
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

STEFAN HEINZ? J. CHRISTOPHER BECK??

Reconsidering
Mixed Integer Programming and

MIP-based Hybrids for Scheduling

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
?? Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada

ZIB-Report 12-05 (February 2012)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Reconsidering Mixed Integer Programming and
MIP-based Hybrids for Scheduling

Stefan Heinz1,? and J. Christopher Beck2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
heinz@zib.de

2 Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

jcb@mie.utoronto.ca

Abstract. Despite the success of constraint programming (CP) for scheduling,
the much wider penetration of mixed integer programming (MIP) technology
into business applications means that many practical scheduling problems are
being addressed with MIP, at least as an initial approach. Furthermore, there has
been impressive and well-documented improvements in the power of generic MIP
solvers over the past decade. We empirically demonstrate that on an existing set
of resource allocation and scheduling problems standard MIP and CP models are
now competitive with the state-of-the-art manual decomposition approach. Mo-
tivated by this result, we formulate two tightly coupled hybrid models based on
constraint integer programming (CIP) and demonstrate that these models, which
embody advances in CP and MIP, are able to out-perform the CP, MIP, and de-
composition models. We conclude that both MIP and CIP are technologies that
should be considered along with CP for solving scheduling problems.

1 Introduction

While scheduling is often touted as a success story for constraint programming (CP)
[1,2],3 the wider success and exposure of mixed-integer programming (MIP) in many
domains means that, for many practitioners, MIP is the default first approach for a new
scheduling problem. In addition, driven to some extent by commercial pressures, there
have been substantial improvements in MIP solvers over the past five to ten years [3]
while the progress of commercial constraint programming solvers has not been as well
documented. For scheduling researchers, these points suggest that solving scheduling
problems using state-of-the-art MIP solvers should be considered.

In a parallel line of research, hybrid optimization methods that seek to combine the
strengths of CP and MIP have been developed over the past 15 years [4]. Most notably,
state-of-the-art methods for a number of resource allocation and scheduling problems
are based around logic-based Benders decomposition (LBBD) [5,6]. This loosely cou-
pled hybrid approach seeks to decompose the global problem into a master problem and

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in
Berlin.

3 “Scheduling is a ‘killer application’ for constraint satisfaction” [2, p. 269].

2 Stefan Heinz and J. Christopher Beck

a set of sub-problems, and then employs an iterative problem solving cycle to converge
to an optimal solution. One drawback of LBBD is that the decomposition is problem-
specific and requires significant creative effort. In contrast, tightly coupled approaches
to hybridization that seek to combine the key elements of MIP and CP into a single
solver and model [7,8] have not yet been widely applied to scheduling problems, though
there have been some positive results [9,10].

In this paper, we focus on scheduling problems that combine resource allocation and
scheduling. Given a set of jobs that each require the use of one of a set of alternative
resources, a solution assigns each job to a resource and schedules the jobs such that the
capacity of each resource is respected at all time points. Our investigations are presented
in two steps reflecting our dual motivations. First, to investigate the advances in MIP
and CP solving, we compare existing MIP, CP, and LBBD models. We show that while
LBBD performance is consistent with earlier results, the CP and MIP models are now
substantially better than previously shown [6,11]. Overall, the improvements of MIP
solvers lead to significantly better performance than both CP and LBBD. Second, based
on our observations from this experiment, we present two tightly coupled hybrids within
the constraint integer programming (CIP) framework [7,12]. One model is motivated by
adding linear relaxations to a CP model and while the other is based on adding global
constraint propagation to a standard MIP model. Further experiments show that both
CIP models achieve performance better than the three previous models, both in terms
of the number of problems solved to optimality and the solving times.

This paper does not introduce new modeling techniques or algorithms. For our com-
parison of standard MIP, CP, and LBBD models such novelty would defeat the purpose
and the CIP models are based on known linear relaxations and inference techniques.
The contributions of this paper lie in the demonstration (1) that, contrary to a common
assumption in the CP scheduling community, MIP is a competitive technology for some
scheduling problems and (2) that CIP is a promising hybrid framework for scheduling.

In the next section, we formally present the scheduling problems. Section 3 is our
first inquiry: we define the CP, MIP, and LBBD models and present our experimental
results. In Section 4, we formally present CIP while Section 5 defines two CIP models
of our scheduling problems. Then in Section 6 we present and analyze our experiments
comparing the CIP models to the existing models. In Section 7, we discuss perspectives
and weaknesses of the work and, in the final section, conclude.

2 Problem Definition

We study two scheduling problems referred to as UNARY and MULTI [6,13]. Both prob-
lems are defined by a set of jobs, J , and a set of resources, K. Each job has a release
date, Rj , a deadline, Dj , a resource-specific processing time, pjk, a resource assign-
ment cost, cjk, and a resource requirement, rjk. Each job, j, must be assigned to a
resource, k, and scheduled to start at or after its release date, end at or before its due
date, and execute for pjk consecutive time units. Each resource, k ∈ K, has a capacity,
Ck, and an associated constraint which states that for each time point, the sum of the
resource requirements of the executing jobs must not exceed the resource capacity. A
feasible solution is an assignment where each job is placed on exactly one resource and

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 3

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (1)

optcumulative(S,x·k,p·k, r·k, Ck) ∀k ∈ K (2)
0 ≤ Rj ≤ Sj ≤ max

k∈K
{(Dj −pjk)xjk} ∀j ∈ J (3)

xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sj ∈ Z ∀j ∈ J

Model 1. Constraint programming model.

no resource is over capacity. The goal is to find an optimal solution, that is, a feasible
solution which minimizes the total resource assignment cost.

In the UNARY problem, the capacity of each resource and the requirement of each
job is one. In the MULTI problem, capacities and requirements may be non-unary.

3 Reconsidering MIP

In this section, we present existing models using CP, MIP, and LBBD to solve the
resource allocation/scheduling problems. We then present our results and a discussion.
Unless otherwise indicated, the details of these models are due to Hooker [6].

Constraint Programming We use the standard CP model for our problem, defining
two sets of decision variables: binary resource assignment variables, xjk, which are as-
signed to 1 if and only if job j is assigned to resource k, and integer start time variables,
Sj , which are assigned to the start-time of job j. Model 1 states the model.

The objective function minimizes the total resource allocation costs. Constraints (1)
ensure that each job is assigned to exactly one resource. In Constraints (2), S, p·k, and
r·k are vectors containing the start time variables, the processing times, and demands
for each job if assigned to resource k. The global constraint optcumulative is the
standard cumulative scheduling constraint [1] with the extension that the jobs are
optionally executed on the resource and that this decision is governed by the x·k vector
of decision variables. The optcumulative constraint enforces the resource capacity
constraint over all time-points. Constraints (3) enforce the time-windows for each job.

We implement this model using IBM ILOG CP Optimizer. The assignment and
start time variables are realized via optional and non-optional IloIntervalVar ob-
jects. For Constraints (1) we used the IloAlternative constraint linking the non-
optional start time variables to the corresponding optional assignment variables. The
optcumulative constraint is implemented by a cumulative constraint which con-
tains the corresponding optional IloIntervalVar. For solving, we use the default
search of IBM ILOG CP Optimizer which is tuned to find good feasible solutions.4

4 Philippe Laborie, personal communication, November 23, 2011.

4 Stefan Heinz and J. Christopher Beck

min
∑
k∈K

∑
j∈J

Dj −pjk∑
t=Rj

cjk yjkt

s. t.
∑
k∈K

Dj −pjk∑
t=Rj

ykjt = 1 ∀j ∈ J (4)∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ K, ∀t (5)

yjkt ∈ {0, 1} ∀j ∈ J , ∀k ∈ K, ∀t

Model 2. Mixed integer programming model with Tjkt = {t− pjk, . . . , t}.

Mixed Integer Programming One of the standard MIP models for scheduling prob-
lems is the time-indexed formulation. The decision variable, yjkt, is equal to 1 if and
only if job j, starts at time t, on resource k. Sums over appropriate subsets of these vari-
ables form the resource capacity requirements. The model we use is defined in Model 2
where Tjkt = {t− pjk, . . . , t}.

As in the CP model, the objective function minimizes the weighted resource assign-
ment cost. Constraints (4) ensure that each job starts exactly once on one resource while
Constraints (5) enforce the resource capacities on each resource at each time-point.

To solve this model, we rely on the default branch-and-bound search in the IBM
ILOG CPLEX solver, a state-of-the-art commercial MIP solver.

Logic-based Benders Decomposition Logic-based Benders decomposition (LBBD)
is a manual decomposition technique that generalizes classical Benders decomposi-
tion [5]. A problem is modeled as a master problem (MP) and a set of sub-problems
(SPs) where the MP is a relaxation of the global problem designed such that a solution
generates one or more SPs. Each SP is an inference dual problem that derives the tight-
est bound on the MP cost function that can be inferred from the current MP solution.

Solving a problem by LBBD is done by iteratively solving the MP and then solving
each SP. If the MP solution satisfies all the bounds generated by the SPs, the MP solution
is globally optimal, as it is a relaxation of the global problem. If not, a Benders cut is
added to the MP by the violated SPs and the MP is re-solved. For models where the SPs
are feasibility problems, it is sufficient to solve the SPs to feasibility or generate a cut
that removes the current MP solution.

As in the CP model, the LBBD model defines two sets of decision variables: binary
resource assignment variables, xjk, and integer start time variables, Sj . The former
variables are in the master problem while the latter are in sub-problems.

Formally, the LBBD master and sub-problem models are defined in Model 3. The
objective function and first constraints are as in the CP model. Constraints (6) are a
linear relaxations of each resource capacity constraint. They state that the area of the
rectangle with height Ck and width from the smallest release date to the largest dead-
line must be greater than the sum of the areas of the jobs assigned to the resource.
Constraints (7) are the Benders cuts. Let H indicate the index of the current iteration

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 5

(MP) min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J∑
j∈J

pjkrjk xjk ≤ Ĉk ∀k ∈ K (6)∑
j∈Jhk

(1− xjk) ≥ 1 ∀k ∈ K, ∀h ∈ {1, . . . , H − 1} (7)

xkj ∈ {0, 1} ∀j ∈ J , ∀k ∈ K

(SP) cumulative(S,p·k, r·k, Ck)

Rj ≤ Sj ≤ Dj −pjk ∀j ∈ Jk

Sj ∈ Z ∀j ∈ Jk

Model 3. Logic-based Benders decomposition: master problem (MP) on top and sub-problem
(SP) for resource k below. Ĉk = Ck · (maxj∈J {Dj} −minj∈J {Rj})

and Jhk denote the set of jobs that resulted in an infeasible sub-problem for resource k
in iteration h < H . The Benders cut, then, simply states that the set of jobs assigned to
resource k in iteration h should not be reassigned to the same resource.

Because the MP assigns each job to a resource and there are no inter-job constraints,
the SPs are independent, single-machine scheduling problems where it is necessary to
assign each job a start time such that its time window and the capacity of the resource
are respected. The SP for resource k can be formulated as a constraint program as in
Model 3, where Jk denotes the set of jobs assigned to resource k. The components
of SP model are analogous to the parts of the CP model with the exception that the
resource assignment decisions are made before the SP models are created.

The MP and SPs are modeled and solved using SCIP [12]. We use the standard
bounds propagation [1] of the cumulative constraint.

3.1 Experimental Results

Set up We use the following solvers: IBM ILOG CP Optimizer 2.3 for the CP model,
IBM ILOG CPLEX 12.2.0.2 running with one thread for the MIP model, and SCIP
version 2.0.1.3 integrated with SoPlex version 1.5.0.3 as the underlying linear pro-
gramming solver [14] for LBBD.

We use the scheduling instances introduced by [6]. Each set contains 195 problem
instances with the number of resources ranging from two to four and the number of
jobs from 10 to 38 in steps of two. The maximum number of jobs for the instances with
three and four resources is 32 while for two resources the number of maximum number
of jobs is 38. For each problem size, we have five instances. For the MULTI problems
the resource capacity is 10 and the job demands are generated with uniform probability
on the integer interval [1, 9]. See [6] for further details w.r.t. generation of instances and
the Appendix A for problem instance characteristics.

6 Stefan Heinz and J. Christopher Beck

Table 1. Overview results for each test set (UNARY and MULTI) and each model stating the
number of instances for which (i) a feasible solution was found, (ii) a optimal solution was found,
(iii) an optimal was found and proved, and (iv) the best known solution was found. Secondly we
display the shifted geometric mean for the total running time and time until the best solution was
found.

UNARY

CP MIP LBBD CIP[CP] CIP[MIP]

feasible 195 195 175 195 195
optimal found 187 195 175 194 195
optimal proved 19 191 175 194 195
best known found 187 195 175 194 195

total time 3793 12 28 10 19
time to best 7 75 28 9 17

MULTI

CP MIP LBBD CIP[CP] CIP[MIP]

195 195 119 125 195
119 148 119 124 142

5 109 119 123 133
130 155 119 124 146

6082 442 228 212 395
64 2095 228 200 217

All computations reported were obtained on Intel Xeon E5420 2.50 GHz comput-
ers (in 64 bit mode) with 6 MB cache, running Linux, and 6 GB of main memory. We
enforced a time limit of 7200 seconds.

Results For each test set and model, Table 1 displays the number of instances for
which a feasible solution was found, for which the optimal solution was found (but
not necessarily proven), for which the optimal solution was found and proved, and for
which the best known solution was found. Optimal solutions are known for all 195
instances of the UNARY set. For the test set MULTI 181 optimal solutions are known.
We present the shifted geometric mean6 of the total solve time per instance and time
per instance to find the best solution found by the model. The geometric mean reduces
the influence of outliers, ensuring that hard instances, with times at or close to the time
limit, are prevented of having a huge impact on the measures while shifting similarly
reduces the bias of easy instances, those solved in less than s = 10 seconds. See [7]
for a detailed discussion of aggregate measures. For each category we used a bold font
to indicate the model(s) which performs best on a given criterion. We postpone the
discussion of the final two columns/models for each problem set to Section 6.

These results indicate the MIP and CP models out-perform LBBD on all measures
except the number of optimal found and proved where LBBD is superior to CP on both
problem sets and superior to MIP on the MULTI set. The CP and MIP models are able
to find feasible solutions for all instances while LBBD suffers from the fact that its
first globally feasible master solution is by definition optimal and, thus, there are no
intermediate feasible solutions available. The total run-times substantially favor MIP
on the UNARY set and LBBD on the MULTI set while the time to best solution found
favors CP, though tied with MIP on the UNARY problems.

The results indicate that MIP model performs best as it finds feasible solutions for
all problems, the most best known solutions, proves optimality for the greatest number
of instances overall, and delivers competitive run-times.

5 The time to best solution is only an upper bound in case of IBM ILOG CPLEX since the output
log does not display this time point explicitly.

6 The shifted geometric mean of values t1, . . . , tn is
(∏

(ti + s)
)1/n − s, with shift s.

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 7

Table 2. Results for the UNARY test set. Each resource job combination consists of 5 instances
for a total of 195. The running times are rounded up and given in seconds.

CP MIP LBBD CIP[CP] CIP[MIP]

|K| |J | opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time

2 10 5 5 1160 0 5 5 1 0 5 5 62 1 5 5 26 0 5 5 1 1
12 2 5 2 035 k 511 5 5 8 1 5 5 116 1 5 5 59 0 5 5 2 1
14 0 5 134 052 k – 5 5 77 1 5 5 567 2 5 5 131 1 5 5 4 2
16 0 5 134 655 k – 5 5 49 1 5 5 81 1 5 5 140 1 5 5 3 2
18 2 5 1 065 k 510 5 5 130 2 5 5 76 1 5 5 217 1 5 5 49 10
20 0 5 141 258 k – 5 5 669 11 5 5 441 3 5 5 270 1 5 5 23 10
22 0 5 131 240 k – 5 5 118 2 5 5 196 2 5 5 118 1 5 5 24 12
24 1 5 8 424 k 1924 5 5 149 3 5 5 23 16 5 5 163 1 5 5 77 24
26 0 5 116 549 k – 5 5 1390 16 4 4 301 34 5 5 440 1 5 5 115 31
28 0 5 125 223 k – 4 5 2057 44 5 5 511 29 5 5 347 1 5 5 337 54
30 0 5 131 057 k – 4 5 12 k 160 4 4 1837 75 5 5 2140 9 5 5 261 68
32 0 5 128 084 k – 5 5 257 6 5 5 288 3 5 5 707 1 5 5 117 56
34 0 5 126 592 k – 5 5 677 18 4 4 275 44 5 5 898 2 5 5 190 60
36 1 5 22 855 k 1975 5 5 346 8 1 1 657 2012 5 5 1015 2 5 5 199 100
38 1 5 7 898 k 1924 5 5 502 16 3 3 984 425 5 5 1077 1 5 5 135 88

3 10 3 5 249 k 130 5 5 1 0 5 5 357 1 5 5 74 1 5 5 1 1
12 0 5 127 293 k – 5 5 3 0 5 5 191 1 5 5 120 1 5 5 1 1
14 0 5 122 754 k – 5 5 20 1 5 5 2760 5 5 5 315 1 5 5 4 3
16 0 5 117 197 k – 5 5 109 1 5 5 224 1 5 5 323 1 5 5 6 4
18 0 5 127 851 k – 5 5 112 1 5 5 445 1 5 5 633 2 5 5 6 5
20 0 5 128 864 k – 5 5 374 2 5 5 1899 9 5 5 957 3 5 5 51 14
22 0 5 126 140 k – 5 5 258 2 5 5 1107 13 5 5 1218 4 5 5 19 13
24 0 5 141 427 k – 5 5 587 7 5 5 1746 6 5 5 1642 7 5 5 24 13
26 1 5 13 667 k 1927 5 5 1081 13 5 5 18 k 58 5 5 5648 23 5 5 46 19
28 1 5 17 842 k 1932 5 5 491 14 5 5 3722 12 5 5 4592 19 5 5 221 69
30 0 5 140 336 k – 4 5 26 k 175 3 3 12 k 134 5 5 19 k 104 5 5 100 52
32 0 5 130 588 k – 5 5 4520 56 4 4 6229 96 5 5 11 k 52 5 5 492 83

4 10 2 5 1 806 k 511 5 5 1 0 5 5 263 1 5 5 30 0 5 5 1 1
12 0 5 114 608 k – 5 5 1 0 5 5 590 2 5 5 80 1 5 5 1 1
14 0 5 110 186 k – 5 5 3 1 5 5 2391 6 5 5 212 1 5 5 1 1
16 0 5 123 967 k – 5 5 37 1 5 5 23 k 42 5 5 769 3 5 5 4 4
18 0 5 120 008 k – 5 5 7 1 4 4 9858 62 5 5 905 3 5 5 2 3
20 0 5 118 755 k – 5 5 334 2 5 5 20 k 24 5 5 2526 9 5 5 11 12
22 0 5 127 409 k – 5 5 1665 9 3 3 223 k 246 5 5 8913 45 5 5 114 28
24 0 5 121 900 k – 5 5 679 5 4 4 44 k 71 5 5 7356 39 5 5 58 24
26 0 5 129 501 k – 5 5 4514 35 4 4 152 k 257 5 5 38 k 180 5 5 83 44
28 0 5 125 818 k – 5 5 15 k 144 4 4 243 k 376 5 5 34 k 176 5 5 272 90
30 0 5 126 857 k – 4 5 74 k 508 4 4 130 k 130 4 5 64 k 379 5 5 256 101
32 0 5 121 034 k – 5 5 13 k 211 4 4 527 k 488 5 5 74 k 492 5 5 259 176

19 195 42 746 k 3793 191 195 501 12 175 175 2178 28 194 195 1112 10 195 195 66 19

To complement this overview, Tables 2 and 3 present detailed results for the CP,
MIP, and LBBD models on the UNARY test set and MULTI test set, respectively. The
first two columns define the instance size in terms of the number of resources |K| and
the number of jobs |J |. For each model, we report the number of instances solved to
proved optimality “opt” and the number instances for which a feasible solution was
found, “feas”, including the instances which are solved to optimality. We again use the
shifted geometric mean with shift s = 10 for time and s = 100 for nodes. For each
resource-job combination, the best time is shown in bold. For clarity, when a model did
not solve any instances of a given size, we use ‘–’ instead of 7200 for the running time.

The CP model only solved 19 and 5 instances, respectively, to optimality. Hence,
the “nodes” and “time” columns are meaningless since they do not reflect the strength
of finding good feasible solutions quickly. We include them for completeness.

8 Stefan Heinz and J. Christopher Beck

Table 3. Results for the MULTI test set. Each resource job combination consists of 5 instances.
This adds up to a total of 195. The running times are rounded up and given in seconds.

CP MIP LBBD CIP[CP] CIP[MIP]

|K| |J | opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time

2 10 2 5 1 555 k 509 5 5 38 1 5 5 52 1 5 5 153 0 5 5 6 2
12 0 5 149 191 k – 5 5 147 1 5 5 20 1 5 5 156 0 5 5 58 4
14 0 5 160 424 k – 5 5 202 1 5 5 7 3 5 5 343 1 5 5 130 5
16 0 5 157 963 k – 5 5 2339 11 5 5 4 17 5 5 3111 19 5 5 3393 30
18 0 5 167 188 k – 4 5 25 k 162 5 5 8 89 5 5 9952 18 5 5 11 k 77
20 0 5 168 579 k – 3 5 71 k 401 3 3 21 158 5 5 4107 3 5 5 11 k 139
22 0 5 171 979 k – 2 5 151 k 1442 2 2 10 703 2 2 339 k 1325 4 5 417 k 2550
24 0 5 174 557 k – 2 5 305 k 2197 0 0 1 – 3 3 354 k 707 3 5 66 k 1180
26 0 5 175 929 k – 3 5 578 k 2977 1 1 1 5193 1 1 1 715 k 5440 2 5 265 k 3261
28 0 5 173 741 k – 2 5 333 k 2503 3 3 11 441 3 3 91 k 160 2 5 198 k 2598
30 0 5 180 622 k – 1 5 669 k 5429 1 1 1 2972 0 0 2 390 k – 1 5 182 k 4180
32 0 5 177 335 k – 0 5 816 k – 1 1 1 5680 3 3 495 k 282 1 5 319 k 6123
34 0 5 182 303 k – 1 5 322 k 3448 1 1 1 3015 1 1 2 730 k 1397 2 5 90 k 4265
36 0 5 174 330 k – 1 5 446 k 6052 1 1 1 2044 2 2 1 314 k 700 1 5 115 k 4678
38 0 5 181 485 k – 0 5 460 k – 1 1 1 3369 3 3 6 442 k 1676 2 5 73 k 5095

3 10 2 5 1 998 k 510 5 5 7 0 5 5 50 1 5 5 85 0 5 5 4 1
12 0 5 139 631 k – 5 5 100 1 5 5 268 1 5 5 481 1 5 5 59 5
14 0 5 140 052 k – 5 5 220 1 5 5 95 1 5 5 1153 2 5 5 234 11
16 0 5 156 864 k – 5 5 3622 14 5 5 838 10 5 5 15 k 22 5 5 3196 60
18 0 5 151 398 k – 5 5 164 k 429 5 5 3197 21 4 4 202 k 139 4 5 18 k 296
20 0 5 165 255 k – 4 5 409 k 1124 5 5 1614 6 5 5 38 k 35 5 5 8427 253
22 0 5 164 038 k – 2 5 818 k 6014 5 5 2254 149 2 2 633 k 1352 5 5 38 k 505
24 0 5 163 222 k – 2 5 439 k 3253 1 1 813 2324 1 1 1 661 k 3165 4 5 41 k 1001
26 0 5 172 448 k – 0 5 452 k – 4 4 1341 1351 3 3 651 k 727 1 5 269 k 4467
28 0 5 174 771 k – 2 5 200 k 1829 0 0 9 – 2 3 726 k 1261 2 5 60 k 3057
30 0 5 179 915 k – 0 5 376 k – 0 0 50 – 0 0 1 383 k – 2 5 75 k 5435
32 0 5 177 797 k – 0 5 471 k – 0 0 4 – 1 1 1 748 k 6918 1 5 76 k 6639

4 10 1 5 16 295 k 1926 5 5 13 0 5 5 14 1 5 5 106 1 5 5 1 1
12 0 5 146 205 k – 5 5 18 1 5 5 31 1 5 5 243 1 5 5 61 4
14 0 5 149 547 k – 5 5 210 1 5 5 389 2 5 5 1119 2 5 5 136 12
16 0 5 145 424 k – 5 5 363 2 5 5 252 1 5 5 1095 2 5 5 79 11
18 0 5 158 035 k – 5 5 18 k 38 5 5 3297 4 5 5 29 k 21 5 5 2395 67
20 0 5 150 735 k – 5 5 108 k 309 5 5 1298 27 5 5 35 k 29 5 5 3650 106
22 0 5 147 950 k – 4 5 64 k 324 5 5 3364 46 4 4 78 k 167 5 5 16 k 544
24 0 5 159 240 k – 0 5 535 k – 2 2 1980 1446 2 2 1 797 k 3021 2 5 253 k 4184
26 0 5 172 713 k – 0 5 485 k – 1 1 16 k 4070 0 1 2 437 k – 2 5 170 k 5530
28 0 5 174 855 k – 1 5 370 k 5034 1 1 680 2804 1 1 1 310 k 6575 2 5 101 k 3885
30 0 5 169 821 k – 0 5 364 k – 1 1 187 2105 0 0 1 782 k – 0 5 118 k –
32 0 5 178 032 k – 0 5 323 k – 0 0 136 – 0 0 1 973 k – 0 5 81 k –

5 195 122 736 k 6082 109 195 34 k 442 119 119 223 228 123 125 62 k 212 133 195 12 k 395

For the UNARY problems, the MIP model preforms consistently better than LBBD
independently of the problem size. That changes for the MULTI test set where LBBD
solved more large problems but eventually also fails to find optimal solutions.

Since the MIP method provides a lower bound, we have a quality measure for the
solutions which are not solved to optimality. The mean percentage gap between its best
feasible solution and lower bound is 0.94%, demonstrating that MIP is able to find
proved good feasible solutions. In contrast, the other two models cannot provide any
quality information by themselves since LBBD cannot find any intermediate feasible
solutions for these problems and CP does not provide a lower bound.

Overall, all three approach fail to find optimal solutions when the problem size
increases. It is notable, that CP and MIP consistently provide high quality solutions
independently of the problem size.

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 9

3.2 Discussion

The results of the CP model are different form those of Hooker [6] and those recently
reproduced in [11]. It was shown that instances with 18 jobs or more could not be
solved to optimality and finding even feasible solution was an issue. Using IBM ILOG
CP Optimizer instead of IBM ILOG Solver and IBM ILOG Scheduler leads to a
significant increase in the number of instances for which a high quality solution was
found. However, it also leads to a substantial decrease in the number of instances solved
to proved optimality. From our perspective these results are an improvement over those
of Hooker as high quality solutions are found for all instances even though no quality
gap is provided. We believe we are using substantially the same model as Hooker and
so attribute the difference in performance to the different underlying CP solvers.

Results on the LBBD for the UNARY instances were not presented by Hooker [6] but
they are consistent with previously published results using a separate implementation
(using IBM ILOG CPLEX and IBM ILOG Scheduler) by Beck [13]. In contrast, the
LBBD results for the MULTI test set, are not consistent with the previous implementa-
tion of Beck [13]. He solved 175 instances, 56 more than our LBBD model. We suspect
that using SCIP for solving the sub-problems instead of IBM ILOG Solver and IBM
ILOG Scheduler leads to these differences. We plan to further investigate this issue.

The MIP results are substantially better than those reported by Hooker. This model
significantly out-performs the CP and LBBD model for the UNARY test set. For the
MULTI instances the MIP method is competitive to LBBD w.r.t. proved optimality (tak-
ing into account the results of [13]). Overall, however, the MIP approach dominates
this test set as well since it finds high quality solutions for those instances which are
not solved to proved optimality. As this was not the case on the MULTI problems in
Hooker’s 2005 paper [6] and we use the same models, the difference appears to be due
to the changes in the underlying MIP solver in the past six years.

Given these results, the question arises of whether we can combine CP and MIP
techniques to achieve even better performance. As noted above, this question is not new
as attested by a number of publications over the past decade, notably [15,4], as well as
by the existence of the CPAIOR conference series. Indeed, the LBBD framework itself
is one positive answer to this question. However, the decomposition model suffers at
least two weaknesses. First, a workable decomposition is difficult to develop and then
limited in its applicability in the face of simple side constraints (e.g., the addition of
precedence constraints between jobs on different resources). Second, for some models
such as the ones studied here, LBBD cannot find good feasible solutions before finding
an optimal one. For larger problems, therefore, LBBD is likely not to return a usable
result at all, a significant weakness from a practical point of view.

In seeking to preserve the advantages of the MIP model, in the balance of this pa-
per, we focus on an alternative to decomposition-based hybridization in the form of
constraint integer programming (CIP). Our goals are:

– to increase problem solving performance through the combination of CP-style in-
ference and MIP-style relaxation (cf. [15])

– to maintain the modeling flexibility of CP and MIP
– to maintain the higher level structure and modeling flexibility of global constraints

10 Stefan Heinz and J. Christopher Beck

4 Constraint Integer Programming

The power of CP arises from the possibility to directly model a given problem with a
variety of expressive constraints and to use constraint-specific inference algorithms to
reduce search. In contrast, MIP only admits very specific constraint forms (i.e., linear
and integrality constraints) but uses sophisticated techniques to exploit the structure
provided by this limited constraint language.

Constraint Integer Programming (CIP) [7,12] seeks to combine the advantages and
compensate for the weaknesses of CP and MIP. Intuitively, a constraint integer pro-
gramming is a constraint program over integer and continuous variables with the re-
striction that, once the integer variables are assigned, the remaining problem (if any) is
a linear program. Formally a constraint integer program can be defined as follows.

Definition 1 ([7]). A constraint integer program (CIP) (C, I, c) consists of solving

c? = min{cTx | C(x), x ∈ Rn, xj ∈ Z,∀j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = {1, . . . ,m}, a
subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function vector
c ∈ Rn. A CIP must fulfill the following additional condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b′} (8)

with C := N \ I , A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.

Restriction (8) ensures that the sub-problem remaining after fixing all integer vari-
ables is a linear program. Note that the restriction does not forbid nonlinear or arbitrary
global constraints – as long as the non-linearity only refers to the integer variables.

The central solving approach for CIP as implemented in the SCIP framework [12] is
branch-and-cut-and-propagate: as in CP and MIP solvers, SCIP performs a branch-and-
bound search. Also as in MIP, a linear relaxation, strengthened by additional cutting
planes if possible, is solved at each search node and used to guide and bound search.
Similar to CP solvers, inference in the form of constraint propagation is used at each
node to further restrict search and detect dead-ends. Moreover, as in SAT solving, SCIP
uses conflict analysis and restarts.

CIP has been applied to MIP [12], mixed-integer nonlinear programming [16], non-
linear pseudo-Boolean programming [17], chip verification [18], and scheduling [10].

5 Two CIP Models

We define two CIP models in this section: CIP[CP] is motivated by the CP model and
adds a linear relaxation and the solving techniques of modern MIP solvers to the CP
model defined above; the CIP[MIP] model is inspired by the standard MIP model and
can be seen as adding the cumulative constraint propagation plus (linear) channeling
constraints to the MIP model.

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 11

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J

optcumulative(S·k,x·k,p·k, r·k, Ck) ∀k ∈ K∑
j∈J

pjkrjk xjk ≤ Ck · (max
j∈J
{Dj} −min

j∈J
{Rj}) ∀k ∈ K

Rj ≤ Sjk ≤ Dj −pjk ∀j ∈ J , ∀k ∈ K
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K

Model 4. CIP[CP]: A CIP model based on the CP model.

The CIP[CP] Model The CIP[CP] model is identical to Model (1) with the addition
of a linear relaxation of the optcumulative constraint. As noted below, a key part
of solving MIPs and CIPs is exploiting the linear relaxation of the problem. Therefore,
in addition to the constraints in the CP model, all of which are linear or integrality
constraints except cumulative, we add the optcumulative linear relaxation rep-
resented by Constraint (6) of the LBBD model. Model 4 displays this model.

The default parameters of SCIP are used to solve the CIP[CP] model with the ad-
dition of a variable prioritization rule. The xjk are given higher branching priority than
the Sjk variables. This rule means that the start time variables will not be branched on
until all resource assignment variables are fixed.

The CIP[MIP] Model The CIP[MIP] model adds the optcumulative constraint
and channeling constraints to Model (2). For completeness, the CIP[MIP] model is
formally defined in Model 5. Note that the optcumulative constraint is logically
redundant as the MIP model is a complete model of the problem.

5.1 Solving CIP Models

To solve the CIP models, we use the hybrid problem solving techniques implemented
in SCIP. These techniques include the following.

Presolving. The purpose of presolving, which takes place before the tree search, is to
(1) reduce the size of the model by removing irrelevant information such as fixed vari-
ables; (2) strengthen the linear relaxation by exploiting integrality information; (3) ex-
tract structural information from the model which can be used for branching heuristics
and cutting plane generation. The optcumulative constraint can contribute to a
number of reformulations in presolving, including normalization of the demands and
the resource capacity and detection of irrelevant jobs that do not influence the feasi-
bility or optimality of the remaining jobs on that resource. For example, if a job has a
latest completion time which is smaller than the earliest start time of all remaining jobs
then this job is irrelevant and can be ignored.

12 Stefan Heinz and J. Christopher Beck

min
∑
k∈K

∑
j∈J

Dj −pjk∑
t=Rj

cjk yjkt

s. t.
∑
k∈K

Dj −pjk∑
t=Rj

ykjt = 1 ∀j ∈ J∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ K, ∀t

Dj −pj∑
t=Rj

yjkt = xjk ∀j ∈ J , ∀k ∈ K (9)

Dj −pj∑
t=Rj

t · yjkt = Sjk ∀j ∈ J , ∀k ∈ K (10)

cumulative(S·k,x·k,p·k, r·k, Ck) ∀k ∈ K
yjkt ∈ {0, 1} ∀j ∈ J , ∀k ∈ K, ∀t
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K

Model 5. CIP[MIP]: A CIP model based on the MIP model with channeling Constraints (9), (10).

Propagation. Following [19], we adapt the standard bounds-based cumulative propa-
gation: we propagate all jobs that are known to execute on the resource with standard
cumulative propagation [1]. Then, for each job j that is still optional, we perform
singleton arc-consistency (SAC) [20]: we assume that the job will execute on the re-
source and trigger propagation.7 If the propagation derives a dead-end, we can soundly
conclude that the job cannot execute on the resource and appropriately set the xjk vari-
able. Otherwise, we retain the pruned domains for the implicit Sjk variable. In either
case, the domains of all other variables are restored to their states before SAC.

Linear Relaxation. The linear relaxation can be solved efficiently to optimality and
used in two primary ways: (1) to provide a guiding information for the search and (2) as
the source of a valid lower bound on the objective function.

Branching Heuristics. As in CP and MIP, the branching decisions are crucial in CIP.
SCIP uses hybrid branching, a heuristic which combines several metrics including cost,
propagation, and constraint activity to decide on a branching variable [22].

Conflict Analysis. The idea of conflict analysis is to reason about infeasible sub-problems
which arise during the search in order to generate conflict clauses [23,24]. These conflict
clauses are used to detect similar infeasible sub-problems later in the search. In conflict
analysis, a bound change made during the search needs to be explained by a set of
bounds which imply the bound change. The explanations are used to build up a conflict
graph which is used to derive valid conflict clauses. Each time the optcumulative

7 SAC is similar but more general than the shaving technique in the scheduling literature [21].

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 13

has to explain a bound change it first uses the standard cumulative explanation al-
gorithm [25,26] to derive an initial explanation. The explanation is extended with the
bounds of all resource assignment variables which are (locally) fixed to one. In case
of the SAC propagation, a valid explanation is the bounds of all resource assignment
variables which are fixed to one at the moment of the propagation.

6 Experiments with CIP

In this section we compare the two CIP models with the CP, MIP, and LBBD models
above. The experimental set-up and hardware is as defined in Section 3.1. The CIP
models are implemented with SCIP version 2.1.0.3 integrated with SoPlex version
1.5.0.3 as the underlying linear programming solver.

Table 1 shows that the CIP models are very strong performers with CIP[MIP] dom-
inating all other models on the UNARY instances and being competitive with MIP, the
best previous model, on the MULTI instances.

UNARY. On the UNARY problems (Table 2), the CIP[MIP] model finds and proves
optimality for all 195 problem instances while CIP[CP] times-out on only one instance
(with 30 jobs and 4 resources). This performance is better than the other models. Like
the CP and MIP models, the CIP models find feasible solutions for all UNARY instances.

The CIP[CP] model is slightly faster than the MIP model, about three times faster
than LBBD, and twice as fast as CIP[MIP]. However, note that number of nodes used
by CIP[MIP] is 20 times smaller than for CIP[CP] which has the second lowest shifted
geometric mean number of nodes. We return to this observation in Section 7. The node
count of LBBD includes only the nodes in the master problem search not the sub-
problems. The time, however, includes both master and sub-problem solving.

MULTI. The CIP models perform best in terms of optimality on the MULTI problem
instances (Table 3). CIP[MIP] finds and proves optimality for 133 of 195 while CIP[CP]
achieves the same on 123 instances. Recall that LBBD and MIP perform reasonably
with 119 and 109 instances solved to optimality respectively while CP finds and proves
only 5 optimal solutions. CIP[MIP], MIP, and CP find feasible solutions for all MULTI
instances while CIP[CP] only finds feasible solutions for 125 instances with 119 for
LBBD. Comparing CIP[MIP] and MIP on solution quality shows that CIP[MIP] has
a mean percentage-gap of 0.68%, better than MIP at 0.94%. Furthermore, CIP[MIP]
achieves an equal or better solution than MIP on 164 of 195 instances.

CIP[CP] and LBBD achieve similar run-times, about twice as fast as MIP. CIP[MIP]
is 1.8 times slower than CIP[CP] albeit while solving more problems.

7 Discussion
Existing Models The results of our first experiment indicate that both MIP and CP
technology have progressed to the point where LBBD is no longer the clearly dominant
choice for solving resource allocation and scheduling problems. Indeed, our results
indicate that a monolithic MIP model can perform much better across all criteria while
a monolithic CP model is a stronger at finding high quality solutions quickly.

14 Stefan Heinz and J. Christopher Beck

We do not want to make broad generalizations from these results. In particular,
we have studied only two (closely related) types of resource allocation and scheduling
problems. Furthermore, the size of the time-indexed MIP model scales with the time
granularity and so there will clearly be a point where both CP and LBBD out-perform
it. Given the inability of the LBBD model to return intermediate solutions for these
problems, we can further predict that CP will eventually be the only usable model (of
these three) for finding feasible solutions as problem size scales.

However, we believe that our results support our claim that MIP-based models for
scheduling problems should be reconsidered in light of modern MIP solver perfor-
mance. At the least, we have shown MIP models to be competitive on a set of bench-
marks in the literature. As a point of even stronger support, commercial MIP solvers
now routinely make use of multi-core machines. Within the same computational envi-
ronment as above but using eight threads, the MIP model solves 192 and 136 instances
solved to optimality for UNARY and MULTI with shifted geometric run-times of 7.6 and
227.7 seconds, respectively.

The CIP Models Based only on the results presented above, we would be justified in
claiming that CIP is the best performing approach to the resource allocation/scheduling
problems investigated. Both CIP models find more optimal solutions and better feasible
solutions than the other techniques. The LBBD results, however, presented in [13] on
the same problems sets, albeit using a different implementation, underlying solvers, and
hardware, are superior to the CIP results here. Furthermore, Hooker [27] presents an
alternative LBBD formulation for these problems with a tighter relaxation and Benders
cuts. His empirical results, again using a different implementation and environment, are
better than the LBBD results above but appear to be worse than our CIP results.

Therefore, we choose to be cautious in our claims: our empirical results demon-
strate that a CIP approach to these scheduling problems is competitive with the LBBD
approach while being considerably better than the MIP and CP models: CIP models
currently represent the best non-decomposition-based approach to the problems stud-
ied. Together with the paper of Berthold et al. [10], these results provide strong evidence
of the promise of CIP for scheduling.

Comparing the CIP Models. It may be useful to view the CIP models as identical
except for their linear relaxations. In the CIP[MIP] model, the channeling constraints
ensure that time-index variables and the start time variables are coherent and equiva-
lent. Both models therefore have resource assignment variables and start time variables,
bounds constraints, integrality constraints, and optcumulative constraints. How-
ever, CIP[MIP] has a substantially stronger and larger linear relaxation via the knapsack
constraints (Constraints (5) and relaxed time-index variables) for each time point.

This perspective explains the relative performance of the two models. The LP relax-
ation for CIP[MIP] is harder to solve, due to its size, but provides better bounding and
heuristic guidance. As a consequence, we see between 5 and 20 times fewer nodes in
the CIP[MIP] runs than in the CIP[CP] runs (in shifted geometric mean on the UNARY
and MULTI instances, respectively). Furthermore, while CIP[MIP] solves more problem
instances, it tends to be much slower than CIP[CP] especially on instances with fewer
than about 22 jobs. Table 4 supports this analysis by showing that CIP[MIP] spends a

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 15

Table 4. Percentage of run-time over all instances spend for the linear relaxation and
optcumulative propagation.

CIP[MIP] CIP[CP]

Test set linear relaxation propagation linear relaxation propagation

UNARY 69.6 % 8.4 % 1.5 % 96.2 %
MULTI 58.3 % 22.6 % 1.7 % 12.3 %

considerably larger percentage of its run-time solving the linear program than in prop-
agating the optcumulative constraint. For CIP[CP], the reverse is true.

While the tighter but larger LP allowed the CIP[MIP] model to solve more instances
than CIP[CP] here, it also represents an inherent weakness of the model. The CIP[MIP]
model, like the time-indexed MIP formulation, scales with the time granularity. For
problem instances with longer horizons, therefore, we would expect the CIP[CP] model
to out-perform CIP[MIP].

Comparing CIP and LBBD. There is also, of course, a relationship between the CIP
and LBBD models: as the LBBD sub-problem consists of a single cumulative con-
straint, any linear sub-problem relaxation used in the LBBD master problem can be
adapted for the optcumulative relaxation in the CIP model. However, there are
three primary differences between the ways in which the two approaches behave:

1. In the CIP models, the optcumulative constraint is propagated during the
search through the resource assignment variables while in LBBD the cumulative
propagation only occurs during sub-problem solving.

2. In LBBD, the sub-problems are solved independently while that decomposition is
not visible to the CIP models.

3. The hand-crafted Benders cuts in LBBD are likely much stronger than the no-goods
derived by conflict analysis in CIP.

8 Conclusion

In this paper, we conducted two related studies. First, we replicated an experiment with
three existing optimization models for a resource allocation and scheduling problem:
mixed integer programming, constraint programming, and logic-base Benders decom-
position. We used modern commercial solvers for the former two models and demon-
strated that the progress in commercial MIP and CP solvers means that the decomposi-
tion-based approach is no longer the dominant approach to such problems. Furthermore,
our results indicate that MIP models are, at the least, competitive with other existing
scheduling models. The results showed that the CP model can quickly find high qual-
ity solutions over the whole test set. Whereas the MIP model is able to provide strong
lower bounds. As CP scheduling researchers have tended to discount the usefulness of
MIP for scheduling problems, these results suggest that we should reconsider MIP as
one of the core technologies to solve scheduling problems.

Subsequently, motivated by our first experiment, we introduced two constraint in-
teger programming (CIP) models for the same scheduling problem and compared them

16 Stefan Heinz and J. Christopher Beck

to MIP, CP and LBBD models. The basic goal was to couple the fast detection of fea-
sible solutions with the strong lower bound computation. Our results demonstrated that
on problems with unary capacity resources, both CIP models are able to solve more
problems to optimality that any of the other approaches. On problems with non-unary
resource capacity, both CIP models again out-performed the other models in terms of
number of instances for which the optimal was found and proved and, for one CIP
model, in terms of the quality of the solutions for the instances not solved to optimality.
As the LBBD results presented are weaker than previous results [27,13], we conserva-
tively conclude that the CIP models are at the least competitive with the state-of-the-art
and represent the current best non-decomposition-based approaches to these problems.
We believe that our results demonstrate that constraint integer programming is a promis-
ing technology for scheduling in general and therefore plan to pursue its application to
a variety of scheduling problems.

References

1. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based Scheduling. Kluwer Academic Pub-
lishers (2001)

2. Bartak, R., Salido, M.A., Rossi, F.: New trends on constraint satisfaction, planning, and
scheduling: a survey. The Knowledge Engineering Review 25(3) (2010) 249–279

3. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E.,
Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin,
D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Mathematical Programming Computation 3(2)
(2011) 103–163

4. Milano, M., Van Hentenryck, P., eds.: Hybrid Optimization: The Ten Years of CPAIOR.
Springer (2010)

5. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Program-
ming 96 (2003) 33–60

6. Hooker, J.N.: Planning and scheduling to minimize tardiness. In van Beek, P., ed.: Principles
and Practice of Constraint Programming – CP 2005. Volume 3709 of LNCS., Springer (2005)
314–327

7. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin
(2007)

8. Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems. Op-
erations Research 58(2) (2010) 342–356

9. Beck, J.C., Refalo, P.: A hybrid approach to scheduling with earliness and tardiness costs.
Annals of Operations Research 118 (2003) 49–71

10. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint integer pro-
gramming approach for resource-constrained project scheduling. In Lodi, A., Milano, M.,
Toth, P., eds.: Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR 2010). Volume 6140 of LNCS., Springer (2010)
313–317

11. Heinz, S., Beck, J.C.: Solving resource allocation/scheduling problems with constraint in-
teger programming. In Salido, M.A., Barták, R., Policella, N., eds.: Proceedings of the
Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems
(COPLAS 2011). (2011) 23–30

12. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation 1(1) (2009) 1–41

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 17

Table 5. The job demands are generated with uniform probability on the integer interval [1, 9] for
the MULTI problems. For each demand we state the number of appearance over the whole MULTI

test set of 195 instance.

demands 1 2 3 4 5 6 7 8 9
appearance 467 493 467 473 478 474 504 458 506

13. Beck, J.C.: Checking-up on branch-and-check. In Cohen, D., ed.: Principles and Practice of
Constraint Programming – CP 2010. Volume 6308 of LNCS., Springer (2010) 84–98

14. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin (1996)

15. Hooker, J.N.: Integrated Methods for Optimization. Springer (2007)
16. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. ZIB-

Report 09-23, Zuse Institute Berlin (2009)
17. Berthold, T., Heinz, S., Pfetsch, M.E.: Nonlinear pseudo-boolean optimization: relaxation or

propagation? In Kullmann, O., ed.: Theory and Applications of Satisfiability Testing – SAT
2009. Volume 5584 of LNCS., Springer (2009) 441–446

18. Achterberg, T., Brinkmann, R., Wedler, M.: Property checking with constraint integer pro-
gramming. ZIB-Report 07-37, Zuse Institute Berlin (2007)

19. Beck, J.C., Fox, M.S.: Constraint directed techniques for scheduling with alternative activi-
ties. Artificial Intelligence 121(1–2) (2000) 211–250

20. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfac-
tion problem. In: Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI97). (1997) 412–417

21. Martin, P., Shmoys, D.B.: A new approach to computing optimal schedules for the job-shop
scheduling problem. In: Proceedings of the Fifth Conference on Integer Programming and
Combinatorial Optimization (IPCO 1996). Volume 1084 of LNCS., Springer (1996) 389–
403

22. Achterberg, T., Berthold, T.: Hybrid branching. In van Hoeve, W.J., Hooker, J.N., eds.:
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR 2009). Volume 5547 of LNCS., Springer (2009) 309–311

23. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48(5) (1999) 506–521

24. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization 4(1)
(2007) 4–20 Special issue: Mixed Integer Programming.

25. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propagator. Con-
straints (2010) 1–33

26. Heinz, S., Schulz, J.: Explanations for the cumulative constraint: An experimental study.
In Pardalos, P.M., Rebennack, S., eds.: Experimental Algorithms. Volume 6630 of LNCS.,
Springer (2011) 400–409

27. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Operations
Research 55 (2007) 588–602

A Problem Sizes

In this section, we provide for each test set (UNARY and MULTI) and problem size
information about the size of the different models w.r.t. the number of variables and
constraints. Table 6 and 7 state the size of the models for the UNARY and MULTI sets,
respectively.

18 Stefan Heinz and J. Christopher Beck

Table 6. Problem sizes for the UNARY test set depending on the chosen model

CP MIP LBBD CIP[CP] CIP[MIP]

original presolved original presolved original presolved

|K| |J | |T | vars cons vars cons vars cons vars cons vars cons vars cons vars cons vars cons

2 10 84.2 30 32 457.2 178.4 323.4 110.4 20 12 40 12 26.2 2.0 497.2 220.4 487.2 161.6
12 93.4 36 38 712.8 217.2 222.4 73.6 24 14 48 14 29.2 2.0 760.8 267.2 748.8 216.2
14 94.0 42 44 990.2 260.0 594.6 141.4 28 16 56 16 38.8 2.0 1046.2 318.0 1032.2 250.0
16 93.6 48 50 1321.2 295.6 537.8 130.0 32 18 64 18 43.0 2.0 1385.2 361.6 1369.2 301.2
18 93.2 54 56 1697.4 330.8 1242.6 225.6 36 20 72 20 52.6 2.0 1769.4 404.8 1751.4 345.4
20 92.8 60 62 2135.2 376.0 1501.4 279.6 40 22 80 22 57.0 2.0 2215.2 458.0 2195.2 404.0
22 95.6 66 68 2612.8 405.2 1630.2 299.0 44 24 88 24 61.2 2.0 2700.8 495.2 2678.8 422.6
24 94.8 72 74 3145.8 441.2 2218.2 327.4 48 26 96 26 67.8 2.0 3241.8 539.2 3217.8 476.0
26 61.2 78 80 3698.0 485.2 2574.0 414.0 52 28 104 28 74.2 2.0 3802.0 591.2 3776.0 537.2
28 94.4 84 86 4327.4 519.6 3185.4 433.2 56 30 112 30 80.8 2.0 4439.4 633.6 4411.4 569.0
30 79.8 90 92 4960.2 561.6 3563.4 471.6 60 32 120 32 87.4 2.0 5080.2 683.6 5050.2 610.4
32 44.2 96 98 5714.8 590.4 4118.6 470.0 64 34 128 34 91.0 2.0 5842.8 720.4 5810.8 648.0
34 7.8 102 104 6482.4 630.4 4146.6 506.4 68 36 136 36 96.8 2.0 6618.4 768.4 6584.4 686.8
36 7.8 108 110 7301.6 673.6 5543.2 587.6 72 38 144 38 103.6 2.0 7445.6 819.6 7409.6 733.0
38 9.0 114 116 8182.2 709.6 5167.0 508.2 76 40 152 40 109.2 2.0 8334.2 863.6 8296.2 777.0

3 10 77.8 40 43 506.0 243.4 172.4 65.4 30 13 57 13 50.6 12.6 566.0 306.0 562.0 213.4
12 93.8 48 51 839.6 293.4 271.8 99.2 36 15 72 15 66.4 14.4 911.6 368.4 911.6 296.6
14 95.6 56 59 1179.8 339.2 537.6 144.8 42 17 84 17 81.2 16.6 1263.8 426.2 1263.8 343.4
16 95.8 64 67 1652.2 396.4 873.0 197.6 48 19 96 19 93.4 18.6 1748.2 495.4 1748.2 427.8
18 94.0 72 75 2065.4 442.2 971.6 218.6 54 21 108 21 103.4 20.2 2173.4 553.2 2173.4 482.2
20 91.0 80 83 2582.6 486.8 1347.0 307.4 60 23 120 23 116.4 22.6 2702.6 609.8 2702.6 525.4
22 95.4 88 91 3269.2 530.2 2112.0 374.2 66 25 132 25 130.6 24.8 3401.2 665.2 3401.2 601.0
24 96.0 96 99 3890.4 588.0 2316.4 404.4 72 27 144 27 139.6 26.4 4034.4 735.0 4034.4 662.0
26 97.6 104 107 4733.8 643.4 2552.8 417.2 78 29 156 29 152.8 28.6 4889.8 802.4 4889.8 720.0
28 95.0 112 115 5502.6 689.2 3365.0 481.4 84 31 168 31 165.8 30.8 5670.6 860.2 5670.6 782.8
30 96.0 120 123 6422.8 736.8 3080.0 477.0 90 33 180 33 177.0 32.6 6602.8 919.8 6602.8 853.8
32 79.6 128 131 7342.8 795.8 3525.2 523.0 96 35 192 35 187.2 34.4 7534.8 990.8 7534.8 912.6

4 10 71.8 50 54 614.8 297.2 357.4 138.4 40 14 80 14 53.6 14.6 694.8 376.8 688.4 287.6
12 87.8 60 64 870.2 363.2 412.8 152.0 48 16 96 16 86.6 15.8 966.2 458.8 961.8 352.0
14 91.0 70 74 1287.2 412.4 242.8 85.6 56 18 112 18 106.0 17.8 1399.2 525.6 1396.0 429.6
16 95.8 80 84 1781.0 478.4 221.8 99.4 64 20 128 20 120.4 19.6 1909.0 610.4 1909.0 507.8
18 96.6 90 94 2357.4 547.6 613.0 162.8 72 22 144 22 138.4 21.4 2501.4 695.6 2501.4 576.2
20 93.6 100 104 3116.2 606.4 875.8 228.8 80 24 160 24 157.2 24.0 3276.2 770.4 3276.2 666.8
22 96.4 110 114 3873.4 662.0 1261.4 324.6 88 26 176 26 169.2 25.6 4049.4 842.0 4049.4 755.0
24 94.4 120 124 4591.0 737.6 1469.8 320.0 96 28 192 28 186.0 27.4 4783.0 933.6 4783.0 821.0
26 95.6 130 134 5491.2 782.0 2738.2 494.6 104 30 208 30 205.4 30.0 5699.2 994.0 5699.2 901.2
28 95.6 140 144 6493.8 835.2 2495.8 456.2 112 32 224 32 215.8 31.2 6717.8 1063.2 6717.8 943.2
30 98.0 150 154 7498.0 899.6 3318.4 568.4 120 34 240 34 233.8 33.6 7738.0 1143.6 7738.0 1028.8
32 94.0 160 164 8863.0 990.4 5194.4 704.4 128 36 256 36 253.0 36.0 9119.0 1250.4 9119.0 1157.6

In each table, the first two columns define the problem size in terms of the number
of resources |K| and the number of jobs |J |. The third column gives the number of time
steps |T | = |maxj∈J {Dj} −minj∈J {Rj}|. In case of the unary test set, this number
differs slightly between the five instance of a problem class, hence, we report the aver-
age number of time steps. For the MULTI test set the time horizons are the same within
a problem class and each job has the same release date and deadline. The resource ca-
pacity in case of the MULTI instance is always 10 and the resource requirements vary
between 1 and 9 jobs. More precise, the job demands are generated with uniform prob-
ability on the integer interval [1, 9] (see [6]). Table 5 states for each demand the number
of appearance over the whole MULTI test set of 195 instance.

For each model, we report the number of variables “vars” and constraints “cons”.
For the MIP, CIP[CP], and CIP[MIP] we distinguish between the number of variables
and constraints after the problem was created and after presolving.

The CP model. The number of variables and constraints for the CP model only de-
pend on the number of resources and jobs. That is |K| · |J | + |J | variables and |K|

Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 19

Table 7. Problem sizes for the MULTI test set depending on the chosen model

CP MIP LBBD CIP[CP] CIP[MIP]

original presolved original presolved original presolved

|K| |J | |T | vars cons vars cons vars cons vars cons vars cons vars cons vars cons vars cons

2 10 25 30 32 357.2 60 262.6 51.4 20 12 40 12 30.0 2.0 397.2 102 387.2 92.8
12 30 36 38 568.8 72 404.2 67.2 24 14 48 14 36.0 2.0 616.8 122 604.8 110.0
14 35 42 44 794.2 84 648.6 77.6 28 16 56 16 42.0 2.0 850.2 142 836.2 128.0
16 40 48 50 1065.2 96 1034.2 92.2 32 18 64 18 48.0 2.0 1129.2 162 1113.2 146.0
18 45 54 56 1373.4 108 1279.6 104.4 36 20 72 20 54.0 2.0 1445.4 182 1427.4 164.0
20 50 60 62 1735.2 120 1716.8 116.8 40 22 80 22 60.0 2.0 1815.2 202 1795.2 182.0
22 55 66 68 2128.8 132 2111.4 128.4 44 24 88 24 66.0 2.0 2216.8 222 2194.8 200.0
24 60 72 74 2569.8 144 2558.6 141.2 48 26 96 26 72.0 2.0 2665.8 242 2641.8 218.0
26 65 78 80 3022.0 156 3012.0 153.2 52 28 104 28 78.0 2.0 3126.0 262 3100.0 236.0
28 70 84 86 3543.4 168 3535.0 165.6 56 30 112 30 84.0 2.0 3655.4 282 3627.4 254.0
30 75 90 92 4060.2 180 4051.0 176.8 60 32 120 32 90.0 2.0 4180.2 302 4150.2 272.0
32 80 96 98 4690.8 192 4681.2 188.8 64 34 128 34 96.0 2.0 4818.8 322 4786.8 290.0
34 85 102 104 5326.4 204 5320.2 201.6 68 36 136 36 102.0 2.0 5462.4 342 5428.4 308.0
36 90 108 110 6005.6 216 6000.4 214.0 72 38 144 38 108.0 2.0 6149.6 362 6113.6 326.0
38 95 114 116 6738.2 228 6733.2 226.0 76 40 152 40 114.0 2.0 6890.2 382 6852.2 344.0

3 10 22 40 43 364.4 76 171.2 44.2 30 13 60 13 52.2 10.6 424.4 139 415.2 130.6
12 27 48 51 623.8 93 331.4 70.0 36 15 72 15 69.2 14.2 695.8 168 692.2 164.4
14 31 56 59 885.8 107 483.0 82.4 42 17 84 17 84.0 17.0 969.8 194 969.8 194.0
16 36 64 67 1268.2 124 1027.2 104.6 48 19 96 19 96.0 19.0 1364.2 223 1364.2 223.0
18 40 72 75 1633.4 138 1584.4 129.2 54 21 108 21 108.0 21.0 1741.4 249 1741.4 249.0
20 44 80 83 2042.6 152 2003.4 143.6 60 23 120 23 120.0 23.0 2162.6 275 2162.6 275.0
22 49 88 91 2609.2 169 2575.6 160.2 66 25 132 25 132.0 25.0 2741.2 304 2741.2 304.0
24 53 96 99 3098.4 183 3078.8 177.0 72 27 144 27 144.0 27.0 3242.4 330 3242.4 330.0
26 58 104 107 3797.8 200 3779.0 193.2 78 29 156 29 156.0 29.0 3953.8 359 3953.8 359.0
28 62 112 115 4410.6 214 4392.2 206.0 84 31 168 31 168.0 31.0 4578.6 385 4578.6 385.0
30 67 120 123 5162.8 231 5145.8 223.0 90 33 180 33 180.0 33.0 5342.8 414 5342.8 414.0
32 71 128 131 5902.8 245 5888.2 237.4 96 35 192 35 192.0 35.0 6094.8 440 6094.8 440.0

4 10 21 50 54 435.6 94 183.6 46.8 40 14 80 14 65.4 13.2 515.6 178 499.4 167.2
12 25 60 64 647.8 112 243.6 60.0 48 16 96 16 80.6 14.8 743.8 212 726.8 195.4
14 29 70 74 965.8 130 634.6 107.2 56 18 112 18 101.2 20.2 1077.8 246 1067.8 236.4
16 33 80 84 1341.0 148 648.8 103.2 64 20 128 20 122.0 20.0 1469.0 280 1462.2 274.0
18 37 90 94 1781.8 166 1649.0 144.4 72 22 144 22 140.2 22.0 1925.8 314 1921.4 309.6
20 42 100 104 2396.2 188 2327.0 174.4 80 24 160 24 160.0 24.0 2556.2 352 2556.2 352.0
22 46 110 114 2993.4 206 2736.4 190.8 88 26 176 26 176.0 26.0 3169.4 386 3169.4 386.0
24 50 120 124 3631.0 224 3585.2 210.4 96 28 192 28 192.0 28.0 3823.0 420 3823.0 420.0
26 54 130 134 4347.2 242 4306.8 226.8 104 30 208 30 208.0 30.0 4555.2 454 4555.2 454.0
28 58 140 144 5149.8 260 5118.2 247.2 112 32 224 32 224.0 32.0 5373.8 488 5373.8 488.0
30 62 150 154 5938.0 278 5906.0 262.0 120 34 240 34 240.0 34.0 6178.0 522 6178.0 522.0
32 67 160 164 7071.0 300 7045.6 286.0 128 36 256 36 256.0 36.0 7327.0 560 7327.0 560.0

cumulative constraints, |J | alternative constraint (IloAlternative), and |K| · |J |
IloPresenceOf constraints to realize the objective function (see Model 1).

The LBBD model. For the LBBD model we report the number of variables and con-
straints for the first master model. That is, |K| · |J | variables and |K|+ |J | constraints
(see Model 3).

The CIP[CP] model. In case of the CIP[CP] model the original size of the model de-
pends on the number of resources and jobs. It has 2 · |K| · |J | variables and |K|+ |J |
constraints (see Model 4). Note that the linearizations of the optcumulative con-
straints which are explicitly state in Model 4 are generated during search and therefore
these constraints are not counted.

The MIP model. Due to time-indexed formulation the number of variables in the MIP
model depends on the number of available resources and jobs as well on the release
date, deadline, and processing time of each individual jobs (see Model 2). Therefore,

20 Stefan Heinz and J. Christopher Beck

we report the average number of variables over the five instances of a problem class.
Regarding the number of constraints the MIP model has |J |+ |K| · |T |.

The CIP[MIP] model. Since the CIP[MIP] has the MIP model as bases plus additional
optcumulative constraints for each resource and channeling constraints (9), (10),
the number of variables are the number of variables of the corresponding MIP model
plus 2 · |K| · |J |. Similar for the number of constraints. Here we have the number of
constraints of the MIP model plus 2 · |K| · |J |+ |K| (see Model 5).

	Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling

