and Sk+r = {t}. Consider the r-jump inequality (13) associated with
this partition:

k+r−2
∑

p=0

k+r
∑

q=p+2

αpqx((Sp : Sq)) ≥ r,

where for p < q, αpq = min{q − p− 1, r}. The vector π ∈ Πn, such that

∑

a∈An

σπ,+a xa ≥ πtk

is inequality (13), is called jump vector. It has the following configuration:

πs0 = 0,

πtk = r,

πiℓ =







0 if p− ℓ ≤ 0,
r if p− ℓ ≥ r,

p− ℓ otherwise,

= min{r,max{p− ℓ, 0}},

i ∈ Sp, p = 1, . . . , k + r − 1, ℓ = 1, . . . , k − 1.

For example, the lexicographic minimal primitive vector for k = 6 and r = 8 is
the vector π′ given in Figure 2 (a).

The vector π′ has two obvious properties. First, at the top and at the bot-
tom it has triangle structure. Second, the intermediate positions have diagonal
structure with entries p = 1, 2, . . . , 7 = r − 1. All intermediate diagonals have
width one. As it turns out, one can widen these diagonals and obtains new
facets of the dominant of the hop constrained chain polytope. So π′ is primitive
in a horizontal and a diagonal sense. Copying rows of π′, we obtain again an

16
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π′ =





















































0
0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 2 1 0 0
4 3 2 1 0
5 4 3 2 1
6 5 4 3 2
7 6 5 4 3
8 7 6 5 4
8 8 7 6 5
8 8 8 7 6
8 8 8 8 7
8 8 8 8 8

8





















































π′′ =

































































0
0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
2 2 1 0 0
2 2 2 1 0
3 2 2 2 1
4 3 2 2 2

5 4 3 2 2

5 5 4 3 2

6 5 5 4 3
7 6 5 5 4
8 7 6 5 5

8 8 7 6 5

8 8 8 7 6
8 8 8 8 7
8 8 8 8 8

8

































































(a) (b)

Figure 2: Lexicographic minimal primitive vector π′ for k = 6 and r = 8 and
one of its “diagonal clones”.

r-jump inequality, while copying intermediate diagonals, we get an inequality
different from r-jump inequalities (13), see Figure 2 (b).

Given any v ∈ Rn and any j ∈ {0, 1, . . . , n}, the vector v(j) defined by

v
(j)
i :=

{

v1, i = 1, . . . , j + 1
vi−j , i = j + 2, . . . , n

is called the jth shift of v. Denote by S[r, n, k] the set of all vectors v ∈ Zn+
with v1 = 0, vi ≤ vi+1 ≤ vi + 1 for i = 2, . . . , n − k + 2, and vi = r for
i = n− k + 2, . . . , n. For instance,

v⋆ = (0, 1, 2, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8, 8, 8, 8)T

is in S[8, 16, 6]. Given v ∈ S[r, n, k], we define π(v) ∈ RVn by π
(v)
s0 := 0, π

(v)
tk := r,

and
π(v)|V′

n
:=

(

v(0), v(1), . . . , v(k−2)
)

,

where V ′
n := Vn \ {[s, 0], [t, k]}. For example, π(v⋆) is the vector π′′ in Fig-

ure 2 (b). Clearly, π(v) ∈ Πn. Moreover, π(v) is primitive if only if v2 = 1 and
vi < vi+k−1 for i = 2, . . . , n− k + 1. In other words, only the first entry of v is
zero, and at most k − 1 entries are equal to ℓ for ℓ = 1, . . . , r.

Any π ∈ Πn such that πmpr = π(v) for some v ∈ S[r, n, k] is called a shifting
vector, and the corresponding inequality

∑

a∈An

σπ,+a xa ≥ πtk

17



18 Martin Grötschel and Rüdiger Stephan

is called shifting inequality. The class of shifting inequalities contains that of
r-jump inequalities (13).

In the following theorem we show that shifting inequalities induce facets
of dmt(C≤k(Dn)). However, they do not induce facets of C≤k(Dn). Dahl and
Gouveia [7] deal with the problem to strengthen r-jump inequalities (13) for
P≤k(Dn). For r = 1 and r = 2, they obtain stronger inequalities by decreas-
ing some coefficients associated with partition and backward arcs. Here, for
any partition {Si : i = 0, 1, . . . ,m} of Vn, a ∈ An is called a forward, par-
tition, or partition arc if a ∈ (Sp : Sq) for some p < q, p = q, or p > q,
respectively. For the 1-jump inequality associated with the partition {S0 =
{s}, S1, S2, . . . , Sk, Sk+1 = {t}}, Dahl and Gouveia [7] derive the inequality

k−1
∑

p=0

k+1
∑

q=p+2

x((Sp : Sq))− x((Sk−1 ∪ Sk : S1 ∪ S2)) ≥ 1. (j1)

They also discuss the case r = 2 on the polytope P≤4
s,t-path(Dn). Given the 2-

jump inequality defined on the partition {S0 = {s}, S1, S2, S3, S4, S5, S6 = {t}}.
By decreasing the coefficients associated with some backward arcs and all arcs
in An(S3), they derive the inequality

5
∑

p=0

6
∑

q=p+1
αpqx((Sp : Sq))

−x(An(S3))− 2x((S4 ∪ S5 : S1 ∪ S2))
−x((S3 : S2 ∪ S1))− x((S4 ∪ S5 : S3)) ≥ 2.

(j2)

Moreover, they show that these inequalities are equivalent to the inequali-
ties (11):

∑

i∈I

xsi +
∑

j∈J

xjt −
∑

i∈I,j∈J

xij ≥ 0, I, J ⊆ Vn \ {s, t}.

With a view to the completeness result for the 4-hop constrained walk poly-
tope W≤4(Dn) (see Fact 3), Dahl, Foldnes, and Gouveia [6] point to the in-
teresting fact that to describe dmt(W≤4(Dn)), one needs the whole class of
r-jump inequalities, while to describe W≤4(Dn), one only needs a suitable class
of inequalities derived from 2-jump inequalities.

All these phenomenons can be explained using the DP-approach. Given any
vector π ∈ Πn, we obtain an equivalent vector dif(π) ∈ Π0

n w.r.t. C≤k(Dn) by
setting dif(π)s0 := dif(π)tk := 0 and dif(π)i := πi − πi,k−11T . Observe that if
π ∈ Πn is a shifting vector, then the first row of (dif(ρ))mpr is the zero vector,
that is, (dif(ρ))mpr

1 = 0T . Now, any π ∈ Π0
n is called a difference shifting vector

if there exists a shifting vector ρ ∈ Πm for some m such that πmpr = (dif(ρ))mpr

or πmpr = X , where X is the vector obtained from (dif(ρ))mpr by deleting the
first row. The inequality

∑

a∈An

σπaxa ≥ 0

corresponding to a difference shifting vector π is called difference shifting in-
equality.

For k = 4, consider now the 6-jump inequality associated with any partition

{S0 = {s}, S1, S2, . . . , S9, S10 = {t}}

18
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Figure 3: Equivalent jump vectors in Π9 and their minimal primitive represen-
tative in Π0

4 for k = 4.

of Vn and the corresponding vector ρ ∈ Πn, that is, this 6-jump inequality is
the inequality

∑

a∈An
σρ,+a xa ≥ 6. For simplicity, we assume that n = 9 and

Si = {i} for i = 1, 2, . . . , 9. Then, ρ = ρmpr ∈ Π9 is the vector shown in

Figure 3 (a). To strengthen the 6-jump inequality w.r.t. to P≤4
s,t-chain(D9),

P≤4
s,t-walk(D9), or P≤4

s,t-path(D9), one only needs to write down the inequality
∑

a∈A9
σρaxa ≥ 6. Then, making use of the fact that any shifting of the rows

of ρ by a constant results in an equivalent inequality, we see that the vector
given in Figure 3 (b), say ρ′, implies an equivalent inequality

∑

a∈A9
σρ

′

a xa ≥
2. This inequality is of the form (j2). In Figure 3 (c) is shown the vector
ρ′′ := (dif(ρ))mpr = (dif(ρ′))mpr ∈ Π0

4. From the following results we con-
clude that the inequalities

∑

a∈A9
σρaxa ≥ 6 and

∑

a∈A9
σρ

′

a xa ≥ 2 induce

facets of P≤4
s,t-chain(D9), P

≤4
s,t-walk(D9), and P≤4

s,t-path(D9), while the inequality
∑

a∈A4
σρ

′′

a xa ≥ 0 only induces facets of P≤4
s,t-chain(D4) and P

≤4
s,t-walk(D4).

Observe that not only (dif(ρ))mpr, ((dif(ρ′))mpr ⊆ ρ′′, but (dif(π))mpr ⊆ ρ′′

for every shifting vector π ∈ Πn, for k = 4. But observe also that this is only
a special case. For k ≥ 5, the difference minimal primitive members of jump
vectors are only a proper subset of that of shifting vectors.

Given π ∈ Πn, one can associate a partition of Vn as follows. Let m be the
row size of πmpr. Then, define a partition {Sπi : i = 0, 1, . . . ,m + 1} of Vn by
Sπ0 := {s}, Sπi := {v ∈ Vn : πv = πmpr

i }, i = 1, 2, . . . ,m, and Sπm+1 := {t}. We
call this partition of Vn the mpr-partition of Vn w.r.t. π.

For any τ ∈ RAn and any c ∈ R, we denote by An(τ, c) the set of arcs
a ∈ An with τa = c. Clearly, the set {∅ 6= An(τ, c) : c ∈ R} defines a partition
of An.

Theorem 3.1.

(a) Shifting inequalities induce facets of dmt(C≤k(Dn)).

(b) Difference shifting inequalities induce facets of C≤k(Dn).

19



20 Martin Grötschel and Rüdiger Stephan

(c) Let π ∈ Πn be a shifting vector, and let {Sπi : i = 0, 1, 2, . . . , p} be the
mpr-partition of π. Then, the inequality

∑

a∈An
σπaxa ≥ πtk induces a

facet of P≤k(Dn) if |S
π
i | ≥ 2 for i = 1, 2, . . . , p− 1.

Proof. We prove (b) and indicate the necessary modifications for (a) and (c).
Let ρ ∈ Π0

n be a difference shifting vector. By definition of ρ, there is
some shifting vector π ∈ Πm such that either (1) ρmpr = (dif(π))mpr or (2)
ρmpr = X , where X is the vector obtained from (dif(π))mpr by removing its first
row. Furthermore, by definition of π, πmr = π(v) for some v ∈ S[r,m, k].

(1) By Proposition 2.2 (b), F (ρ) is a facet of C≤k(Dn) if and only if F (π) is
one of C≤k(Dm). W.l.o.g. we may assume that π is lexicographic minimal. We

construct |Am| − (m+ 1) tight chains in C≤k
s,t (Dm) whose incidence vectors are

linearly independent.
For each arc a = ([i, ℓ− 1], [j, ℓ]) ∈ Am \

⋃m
i=1 A

i
m, we introduce a path

P a := ([s, 0], [v1, 1], [v2, 2] . . . , [vk−1, k − 1], [t, k])

contained in Ps,t(D
′
m ∪ {a}), where

D′
m := Dm \

n
⋃

i=1

Aii

and

vh :=

{

max{1, i− ℓ+ 1 + h}, h = 1, . . . , ℓ− 1
min{m, j − ℓ+ h}, h = ℓ, . . . , k − 1.

In particular, vℓ−1 = i, vℓ = j, and the chain ϕ(P a) does not use loops with
the exception of the loop (i, i) in case that i = j. Moreover, πv11 − πs0 = σπsv1 ,
πtk−πvk−1,k−1 = σπvk−1t

, and πvhh = πvh−1,h−1 for h = 2, . . . , ℓ−1, ℓ+1, . . . , k−1.
This means that P a is tight if and only if πjℓ − πi,ℓ−1 = σπij . For (i, j) ∈ Am,

denote by P ijs,t(Dm) the set of tight paths P a ∈ Ps,t(Dm) with ϕ(a) = (i, j).

Then, by definition of σπ, P ijs,t(Dm) 6= ∅ for all (i, j) ∈ Am. An illustration for
the definition of paths P a is given in Figure 4. Both depicted paths are tight.

Let {Y p : p = 0, 1, 2, 3, 4} be a partition of Am, where

Y 0 := {(s, 1), (1, 2), . . . , (m− 1,m), (m, t)},

Y 1 := (δout(s) ∪ δin(t)) ∩Am (σπ, r) ,

Y 2 := {(i, j) ∈ Am : 1 ≤ j ≤ i ≤ m},

and Y 3 is a subset of internal arcs of Am. Y 3 and Y 4 will be specified later.
Then, for each (i, j) ∈ Y p, p = 1, 2, 3, let Cij := ϕ(P ) for any P ∈ P ijs,t(Dm).

By construction, xij := χC
ij

∈ F (π).
In the remainder of this proof, we construct |Y 4| points x̃q with x̃q

Y 2∪Y 3 = 0
such that their restrictions to Y 4, x̃q

Y 4 , are linearly independent. Then, the
points xij , (i, j) ∈ Y p, p = 1, 2, 3, x̃q, q = 1, . . . , |Y 4|, are linearly independent:
Let

3
∑

p=1

∑

(i,j)∈Y p

λijx
ij +

|Y 4|
∑

q=1

λqx̃
q = 0.
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Figure 4: Illustration of paths P a for a =
([s, 0][8, 1]) and a = ([6, 2], [8, 3]).
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Figure 5: Illustration of Y 4.
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Since each point xij , (i, j) ∈ Y 2 ∪ Y 3, is the only point with nonzero entry at
position (i, j), it follows that λgh = 0 for all arcs (g, h) ∈ Y 2 ∪ Y 3. Next, since

xij
Y 4 = 0 for all (i, j) ∈ Y 1, and the points x̃q

Y 4 , q = 1, . . . , |Y 4|, are linearly
independent, we see that λq = 0 for q ∈ {1, . . . , |Y 4|}. Finally, among all points
xij , (i, j) ∈ Y 1, xgh is the only one with a nonzero entry at position (g, h). Thus,
λgh = 0 for all (g, h) ∈ Y 1. This implies that the |Am| − (m + 1) constructed
points are linearly independent.

To complete the proof, we have to specify Y 4 and the points x̃q. Since Y 3

is a subset of the internal arcs of Am, Y 1 = (δout(s) ∪ δin(t)) ∩ Am (σπ , r), and
(i, j) ∈ Am (σπ , 0) if σπij = 0 for (i, j) ∈ δout(s) ∪ δin(t), it follows that

Z := Y 4 ∩ (δout(s) ∪ δin(t))

= (δout(s) ∪ δin(t)) \ (Y 1 ∪ Am (σπ , 0))

=

r−1
⋃

p=1

[

(δout(s) ∪ δin(t)) ∩ Am (σπ , p)
]

.

For each (s, i) ∈ Z and each (j, t) ∈ Z, we see that Psis,t(Dm) = {P ([s,0],[i,1])}

and Pjts,t(Dm) = {P ([j,k−1],[t,k])}, respectively. Moreover,

P ([s,0],[i,1]) = ([s, 0], [i, 1], . . . , [i+ k − 2, k − 1], [t, k])

= P ([i+k−2,k−1],[t,k]).

For each p ∈ {0, . . . , r}, the node set

Vm(s, p) := {i ∈ Vm : (s, i) ∈ δout(s) ∩ Am(σπ , p)}

is of the form
Vm(s, p) = {ip, ip + 1, . . . , ip +mp − 1},

for some node ip ∈ Vm, where

mp := |δout(s) ∩Am(σπ, p)|.

For p ∈ {1, . . . , r − 1} consider now the following 2mp − 1 chains:

C̃p,1+2j := ϕ
(

P ([s,0],[ip+j,1])
)

, j = 0, 1, . . . ,mp − 1,

C̃p,2j := ϕ
(

P̄ p,j
)

, j = 1, 2, . . . ,mp − 1,

where
P̄ p,j := P ([s,0],[ip+j−1,1]])

\{([s, 0], [ip + j − 1, 1]), ([ip + j − 1, 1], [ip + j, 2])}
∪ {([s, 0], [ip + j, 1]), ([ip + j, 1], [ip + j, 2])}.

All these chains are tight w.r.t. F (π), and they do not use any arc in Y . Conse-

quently, χC̃
p,j

∈ F (π) and χC̃
p,j

Y = 0 for p = 1, . . . , r − 1, j = 1, 2, . . . , 2mp − 1.
Finally, we introduce for each p ∈ {1, . . . , r − 1} an internal arc ap ∈ Am to

be in Y 4, which completes the specification of Y 4. This means,

Y 4 = Z ∪ {ap : p = 1, . . . , r − 1}.
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The specification of ap starts with the node [ip+1 + 1, 2]. By definition of π,
πip+1+1,2 = p+1 and πip+1+1,ℓ = p for ℓ = 3, . . . , j := min{mp+2, k−1}. Then,
for h := ip + j − 3, we have the following configuration:

πh1 = p, πh,j−1 = p− 1
πip+1+1,2 = p+ 1, πip+1+1,j = p,

which implies σπap ≥ 1, where ap := (h, ip+1+1). On the other hand, πip+1+1,ℓ−
πh,ℓ−1 ≤ 1 for ℓ = 2, . . . , k − 1. Hence, σπap = 1, and thus, the chains

C̃p,0 := ϕ
(

P ([h,j−1],[ip+1+1,j])
)

and
C̃p,2mp := ϕ

(

P ([h,1],[ip+1+1,2])
)

are tight w.r.t. F (π). Moreover, they do not use any arc in Y 2 ∪ Y 3. Figure 5
gives an illustration of Y 4.

We conclude that x̃p,j := χC̃
p,j

∈ F (π) and x̃p,jY = 0 for p = 1, 2, . . . , r −
1, j = 0, 1, . . . , 2mp. Moreover, let H be the matrix whose columns are the
vectors x̃p,j . Then, an appropriate rearrangement of the restriction of H to the
row index subset Y 4 is a matrix of the form shown in Figure 6. By the following
lemma, this matrix has full rank, which implies that the points x̃p,j

Y 4 are linearly
independent.

For statement (a), the above proof can be adapted as follows. For any arc
(i, j) ∈ A, not all paths in P ijs,t(Dm) are tight w.r.t. F (π,+). Hence, we redefine

P ijs,t(Dm) to be the set of all paths P a, with a ∈ Aij
m, which are tight w.r.t. to

F (π,+). It follows that P ijs,t(Dm) 6= ∅ for all arcs (i, j) ∈ Am with i > j. For the
construction of |Am| affinely independent points x ∈ F (π,+), we consider the
points x̄ij := x1t+uij for (i, j) ∈ Y 0∪Y 2, where uij denotes the ijth unit vector,
the points xij for (i, j) ∈ Y 1, and the points x̃p,j for p = 1, 2, . . . , r − 1, j =
0, 1, . . . , 2mp. Notice that x̄ij ∈ F (π,+) for (i, j) ∈ Y 0 ∪ Y 2, since σπ,+ij = 0.

(2) Let ρmpr = X . Recall that X is the vector obtained by removing the
first row of (dif(π))mpr, while πmr = π(v) for some v ∈ S[r,m, k].

First, let k = 4. Then, ρmpr = X is the vector obtained by deleting the first
or the first and the last row of the vector shown in Figure 3 (c). In either case
one easily verifies that F (ρ) is a facet of C≤k(Dn) using Proposition 2.2 (b).

Next, let k ≥ 5. W.l.o.g. we may assume that π = πmr and that the first
and last row of π are the only rows which are multiples of the vector of all ones.
The vector that results from deleting these both rows from π shall be denoted
by ϑ. Then, it follows that (dif(ϑ))mpr = X . This means that F (ϑ) is a facet
of C≤k(Dm−2) if and only if F (ρ) is one of C≤k(Dn), by Proposition 2.2 (b). In
what follows, we argue on the subgraph D̂ = (V̂ , Â) of Dm induced by the node
set Vm\{1,m}. The DP-graph associated with D̂ will be denoted by D̂ = (V̂ , Â).
Moreover, ϑ will be perceived as a subvector of π with row incices 2, 3, . . . ,m−1.
By construction, ϑ2 = (1, 0, 0, . . . , 0) and ϑm−1 = (r, r, . . . , r, r − 1).

The proof of part (1) can be modified as follows. First, consider for every
arc (s, i) in

Ŷ s := δout(s) ∩ Â
(

σϑ, r
)

the chain Ĉsi := (s, i, i+ 1, . . . ,m− 1, 2, t) and for every arc (j, t) in

Ŷ t := δin(t) ∩ Â
(

σϑ, r
)

},
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with j 6= 2, the chain Ĉjt := (s,m − 1, 2, 3, . . . , j, t). Then, we derive |Ŷ s| +

|Ŷ t| − 1 = 2(k − 2) − 1 linearly independent points x̂ij := χĈ
ij

∈ F (ϑ) for
(i, j) ∈ (Ŷ s ∪ Ŷ t) \ {2, t}.

Next, for each arc

a = ([i, ℓ− 1], [j, ℓ]) ∈ Â \

m−1
⋃

i=2

Âi

we associate a path

P̂ a := ([s, 0], [v1, 1], [v2, 2] . . . , [vk−1, k − 1], [t, k])

in Ps,t(D̂), where

vh := ((i− (ℓ − 1) + h− 2) mod (m− 2)) + 2

for h = 1, . . . , ℓ− 1 and

vh := ((j − ℓ+ h− 2) mod (m− 2)) + 2

for h = ℓ, . . . , k − 1. Then, we can make the same observations on P̂ a as on
its counterpart P a in case (1): vℓ−1 = i, vℓ = j, the chain ϕ(P̂ a) does not use
loops with the exception of the loop (i, i) in case that i = j, and P̂ a is tight if
and only if πjℓ − πi,ℓ−1 = σϑij . For (i, j) ∈ Â, denote by P̂ ijs,t(D̂) the set of tight

paths P̂ a ∈ Ps,t(D̂) with ϕ(a) = (i, j). Then, P̂ ijs,t(D̂) 6= ∅ for all (i, j) ∈ Â.

Next, we consider the partition {Ŷ p : p = 0, 1, 2, 3, 4} of Â defined as follows:

Ŷ 0 := {(m− 1, 2), (2, 3), (3, 4), . . . , (m− 2,m− 1)},

Ŷ 1 := Ŷ s ∪ Ŷ t,

Ŷ 2 := {(i, j) ∈ Â : 2 ≤ j ≤ i ≤ m− 1}

\ {(m− 1, 2)},

Ŷ 3 := Â \ (Ŷ 0 ∪ Ŷ 1 ∪ Ŷ 2 ∪ Ŷ 4),

Ŷ 4 := Y 4.

Then, for each (i, j) ∈ Ŷ 2 ∪ Ŷ 3, let Ĉij := ϕ(P ) for any P ∈ P̂ ijs,t(D̂). By

construction, the points x̂ij := χĈ
ij

, (i, j) ∈ Ŷ 1 ∪ Ŷ 2, are in F (ϑ), they are
linearly independent, and they are linearly independent of the former points.
In the following, we distinguish the two cases r = 1 and r > 1. When r = 1,
it follows that Ŷ 4 = ∅ and m = k. Thus, |Ŷ 1| = 2(k − 2) and dim C≤k(D̂) =
|Â| − k+1. Consequently, we have constructed |Â| − k+1 linearly independent
points in F (ϑ), which finishes the proof in case that r = 1.

When r > 1, it follows that Ŷ 4 6= ∅. In this case, we use the points x̃p,j

for p ∈ {1, 2, . . . , r− 1}, j ∈ {0, 1, . . . , 2mp} with (1, 0) 6= (p, j) 6= (r− 1, 2mr−1)

from part (1), and replace x̃1,0 and x̃r−1,2mr−1 by the points ˆ̃x1,0 and ˆ̃xr−1,2mr−1

defined as the incidence vectors of the chains

ϕ
(

P̂ ([h1,j1−1],[i2+1,j])
)

and ϕ
(

P̂ ([hr−1,1],[ir+1,2])
)

,
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respectively. Here,jp := min{mp+2, k−1} and hp := ip+ jp−3 for p = 1, r−1.

In total, we have constructed (|Ŷ 1|−1)+ |Ŷ 2|+ |Ŷ 3|+ |Ŷ 4| linearly independent
points in F (ϑ). Observing that dim C≤k(D̂) = |Â| − (m− 1) and |Ŷ 0| = m− 2,
we conclude that F (ϑ) is a facet of C≤k(D̂).

(c) Assume that π is primitive in contradiction to the hypothesis made in
Theorem 3.1 (c). W.l.o.g. we may assume that π is lexicographic minimal.
Main parts of the proof in (b) can be taken over. We only have to remove the
m points xii ∈ Y 2 corresponding to loops and have to substitute the incidence
vectors of those chains that visit any node more than one time by feasible points.

A chain C constructed in (b) visits a node more than one time only if C = Cij

for some i > j. (The exact condition is that C = ϕ(P a) for some tight path P a

with a = ([i, ℓ− 1], [j, ℓ]) ∈ Am such that i > j ≥ max{i− ℓ+ 2, i− k+ 1+ ℓ}.)
By definition,

Cij = (s, i− p+ 1, i− p+ 2, . . . , i, j, j + 1, . . . , j + q, t)

for appropriate p ≥ i and q ≤ n − j. Clearly, if we introduce for each internal
node v ∈ Vn a clone of v (or equivalently, we introduce a copy of each row of π),
then this chain can be replaced by a tight chain that visits each node at most
one time and uses among the backward arcs only the arc (i, j).

Lemma 3.1. Let r ∈ N. For each p ∈ {1, . . . , r}, let np ≥ 2 be an even number,
let ep, ẽp ∈ Rnp be unit vectors with 1 at even position, let op, õp ∈ Rnp be unit
vectors with 1 at odd position, and let the matrix Ap ∈ Rnp×np−1 be defined by

Ap :=























1
1 1

1 1
. . .

. . .

1 1
1 1

1























.

Then, the (q × q)-matrix H in Figure 6, where q :=
r
∑

p=1

(np + 1), has full rank.

Proof. We show that the rows of H are linearly independent. We assume that
the row index set I and the column index set J of H are given by I = J =
{(p, i) : p = 1, . . . , r, i = 1, . . . , np + 1}. For each (p, i) ∈ I, we introduce a
variable µpi.

Let now
r

∑

p=1

np+1
∑

i=1

µpiHpi = 0T ,

and let µp := µp1 for p = 1, . . . , r. For any p, we conclude from the columns
(p, j), j = 2, . . . , np, that µpi = µp if i is odd, and otherwise µpi = −µp, for
i = 1, . . . , np. From the remaining columns we derive the equation system

µ1,n1+1 − µ1 = 0
µp−1,np−1+1 +µp−1 −µp= 0 p = 2, . . . , r

µp,np+1 +µp−1 −µp= 0 p = 2, . . . , r
µr,nr+1 +µr = 0.

(22)

25



26 Martin Grötschel and Rüdiger Stephan







































ẽ1A1 o1 õ1

1 0T 1 0
e ẽ2A2 o2 õ2

0 1 0T 1 0
e3 ẽ3A3 o3 õ3

0 1 0T 1 0
. . .

er−1 ẽr−1Ar−1 or−1 õr−1

0 1 0T 1 0
er ẽr Ar or

0 1 0T 1







































Figure 6: Matrix H in Lemma 3.1

The equations µp−1,np−1+1 + µp−1 − µp = 0 and µp,np+1 + µp−1 − µp = 0
imply µp−1,np−1+1 = µp,np+1. Consequently, there is some α ∈ R such that
µp,np+1 = α for i = 1, . . . , r. Hence, (22) reduces to

α− µ1 = 0
α+µp−1 −µp= 0 p = 2, . . . , r
α +µr = 0

The sum of all equations results in the equation (r + 2)α = 0. Thus, α = 0,
which implies µp = 0 for p = 1, . . . , r. Hence, µpi = 0 for all (p, i) ∈ I.

Of course, we are actually interested to characterize under which conditions
difference shifting inequalities are facet defining for P≤k(Dn). This, however,
requires a better understanding of difference shifting vectors that we do not
have at the moment.

We close this section with two completeness results.

Theorem 3.2. Denote by B(Πn) the set of all 0/1-vectors π ∈ Πn with

πmpr ⊆ X1 :=









0
0 0 . . . 0
1 1 . . . 1

1









or

πmpr = X2 :=



























0
0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
...

. . . 0
1 · · · · · · 1

1



























.

Given π ∈ B(Πn), if π
mpr ⊆ X1, then the inequality

∑

a∈A σ
π,+
a xa ≥ 1 is a

min-cut inequality among (12), otherwise it is an 1-jump inequality among (13).
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Moreover, vectors π ∈ B(Π) and nontrivial 0/1-facets of dmt(C≤k(Dn)) are in
1-1-correspondence. This means,

(a) if π ∈ B(Πn), then F (π,+) is a nontrivial 0/1-facet of dmt(C≤k(Dn));

(b) if F is a nontrivial 0/1-facet of dmt(C≤k(Dn)), then F = F (π,+) for
some π ∈ B(Πn);

(c) for any π, π̃ ∈ B(Πn), F (π,+) = F (π̃,+) implies π = π̃.

Proof. The first statement is obvious. We only prove the 1-1-correspondence
between vectors π ∈ B(Πn) and nontrivial 0/1-facets of dmt(C≤k(Dn)).

(a) Let π ∈ B(Πn) be a minimal primitive vector. If

π =





0
0T

1







π =





0 1T
1







 ,

then
∑

a∈An
σπ,+a xa ≥ 1 is the inequality x1t ≥ 1 (xs1 ≥ 1), which obviously in-

duces a nontrivial 0/1-facet of dmt(C≤k(D1)). If π = X1, then
∑

a∈An
σπ,+a xa ≥

1 is the min-cut inequality xs2 + x12 + x1t ≥ 1. One easily verifies that this
inequality induces a facet of dmt(C≤k(D2)). In case that π = X2, that is,
∑

a∈An
σπ,+a xa ≥ 1 is an 1-jump inequality, the statement is implied by Theo-

rem 1 of Dahl, Foldnes, and Gouveia [6], saying that r-jump inequalities (13)
induce facets of the dominant of the k-hop constrained walk polytope which is
equal to the dominant of the k-hop constrained chain polytope.

(b) Let F be a nontrivial facet of dmt(C≤k(Dn)) induced by some valid 0/1-
inequality τTx ≥ τ0. Using Lemma 2.1 (a2) and Theorem 2.3, it follows that
τ = σπ,+ for some π ∈ Πn, which implies F = F (π,+). The integrality of σπ,+

and the fact that the incidence vector of any 2-path has to satisfy the inequality
implies πtk ∈ {1, 2}. Now, πtk = 2 would immediately imply σπ,+si = σπ,+it = 1
for all internal nodes i ∈ Vn, and as a consequence, σπ,+a = 0 for all internal
arcs a ∈ An. Thus, the inequality

∑

a∈An

σπ,+a xa ≥ πtk

is an implicit equation, a contradiction. Hence, we conclude that πtk = 1.
Furthermore, since σπ,+ ∈ {0, 1}An, it follows that π ∈ ZVn

+ , and due to 0 =
πs0 ≤ π ≤ πtk = 1, we conclude that π is a binary vector.

It remains to be shown that π ∈ B(Πn). Suppose not. W.l.o.g. we may
assume that π = πmpr. Let i be the minimal row index such that πi 6= X2

i , and
let S := {s, 1, 2, . . . , i− 1}. Denote by F ′ the face of dmt(C≤k(Dn)) induced by
the inequality x(δout(S)) ≥ 1. Moreover, let ρ be the coefficient vector of the
right hand side of this inequality. It follows that An (σ

π,+, 1) ) An(ρ, 1), and
hence, F (π) ( F ′. Thus, F (π) is not a facet of dmt(C≤k(Dn)), a contradiction.

(c) For any π ∈ B(Πn) and any i ∈ {1, . . . , k}, we denote by SXi the set
of internal nodes j ∈ Vn such that πj = X2

i . Observe that v ∈ SX1 if and
only if σπ,+sv = 0. Next, v ∈ V Xk if and only if σπ,+vt = 0. Finally, for any
i, j ∈ {1, . . . , k} with i < j and any u ∈ V Xi and v ∈ V Xj , it follows that
σπ,+uv = 0 if and only if j = i+1. These observations imply that each nontrivial
0/1-facet of dmt(C≤k(Dn)) is induced by only one vector π ∈ B(Πn).
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Finally, we show that inequalities (14)

k−3
∑

p=0

k−1
∑

q=p+2

x((Sp : Sq))− x((Sk−1 : S1 ∪ S2)) ≥ 0,

where {Sp : p = 0, 1, . . . , k− 1} is a partition of V \ {t} with S0 = {s}, and (15)

x(δout(s) \ {(s, t)})

+
k−4
∑

p=1

k−2
∑

q=p+2
x((Sp : Sq))− x((Sk−2 : S1)) ≥ 0,

where {Sp : p = 1, . . . , k− 2} is a partition of V \ {s, t}, are the only {−1, 0, 1}-
facet defining inequalities for C≤k(Dn) in t-rooted form.

Theorem 3.3. For k ≥ 4, denote by B(Π0
n) the set of all 0/1-vectors π ∈ Π0

n

with πmpr = X3 or πmpr = X4, where

X3 :=















0
1 0 · · · 0
...

. . .
. . .

...
1 · · · 1 0

0















and

X4 :=





















0
0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
1 · · · 1 0

0





















.

Given π ∈ B(Π0
n), the inequality

∑

a∈An
σπaxa ≥ 0 is an inequality among (14)

or (15). Moreover, vectors π ∈ B(Π0
n) and nontrivial facets of C≤k(Dn) induced

by t-rooted {−1, 0, 1}-inequalities are in 1-1-correspondence. This means,

(a) if π ∈ B(Π0
n), then F (π) is a nontrivial 0/± 1-facet of C≤k(Dn);

(b) if F is a nontrivial facet of C≤k(Dn) induced by a t-rooted {−1, 0, 1}-
inequality, then F = F (π) for some π ∈ B(Π0

n);

(c) for any π, π̃ ∈ B(Π0
n), F (π) = F (π̃) implies π = π̃.

Proof.
(a) This follows from Theorem 3.1 (a).

(b) Let τTx ≥ 0 be a t-rooted inequality, with coefficients τa ∈ {−1, 0, 1} for
all a ∈ An, that induces a nontrivial facet F of C≤k(Dn). Define π ∈ RVn by

πiℓ := u
(ℓ)
i , [i, ℓ] ∈ Vn, where the numbers u

(ℓ)
i are the values returned by the

Moore-Bellman-Ford algorithm 1 for the length function d : An → R, (i, j) 7→
τij . By construction, π ∈ Πn, τ ∈ C=

π , and F ⊆ F (π). Since F is a nontrivial
facet, it follows by Lemma 2.1 (b2) that F = F (π).
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It remains to be shown that π ∈ B(Π0
n). Since s has no ingoing arcs, it

follows that πs0 = 0. Next, any tight chain implies πtk = 0. Moreover, since
τTx ≥ 0 is t-rooted, it immediately follows that πi,k−1 = 0 for all internal nodes
i. Since all values τa are integer, we see that π ∈ Z+. Moreover, assuming
τ0i = −1 for some internal node i implies that the incidence vector of the chain
(s, i, t) violates the inequality. Thus, τa ∈ {0, 1} for all a ∈ δout(s), which implies
πi1 ∈ {0, 1} for all internal nodes i ∈ Vn, which implies that π is a binary vector.

W.l.o.g. we may assume that π = πmpr. Suppose, for the sake of contradic-
tion, that X3 6= π 6= X4. First, consider the case that π1 ≻ (1, 0, 0, . . . , 0) or
πn ≺ (1, 1, . . . , 1, 0). Then, we see that An = An (σ

π, 0) ∪ An (σ
π , 1). Hence,

the inequality
∑

a∈An
σπaxa ≥ 0 is a conical combination of nonnegativity con-

straints, a contradiction. In this context, notice that σπii = 0 for all i ∈ Vn\{s, t},
since k ≥ 4.

From the previous considerations we conclude that

π1 ∈ {(0, 0, . . . , 0), (1, 0, . . . , 0)}

and πn = (1, 1, . . . , 1, 0). In what follows, we consider only the case π1 = 0T .
The second case can be similarly handled. Since π ( X4, it follows that n <
k − 1. To simplify the notation, we introduce the mapping ε : Vn → Vk−1

defined by ε(s) := s, ε(t) := t, and ε(i) := j if πi = X4
j , for i = 1, 2, . . . , n. In

particular, ε(1) = 1 and ε(n) = k− 1. Then, the digraph Dε = (Vε, Aε) defined
by Vε := {ε(i) : i ∈ Vn} and Aε := {(ε(i), ε(j)) : (i, j) ∈ An} is a subgraph of
Dk−1. The row size of X4 is k − 1. The only tight paths of Ps,t(Dk−1) using
the arc ([k − 1, k − 1], [t, k]) are

P := ([s, 0], [1, 1], [2, 2], . . . , [k − 1, k − 1], [t, k])

and
P ′ := ([s, 0], [k − 1, 1], [2, 2], . . . , [k − 1, k − 1], [t, k]).

Weaker formulated, this means that every tight chain C ∈ C≤k
s,t (Dk−1) using the

arc (k − 1, t) visits each node in {2, 3, . . . , k − 2} exactly one time. However,
since Vε ∩ {2, 3, . . . , k − 2} is a proper subset of {2, 3, . . . , k − 2}, there is no

tight chain in C≤k
s,t (Dε) using arc (k − 1, t). Therefore, the face induced by the

inequality
∑

a∈Aε

σX
4

a xa ≥ 0

is contained in the face induced by the nonnegativity constraint xk−1,t ≥ 0, a
contradiction.

(c) This statement can be shown along the lines of the proof to Theo-
rem 3.2 (c).

4 Concluding remarks

The presented approach to derive results on the hop constrained chain polytope
and its dominant is a nice example, where a higher representation of a polyhe-
dron significantly helps to explore and understand its facial structure. Although
we are currently not able to give a complete linear description of these polyhe-
dra, the paper shows that quite complicated facet defining inequalities can be
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explained much easier in terms of the corresponding extreme rays of the pro-
jection cone. In this context, we note that the coefficient vector of a shifting
inequality, which is defined in a space of dimension O(n2), is decoded by the
first O(n− k) entries of the first column of the corresponding π-vector.

From the compact formulations given in Section 2 one can derive compact
linear programs that represent the separation problems for the hop constrained
chain polytope and its dominant (see [4, 20]). Thus, one can solve the separation
problems for both polyhedra in polynomial time using the ellipsoid method or
interior point methods. Efficient combinatorial separation routines are however
unknown. The development of such algorithms is an important issue for future
research. The separation problem for the r-jump inequalities (13) was known to
be polynomial time solvable for r = 1 (see [8]) and assumed to be NP-hard for
r ≥ 2 (see [5, 15]). This piece of work shows that they are contained in a class of
inequalities for which the separation problem is polynomial time solvable, since
we obtained them by projection from a compact formulation.

We would like to point out an interesting aspect of the technique used in
the proof to Theorem 3.1. Whenever useful we have argued in terms of the
higher representation to derive certain properties of chains (e.g. tightness or
affine independence of the corresponding incidence vectors). To draw the same
conclusions in the natural formulation, had been much harder.

The presented framework can probably be used to derive deeper results on
the hop constrained chain polytope than that presented in this paper. Fur-
thermore, we believe that there are other combinatorial optimization problems,
which can be solved with dynamic programming in polynomial time, for which
a similar approach contributes for a better understanding of the respective poly-
hedra.
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