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Abstract

We demonstrate the effectiveness of the multicanonical algorithm for the tertiary
structure prediction of peptides and proteins. Unlike to simulated annealing the
relationship to the canonical ensemble remains exactly controlled. Hence, the new
method allows not only the prediction of the lowest-energy conformation, but also
the calculation of thermodynamic quantities at various temperature from one run.

� INTRODUCTION

The prediction of tertiary structures of proteins from their primary sequences remains
one of the long-standing unsolved problems (for a recent review, see, for example, Ref.
[1]). It is widely believed that this structure corresponds to the global minimum in
the energy. So the problem amounts to finding the global minimum energy out of a
huge number of local minima separated by high tunneling barriers. Within the presently
available computer resources, the traditional methods such as molecular dynamics and
Monte Carlo simulations at relevant temperatures tend to get trapped in local minima.
This is one of the so called NP complete optimization problems where the number of
computing steps required to solve the problem increases faster than any power of the size
of the system. A now almost classical way to alleviate this kind of optimization problems
is simulated annealing[2] The method is based on the “crystal forming” process; during
simulation temperature is lowered very slowly from a sufficiently high temperature to a
“freezing” temperature. However, simulated annealing is not without problems. There
is no established protocol for annealing and a certain number (which is not known a
priori) of runs are necessary to evaluate the performance. Worse, due to the in praxis
finite annealing steps the relationship of the obtained conformations to the equilibrium
canonical ensemble at a fixed temperature remains unclear.
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Recently another approach was proposed: to apply the multicanonical algorithm[3]
to the protein folding problem.[4] This new method was already successfully tested for
systems with first order phase transitions [3, 5] and spin glasses[6] where one has to deal
with similiar problems. The core of this method is to perform Monte Carlo simulations in
a multicanonical ensemble [3] instead of the usual (canonical) Gibbs-ensemble. In this new
ensemble the energy is forced onto an one dimensional random walk and a simulation may
overcome the barriers between local minima by connecting back to the high temperature
states. The canonical distribution for any temperature can then be obtained by the
re-weighting techniques[7].

Here, we review the multicanonical ansatz and demonstrate its effectiveness. For
Met-enkephalin we show that the lowest-energy conformation obtained agrees with that
determined by other methods. As another example we study α-helix propensities of some
non polar amino acids. The results are shown to be in agreement with recent experimental
results.

� THE MULTICANONICAL APPROACH

In the canonical ensemble, configurations at an inverse temperature β̂ ≡ 1/RT are

weighted with the Boltzmann factor wB(E) = exp
(
−β̂E

)
. The resulting probability

distribution is given by
PB(E) ∝ n(E)wB(E) , (1)

where n(E) is the spectral density. In the multicanonical ensemble,[3] on the other hand,
the probability distribution is defined in such a way that a configuration with any energy
enters with equal probability:

Pmu(E) ∝ n(E)wmu(E) = const. (2)

Then it follows that the multicanonical weight factor should have the form

wmu(E) ∝ n−1(E) . (3)

In order to define a explicit form of this weight factor, one can introduce two parameters
α(E) and β(E) as follows:[3]

wmu(E) = exp
{
−(β̂ + β(E))E − α(E)

}
. (4)

For any fixed β(E) and α(E) this leads to the canonical weight factor with the inverse
temperature β = β̂ + β(E), hence the name “multicanonical”.

Unlike to the canonical ensemble the multicanonical weight factor are not a priori
known. Hence, the multicanonical ansatz consists of three steps. First multicanonical
weight factors are constructed in a recursive way.[4] This allows to simulate the multi-
canonical ensemble[3] in which all energies enter with equal probability. With respect
to this ensemble equilibrium configurations are generated by the standard Monte Carlo
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procedure. Since the energy is forced onto a 1d random walk by performing a simulation
in this new ensemble, one avoids getting trapped in a local minimum and the probability
of finding the global minimum is increased. In the last step canonical expectation values
are calculated by re-weighting[7] over a wide range of temperatures using the relation:
[4, 6]

PB(β̂, E) ∝ Pmuw
−1
mu(E)e

−β̂E . (5)

� POTENTIAL ENERGY FUNCTION

The potential energy function we used for our simulations is given by the sum of the
electrostatic term Ees, the van der Waals energy EvdW , and hydrogen-bond term Ehb for
all pairs of atoms in the peptide together with the torsion term Etors for all torsion angles:

Etot = Ees + EvdW + Ehb + Etors (6)

Ees =
∑
(i,j)

332qiqj
εrij

, (7)

EvdW =
∑
(i,j)

(
Aij

r12ij
− Bij

r6ij

)
, (8)

Ehb =
∑
(i,j)

(
Cij

r12ij
− Dij

r10ij

)
, (9)

Etors =
∑
l

Ul (1± cos(nlαl)) . (10)

rij is the distance between the atoms i and j, and αl is the torsion angle for the chemi-
cal bond l. The parameters (qi, Aij, Bij, Cij, Dij , Ul and nl) for the energy function were
adopted from ECEPP/2,[8]. The effect of surrounding atoms of water is neglected and
the dielectric constant c is set equal to 2. The computer code KONF90,[9] was modified to
accomodate the multicanonical method. The peptide-bond dihedral angles ω were fixed
at the value 180◦ for simplicity, which leaves dihedral angles φi,Ψi and χi as independent
variables.

� RESULTS FOR MET�ENKEPHALIN

To test the effectiveness of the algorithm for the protein folding problem, we have studied
one of the simplest peptide, Met-enkephalin.[4] The lowest-energy conformation for the
potential energy function ECEPP/2 [8] is known[10] and analyzes with Monte Carlo
simulated annealing with ECEPP/2 also exist.[11, 12] Met-enkephalin has the amino-acid
sequence Tyr-Gly-Gly-Phe-Met. During the production run, which consisted of 105 Monte
Carlo steps and followed 4 ·104 steps for calculating the multicanonical weight factors, the
system reached the global-energy minimum region six times, at Monte Carlo steps 20128,
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Table 1: Lowest-energy conformations of Met-enkephalin obtained by a multicanonical
run. Conformation A is the lowest-energy conformation obtained by simulated annealing
(taken from Ref. 8).
Conformation A 1 2 3 4 5 6

E - kcal/mol - �11.9 �11.9 �12.0 �12.0 �12.1 �12.0 �11.9

φ1 98 90 91 90 97 96 98
ψ1 154 153 152 154 151 153 156
φ2 �161 �160 �157 �161 �158 �161 �163
ψ2 69 72 64 71 71 68 65
φ3 65 64 66 63 64 64 66
ψ3 �93 �95 �92 �95 �94 �89 �92
φ4 �85 �82 �80 �77 �83 �85 �80
ψ4 �27 �26 �29 �32 �30 �31 �29
φ5 �83 �81 �82 �78 �80 �82 �86
ψ5 142 142 138 137 145 151 147
χ11 �179 179 �177 179 179 �178 �176
χ21 �112 �110 �117 �109 �111 �115 �114
χ31 149 144 146 143 149 145 142
χ14 180 �176 178 177 180 �178 180
χ24 73 79 81 86 79 78 78
χ15 �65 �64 �67 �67 �66 �67 �66
χ25 180 �179 180 180 �176 180 176
χ35 179 178 179 �179 �179 �178 �178
χ45 �55 �66 �59 �62 �61 �60 �57

39521, 44462, 65412, 89413, and 95143. The lowest-energy conformation within each visit
is listed in Table I together with the global-minimum energy conformation (Conformation
A in Table I) obtained by simulated annealing.[11] The energies are almost all equal, and
the lowest-energy value in the present work (−12.1 kcal/mol) is slightly less than the
previous result (−11.9 kcal/mol) by simulated annealing.[11] Most of the dihedral angles
of the six conformations also agree with the corresponding ones of Conformation A within
≈ 5◦ . In a recent study [13] we found that the multicanonical method is about two to
three times faster than simulated annealing in predicting groundstate configurations.

In contrast to other methods we could not only reproduce the groundstate configu-
ration, but also calculate thermodynamic quantities like energy and specific heat over a
wide temperature range from just one Monte Carlo run. From this property follows one of
the major advantages of the new method for studying the protein folding problem: unlike
other methods it allows to investigate the relation between the global minimum in the
potential energy function and the native conformation around room temperature. As an
example we have calculated the fraction in which the lowest-energy conformation exists
at various temperatures. The results are shown in Fig. 1. As expected, at T = 50 K the
peptide is almost always in the ground state. As the temperature rises, the conformation
is thermally excited and the fraction decreases. However, at T = 300 K the peptide still
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Figure 1: Fraction of groundstate configurations as a function of temperature T.

stays close to the groundstate for a substantial amount of time (≈ 35 %).

� SIMULATION NONPOLAR AMINO ACIDS

As another example we studied α-helix propensities of homo-oligomers of nonpolar amino
acids.[14] Recent experimental measurements [15, 16] suggest large differences in helix
propensities among the amino acids while the older host-guest method[17] indicated small
differences (for a review see Ref. [15]). Our aim is to reproduce these experimental results
in a numerical simulation for three characteristic amino acids: Alanine (helix former),
Glycine (helix breaker), and Valine (helix indifferent).

For our simulation we considered homo-oligomers of 10 amino acids. The criterion we
adopt for α-helix formation is as follows: We consider that a residue is in the α-helix state
when the dihedral angles (φ, ψ) fall in the range (−70± 20◦,−37± 20◦). The length 	 of
a helical segment is then defined by the number of successive residues which are in the
α-helix state. The number n of helical residues in a conformation is defined by the sum
of 	 over all helical segments in the conformation. In Fig. 2 we show the average % helix
per residue <n>

N
(N = 10) as a function of temperature for each homo-oligomer. (Ala)10

is a strong helix former with % helix varying from ∼ 80 % at T = 200 K to ∼ 50 % at
T = 400 K, and (Gly)10 is a strong helix breaker with % helix varying from ∼ 10 % at
T = 200 K to ∼ 7 % at T = 400 K, while (Val)10 comes in between the two with % helix
varying from ∼ 35 % at T = 200 K to ∼ 17 % at T = 400 K. This is in accord with
the experimental results. [15, 16] From the average of n and 	 one can calculate the helix
propagation parameter s of the Zimm-Bragg model [18]

s =
(< l > −1)(1 − <n>

N
)

< l > (1 − <n>
N

)− <n>
N

. (11)

This parameter was also obtained by experiments.[15, 16] We found s(Ala) = 1.5 ∼ 1.6,
s(Val) = 0.37 ∼ 0.45, and s(Gly) = 0.13 ∼ 0.16 around the experimentally relevant tem-
perature (∼ 0◦ C). These values are in remarkable agreement with the experiments,[16]
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Figure 2: Average % helix per residue <n>
N

(N = 10) as a function of temperature for the
three homo-oligomers, (Ala)10, (Val)10, and (Gly)10.

where they give s(Ala) = 1.99 ∼ 2.19, s(Val) = 0.20 ∼ 0.93, and s(Gly) = 0.02 ∼ 0.57.

In Table 2 we present the free energy differences ΔG ≡ GH −GC , enthalpy differences
ΔH, and entropy differences TΔS between helix (H) and non-helix (C) states. Here,
a conformation is considered as in the helix state if it has a segment with helix length
	 ≥ 3. Note that 	 = 3 corresponds to roughly one turn of the α-helix . The free energy
differences were calculated from ΔG = −RT ln NH

NC
, where NH and NC are average num-

bers of conformations in helix and non-helix states, respectively. The enthalpy differences
were obtained from ΔH = EH − EC, where EH and EC are average potential energies in
helix and non-helix states, respectively. Finally, the entropy differences were derived from
ΔG and ΔH by the relation TΔS = ΔH − ΔG. It is clear from the table that around
temperatures near 0◦ C (Ala)10 favors helix state with ΔG = −3 ∼ −4 kcal/mol and
(Gly)10 favors non-helix state with ΔG = 2.7 ∼ 3 kcal/mol, while (Val)10 slightly favors
non-helix state with ΔG = 0.4 ∼ 0.8 kcal/mol. These results again support the exper-
imental fact that Alanine is a helix former and Glycine is a helix breaker, while Valine
comes in between the two. Note that for each homo-oligomer the entropy contribution
−TΔS monotonically increases with temperature as it should because of the increased
thermal fluctuations. Note also that ΔH is large negative for (Ala)10, whereas it is small
for (Val)10 and (Gly)10, suggesting that ΔH is a key factor for helix stability. This can be
understood by the fact that helical conformations is one of the ideal conformations that
minimize the Lennard-Jones term ELJ . Fig. 3 shows for Alanine that the behavior of the
energy as a function of temperature is indeed dominated by this term. The relative domi-
nance of the Lennard-Jones energy depends on the geometry of the side chains. However,
we found for all three homo-oligomers studied in the present work that the lowest energy
configuration is helical.
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Figure 3: Total Energy Etot (+),Coulomb term Ees(x),Lennard-Jones term ELJ(∗),
Hydrogen-bond term EHB(�) and Torsion energy Etors(o) as a function of temperature.

Peptide T ΔG ΔH TΔS
250 -4.3(1.0) -10.6(1.1) -6.5(1.5)

(Ala)10 300 -3.0(8) -10.1(2.5) -7.2(2.6)
350 -1.9(5) -10.1(2.8) -8.3(2.9)
250 0.41(28) -2.1(1.8) -1.0(1.8)

(Val)10 300 0.79(54) -0.94(53) -1.6(8)
350 1.1(5) -1.8(1.3) -3.8(1.1)
250 2.7(1.2) 1.3(2.1) -0.4(2.4)

(Gly)10 300 3.1(1.0) 0.28(1.7) -1.9(2.0)
350 3.6(9) -0.29(2.0) -4.1(2.2)

Table 2: Free energy differences ΔG, enthalpy differences ΔH, and entropy differences
TΔS ( in kcal/mol) between helix and non-helix states.
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� CONCLUSION

We reviewed the the multicanonical approach to the ab initio prediction of peptide and
protein conformations. This ansatz allows not only to find the lowest energy conformation
but also to calculate thermodynamic quantities over a wide range of temperatures from
just one simulation. We applied the new method to some simple peptides. For Met-
enkephalin the known groundstate configuration could be reproduced. Simulating homo-
oligomers of nonpolar amino acids we observe direct folding of helices from completely
random initial conformations. Our numerical results could qualitatively and quantitatively
reproduce recent experimental results.
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