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The Hypergraph Assignment Problem∗

Ralf Borndörfer∗∗ Olga Heismann∗∗

revised version June 2013

Abstract

The hypergraph assignment problem (HAP) generalizes the assignment prob-
lem from bipartite graphs to bipartite hypergraphs; it is motivated by appli-
cations in railway vehicle rotation planning. The HAP is NP-hard and APX-
hard even for small hyperedge sizes and hypergraphs with a special partitioned
structure. We show that an algorithmically tractable model providing a strong
LP relaxation which implies all clique inequalities can be derived from a suit-
able extended formulation of polynomial size.

Keywords: 90C27; hypergraph; bipartite hypergraph; assignment; extended for-
mulation.

1 Introduction

The assignment problem is fundamental in combinatorial optimization,
see [Burkard et al., 2012] for a survey. We propose and investigate a hypergraph
generalization.

In the assignment problem, we are looking for a minimum cost perfect matching
in a bipartite graph, i. e., we assign to each vertex on one side a vertex on the
other side. Likewise, the hypergraph assignment problem looks for a minimum
cost perfect matching in a bipartite hypergraph, i. e., we assign sets of vertices
on one side to sets of vertices on the other side; we assume that each hyperedge
contains the same number of vertices on both sides, see Fig. 1 for an illustration.

The HAP is motivated by applications in railway vehicle rotation planning, see
[Borndörfer et al., 2011], [Borndörfer et al., 2012] for details. It can be formu-
lated as a set partitioning problem, but, to the best of our knowledge, its special
structure has not been studied yet. There is a relation to flow problems on directed
hypergraphs, see [Gallo et al., 1993],[Cambini et al., 1997], but this theory does
unfortunately also not provide positive results for our case.

The assignment problem can be solved in polynomial time, e. g., with the well-
known Hungarian algorithm, see [Kuhn, 1955], [Munkres, 1957],
∗Supported by the DFG Research Center MATHEON “Mathematics for key technologies”.
∗∗Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, {borndoerfer,

heismann}@zib.de
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[Burkard et al., 2012]. In contrast, the hypergraph assignment problem is NP-hard
and APX-hard even in very simple cases. On the positive side, a model provid-
ing a strong LP relaxation that implies all clique inequalities can be derived from
a suitable extended formulation of polynomial size. The construction works for
hypergraphs with a special structure, namely, for what we call partitioned hyper-
graphs. This, however, is no loss of generality, as the general HAP can be reduced
to the HAP on partitioned hypergraphs. A computational study on the impact of
clique inequalities can be found in [Borndörfer and Heismann, 2011].

This paper is structured as follows. Section 2 introduces the hypergraph assign-
ment problem. Section 3 discusses the relation to hyperflows. Section 4 contains
the complexity results. In Section 5 we will introduce an extended IP formulation
and prove that it implies all clique inequalities of the canonical formulation. Fi-
nally, you can find in Section 6 a proof that every HAP can be reduced to a HAP in
a partitioned hypergraph.

2 Terminology

We start with basic notions for the hypergraph assignment problem, state the prob-
lem, and discuss its relation to hyperflows.

Definition 2.1. A bipartite hypergraph G = (U , V, E) is a triple of two disjoint vertex
sets U , V and a set of hyperedges E ⊆ 2U ·∪V . We assume that the vertex sets have
the same size |U | = |V |, and that every hyperedge e ∈ E has the same number
|e ∩ U | = |e ∩ V | > 0 of vertices in U and V . We denote by |e| the size of the
hyperedge e ∈ E, and call a hyperedge of size 2 an edge.

Definition 2.2. For a vertex subset W ⊆ U ∪ V we define the incident hyperedges
δ(W ) := {e ∈ E : e ∩W 6= ;, e \W 6= ;} to be the set of all hyperedges having at
least one vertex in both W and (U ∪ V ) \W . We also write δ(v) = δ({v}) if v is a
vertex.

Note that for W ⊆ U or W ⊆ V , e ∈ δ(W ) is equivalent to e ∩W 6= ;. We are
interested in hyperedge sets that we call hyperassignments.

Definition 2.3. Let G = (U , V, E) be a bipartite hypergraph. A hyperassignment in
G is a subset H ⊆ E of hyperedges such that every v ∈ U ∪V is contained in exactly
one hyperedge e ∈ H.

Figure 1 illustrates a hyperassignment in a bipartite hypergraph. Our aim is to
find a hyperassignment having minimum cost.

Definition 2.4. A cost function cS : S→ R maps a set S to the reals. For T ⊆ S let

cS(T ) :=
∑

s∈T

cS(s).

Problem 2.5 (Hypergraph Assignment Problem).
Input: A pair (G, cE) consisting of a bipartite hypergraph G = (U , V, E) and a cost
function cE : E→ R.
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Figure 1: Visualization of the bipartite hypergraph G = (U , V, E) with
U = {u1, u2, u3}, V = {v1, v2, v3}, E = {e1, e2, e3, e4}, e1 = {u1, v1}, e2 =
{u1, u2, v1, v2}, e3 = {u1, u3, v2, v3}, e4 = {u3, v3}. Vertices are circles, edges have
square labels, the hyperedges of the hyperassignment {e2, e4} are drawn with thick
lines.

Output: A minimum cost hyperassignment in G w. r. t. cE , i. e., a hyperassignment
H∗ in G such that

cE(H
∗) =min{cE (H) : H is a hyperassignment in G},

or the information that no hyperassignment exists.

Unlike in the graph case, bipartite hypergraphs can have a complex structure,
which, of course, cannot be avoided. What we can do, however, is to study a
certain “normal form” with a “graph-type appearance” which we find easier to an-
alyze. Our normal form is based on a partitioning of the vertex set that allows to
capture the local structure of a hyperassignment in terms of what we call “config-
urations”. We will show in Section 6 that every hypergraph can be polynomially
transformed into a partitioned hypergraph in such a way that there is a one-to-one
correspondence between the hyperassignments in the associated HAP instances.

Definition 2.6. A bipartite hypergraph G = (U , V, E) is called partitioned with max-
imum part size d ∈ N if there exist pairwise disjoint≤ d-element sets U1, . . . , Up and

V1, . . . , Vq called the parts of H such that ·
⋃p

i=1Ui = U , ·
⋃q

i=1Vi = V , and

E ⊆
p
⋃

i=1

q
⋃

j=1

2Ui∪Vj ,

i. e., every hyperedge intersects exactly one part in U and one part in V . In other
words, every hyperedge in a partitioned bipartite hypergraph runs from a part of
G on the U-side to a part on the V -side. We shortly call a partitioned bipartite
hypergraph a partitioned hypergraph.

For an example of a partitioned hypergraph see Figure 2.
We now introduce the notion of a configuration to describe the local structure

of a hyperassignment H at a part Π, i. e., the possible sets H ∩δ(Π).
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Figure 2: Visualization of a partitioned hypergraph with maximum part size d = 3
and parts {u1}, {u2, u3}, {u4, u5, u6} and {v1}, {v2}, {v3}, {v4, v5, v6}, and hyperedges
{u1, v2}, {u2, v1}, {u2, u3, v4, v6}, {u4, u5, u6, v4, v5, v6}. The vertices of each part with
more than one vertex are surrounded by an ellipse in the picture. For partitioned
hypergraphs we visualize the hyperedges which connect all the vertices from one
part with all the vertices from another part by drawing just a line between the two
ellipses surrounding the vertices of the part.

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6
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Figure 3: In this partitioned hypergraph, the set of all configurations for the part
Π = {u4, u5, u6} is CΠ = {{e3, e6, e9}, {e3, e7, e9}, {e3, e8}, {e5, e7, e9}, {e5, e8}, {e4}}.

Definition 2.7. Let Π ∈ {U1, . . . , Up, V1, . . . , Vq} be a part of a partitioned hyper-
graph. We define the set of all configurations associated with Π to be

CΠ =
n

C ⊆ δ(Π) : Π⊆
⋃

e∈C

e and e1 ∩ e2 = ; ∀e1, e2 ∈ C with e1 6= e2

o

.

We write CU :=
⋃p

i=1CUi
, CV :=

⋃q
i=1CVi

, and C :=CU ∪CV .

A configuration C ∈ CΠ associated with part Π, w. l. o. g. Π ⊆ U , is a subset of
disjoint hyperedges that connect all and only the vertices in Π on the U-side with
some vertices on the V -side of G, see Fig. 3 for an illustration. A hyperassignment
H has the same property and therefore induces a configuration H ∩ δ(Π) at every
part Π.
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3 Relation to Other Problems

The hypergraph assignment problem can be viewed as a set partitioning problem
with a special structure; the hypergraphs are bipartite. In Section 5, we show how
this property can be used to derive a strong LP formulation, which cannot be stated
for general set partitioning problems.

The problem to decide whether a bipartite hypergraph contains a hyperas-
signment can be related to the theory of systems of disjoint representatives, see
[Aharoni and Haxell, 2000]. Namely, a hyperassignment in a partitioned hyper-
graph selects for each part Ui exactly one configuration C ∈ CUi

that covers some
vertices C ∩ V . The vertex sets C ∩ V are disjoint (they actually form a partition
of V ) and therefore can be seen as a system of disjoint representatives in the hy-
pergraph system {{C ∩ V : C ∈ CUi

} : i = 1, . . . , p}. Conversely, every system
of disjoint representatives in this hypergraph system gives rise to a hyperassign-
ment since the number of covered vertices in V must be equal to |U | = |V |. The
existence of a system of disjoint representatives and hence the existence of a hy-
perassignment can be checked using a generalization of Hall’s theorem, see again
[Aharoni and Haxell, 2000], which, however, involves a super-exponential number
of conditions.

As far as we know, the optimization problem HAP has not been investigated in
the literature before. It can be related to the more general minimum cost hyperflow
problem with integrality constraints, as we will show now.

The hypergraph assignment problem can be stated as a minimum cost hyper-
flow problem with integrality constraints on a so-called (directed) B-hypergraph, see
[Cambini et al., 1992],[Cambini et al., 1997],[Jeroslow et al., 1992].
A B-hypergraph (backward hypergraph) D = (N , A) consists of a vertex set N and
a set of B-hyperarcs (backward hyperarcs) A. A B-hyperarc a = (Ta, ha) ∈ A is pair
of a vertex set Ta ⊂ N (the tail) and a vertex ha ∈ N \ Ta (the head); it is supposed
to be directed from the tail to the head. “Flow multipliers” can be associated with
B-hyperarcs, but we omit them here. We are further given a demand vector b ∈ RN

and cost function cA : A→ R on the B-hyperarcs. A hyperflow f ∈ RA
≥0 is a vector,

which associates a flow value with each B-hyperarc such that for all vertices n ∈ N
the demand constraint

∑

a∈A:n=ha

fa −
∑

a∈A:n∈Ta

fa = bn

is satisfied. Note that the flow at the head of a B-hyperarc is the same as the flow at
each of the tail vertices. The problem consists of finding a (not necessarily integral)
minimum cost hyperflow f ∗, i. e.,

∑

a∈A

cA(a) f
∗
a =min

(

∑

a∈A

cA(a) fa : f is a hyperflow in D

)

.

We can state the HAP in (G, cE) with G = (U , V, E) as a minimum cost hyperflow
problem with integrality constraints in the following way. Let E = E1 ·∪ E2 where
E1 = {e ∈ E : |e| = 2} is the set of all edges in E and E2 = E \ E1 the set of all
other hyperedges. For e ∈ E1, let {te} = e ∩ U and {he} = e ∩ V ; for e ∈ E2, let
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Figure 4: The B-hypergraph and the hyperflow (hyperarcs with value 1 are drawn
with thick lines) corresponding to the hypergraph and the hyperassignment in Fig-
ure 1. The numbers next to the vertices are the values of the demand vector.

Ue = U ∩ e and Ve = V ∩ e. We construct a B-hypergraph D = (N , A) with vertex set
N = U ·∪ V ·∪ E2 and B-hyperarc set A = A1 ∪ A2 ∪ A′2, A1 =

�

({te}, he) : e ∈ E1
	

,
A2 =

�

(Ue, e) : e ∈ E2
	

, A′2 =
�

(Ve, e) : e ∈ E2
	

. In the cost function, we assign
cA({te}, he) = cE(e) to the B-hyperarcs in A1, cA(Ue, e) = cE(e) to the B-hyperarcs in
A2, and cost 0 to all B-hyperarcs in A′2. We define the demand vector b such that

bn =







−1 if n ∈ U
1 if n ∈ E
1− |{e ∈ E2 : n ∈ e}| if n ∈ V.

The idea of this construction is that B-hyperarcs ({te}, he) and (Ue, e) have flow
value 1 if e is contained in the hyperassignment, while a B-hyperarc (Ve, e) has flow
value 1 if e is not contained in the hyperassignment; all other flow values are 0. It
can be verified that there is a cost-preserving bijection between hyperassignments
in G and 0/1 hyperflows in D. Namely, the following 0/1 hyperflow corresponds
to a hyperassignment H ⊆ E in G:

fa =































1 if a = ({te}, he) ∈ A1, e ∈ H
0 if a = ({te}, he) ∈ A1, e /∈ H
1 if a = (Ue, e) ∈ A2, e ∈ H
0 if a = (Ue, e) ∈ A2, e /∈ H
0 if a = (Ve, e) ∈ A′2, e ∈ H
1 if a = (Ve, e) ∈ A′2, e /∈ H.

For an example see Figure 4.
In contrast to the minimum cost flow problem on graphs, the hyperflow prob-

lem does not necessarily have integer solutions for integral inputs. A hypergraph
network simplex algorithm to compute a (not necessarily integer) optimal solution
was proposed in [Cambini et al., 1992], while sufficient conditions for ensuring
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integrality in terms of so-called gain-free Leontief substitution flows have been in-
vestigated in [Jeroslow et al., 1992]. Similar results are not known in our setting;
in fact, we will show now that the HAP is NP-hard even in very simple cases.

4 Complexity

We will now prove that the HAP is NP-hard and APX-hard using a reduction to the 3-
dimensional matching problem. This results already hold for bipartite hypergraphs
with a very simple structure, namely, for partitioned hypergraphs with part size at
most two.

Theorem 4.1. The hypergraph assignment problem is NP-hard and APX-hard, even
for partitioned hypergraphs with maximum part size 2.

Proof. We will use the NP-complete and in its optimization version APX-hard 3-
dimensional matching problem [Garey and Johnson, 1979, page 46][Kann, 1991].
The input of the 3-dimensional matching problem is an undirected hypergraph
(X ·∪ Y ·∪ Z , T ), T ⊆ 2X ·∪Y ·∪Z such that |X |= |Y |= |Z | and

|t ∩ X |= |t ∩ Y |= |t ∩ Z |= 1 ∀t ∈ T.

It asks whether a partitioning of this hypergraph exists, i. e., a set F ⊆ T such that
each element from X ·∪ Y ·∪ Z is contained in exactly one set in F . Let

X = {x1, . . . , xn},
Y = {y1, . . . , yn},
Z = {z1, . . . , zn},
T = {t1, . . . , tm},

with t r = {x ir
, y jr , zkr

}, r = 1, . . . , m.
To prove the theorem we construct an instance of the hypergraph assignment

problem having a size that is polynomial in the size of the given 3-dimensional
matching problem such that there exists a hyperassignment in the HAP if and only
if there exists a partitioning in the 3-dimensional matching problem.

Let G = (U , V, E) be a partitioned hypergraph with parts

U(z1) = {u(z1), u′(z1)}, . . . , U(zn) = {u(zn), u′(zn)},
U(t1) = {u(t1), u′(t1)}, . . . , U(tm) = {u(tm), u′(tm)}

in U and

V (x1, y1) = {v(x1), v(y1)}, . . . , V (xn, yn) = {v(xn), v(yn)},
V (t1) = {v(t1), v′(t1)}, . . . , V (tm) = {v(tm), v′(tm)},

7
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Figure 5: Example for the construction of G in the NP-hardness proof for (X ·∪ Y ·∪
Z , T ) with n = 2 and T =

�

{x1, y1, z1}, {x2, y1, z2}, {x1, y2, z1}
	

. The partitioning
F =

�

{x2, y1, z2}, {x1, y2, z1}
	

gives rise to a hyperassignment in G drawn with
thick lines.

in V . Let

E =
¦

{u(t r), v(x ir
)} : r ∈ {1, . . . , m}

©

∪
¦

{u′(t r), v(y jr )} : r ∈ {1, . . . , m}
©

∪
¦

{u(zkr
), u′(zkr

), v(t r), v′(t r)} : r ∈ {1, . . . , m}
©

∪
�

{u(t r), u′(t r), v(t r), v′(t r)} : r ∈ {1, . . . , m}
	

.

For an example of this construction see Figure 5.
Let H ⊆ E be a hyperassignment in G. Each of the vertices v(x1), . . . , v(xn),

v(y1), . . . , v(yn), u(z1), . . . , u(zn), u′(z1), . . . , u′(zn) is contained in exactly one hy-
peredge in H. All such hyperedges contain at least one vertex from one of the
parts U(t r) or V (t r) for some r. The four vertices u(t r), u′(t r), v(t r), v′(t r)
from the parts U(t r), V (t r), r = 1, . . . , m, are contained either in the hyperedge
{u(t r), u′(t r), v(t r), v′(t r)} in E (case one) or in the three hyperedges {u(t r), v(x ir

)},
{u′(t r), v(y jr )}, and {u(zkr

), u′(zkr
), v(t r), v′(t r)} (case two) in E. Thus, the set of

all {x ir
, y jr , zkr

} ∈ T for which r is associated with case two form a partitioning of
(X ·∪ Y ·∪ Z , T ).

On the other hand, given a partitioning of (X ·∪ Y ·∪ Z , T ) we get a hyperassign-
ment H in G by choosing the hyperedges associated with case two exactly for those
r for which {x ir

, y jr , zkr
} is in the partitioning and the hyperedge associated with

case one otherwise.

5 Clique Inequalities and an Extended Formulation

The hypergraph assignment problem has a canonical integer linear programming
formulation of the set partitioning type. Such a model can be strengthened by
clique inequalities, which are usually difficult to separate. We will show in this
section that partitioned hypergraph assignment problems give rise to an extended
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formulation of polynomial size which implies all clique inequalities. This result will
be proved by looking at the special structure of cliques in partitioned hypergraphs.

The canonical integer linear program for the HAP is the following:

minimize
x∈RE

∑

e∈E

cE(e)xe (HAP)

subject to
∑

e∈δ(v)

xe = 1 ∀v ∈ U ∪ V (i)

x ≥ 0 (ii)

x ∈ ZE . (iii)

It involves a binary variable xe for the choice of hyperedge e ∈ E. The equa-
tions (HAP) (i) guarantee that every vertex is covered by exactly one hyperedge.
(HAP) (ii) are the non-negativity and (iii) the integrality constraints. It is easy to
see that (HAP) is a valid formulation for the hypergraph assignment problem. For
a formal proof see [Heismann, 2010].

Definition 5.1. A clique in (the conflict graph of) a bipartite hypergraph G =
(U , V, E) is a set Q ⊆ E of hyperedges such that every two hyperedges e1, e2 ∈ Q
have at least one vertex in common, i. e., e1∩ e2 6= ;. A clique Q is a maximal clique
if there is no clique Q′ ⊃Q containing Q and in addition other hyperedges.

Associated with the clique Q is the clique inequality
∑

e∈Q xe ≤ 1.

Every feasible solution of (HAP) fulfills every clique inequality. These con-
straints are important for HAPs arising from real-world applications in railway
vehicle rotation planning. Such instances are modeled using partitioned hyper-
graphs of maximum part size 7, and clique inequalities can significantly reduce the
integrality gap of model (HAP), see [Borndörfer and Heismann, 2011].

Our extended integer linear programming formulation for the HAP is based on
the notion of configurations introduced in Section 2. The configurations model the
local incidence structure of hyperassignments at the parts of the hypergraph. It is
as follows.

minimize
x∈RE ,y∈RC

∑

e∈E

cE(e)xe (HAP_ext)

subject to
∑

e∈δ(v)

xe = 1 ∀v ∈ U ∪ V (i)

∑

C∈CU :e∈C

yC = xe ∀e ∈ E (ii)

∑

C∈CV :e∈C

yC = xe ∀e ∈ E (iii)

x , y ≥ 0 (iv)

x ∈ ZE (v)

y ∈ ZC (vi)

9



The model uses binary variables xe and yC for the choice of hyperedge e and
configuration C , respectively. Constraints (HAP_ext) (i) are copied from the canon-
ical formulation. Equations (HAP_ext) (ii) and (iii) link the hyperedges to the con-
figurations in parts in U resp. V that contain them. (HAP_ext) (iv), (v), and (vi)
enforce non-negativity and integrality.

This section resorts to the following notation. For an index set I , a subset J ⊆ I ,
and a vector x ∈ RI , denote by x |J = xJ the projection of x onto the coordinates
in J . Likewise, let P|J denote the projection of a polytope P ⊆ RI onto RJ .

Let
PLP(HAP_ext) := {(x , y) ∈ RE ×RC : (HAP_ext) (i)–(iv)}

be the polytope associated with the LP relaxation of the integer program (HAP_ext).
Then PLP(HAP_ext)|E and PLP(HAP_ext)|δ(Π) project the LP relaxation of the ex-
tended formulation onto the original space of all hyperedge variables and those
incident to some part Π, respectively.

The following theorem relates the integer program (HAP_ext) to formulation
(HAP) and, in particular, proves the correctness of (HAP_ext).

Theorem 5.2. Let G = (U , V, E) be a partitioned hypergraph and cE : E → R a cost
function. Then the projection

·|E : RE ×RC , (x , y) 7→ x

is a bijection between feasible solutions of (HAP_ext) and (HAP), and therefore hy-
perassignments in G. The optimum value of (HAP_ext) is equal to the cost of the
minimum cost hyperassignment in G w. r. t. cE if it exists and to∞ otherwise.

Proof. Let x ∈ RE be the incidence vector of a hyperassignment H in G. We have
to show that there is exactly one y ∈ RC such that (x , y) is feasible for (HAP_ext).
Define

C ′U := {δ(Π)∩H : Π ∈ {U1, . . . , Up}},C ′V := {δ(Π)∩H : Π ∈ {V1, . . . , Vq}}

as the set of intersections of the hyperassignment H with the hyperedges incident to
the parts in U and V , respectively. Then C ′U and C ′V are two sets of configurations,
namely, C ′U ⊆CU and C ′V ⊆CV , and we can define the incidence vector y ∈ RC of
C ′U ∪C

′
V .

We show next that the vector (x , y) is a solution of (HAP_ext). Equations (i)
hold because x is the incidence vector of hyperassignment H. Now consider some
hyperedge e incident to part Π, w. l. o. g. Π ⊆ U . Suppose xe = 1, i. e., e ∈ H.
Then e is contained in exactly one configuration in C ′U , namely, e ∈ H ∩ δ(Π),
i. e., equation (HAP_ext) (ii) holds. If xe = 0, i. e., e 6∈ H, then e is not contained
in any configuration in C ′U and (HAP_ext) (ii) also holds. The case Π ⊆ V and
(HAP_ext) (iii) is analogous. Constraints (iv)–(vi) are clear.

To see that there is only one possible choice for y consider some part Π contain-
ing a node v ∈ Π. Substituting for the variables xe in the constraint (HAP_ext) (i)
associated with node v yields

∑

C∈CΠ

yC
(∗)
=
∑

e∈δ(v)

∑

C∈CU :e∈C

yC =
∑

e∈δ(v)

xe = 1;
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i. e., y associates exactly one configuration with every part Π; equation (*) holds
because every configuration in CΠ contains exactly one hyperedge incident to node
v. Equations (HAP_ext) (ii) and (iii) ensure that this configuration contains exactly
the edges in H ∩ δ(Π), i. e., the edges such that xe = 1. This means that yC = 1
exactly for C = H ∩δ(Π).

The cost statement is obvious.

Corollary 5.3. Let G = (U , V, E) be a partitioned hypergraph and let Π be some part.
Then PLP(HAP_ext)|δ(Π) is a subset of

conv
�

x ∈ {0, 1}δ(Π) : x is the incidence vector of a configuration in CΠ

�

.

One class of inequalities implied in this way are the clique inequaltities. This
will be shown using the following lemma.

Lemma 5.4. Let G = (U , V, E) be a partitioned hypergraph and Q a clique in G. Then
there exists a part Π such that Q ⊆ δ(Π), i. e., every clique is a subset of the set of
hyperedges incident to some part Π in G.

Proof. Let Q be a nonempty clique in G (otherwise the lemma is trivial) containing
some hyperedge e1. Let e1∩U be contained in some part U1 and e1∩V be contained
in some part V1. Every other hyperedge e in Q must either satisfy e ∩ U ⊆ U1 or
e ∩ V ⊆ V1, otherwise e1 and e would have an empty intersection. Assume the
statement does not hold and Q contains some hyperedge e2 such that e2 ∩ U * U1
and some hyperedge e3 such that e3∩V * V1. Then e2∩e3 must be empty since both
e2 ∩ U , e3 ∩ U and e2 ∩ V , e3 ∩ V are contained in different parts. This contradicts
the assumption that Q is a clique. Hence, either U1 or V1 contains e∩U or e∩V for
all hyperedges e ∈Q.

Theorem 5.5. Let G = (U , V, E) be a partitioned hypergraph and Q ⊆ E be a clique.
Then, the clique inequality

∑

e∈Q

xe ≤ 1

is satisfied by all feasible solutions of the LP relaxation of (HAP_ext).

Proof. First of all, observe that |Q ∩ C | ≤ 1 for every configuration C ∈ C because
the hyperedges in a configuration are pairwise disjoint and those in Q are not.

By Lemma 5.4, Q ⊆ δ(Π) for some part Π. W. l. o. g., let Π⊆ U (the formulation
is symmetric in U , V ). Let v be some vertex in Π. Then, by (HAP_ext) (i)

1=
∑

e∈δ(v)

xe.

Substituting for xe using equation (HAP_ext) (ii) yields

=
∑

C∈CU

|δ(v)∩ C | · yC .
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Since |δ(v)∩ C |= 1 if and only if C ∈ CΠ and zero otherwise, we get

=
∑

C∈CΠ

yC .

Distinguishing the configurations with |Q ∩ C |= 1 and |Q ∩ C |= 0 leads to

=
∑

e∈Q

∑

C∈CΠ:e∈C

yC +
∑

C∈CΠ:C∩Q=;

yC

≥
∑

e∈Q

∑

C∈CΠ:e∈C

yC .

Finally, applying (HAP_ext) (ii) again yields

=
∑

e∈Q

xe.

6 Structural Results

Our main result works for hypergraph assignment problems on partitioned hyper-
graphs. We will show now that this is not a real restriction, because every bipartite
hypergraph G with maximum hyperedge size 2d can be polynomially transformed
into a partitioned hypergraph G′ with maximum part size d in such a way that
there exists a cost preserving bijection between the hyperassignments in G and G′.

The idea of the of the construction is to set up a hypergraph that consists of
disjoint copies of the original hyperedges plus some “garbage collection” edges
that will match superfluous vertices in a hyperassignment.

Theorem 6.1. Let G = (U , V, E) be a bipartite hypergraph with maximum hyperedge
size 2d and cE a cost function. Then there exists a partitioned hypergraph G′ =
(U ′, V ′, E′) with maximum part size d and a cost function cE′ such that there is a
hyperassignment H in G of cost c if and only if there is a hyperassignment H ′ in G′ of
the same cost. G′ can be constructed in polynomial time.

Proof. Let

U ′ =
¦

(u, e) : u ∈ U , e ∈ E, u ∈ e} ∪ {u′i(v) : v ∈ V, i ∈ {1, . . . , |δ(v)| − 1}
©

and

V ′ =
¦

(v, e) : v ∈ V, e ∈ E, v ∈ e} ∪ {v′i (u) : u ∈ U , i ∈ {1, . . . , |δ(u)| − 1}
©

.

For every u ∈ U and v ∈ V , order the vertices in
�

(u, e) ∈ U ′
	

as {u′′1 , . . . , u′′|δ(u)|} and
those in

�

(v, e) ∈ V ′
	

as {v′′1 , . . . , v′′|δ(v)|}, respectively.
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(v1, e1) v′1(u1) v′2(u1) (v1, e2) (v2, e2) (v2, e3) (v3, e3) v′1(u3) (v3, e4)

(u1, e1) u′1(v1) (u1, e2) (u2, e2) u′1(v2) (u1, e3) (u3, e3) u′1(v3) (u3, e4)

e′1 e′2 e′3 e′4

Figure 6: The corresponding partitioned hypergraph for the bipartite hypergraph
from Figure 1. The thick hyperedges show a hyperassignment in both. In this
construction the vertices of the type (u, e) or (v, e) for every vertex u or v of the
original hypergraph are ordered by the index of the hyperedges.

For each hyperedge e ∈ E we construct a “copy” e′ = {(u, e), (v, e) : u ∈ U∩e, v ∈
V ∩ e} ∈ E′ with cost cE′(e′) = cE(e). Further, we construct edge sets of cost zero to
control that exactly one of the copies (u, e) or (v, e) of vertex u or v, respectively, is
covered by a hyperedge copy in every hyperassignment in G′. We have

E′ :=
�

e′ : e ∈ E
	

∪
n

{u′′i , v′j(u)} : (i− j) ∈ {0, 1}, u ∈ U , i ∈ {1, . . . , |δ(u)|}
o

∪
n

{u′j(v), v′′i } : (i− j) ∈ {0,1}, v ∈ V, i ∈ {1, . . . , |δ(v)|}
o

and set G′ := (U ′, V ′, E′). This construction can be done in polynomial time.
First of all, we show that G′ can be partitioned. By construction, G′ is bipartite

(and well-defined). Choosing the sets {(u, e) : u ∈ e}, {(v, e) : v ∈ e} for every e ∈ E
and the remaining vertices individually as parts produces a partitioned hypergraph.
As |{U ∩ e}| = |{V ∩ e}| ≤ d for each hyperedge e and since every vertex in G′ has
at most one incident hyperedge that is not an edge, the maximum part size is d.

Let H be a hyperassignment in G. For every vertex u ∈ U let i(u) be the index
of u′′i(u) = (u, e) where e is the unique hyperedge in H containing u, and define i(v)
for v ∈ V analogously; note that i(u) and i(v) depend on H. Let

H ′ :=
�

e′ : e ∈ H
	

∪
¦

u′′i , v′i (u) : u ∈ U , i < i(u)
©

∪
¦

u′′i , v′i−1(u) : u ∈ U , i > i(u)
©

∪
¦

u′i(v), v′′i : v ∈ V, i < i(v)
©

∪
¦

u′i−1(v), v′′i : v ∈ V, i > i(v)
©

.

H ′ contains the copies of the hyperedges in H, and matches the unused vertex
copies to the garbage collection vertices v′i (u) and u′i(v), see Fig. 6 for an illustra-
tion. H ′ is a hyperassignment in G′ with cost cE′(H ′) = cE(H).

On the other hand, given a hyperassignment H ′ in G′ we can construct a hy-
perassignment H in G using exactly the hyperedges from E corresponding to the
hyperedges e′ ∈ H ′. Again, cE′(H ′) = cE(H). To prove that H is a hyperassignment
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we need to show that for every vertex v ∈ U ·∪ V of G, H ′ has only one vertex
(v, e) which is contained in a hyperedge e′ in H ′. For this purpose observe that G′

contains |δ(v)| − 1 vertices u′i(v) and |δ(v)| vertices (v, e) for every vertex v of G.
The garbage collection vertices u′i(v) have to be matched with vertices (v, e) via
garbage collection edges such that exactly one vertex copy (v, e) must be covered
by a hyperedge.
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