
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD
AMBROS M. GLEIXNER

Undercover
a primal MINLP heuristic exploring a largest sub-MIP

Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

ZIB-Report 12-07 (February 2012) revised version February 2013

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Undercover

a primal MINLP heuristic exploring a largest sub-MIP

Timo Berthold∗ Ambros M. Gleixner†

06/Jan/2013
(revised version)

Abstract

We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear pro-
grams (MINLPs) that explores a mixed-integer linear subproblem (sub-MIP) of a given
MINLP. We solve a vertex covering problem to identify a smallest set of variables to fix,
a so-called cover, such that each constraint is linearized. Subsequently, these variables are
fixed to values obtained from a reference point, e.g., an optimal solution of a linear relax-
ation. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original
problem. We apply domain propagation to try to avoid infeasibilities, and conflict analysis
to learn additional constraints from infeasibilities that are nonetheless encountered.

We present computational results on a test se t of mixed-integer quadratically constrained
programs (MIQCPs) and MINLPs. It turns out that the majority of these instances allows
for small covers. Although general in nature, we show that the heuristic is most successful
on MIQCPs. It nicely complements existing root-node heuristics in different state-of-the-
art solvers and helps to significantly improve the overall performance of the MINLP solver
SCIP.

Keywords: Primal Heuristic, Mixed-Integer Nonlinear Programming, Large Neighborhood
Search, Mixed-Integer Quadratically Constrained Programming, Nonconvex Optimization
Mathematics Subject Classification: 90C11, 90C20, 90C26, 90C30, 90C59

1 Introduction

For mixed-integer (linear) programming it is well-known that general-purpose primal heuristics
like the feasibility pump [4, 19, 21] are able to find high-quality solutions for a wide range of
problems. Over the years, primal heuristics have become a substantial ingredient of state-of-the-
art solvers for mixed-integer programming [6, 10]. For mixed-integer nonlinear programming,
research in the last five years has shown an increasing interest in general-purpose primal heuris-
tics [8, 9, 12, 13, 16, 31, 36, 37].

An MINLP is an optimization problem of the form

min dTx

s.t. gk(x) 6 0 for k = 1, . . . ,m,

Li 6 xi 6 Ui for i = 1, . . . , n,

xi ∈ Z for i ∈ I,

(1)

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, berthold@zib.de
†Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, gleixner@zib.de

1

berthold@zib.de
gleixner@zib.de

where I ⊆ {1, . . . , n} is the index set of the integer variables, d ∈ Rn, gk : Rn → R for k =
1, . . . ,m, and L ∈ (R∪{−∞})n, U ∈ (R∪{+∞})n are lower and upper bounds on the variables,
respectively. Since fixed variables can always be eliminated, we assume w.l.o.g. that Li < Ui for
i = 1, . . . , n, i.e., that the interior of [L,U] is nonempty. Note that a nonlinear objective function
can always be reformulated by introducing one additional constraint and variable, hence form
(1) is general.

If all constraint functions gk are quadratic, we call (1) a mixed-integer quadratically con-
strained program (MIQCP). If all constraints are linear, we call (1) a mixed-integer program
(MIP). If I is empty, we refer to an MINLP, MIQCP, and MIP as a nonlinear program (NLP),
quadratically constrained program (QCP), and linear program (LP), respectively.

At the heart of many recently proposed primal MIP heuristics, such as Local Branching [20],
RINS [17], DINS [23], and RENS [7], lies large neighborhood search, the paradigm of solving a
small sub-MIP that promises to contain good solutions. In this paper, we introduce Undercover, a
large neighborhood search start heuristic that constructs and solves a linear subproblem of a given
MINLP. We evaluate its effectiveness on publicly available test sets and show that the heuristic
performs well on MIQCPs, but has a low success rate on general MINLPs from MINLPLib [14].

During the design of Undercover, our focus was its application as a start heuristic inside a
complete solver such as Baron [38], Bonmin [11], Couenne [5], GloMIQO [33, 34], Mino-
taur [45], or SCIP [3].

When primal heuristics are considered as standalone solving procedures, e.g., the RECIPE
heuristic [31] or the Feasibility Pump [12, 16], the algorithmic design typically aims at finding
feasible solutions for as many instances as possible, even if this takes substantial running time.
However, if they are used as supplementary procedures inside a complete solver, the overall solver
performance is the main objective. To this end, it is often worth sacrificing success on a small
number of instances for a significant saving in average running time. Primal heuristics in modern
solvers therefore often follow a “fast fail” strategy: the most crucial decisions are taken in the
beginning and in a defensive fashion such that if the procedure aborts, it will not have consumed
much running time.

Two major features distinguish Undercover from the above mentioned primal heuristics for
MINLP. Firstly, unlike most of them [8, 12, 13, 16, 37], Undercover is not an extension of
an existing MIP heuristic towards a broader class of problems; moreover, it does not have a
counterpart in mixed-integer linear programming. Secondly, Undercover solves two auxiliary
MIPs (one for finding a set of variables to be fixed plus the resulting sub-MIP), and at most
two NLPs (possibly one to compute initial fixing values and one for postprocessing the sub-MIP
solution). On the contrary, most large neighborhood search heuristics [12, 16, 31, 36, 37] for
MINLP solve a series of MIPs, often alternated with a sequence of NLPs, to produce a feasible
start solution. The number of iterations is typically not fixed, but depends on the instance at
hand.

This paper is organized as follows. Section 2 introduces a first generic version of the Under-
cover algorithm. In Section 3, we describe how to find variables to fix such that the resulting
subproblem is linear. Section 4 explains how to extract useful information even if the sub-MIP
proves to be infeasible. A summary of the complete algorithm is given in Section 5. Section 6
contains the results of our computational experiments. In Section 7, we briefly discuss further
variants of the Undercover heuristic that we have experimented with, and Section 8 presents
concluding remarks.

2

2 A generic algorithm

The paradigm of fixing a subset of the variables of a given mixed-integer program in order to
obtain subproblems that are easier to solve has proven successful in many primal MIP heuristics
such as RINS [17], DINS [23], and RENS [7]. The core difficulty in MIP solving is the presence
of integrality constraints. Thus, in a MIP context, “easy to solve” usually means that there are
few integer variables.

Actually, integrality is a special case of (nonconvex) nonlinearity, since it is possible to model
the integrality of a bounded integer variable xi ∈ {Li, . . . , Ui} by the nonconvex polynomial
constraint (xi −Ui)(xi −Ui + 1) · · · (xi −Li) = 0. This insight matches the practical experience
that in MINLP, while integralities do contribute to the complexity of the problem, the specific
difficulty is the presence of nonlinearities. Hence, “easy” in an MINLP context can be understood
as having few nonlinear constraints.

Our heuristic is based on the simple observation that by fixing certain variables (to some
value within their bounds) any given mixed-integer nonlinear program can be reduced to a
mixed-integer linear subproblem (sub-MIP). Certainly, the sub-MIP may be infeasible, but if
not then each of its solutions is a feasible solution of the original MINLP.

Whereas in general it holds that many or even all of the variables might need to be fixed
in order to arrive at a linear subproblem, our approach is motivated by the experience that for
several practically relevant MINLPs, fixing only a comparatively small subset of the variables
suffices to obtain a sub-MIP. The computational effort of solving this subproblem compared to
solving the original problem, however, is usually greatly reduced since we can apply the full
strength of state-of-the-art MIP solving. Before formulating a first generic algorithm for our
heuristic, consider the following definition.

Definition 2.1. Let P be an MINLP of form (1) and C ⊆ {1, . . . , n} be a set of variable indices
of P . We call C a cover of function gk, k ∈ {1, . . . ,m}, if and only if for all x∗ ∈ [L,U] the set

{(x, gk(x)) : x ∈ [L,U], xi = x∗i for all i ∈ C} (2)

is an affine set intersected with [L,U]. We call C a cover of P if and only if C is a cover of all
constraint functions g1, . . . , gm.

Note that this definition refers to the functions gk in the problem formulation and not to the
feasible set of (1) directly. It does not exploit, for example, the fact that some of the functions
might be redundant. Compare also, how a convex MINLP is typically understood as all gk being
convex rather than the feasible region being convex because only the first ensures the general
validity of gradient cuts.

The following example illustrates how covers of an MINLP are used to construct a sub-MIP
for finding feasible solutions.

Example 2.2 (the Undercover sub-MIP). Consider the following convex MIQCP:

min − x2 − x3

s.t. x1 + x2 + x2
3 − 4 6 0,

x1, x2, x3 > 0,

x1, x2 ∈ Z.

(3)

The only variable that appears in a nonlinear term is x3, hence {3} is a (smallest) cover
of (3) w.r.t. the above definition. The (unique) optimal solution of its nonlinear relaxation
is (0, 3.75, 0.5) with an objective function value of −4.25.

3

Taking that relaxation, the idea of Undercover is to fix x3 to 0.5, which renders (3) an integer
linear program. The (unique) optimal solution of this is (0, 3, 0.5) with an objective function
value of −3.5, which is necessarily a feasible solution for the MIQCP (3). Taking the NLP as
dual and the Undercover solution as primal bound, this gives an optimality gap of roughly 20%.
The actual (unique) optimal solution of (3) is (0, 4, 0).

Figure 1: A convex MIQCP and the Undercover sub-MIP induced by the NLP relaxation.

This example is illustrated in Figure 1. The lightly shaded region shows the NLP relaxation;
the parallel lines show the mixed-integer set of feasible solutions of (3). The darkly shaded area
shows the polytope associated with the Undercover sub-MIP. The blue point B is the optimum
of the NLP, the red point A is the optimum of the Undercover sub-MIP, and the green point C
is the optimum of the MIQCP. The smaller black points indicate further feasible solutions of
the Undercover sub-MIP.

A first generic algorithm for our heuristic is given in Figure 2. The crucial step of the
algorithm is found in line 5: finding a suitable cover of the given MINLP. Section 3 elaborates
on this aspect of the algorithm in detail.

input MINLP P as in (1)1

begin2

compute a solution x∗ of an approximation or relaxation of P3

round x∗i for i ∈ I4

determine a cover C of P5

solve the sub-MIP of P given by fixing xi = x∗i for all i ∈ C6

end7

Figure 2: Simple generic algorithm.

To obtain suitable fixing values for the selected variables, an approximation or relaxation of
the original MINLP is used. For integer variables, the approximate values are rounded. Most
complete solvers for MINLP are based on branch-and-bound [30]. If the heuristic is embedded
within a branch-and-bound solver, using its (linear or nonlinear) relaxation appears as a natural
choice for obtaining approximate variable values.

4

Large neighborhood search heuristics that rely on fixing variables typically have to trade off
between eliminating many variables in order to make the sub-MIP tractable, and leaving enough
degrees of freedom such that the sub-MIP is still feasible and contains good solutions. Often their
implementation inside a MIP solver demands that a sufficiently large percentage of variables be
fixed to arrive at an easy-to-solve sub-MIP [6, 7, 17, 23].

For our heuristic, the situation is different since we do not aim to eliminate integrality con-
straints, but nonlinearities. While it still holds that fixing variables, even only few, results in
a smaller search space, the main benefit is that we arrive at a MIP. In a nutshell: instead of
solving an easier problem of the same class, we solve a smaller problem of an easier class.

In order to linearize a given MINLP, we may be forced to fix integer and continuous variables.
The fixing of continuous variables, especially, can introduce a significant restriction, even ren-
dering the subproblem infeasible. Thus, our heuristic aims at fixing as few variables as possible
to obtain as large a linear subproblem as possible, through the utilization of minimum covers.

3 Finding minimum covers

This section describes our method for determining a minimum cover of an MINLP, i.e., a small-
est subset of variables to fix in order to linearize each constraint. In this section, we make
the standard assumption that the nonlinear functions involved are twice continuously differen-
tiable. However, the idea of Undercover can easily be applied to MINLPs in general, as will
be explained in Section 7. Note that the partial derivatives are well-defined since the domain
[L,U] has nonempty interior. This allows for the following definition, which is a generalization of
Hansen and Jaumard’s notion of a co-occurrence graph for quadratically constrained quadratic
programs [26].

Definition 3.1 (co-occurrence graph). Let P be an MINLP of form (1) with g1, . . . , gm twice
continuously differentiable on the interior of [L,U]. We call GP = (VP , EP) the co-occurrence
graph of P with node set VP = {1, . . . , n} given by the variable indices of P and edge set

EP =
{

(i, j) | i, j ∈ V,∃k ∈ {1, . . . ,m} :
∂2

∂xi∂xj
gk(x) 6≡ 0

}
,

i.e., we draw an edge between i and j if and only if the Hessian matrix of some constraint has a
structurally nonzero entry (i, j).

Remark 3.2. Since the Hessian of a twice continuously differentiable function is symmetric,
GP is a well-defined, undirected graph. It may contain loops, e.g., if square terms are present.
Trivially, the co-occurrence graph of a MIP is edge-free.

The Undercover algorithm rests on the following observation.

Theorem 3.3. Let P be an MINLP of form (1) with g1, . . . , gm twice continuously differentiable
on the interior of [L,U]. Then C ⊆ {1, . . . , n} is a cover of P if and only if it is a vertex cover
of the co-occurrence graph GP .

Proof. If h : Rn → R is twice continuously differentiable, x∗ ∈ Rn, C ⊆ {1, . . . , n}, then fixing
variables xi = x∗i , i ∈ C, and projecting to the nonfixed variables yields another twice continu-
ously differentiable function h̄ : Rn−|C| → R. Let π : Rn → Rn−|C| be the projection x 7→ (xi)i 6∈C .

Now the Hessian matrix of h̄ is simply obtained from the Hessian of h by taking the columns
and rows of nonfixed variables:

∇2h̄π(x) =
(∂2

∂xi∂xj
h(x)

)
i,j 6∈C

5

for any x ∈ Rn with xi = x∗i , i ∈ C. A twice continuously differentiable function is affine if and
only if its Hessian vanishes on its domain. Hence,

C is a cover of h⇔ ∀i, j 6∈ C :
∂2

∂xi∂xj
h(x) ≡ 0.

For the MINLP P this yields that

C is a cover of P ⇔ ∀i, j 6∈ C, k ∈ {1, . . . ,m} :
∂2

∂xi∂xj
gk(x) ≡ 0

⇔ ∀i, j 6∈ C : (i, j) 6∈ EP
⇔ ∀(i, j) ∈ EP : i ∈ C ∨ j ∈ C,

i.e., if and only if C is a vertex cover of the co-occurrence graph GP .

Note that any undirected graph G = (V,E) is the co-occurrence graph of the QCP min{0 :
xixj 6 0 for all (i, j) ∈ E}. Hence, minimum vertex cover can be transformed to computing a
minimum cover of an MINLP, or even a QCP. Since minimum vertex cover is NP-hard [22], we
have

Corollary 3.4. Computing a minimum cover of an MINLP is NP-hard. This holds even when
restricted to quadratic constraints.

There are, however, many polynomial-time algorithms that approximate a minimum vertex
cover within a factor of 2, such as taking the vertices of a maximal matching. It is conjectured that
2 is also the optimal approximation factor [28] and it is proven that vertex cover is NP-hard to
approximate within a factor smaller than 10

√
5− 21 = 1.3606 . . . [18], hence no polynomial-time

approximation scheme exists. Approximation ratios 2−ε(G) are known with ε(G) > 0 depending
on particular properties of the graph such as number of nodes [27] or bounded degree [25].

The following example shows that even for well-structured problems with obvious choices for
small covers, computing a minimum cover may yield additional insight.

Example 3.5 (bilinear programming). A bilinear program is a QCP with a bipartition of its
variables, {1, . . . , n} = S ∪ T , S ∩ T = ∅, and each quadratic term of the form xixj, i ∈ S,
j ∈ T . In this case, holding the variables of either S or T fixed, by definition one obtains a
linear program—a simple property that has been used in solution approaches such as the cutting-
plane algorithm of Konno [29]. The co-occurrence graph of a bilinear program is bipartite, and
the sets S and T each constitutes a cover. See Figure 3 for an example. In global optimization,
the variables in the smaller set are sometimes called complicating variables.

S
s

T
t

· · ·

· · ·

Figure 3: Example of a co-occurrence graph for a bilinear program: the cover S of complicating variables may be
arbitrarily larger than the minimum cover {s, t}.

6

However, even in this well-structured case, a minimum cover is in general not given by the
smaller of the partitions. The minimum of |S| and |T | cannot be bounded from above by a
constant times the size of a minimum cover. As an example, consider the situation depicted in
Figure 3. An arbitrary number of nodes connecting to t can be added to S—and nodes connecting
to s to T—while the minimum cover remains the two variables s and t.

Note that here each of the two partitions is a minimal cover in the sense that one cannot obtain
a smaller cover by simply discarding an element. This shows that a simple greedy heuristic for
generating small covers may fail.

The above example motivates why, despite Corollary 3.4, we aim at computing minimum
covers exactly. For this, we use a simple binary programming formulation. For an MINLP of
form (1), define auxiliary binary variables αi, i = 1, . . . , n, equal to 1 if and only if the original
variable xi is fixed. Then

C(α) := {i ∈ {1, . . . , n} : αi = 1}

forms a cover of P if and only if αi+αj > 1 for all (i, j) ∈ EP . For an MIQCP, for example, this
requires all square terms and at least one variable in each bilinear term to be fixed. For a given
general MINLP, to obtain as large a linear subproblem as possible, we solve the binary program

min
{ n∑
i=1

αi : αi + αj > 1 for all (i, j) ∈ EP , α ∈ {0, 1}n
}

(4)

minimizing the sum of auxiliary variables.
Note that for particular classes of MINLPs, it is possible to exploit special features of the

co-occurrence graph in order to exactly compute a minimum cover in polynomial time—a simple
example is the class of bilinear programs mentioned above—or to approximate it within a factor
sufficiently close to 1. However, in our experiments, the binary program (4) could always be
solved by a standard MIP solver within a fraction of a second. In all cases, optimality was
proven at the root node, hence without enumeration, despite the problem being NP-hard in
general, as shown above.

4 Domain propagation and conflict learning

Fixing a variable can have a great impact on the original problem and the approximation we
use. An important detail, that is crucial for the success rate of Undercover, is not to fix the
variables in the cover simultaneously, but sequentially, one by one. This section describes how
we use domain propagation, backtracking, and conflict analysis to avoid and handle infeasibilities
during this process.

Fix-and-propagate. The task of domain propagation is to analyze the structure of individual
constraints w.r.t. the current domains of the variables in order to infer additional domain reduc-
tions, thereby tightening the search space. For an overview of domain propagation techniques
applied in MIP and MINLP solvers, see [3] and [39], respectively.

To prevent obvious infeasibilities, we fix the variables in the cover one after the other and
apply domain propagation after each fixing in order to further tighten the bounds, in particular
those of the yet unfixed cover variables. During this process, it might happen that the value a
variable takes in the reference solution is no longer contained in its reduced domain. In this case,
we fix the variable to the closest bound instead.1 This fix-and-propagate procedure resembles

1Alternatively, we could recompute the reference solution to obtain values within the current bounds.

7

a method described by Fischetti and Salvagnin [21]. Additionally, we apply it to continuous
variables.

In the above scheme, the fixed values of variables depend on the fixing order. Different
variable orderings may lead to different propagations, thereby to different subproblems and
different solutions being found.

It is also possible that a variable domain becomes empty. Then the subproblem with the
currently chosen fixing values is proven to be infeasible without even having started its solution
procedure.

In this case, we apply a one-level backtracking, i.e., we undo the last bound change and try
alternative fixing values (see Section 5 for details). Note that if we cannot resolve the infeasibility
by one-level backtracking, Undercover will terminate. This is a “fast fail” strategy: if we cannot
easily resolve the infeasibility, we abort at an early stage of the algorithm without wasting running
time.2

Even if fix-and-propagate runs into an infeasibility, we can extract useful information for the
global solution process. Adding the so-called conflict constraints prevents us from reaching the
same deadlock again.

Conflict analysis in MIP. Conflict learning is a technique that analyzes infeasible subprob-
lems encountered during a branch-and-bound search. Whenever a subproblem is infeasible,
conflict analysis can be used to learn one (or more) reasons for this infeasibility. This gives rise
to the so-called conflict constraints that can be exploited in the remainder of the search to prune
other parts of the tree.

Carefully engineered conflict analysis has led to a substantial increase in the size of problems
that modern SAT solvers can solve [35]. It has recently been generalized to MIP [1, 2]. One main
difference between MIP and SAT solving in the context of conflict analysis is that the variables
of a MIP do not need to be of binary type. Achterberg [1] has shown how the concept of a
conflict graph can be extended to MIPs with general integer and continuous variables.

The most successful SAT learning approaches use so-called first unique implication point
(1UIP) learning, which captures a conflict that is “close” to the infeasibility and can infer
new information. Solvers for MIP or MINLP typically have a longer processing time per node
compared to SAT or CP solvers and they do not restart during search. As a consequence, the
overhead for further exploring the conflict graph is often negligible compared to the potential
savings. That is why MIP solvers with conflict learning such as SCIP [3] potentially generate
several conflicts for each infeasibility.

Conflict analysis for Undercover. The fix-and-propagate strategy can be seen as a simula-
tion of a depth-first search in the branch-and-bound tree, applying one-level backtracking when a
fixing results in an infeasible subproblem. Hence, using conflict analysis for these partially fixed,
infeasible subproblems enables us to learn constraints that are valid for the global search of the
original MINLP. This is done by building up the conflict graph that is implied by the variable
fixings and the propagated bound changes. Therefore, the reason for each propagation, i.e., the
bounds of other variables that implied the domain reduction, needs to be stored or reconstructed
later on.

Note that the generated conflict constraints will not be limited to the variables in the cover
since the conflict graph also contains all variables that have changed their bounds due to domain

2If we want to apply Undercover more aggressively, we can try to recover from infeasibility by reordering
the fixing sequence, e.g., such that the variable for which the fixing failed will be the first one in the reordered
sequence. This is a simple version of a restarting mechanism. Restarting techniques are commonly used in solving
SAT problems [35].

8

propagation in the fix-and-propagate procedure.
Valid constraints can be learned even after fix-and-propagate. If the subsequent sub-MIP

solution process proves infeasibility and all variables in the cover are integer, we may forbid the
assignment made to the cover variables for the global solution process. The same constraint can
be learned if the Undercover sub-MIP can be solved to proven optimality, since the search space
that is implied by these fixings has been fully explored. In both cases, this is particularly useful
for small covers.

5 The complete algorithm

This section outlines the details of the complete Undercover algorithm, see Figure 4. In the first
step, we construct the covering problem (4) by collecting the edges of the co-occurrence graph
(see Section 3). For constraints of simple form such as quadratic ones, the sparsity pattern of the
Hessian matrix can be read directly from the description of the constraint function. For general
nonlinearities, we use algorithmic differentiation (AD) to automatically compute the sparsity
pattern of the Hessian, (see, e.g., Griewank and Walther[24]).

As a consequence, the computational graphs of the constraint functions must be readily
available. Oracle-based evaluations of the functions and their derivatives are not sufficient.
Furthermore, the sparsity pattern computed by an AD code depends on the formulation of the
function. Consider, for example, the linear expression x3 + 3x2 − (x+ 1)3 for which an AD code
might return unnecessary structural nonzeros in the Hessian. Therefore, the constraint functions
should be reformulated and simplified in advance. In our implementation, this happens during
the preprocessing phase of the SCIP solver. Although it does not explicitly take cover sizes into
account, it helps to avoid simple cases of redundant variables in the cover.

To solve the covering problem, we employ a standard MIP solver, which in our computational
experiments never took more than a fraction of a second to find an optimal cover. Nevertheless,
since the covering problem is NP-hard, solving it to optimality may be time-consuming, in
general. To safeguard against this, we only solve the root node and proceed with the best solution
found. Besides other primal heuristics, the MIP solver that we use applies a greedy algorithm as
a start heuristic such that there is always an incumbent solution for covering problems available
after root-node processing. Subsequently, we fix the variables in the computed cover as described
in Section 4.3

As motivated in the beginning, we designed Undercover to be applied within a complete solver.
During fix-and-propagate, we call two routines provided by the solver: domain propagation in
line 23 and conflict analysis in line 27. If the former detects infeasibility, we call the latter to
learn conflict constraints for the global solution process (see Section 4).

If domain propagation detects infeasibility after fixing variable xi, i ∈ C, to the (rounded and
projected) value Xi in the reference solution, we try to recover by one-level backtracking. The
following alternatives will be tried: for binary variables the value 1−Xi; for nonbinary variables
the lower bound Li and, if this is also infeasible, the upper bound Ui. In the case of infinite
bounds, Li and Ui are replaced by Xi− |Xi| and Xi + |Xi|, respectively. If Xi = 0, then −1 and
+1 will be used instead. If fixing values accidentally coincide, each value is tested only once.

3If we want to apply Undercover aggressively and allow for solving the covering problem multiple times,
the following two strategies can be used. First, during the fix-and-propagate routine, variables outside the
precomputed cover may be fixed simultaneously. In this case, the fixing of some of the yet unfixed variables in the
cover might become redundant. Recomputing the cover with αi = 1 for all i with local bounds L̂i = Ûi may yield
a smaller number of remaining variable fixings. Second, if no feasible fixings for the cover variables in C are found,
we can solve the covering problem again with an additional cutoff constraint

∑
i∈C(1 − αi) +

∑
i6∈C αi > 1 and

try once more. However, both techniques appear to be computationally too expensive for the standard setting
that we explored in our computational experiments.

9

input MINLP as in (1), reference point x∗ ∈ [L,U], ni > 0 alternative fixing
values y∗i,1, . . . , y

∗
i,ni
∈ [Li, Ui] for all i ∈ {1, . . . , n}

output feasible solution x̂ (on success)

begin
/* Step 1: create covering problem */

E ← ∅ /* edge set of co-occurrence graph */1

foreach k ∈ {1, . . . ,m} do2

Sk ← {i ∈ {1, . . . , n} : gk depends on xi} /* variables in gk(x) 6 0 */3

foreach i ∈ Sk do4

if
∂2

∂x2i
gk(x) 6≡ 0 then E ← E ∪ {(i, i)} /* must fix xi */

5

else6

foreach j ∈ Sk, j > i,
∂2

∂xi∂xj
gk(x) 6≡ 0 do

7

E ← E ∪ {(i, j)} /* must fix xi or xj */8

/* Step 2: solve covering problem (4) */

α∗ ← arg min
{∑n

i=1 αi : αi + αj > 1 for all (i, j) ∈ E,α ∈ {0, 1}n
}

9

C ← {i ∈ {1, . . . , n} : α∗i = 1}10

/* Step 3: fix-and-propagate loop */

L̂← L, Û ← U /* local bounds */11

foreach i ∈ C do12

L̂0 ← L̂, Û0 ← Û , p← 0 /* store bounds for backtracking */13

X ← ∅, success← false /* set of failed fixing values */14

while ¬success and p 6 ni do15

Xi ← if p = 0 then x∗i else y
∗
i,p16

if i ∈ I then Xi ← [Xi] /* round if variable integer */17

Xi ← min{max{Xi, L̂i}, Ûi} /* project to bounds if outside */18

if Xi ∈ X then19

p← p+ 1 /* skip fixing values tried before */20

else21

L̂i ← Xi, Ûi ← Xi /* fix */22

call domain propagation on [L̂, Û] /* propagate */23

if [L̂, Û] 6= ∅ then24

success← true /* accept fixing, go to next variable */25

else26

call conflict analysis27

L̂← L̂0, Û ← Û0 /* infeasible: backtrack */28

X ← X ∪ {Xi}, p← p+ 1 /* try next fixing value */29

if ¬success then return /* no feasible fixing found: terminate */30

/* Step 4: solve sub-MIP */

solve sub-MIP min
{
dTx : gk(x) 6 0 for k = 1, . . . ,m,

L̂i 6 xi 6 Ûi for i = 1, . . . , n, xi ∈ Z for i ∈ I
}

31

if sub-MIP solved to optimality or proven infeasible and C ⊆ I then32

add constraint
∨

i∈C(xi 6= Xi) to original problem33

/* Step 5: solve sub-NLP */

if feasible sub-MIP solution found then34

x̂← best sub-MIP solution35

if sub-MIP not solved to optimality or C 6⊆ I then36

/* restore global bounds, fix integers, solve locally */

solve sub-NLP min
{
dTx : gk(x) 6 0 for k = 1, . . . ,m,

Li 6 xi 6 Ui for i = 1, . . . , n, xi = x̂i for i ∈ I
}

37

x̂← sub-NLP solution /* update sub-MIP solution */38

return x̂39

end

Figure 4: The complete Undercover algorithm.

10

Typically, the sub-MIP solved in the next step incurs the highest computational effort and is
controlled by work limits on the number of nodes, LP iterations, etc. (see Section 6 for details).
Since by construction the sub-MIP should be significantly easier than the original MINLP, we
expect that it can often be solved to optimality or proven infeasible. As described in Section 4,
we may then forbid the assignment of fixing values to the cover variables if the latter are all
integer, as stated in line 33. Note that the two learning steps described in lines 27 and 33 are
only relevant for the overall solution process of the complete solver within which Undercover is
called. They do not alter the behavior of the Undercover algorithm itself.

For several design decisions, we considered alternatives which were ruled out in preliminary
experiments. We tried using alternative objectives for the covering problem, an NLP solution
instead of an LP solution for the fixing values, different variable orders in the fix-and-propagate
loop, and so on. Details can be found in Section 7. These variants either altered the performance
only slightly or they were inferior in the sense that they failed on a significant number of instances
for which the default settings succeeded, but did not typically succeed on any instance for which
the default failed. All of these choices have been made user parameters in our implementation
of Undercover.

If a feasible sub-MIP solution x̂ is found, we try to improve it further by fixing all integer
variables to their values in x̂ and solving the resulting NLP to local optimality. Clearly, if all cover
variables are integer and x̂ is optimal for the sub-MIP, this step can be skipped. Otherwise, we
re-optimize over the continuous variables in the cover and may obtain a better objective value.

6 Computational experiments

Only few solvers exist that handle nonconvex MINLPs, such as Baron [38], Couenne [5], and
LindoGlobal [32, 44]. Others, e.g., Bonmin [11] and SBB [46], guarantee global optimality
only for convex problems, but can be used as heuristic solvers for nonconvex problems. Recently,
the solver SCIP [2, 3] was extended to solve nonconvex MIQCPs [9] and MINLPs [39] to global
optimality. For a comprehensive survey of available MINLP solver software, see Bussieck and
Vigerske [15].

Experimental setup. The goal of our computational experiments was to analyze the perfor-
mance of Undercover as a start heuristic for MINLPs, applied at the root node. To this end,
we benchmarked against state-of-the-art solvers and measured its impact on the overall perfor-
mance of an MINLP solver. We evaluated the sizes of the actual covers found, the success rate of
Undercover, and the distribution of running time among different components of the algorithm.

We implemented the algorithm given in Figure 4 within SCIP4 and used SCIP’s LP solution
as reference point x∗. To perform the fix-and-propagate procedure, we called the standard
domain propagation engine of SCIP. Secondary SCIP instances were used to solve both the
covering problem (4) and the Undercover sub-MIP.

We controlled the computational effort for solving the sub-MIP in two ways. First, we imposed
a hard limit of 500 nodes and a dynamic stall node limit5 between 1 and 500 nodes. Second,
we adjusted the SCIP settings to find feasible solutions fast: we disabled expensive presolving
techniques and used the “primal heuristics emphasis aggressive” and the “emphasis feasibility”
settings. Furthermore, if the sub-MIP is infeasible, this is often detected already when solving
the root relaxation, hence we deactivated expensive pre-root-heuristics so as to not lose time on

4The source code is publicly available within SCIP 2.1.1 and can be found at [47].
5With a stall node limit, we terminate if no improving solutions are found within a certain number of branch-

and-bound nodes after the discovery of the current incumbent.

11

such instances. Components using sub-MIPs themselves are switched off altogether. For more
details, we refer to the source code at [47].

We performed two main experiments to evaluate the Undercover algorithm. In order to
investigate how Undercover can enhance the root-node performance of complete solvers, we
compare UC with the root heuristics of four different MINLP solvers. SCIP, for instance,
applies eleven primal heuristics at the root node: three rounding heuristics, three propagation
heuristics, a trivial one, a feasibility pump, a local search, a repair heuristic and an improvement
heuristic. Our second experiment measures the impact of using Undercover as a subroutine inside
a complete solver on the overall performance.

In our first experiment, we ran SCIP with all heuristics other than Undercover switched
off and cut generation deactivated. We used SCIP 2.1.1 with CPLEX 12.3 [43] as LP solver,
Ipopt 3.10 [40] as NLP solver for the postprocessing, and CppAD 20100101.4 [41] as expression
interpreter for evaluating general nonlinear constraints. We refer to this Undercover standalone
configuration as UC.

We tested against three state-of-the-art solvers for nonconvex MINLPs: Baron 9.3.1 [38]
(commercial license), Couenne 0.3 [5] (open source), and SCIP 2.1.1 (academic license) with
Undercover disabled. Additionally, we included Bonmin 1.6 [11] (open source), which is a solver
for convex MINLP, but can be used as a heuristic for nonconvex problems. All solvers were run
in their default configuration. In particular, the algorithm “B-BB” was used for Bonmin. We
compare the primal bound obtained after the solution of the root node. Therefore, all solvers,
including UC, were started with a node limit of one. We further imposed a large time limit of
six hours to enforce termination and a memory limit of 8 GB.

Our test set is based on the 172 MIQCPs from the test suite of Misener and Floudas [34, 42],
a broad selection of publically available MIQCP and QCP instances. From this test set we
removed all instances for which we knew a-priori that Undercover would never be called. These
were seven very easy instances, mainly of the st_test type, that are solved by SCIP presolving
or the solution of the root LP, i.e., before Undercover would be executed, and eleven instances
that have an unbounded root LP, all of the nuclear type. For the first experiment, we further
excluded three of the LeeCrudeOil instances for which Bonmin did not terminate within nine
hours (given a time limit of six hours). This left 147 instances.

We also tested Undercover on general MINLPs from MINLPLib [14], excluding those which
are MIQCPs, linear after SCIP presolving, or contain expressions that cannot be handled by
SCIP, e.g., sin and cos. Additionally, three more instances with unbounded root LP relaxation
were removed, leaving 110 instances. We used the same settings and solvers as described above.

Our second experiment analyzes the impact of Undercover on the overall solution process of
a complete solver. Therefore, we ran SCIP in its default settings, with and without Undercover,
using a time limit of one hour and a memory limit of 40 GB. For this test, we included the three
LeeCrudeOil instances, and excluded ruiz_flowbased_pw4, for which SCIP terminates with an
error. This gives a test set of 149 instances.

The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz with
12 MB cache and 48 GB main memory, running an openSUSE 11.4 with a GCC 4.5.1 compiler.
Hyperthreading and Turboboost were disabled. For the latter experiment, we ran only one
job per node to avoid random noise in the measured running time that might be caused by
cache-misses if multiple processes share common resources.

Results for MIQCP. The results for the experiments on MIQCPs are shown in Table 2.
In columns “% cov” and “% nlcov”, we report the relative size of the cover used by UC as a
percentage of the total number of variables and of the number of variables that appear in at
least one nonlinear term, respectively. A value of 100% in the “% nlcov” column means that the

12

Figure 5: Distribution of running time among different components of Undercover heuristic.

trivial cover consisting of all variables appearing in nonlinear terms is the minimum cover. For
all other instances, the solution of the covering problem gives rise to a smaller cover, hence a
larger sub-MIP and potentially more solutions for the MINLP. All numbers are calculated w.r.t.
the numbers of variables after preprocessing.

Column “UC” shows the objective value of the best solution found by Undercover. For
all other solvers, we provide the objective value of the best solution found during root-node
processing.

The computational results for MIQCPs seem to confirm our expectation that a low fixing
rate often suffices to obtain a linear subproblem: 25 of the instances in our test set allow a cover
of at most 5% of the variables, a further 40 instances of at most 10% and 46 instances of at most
25%. Eighteen instances were in a medium range of 25%–50%; for another 18, a minimum cover
contained more than half of the variables.

UC found a feasible solution for 76 test instances. Interestingly, it worked similarly well with
small and large covers. For 15 out of 25 instances with a cover of at most 5% of the variables,
UC found a solution, but also for 30 out of the 36 instances with a cover of at least 25%. In
comparison, Baron found a feasible solution in 65 cases, Couenne in 55, SCIP and Bonmin
in 98 each.

There were 32 instances for which UC found a better solution than Baron, 20 for which it
was better than SCIP, 36 for Couenne, and 32 for Bonmin. We note that for six instances
UC found the single best solution compared to all other solvers and for 27 further instances it
produced the same solution quality as the best of the other solvers.

Out of 147 instances, the time for applying Undercover was less than 0.1 seconds in 131
cases, 14 times it was between 0.1 and 0.5 seconds; the two outliers are waste (1.31 seconds) and
Sarawak_Scenario81 (2.53 seconds). Figure 5 shows the average distribution of running time
for solving the covering problem, processing the fix-and-propagate loop, solving the sub-MIP,
polishing the solution with an NLP solver and for the remaining parts such as allocating and
freeing data structures, constructing the auxiliary problems, computing conflict constraints, and
so on. This average has been taken over all instances for which Undercover found a feasible
solution, hence all main parts of the algorithm were executed. The major amount of time,
namely 65%, is spent in solving the sub-MIP. Solving the covering problem plus performing
fix-and-propagate took only about 3% of the actual running time.

Although the polytope described by (4) is not integral, the covering problem could always be
solved to optimality at the root node by SCIP’s default heuristics and cutting plane algorithms.
In 89 out of 147 cases, the minimum cover was nontrivial, with cover sizes of 8% to 60% of the
nonlinear variables.

We note that in 55 out of the 70 cases for which the resulting sub-MIP was infeasible,
the infeasibility was detected during the fix-and-propagate stage and in ten of the remaining
fifteen cases during root-node processing of the sub-MIP.6 Thus in most cases, no time was
wasted trying to find a solution for an infeasible subproblem, since the most expensive part (see
Figure 5) can be skipped. This confirms that Undercover follows a “fast fail” strategy, a beneficial

6For one instance, the feasibility status had not been decided within 500 nodes.

13

property of heuristic procedures applied within complete solvers, as argued in Section 1. Also, all
except one feasible sub-MIP could be solved to optimality within the imposed node limit of 500.
This indicates that—with a state-of-the-art MIP solver at hand—the generated subproblems
are indeed significantly easier than the full MIQCP, as can also be seen when compared to the
running times and the number of nodes in Table 3.

For 31 out of 76 successful runs, all cover variables were integral. For the remaining 35 in-
stances, NLP postprocessing was applied; 21 times, it further improved the Undercover solution.

Recall that an arbitrary point x∗ ∈ [L,U] can serve as a reference solution for Undercover. A
natural alternative to the LP solution is a (locally) optimal solution of the NLP relaxation. An
additional experiment showed that, using an NLP solution, Undercover only succeeded in finding
a feasible solution for 52 instances of the MIQCP test set, instead of 76. If both versions found
a solution, the quality of the one based on the NLP solution was better in 23 cases, worse in
eleven. Our interpretation for the lower success rate is that the advantage of the NLP solution,
namely being feasible for all nonlinear constraints, is dominated by the fact that an NLP solution
typically has a higher fractionality, which leads to a higher chance that infeasibility is introduced
in line 17 of the Undercover algorithm in Figure 4. We also tried using an NLP relaxation for
those eleven instances that were excluded because of an unbounded root LP: in no case was a
feasible solution found.

Results for MINLP. As expected, Undercover is much less powerful for general MINLPs
compared to MIQCPs. UC produced feasible solutions for only six out of more than a hundred
test problems from MINLPLib: mbtd, nvs09, nvs20, stockcycle, synthes1, and johnall.
During root-node processing, Baron found feasible solutions for 39 instances, Couenne for 23,
SCIP for 35, and Bonmin for 56. Although Undercover is clearly outperformed by the other
solvers w.r.t. the number of solutions found, for each other solver there is at least one instance
for which UC succeeded, but the solver did not.

Nevertheless, the experiments showed that fixing a small fraction of the variables would often
have sufficed to obtain a linear subproblem: for 77 out of the 110 test instances, the minimum
cover contained at most 25% of the variables, similar to the MIQCP case, but only five MINLPs
allowed for a cover size below 5%. The extreme values were 0.18% for mbtd and 96.97% for
nvs20.

Hence, compared to the MIQCP test set, cover sizes are on average larger and very small
covers occur rarely, but this alone does not explain the lower success rate. It simply appears
to be more difficult to find feasible fixing values due to the higher complexity of the nonlinear
constraints, even if we use the solution of an NLP relaxation as the reference point x∗. Surpris-
ingly, Undercover produced feasible solutions for the two instances with the smallest and the two
instances with the largest minimum covers.

Undercover inside a complete solver. The previous experiments showed that for general
MIQCP instances, Undercover nicely complements the existing root-node heuristics of Baron,
Bonmin, Couenne and SCIP. The question remains as to whether this is beneficial for the
overall solution process.

For this experiment, interactions of different primal heuristics with each other and with other
solver components come into play. Obviously, a primal heuristic called prior to Undercover
might already have found a solution which is better than the optimal solution of the Undercover
sub-MIP, or in an extreme case, the solution process might have terminated before Undercover
is called. Further, any solution found before Undercover is called might change the solution
path. It might trigger variable fixings by dual reductions, which lead to a different LP and hence
to a different initial situation for Undercover. Because of this, Undercover might succeed for

14

Table 1: Comparison of SCIP with and without Undercover (aggregated results).

both solved (117) time > 10 s (31)

nodes time [s] nodes time [s]

SCIP − UC 702 10.8 21 097 98.2

SCIP + UC 610 9.4 15 619 74.5

shifted geom. mean −15% −15% −35% −32%

problems where it failed in the first experiment and vice versa. Note that even in the case of
failure, Undercover might produce conflict clauses (see Section 4) and thereby be beneficial for
the overall solution process.

In this experiment, our main criteria for measuring performance are the running time and
the number of branch-and-bound nodes needed to prove optimality. To average values over all
instances of the test set, we use a shifted geometric mean. The shifted geometric mean of values
t1, . . . , tn with shift s is defined as n

√∏
(ti + s)−s. We use a shift of s = 10 for time and s = 100

for nodes in order to reduce the effect of very easy instances in the mean values. Further, using
a geometric mean prevents hard instances at or close to the time limit from overly dominating
the measures. Thus, the shifted geometric mean has the advantage that it reduces the influence
of outliers in both directions.

The results of running SCIP once with and once without Undercover are shown in Table 3,
and a summary can be found in Table 1. Both versions solved nearly the same set of instances
within the given time limit; there was only one instance, SLay10H, which needed more than
an hour when using SCIP with Undercover, but solved within 35 minutes and about 150 000
nodes otherwise. However, for those 117 instances which could be solved by both variants, the
SCIP version that included Undercover needed 15% fewer nodes and 15% less running time
in shifted geometric mean. If we ignore very easy instances that both versions solved in less
than ten seconds, the improvement is even more significant: for the 31 instances which fall into
this category, SCIP without Undercover is 32% slower and needs 35% more nodes in shifted
geometric mean.

Even though the running times for Undercover are moderate (see above) for instances that
solve within a fraction of a second, it sometimes consumes a significant amount of the running
time. However, when we consider the 33 problems that need between one and ten seconds of
running time, on average, Undercover only requires 1.5% of the overall running time; for the 58
instances that need more than ten seconds the ratio is 0.04%.

Further experiments. We experimented with the following extensions of Undercover: re-
ordering the fixing sequence if fix-and-propagate fails, see Footnote 2; re-solving the covering
problem if the sub-MIP is infeasible, see Footnote 3; using a weighted version of the covering
problem, see Section 7. None of those performed significantly better than our default strategy.

In a complete solver, primal heuristics are applied in concert, hence a feasible solution may be
already at hand when starting Undercover. In our implementation, this is exploited in two ways.
First, we use values from the incumbent solution as fixing alternatives during fix-and-propagate.
Fixing the variables to values in the incumbent has the advantage that the resulting sub-MIP
is guaranteed to be feasible, compare, e.g., Danna et al. [17]. Second, we add a primal cutoff
to the sub-MIP to only look for improving solutions.7 On four instances of the MIQCP testset,

7A primal cutoff is an upper bound on the objective function that results in branch-and-bound nodes with
worse dual bound not being explored.

15

SCIP 2.1.1 with default heuristics including Undercover produced a primal solution that was
significantly better than the best solution found by either SCIP or Undercover alone; a worse
solution was produced only for one instance.

7 Variants

We experimented with a few more variants of the Undercover heuristic. Some of them proved
beneficial for specific problem classes. For the standard setting presented in our computational
results, however, they showed no significant impact. As they might prove useful for future
applications of Undercover, we will provide a brief description here.

Our initial motivation for using a minimum cardinality cover was to minimize the impact
on the original MINLP. Instead of measuring the impact of fixing variables uniformly, we could
solve a weighted version of the covering problem (4). To better reflect the problem structure, the
objective coefficients of the auxiliary variables αi could be computed from characteristics of the
original variables xi such as the domain size, variable type (integer or continuous), or appearance
in nonlinear terms or in constraints violated by the reference solution.

Instead of fixing the variables in a cover, we could also merely reduce their domains to a small
neighborhood around the reference solution. Especially for continuous variables this leaves more
freedom for exploration of the subproblem and can lead to better solutions found. Of course,
the difficulty of solving the subproblem is increased. Nevertheless, small domains may allow for
a sufficiently tight relaxation for an MINLP solver to tackle the subproblem.

The main idea of Undercover is to reduce the computational effort by switching to a problem
class that is easier to address. While we have focused on exploring a linear subproblem, for
nonconvex MINLPs, convex nonlinear subproblems may provide a larger neighborhood to be
searched and still be sufficiently easy to solve.

8 Conclusion

In this paper, we have introduced Undercover, a primal MINLP heuristic exploring large linear
subproblems induced by a minimum vertex cover. It differs from other recently proposed MINLP
heuristics in that it is not an extension of an existing MIP heuristic, nor does it solve an entire
sequence of MIPs.

We defined the notion of a minimum cover of an MINLP and proved that it can be computed
by solving a vertex covering problem on the co-occurrence graph induced by the sparsity patterns
of the Hessians of the nonlinear constraint functions. Although NP-hard, covering problems
were solved rapidly in our experiments. Several extensions and algorithmic details have been
discussed.

Undercover exploits the fact that small covers correspond to large sub-MIPs. We showed that
the majority of MIQCPs from the GloMIQO test set [42] and MINLPs from the MINLPLib [14]
allow for covers consisting of at most 25% of their variables.

For MIQCPs, Undercover proved to be a fast start heuristic that often produces feasible
solutions of reasonable quality. The computational results indicate that it nicely complements
existing root-node heuristics in different solvers.

We further showed that for MIQCPs, applying Undercover at the root node significantly
improved the overall performance of SCIP, in particular for hard instances. Undercover is now
one of the default heuristics applied in SCIP.

16

Acknowledgements

Many thanks to Tobias Achterberg, J. Christopher Beck, Christina Burt, Angela Glover, Ste-
fan Vigerske, the associate editor, and two anonymous reviewers for their valuable comments.
This research has been supported by the DFG Research Center Matheon Mathematics for key
technologies in Berlin, http://www.matheon.de.

References

[1] Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization
4(1), 4–20 (2007). doi:10.1016/j.disopt.2006.10.006

[2] Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität
Berlin (2007). http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1018

[3] Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Programming
Computation 1(1), 1–41 (2009). doi:10.1007/s12532-008-0001-1

[4] Achterberg, T., Berthold, T.: Improving the feasibility pump. Discrete Optimization 4(1),
77–86 (2007). doi:10.1016/j.disopt.2006.10.004

[5] Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening
techniques for non-convex MINLP. Optimization Methods & Software 24, 597–634 (2009).
doi:10.1080/10556780903087124

[6] Berthold, T.: Primal heuristics for mixed integer programs. Diploma thesis, Technische
Universität Berlin (2006). http://vs24.kobv.de/opus4-zib/frontdoor/index/index/

docId/1029

[7] Berthold, T.: RENS – the optimal rounding. ZIB-Report 12-17, Zuse Institute Berlin (2012).
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1520

[8] Berthold, T., Heinz, S., Pfetsch, M.E., Vigerske, S.: Large neighborhood search beyond
MIP. In: L.D. Gaspero, A. Schaerf, T. Stützle (eds.) Proceedings of the 9th Metaheuristics
International Conference (MIC 2011), pp. 51–60 (2011). Available as Matheon Preprint
#856. urn:nbn:de:0296-matheon-9752

[9] Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In:
J. Lee, S. Leyffer (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in
Mathematics and its Applications, vol. 154, pp. 427–444. Springer (2011). doi:10.1007/

978-1-4614-1927-3_15

[10] Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and practice
– closing the gap. In: M. Powell, S. Scholtes (eds.) Systems Modelling and Optimization:
Methods, Theory, and Applications, pp. 19–49. Kluwer Academic Publisher (2000)

[11] Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee,
J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization 5, 186–204 (2008). doi:10.1016/
j.disopt.2006.10.011

17

http://www.matheon.de
http://dx.doi.org/10.1016/j.disopt.2006.10.006
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1018
http://dx.doi.org/10.1007/s12532-008-0001-1
http://dx.doi.org/10.1016/j.disopt.2006.10.004
http://dx.doi.org/10.1080/10556780903087124
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1029
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1029
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1520
http://nbn-resolving.de/urn:nbn:de:0296-matheon-9752
http://dx.doi.org/10.1007/978-1-4614-1927-3_15
http://dx.doi.org/10.1007/978-1-4614-1927-3_15
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011

[12] Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming 119(2), 331–352 (2009). doi:10.1007/

s10107-008-0212-2

[13] Bonami, P., Gonçalves, J.: Heuristics for convex mixed integer nonlinear programs.
Computational Optimization and Applications 51, 729–747 (2012). doi:10.1007/

s10589-010-9350-6

[14] Bussieck, M., Drud, A., Meeraus, A.: MINLPLib – a collection of test models for mixed-
integer nonlinear programming. INFORMS Journal on Computing 15(1), 114–119 (2003).
doi:10.1287/ijoc.15.1.114.15159

[15] Bussieck, M.R., Vigerske, S.: MINLP solver software. In: J.J. Cochran, L.A. Cox,
P. Keskinocak, J.P. Kharoufeh, J.C. Smith (eds.) Wiley Encyclopedia of Operations Re-
search and Management Science. John Wiley & Sons, Inc. (2010). Online publication,
doi:10.1002/9780470400531.eorms0527

[16] D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a feasibility pump
approach for nonconvex MINLPs. In: P. Festa (ed.) Experimental Algorithms, Lecture
Notes in Computer Science, vol. 6049, pp. 350–360. Springer Berlin / Heidelberg (2010).
doi:10.1007/978-3-642-13193-6_30

[17] Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Mathematical Programming 102(1), 71–90 (2004). doi:10.1007/

s10107-004-0518-7

[18] Dinur, I., Safra, S.: On the hardness of approximating vertex cover. Annals of Mathematics
162, 439–485 (2005). doi:10.4007/annals.2005.162.439

[19] Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Mathematical Programming
104(1), 91–104 (2005). doi:10.1007/s10107-004-0570-3

[20] Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1–3), 23–47
(2003). doi:10.1007/s10107-003-0395-5

[21] Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Mathematical Programming Computa-
tion 1(2–3), 201–222 (2009). doi:10.1007/s12532-009-0007-3

[22] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

[23] Ghosh, S.: DINS, a MIP improvement heuristic. In: M. Fischetti, D.P. Williamson
(eds.) Integer Programming and Combinatorial Optimization, Proceedings of the 12th
International IPCO Conference, LNCS, vol. 4513, pp. 310–323. Springer (2007). doi:

10.1007/978-3-540-72792-7_24

[24] Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic
differentiation. Society for Industrial and Applied Mathematics (2008)

[25] Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs. SIAM Journal on Computing 31, 1608–1623 (2002). doi:10.1137/

S0097539700381097

[26] Hansen, P., Jaumard, B.: Reduction of indefinite quadratic programs to bilinear programs.
Journal of Global Optimization 2(1), 41–60 (1992). doi:10.1007/BF00121301

18

http://dx.doi.org/10.1007/s10107-008-0212-2
http://dx.doi.org/10.1007/s10107-008-0212-2
http://dx.doi.org/10.1007/s10589-010-9350-6
http://dx.doi.org/10.1007/s10589-010-9350-6
http://dx.doi.org/10.1287/ijoc.15.1.114.15159
http://dx.doi.org/10.1002/9780470400531.eorms0527
http://dx.doi.org/10.1007/978-3-642-13193-6_30
http://dx.doi.org/10.1007/s10107-004-0518-7
http://dx.doi.org/10.1007/s10107-004-0518-7
http://dx.doi.org/10.4007/annals.2005.162.439
http://dx.doi.org/10.1007/s10107-004-0570-3
http://dx.doi.org/10.1007/s10107-003-0395-5
http://dx.doi.org/10.1007/s12532-009-0007-3
http://dx.doi.org/10.1007/978-3-540-72792-7_24
http://dx.doi.org/10.1007/978-3-540-72792-7_24
http://dx.doi.org/10.1137/S0097539700381097
http://dx.doi.org/10.1137/S0097539700381097
http://dx.doi.org/10.1007/BF00121301

[27] Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Transac-
tions on Algorithms 5, 41:1–41:8 (2009). doi:10.1145/1597036.1597045

[28] Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2− ε. Journal of
Computer and System Sciences 74(3), 335–349 (2008). doi:10.1016/j.jcss.2007.06.019

[29] Konno, H.: A cutting plane algorithm for solving bilinear programs. Mathematical Pro-
gramming 11, 14–27 (1976). doi:10.1007/BF01580367

[30] Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems.
Econometrica 28(3), 497–520 (1960). http://www.jstor.org/stable/1910129

[31] Liberti, L., Mladenović, N., Nannicini, G.: A recipe for finding good solutions to
MINLPs. Mathematical Programming Computation 3, 349–390 (2011). doi:10.1007/

s12532-011-0031-y

[32] Lin, Y., Schrage, L.: The global solver in the LINDO API. Optimization Methods and
Software 24(4–5), 657–668 (2009). doi:10.1080/10556780902753221

[33] Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained
quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations.
Mathematical Programming (2012). Online publication, doi:10.1007/s10107-012-0555-6

[34] Misener, R., Floudas, C.A.: GloMIQO: Global mixed-integer quadratic optimizer. Journal
of Global Optimization (2012). Online publication, doi:10.1007/s10898-012-9874-7

[35] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of the 38th annual Design Automation Conference (DAC ’01),
pp. 530–535 (2001). doi:10.1145/378239.379017

[36] Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. Mathematical
Programming Computation 4(1), 1–31 (2012). doi:10.1007/s12532-011-0032-x

[37] Nannicini, G., Belotti, P., Liberti, L.: A local branching heuristic for MINLPs. ArXiv
e-print 0812.2188, Cornell University (2008). arXiv:0812.2188v1

[38] Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs:
A theoretical and computational study. Mathematical Programming 99, 563–591 (2004).
doi:10.1007/s10107-003-0467-6

[39] Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer
programming approach to mixed-integer nonlinear programming. Ph.D. thesis, Humboldt-
Universität zu Berlin (2012). Submitted

[40] Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical Programming
106(1), 25–57 (2006). doi:10.1007/s10107-004-0559-y

[41] CppAD. A Package for Differentiation of C++ Algorithms. http://www.coin-or.org/

CppAD

[42] GloMIQO 2.0. http://helios.princeton.edu/GloMIQO/

[43] IBM ILOG CPLEX Optimizer. http://www.cplex.com

19

http://dx.doi.org/10.1145/1597036.1597045
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1007/BF01580367
http://www.jstor.org/stable/1910129
http://dx.doi.org/10.1007/s12532-011-0031-y
http://dx.doi.org/10.1007/s12532-011-0031-y
http://dx.doi.org/10.1080/10556780902753221
http://dx.doi.org/10.1007/s10107-012-0555-6
http://dx.doi.org/10.1007/s10898-012-9874-7
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/s12532-011-0032-x
http://arxiv.org/abs/0812.2188
http://dx.doi.org/10.1007/s10107-003-0467-6
http://dx.doi.org/10.1007/s10107-004-0559-y
http://www.coin-or.org/CppAD
http://www.coin-or.org/CppAD
http://helios.princeton.edu/GloMIQO/
http://www.cplex.com

[44] LindoGlobal. Lindo Systems, Inc. http://www.lindo.com

[45] MINOTAUR: A toolkit for MINLP. http://wiki.mcs.anl.gov/minotaur

[46] SBB. ARKI Consulting & Development A/S and GAMS Inc. http://www.gams.com/

solvers/solvers.htm#SBB

[47] SCIP. Solving Constraint Integer Programs. http://scip.zib.de

20

http://www.lindo.com
http://wiki.mcs.anl.gov/minotaur
http://www.gams.com/solvers/solvers.htm#SBB
http://www.gams.com/solvers/solvers.htm#SBB
http://scip.zib.de

T
a
b

le
2
:

C
o
v
er

si
ze

s
a
n

d
p

ri
m

a
l

so
lu

ti
o
n

v
a
lu

es
a
tt

a
in

ed
b
y
U
C

a
n

d
M

IN
L

P
so

lv
er

s
o
n

M
IQ

C
P

te
st

se
t.

%
c
o
v

%
n
lc

o
v

U
C

S
C

IP
2
.1

.1
C

O
U

E
N

N
E

0
.3

B
A

R
O

N
9
.3

.1
B

O
N

M
IN

1
.6

C
L

a
y
0
2
0
3
M

2
2
.2

2
1
0
0
.0

0
—

4
1
5
7
3
.2

6
2

—
5
4
5
8
1
.7

4
9

4
1
9
8
6
.2

5
3

C
L

a
y
0
2
0
4
M

1
6
.6

7
1
0
0
.0

0
—

9
1
9
9
.9

9
5
3

—
—

5
5
6
0
1
.5

6
3

C
L

a
y
0
2
0
5
M

1
3
.3

3
1
0
0
.0

0
—

8
1
6
1
2
.0

8
8

—
—

8
6
8
8
.4

2
8
6

C
L

a
y
0
3
0
3
M

1
9
.3

5
1
0
0
.0

0
—

—
—

—
5
6
1
4
1
.5

2
6

C
L

a
y
0
3
0
4
M

1
4
.8

1
1
0
0
.0

0
—

7
8
5
5
2
.6

2
6

—
—

—
C

L
a
y
0
3
0
5
M

1
2
.3

5
1
0
0
.0

0
—

7
0
3
3
2
.7

6
8

—
—

1
1
1
3
6
.8

6
1

S
L

a
y
0
4
H

5
.6

7
1
0
0
.0

0
1
4
3
9
5
.6

2
9
9
7
5
.6

6
1
6

1
3
3
3
8
.4

8
3

1
2
0
1
3
.9

0
6

1
2
0
1
3
.9

0
6

S
L

a
y
0
4
M

1
7
.7

8
1
0
0
.0

0
1
4
3
9
5
.6

2
1
2
5
4
4
.8

6
1

1
3
2
4
1
.0

8
1

9
8
5
9
.6

5
9
7

1
2
0
1
3
.9

0
6

S
L

a
y
0
5
H

4
.3

3
1
0
0
.0

0
5
6
8
3
6
.2

3
2

2
4
9
9
8
.5

2
1

3
0
4
1
9
.8

0
4

—
3
0
1
5
8
.3

7
7

S
L

a
y
0
5
M

1
4
.0

8
1
0
0
.0

0
5
6
8
3
6
.2

3
2

2
7
1
1
9
.5

1
8

3
0
2
8
6
.9

6
6

—
3
5
5
1
2
.8

8
4

S
L

a
y
0
6
H

3
.5

0
1
0
0
.0

0
7
8
4
1
8
.0

3
7

1
3
5
5
2
5
.5

2
4
0
7
6
1
.7

5
5

—
4
4
6
6
0
.4

9
S
L

a
y
0
6
M

1
1
.6

5
1
0
0
.0

0
9
9
3
9
3
.8

2
1

4
2
9
2
0
.3

9
8

4
0
2
2
5
.6

0
1

—
4
6
4
7
3
.1

2
4

S
L

a
y
0
7
H

2
.9

4
1
0
0
.0

0
—

2
6
6
5
2
8
.0

5
1
0
5
4
7
2
.6

8
—

1
0
0
3
2
9
.7

1
S
L

a
y
0
7
M

9
.9

3
1
0
0
.0

0
1
5
7
2
4
3
.3

9
9
3
6
6
.7

5
4

1
0
5
4
1
7
.8

5
9
6
2
8
9
.8

6
7

1
1
2
3
6
2
.7

3
S
L

a
y
0
8
H

2
.5

3
1
0
0
.0

0
—

3
7
0
0
7
5

1
3
1
5
2
5
.4

8
—

1
7
8
5
2
2
.9

8
S
L

a
y
0
8
M

8
.6

5
1
0
0
.0

0
4
5
8
4
8
3
.5

1
1
0
2
7
4
6
.4

6
1
4
3
0
9
5
.4

8
—

1
9
0
5
7
4
.0

8
S
L

a
y
0
9
H

2
.2

2
1
0
0
.0

0
—

1
5
2
4
2
8
.0

1
1
6
2
3
9
7
.7

1
—

1
8
8
6
8
5
.6

3
S
L

a
y
0
9
M

7
.6

6
1
0
0
.0

0
—

1
3
5
7
8
3
.7

7
1
8
4
4
5
0
.7

8
3
4
4
7
0
2
.3

4
2
0
5
6
7
8
.9

6
S
L

a
y
1
0
H

1
.9

8
1
0
0
.0

0
—

5
7
7
9
4
2
.5

2
1
6
9
1
4
.8

2
—

4
6
2
5
2
4
.3

4
S
L

a
y
1
0
M

6
.8

7
1
0
0
.0

0
—

1
4
4
2
3
3
.4

2
2
5
9
1
5
9
.8

8
—

3
5
2
9
5
3
.6

6
L

e
e
C

ru
d
e
O

il
1

0
5

8
.2

5
2
5
.0

0
—

—
—

—
-7

9
.7

5
L

e
e
C

ru
d
e
O

il
1

0
6

7
.9

7
2
5
.0

0
—

—
—

—
-7

8
.7

5
L

e
e
C

ru
d
e
O

il
1

0
7

7
.7

9
2
5
.0

0
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
1

0
8

7
.6

7
2
5
.0

0
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
1

0
9

7
.5

8
2
5
.0

0
—

—
—

—
-7

9
.7

5
L

e
e
C

ru
d
e
O

il
1

1
0

7
.5

2
2
5
.0

0
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
2

0
5

7
.8

1
2
2
.4

1
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
2

0
7

7
.2

9
2
2
.4

7
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
2

0
9

7
.1

0
2
2
.5

0
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
2

1
0

7
.0

4
2
2
.5

1
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
3

0
5

1
1
.7

9
2
3
.8

5
—

—
—

—
-8

1
.3

1
4
0
1
8

L
e
e
C

ru
d
e
O

il
3

0
6

1
1
.6

6
2
3
.3

7
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
3

0
7

1
1
.5

7
2
3
.0

8
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
3

0
8

1
1
.5

1
2
2
.8

8
—

—
—

—
-7

8
.5

L
e
e
C

ru
d
e
O

il
3

0
9

1
1
.4

5
2
2
.7

5
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
3

1
0

1
1
.4

1
2
2
.6

4
—

—
—

—
—

L
e
e
C

ru
d
e
O

il
4

0
6

6
.5

7
2
1
.6

2
—

-1
3
2
.5

3
0
6
9

—
—

—
L

e
e
C

ru
d
e
O

il
4

0
7

6
.3

7
2
1
.5

2
—

-1
3
2
.1

6
—

—
—

L
e
e
C

ru
d
e
O

il
4

0
8

6
.2

4
2
1
.4

6
—

-1
3
2
.4

7
8
3
1

—
—

—
L

e
e
C

ru
d
e
O

il
4

0
9

6
.1

5
2
1
.4

0
—

-1
3
1
.9

6
0
1
6

—
—

—
L

e
e
C

ru
d
e
O

il
4

1
0

6
.0

8
2
1
.3

6
—

—
—

—
—

L
iC

ru
d
e
O

il
e
x
0
1

9
.6

9
4
6
.6

7
—

—
—

—
5
1
0
2
.1

8
0
8

L
iC

ru
d
e
O

il
e
x
0
2

0
.9

5
2
9
.4

1
—

6
4
7
5
2
2
2
8

—
—

3
2
9
2
3
0
4
2

L
iC

ru
d
e
O

il
e
x
0
3

5
.7

2
3
3
.3

3
—

—
—

—
—

L
iC

ru
d
e
O

il
e
x
0
5

6
.7

3
3
3
.3

3
—

—
—

—
—

21

T
a
b
le

2
c
o
n
ti

n
u
e
d

%
c
o
v

%
n
lc

o
v

U
C

S
C

IP
2
.1

.1
C

O
U

E
N

N
E

0
.3

B
A

R
O

N
9
.3

.1
B

O
N

M
IN

1
.6

L
iC

ru
d
e
O

il
e
x
0
6

5
.7

2
3
3
.3

3
—

—
—

—
2
9
7
9
.3

7
5

L
iC

ru
d
e
O

il
e
x
1
1

5
.2

4
3
3
.3

3
—

—
—

—
—

L
iC

ru
d
e
O

il
e
x
2
1

4
.7

0
3
3
.3

3
—

—
—

—
—

a
la

n
3
3
.3

3
1
0
0
.0

0
3
.6

3
2
.9

2
5

2
.9

2
5

3
.6

d
u
-o

p
t5

9
4
.7

4
1
0
0
.0

0
5
4
6
.2

7
9
9
8

1
5
.6

2
1
7
7
4

1
5
7
.0

8
2
2
4

—
1
5
3
1
.9

5
d
u
-o

p
t

9
5
.2

4
1
0
0
.0

0
6
3
2
.8

9
1
4
2

4
.9

0
4
6
4
2
6

3
.9

0
5
1
5
5
3

3
7
2
5
.6

2
0
8

1
7
5
8
.1

0
7
8

e
lf

5
.5

6
5
0
.0

0
1
.6

7
5

0
.3

2
7
9
9
9
9
9

—
1
.6

7
5

1
.9

7
7
1
4
2
7

e
x
1
2
2
3
a

3
3
.3

3
1
0
0
.0

0
6
.5

5
7
4
6
1
3

4
.5

7
9
5
8
1
7

4
.5

7
9
5
8
2
4

4
.5

7
9
5
8
2
4

4
.5

7
9
5
8
2
4

e
x
1
2
6
3
a

1
7
.3

9
2
0
.0

0
3
0
.1

2
9
.6

—
—

—
e
x
1
2
6
3

4
.4

0
2
0
.0

0
3
0
.1

—
—

—
—

e
x
1
2
6
4
a

1
7
.3

9
2
0
.0

0
1
1
.1

1
1
.1

—
—

—
e
x
1
2
6
4

4
.8

8
2
0
.0

0
1
1
.1

—
—

—
—

e
x
1
2
6
5
a

1
4
.7

1
1
6
.6

7
1
5
.1

1
5
.1

—
—

—
e
x
1
2
6
5

4
.1

0
1
6
.6

7
1
5
.1

—
—

—
—

e
x
1
2
6
6
a

1
3
.0

4
1
4
.2

9
1
6
.3

—
—

—
—

e
x
1
2
6
6

3
.5

7
1
4
.2

9
1
6
.3

—
—

—
—

e
x
4

1
3
.5

1
1
0
0
.0

0
-7

.7
8
9
1
2
9
1

-8
.0

6
4
1
3
6
2

2
8
9
1
9
9
.8

8
-7

.7
8
9
1
2
9
1

-7
.3

1
3
2
6
9
1

fa
c
3

8
0
.6

0
1
0
0
.0

0
3
1
9
9
5
1
4
4

3
2
0
3
9
5
2
3

—
—

1
.3

0
6
5
3
8
6
e
+

0
8

fe
e
d
tr

a
y
2

4
.6

7
5
0
.0

0
—

0
—

0
1
.5

4
4
7
1
6
7
e
-0

9
fu

e
l

4
6
.1

5
1
0
0
.0

0
1
0
2
8
6
.1

4
3

1
1
9
2
5

—
8
5
6
6
.1

1
9

8
5
6
6
.1

1
9

m
e
a
n
v
a
rx

2
3
.3

3
1
0
0
.0

0
1
4
.8

2
4
8
0
8

1
4
.3

6
9
2
1
2

1
4
.4

0
4
0
6
2

1
4
.3

6
9
2
3
2

2
1
.1

1
0
3
9
8

n
e
tm

o
d

d
o
l1

0
.3

0
1
0
0
.0

0
0

-0
.3

7
2
3
0
3

—
-4

.4
4
0
8
9
2
1
e
-1

5
4
.9

8
0
5
8
5
6
e
-0

9
n
e
tm

o
d

d
o
l2

0
.3

8
1
0
0
.0

0
0

-1
.0

1
2
7
2
3
e
-0

9
—

0
.0

5
7
1
6
4
1
1
4

4
.6

8
8
8
2
2
3
e
-0

8
n
e
tm

o
d

k
a
r1

0
.8

8
1
0
0
.0

0
0

-1
.0

0
1
2
4
1
1
e
-0

9
—

1
.6

6
5
3
3
4
5
e
-1

5
2
.6

2
1
9
0
9
8
e
-0

9
n
e
tm

o
d

k
a
r2

0
.8

8
1
0
0
.0

0
0

-1
.0

0
1
2
4
1
1
e
-0

9
—

1
.6

6
5
3
3
4
5
e
-1

5
2
.6

2
1
9
0
9
8
e
-0

9
n
o
u
s1

2
9
.7

9
3
6
.8

4
—

—
1
.5

6
7
0
7
2

1
.5

6
7
0
7
2

1
.5

6
7
0
7
2

n
o
u
s2

3
0
.4

3
3
6
.8

4
—

1
.3

8
4
3
1
6
3

0
.6

2
5
9
6
7
4
1

0
.6

2
5
9
6
7
4
1

0
.6

2
5
9
6
7
4
1

n
u
c
le

a
r1

4
a

1
2
.2

4
4
8
.9

8
—

-1
.1

0
0
7
6
5
5

—
—

-1
.1

2
8
6
4
3
8

n
u
c
le

a
r1

4
b

1
2
.2

4
4
8
.9

8
—

-1
.0

9
7
6
8
6
3

—
—

—
n
u
c
le

a
r2

4
a

1
2
.2

4
4
8
.9

8
—

-1
.1

0
0
7
6
5
5

—
—

-1
.1

2
8
6
4
3
8

n
u
c
le

a
r2

4
b

1
2
.2

4
4
8
.9

8
—

-1
.0

9
7
6
8
6
3

—
—

—
n
u
c
le

a
r2

5
a

1
1
.8

8
4
9
.0

2
—

-1
.0

5
7
1
3
0
8

—
—

-1
.0

8
9
0
9
6
7

n
u
c
le

a
r2

5
b

1
1
.8

8
4
9
.0

2
—

—
—

—
—

n
v
s0

3
6
6
.6

7
1
0
0
.0

0
1
6

1
6

1
6

6
8

—
n
v
s1

0
6
6
.6

7
1
0
0
.0

0
-2

5
2

-3
1
0
.8

—
-3

1
0
.8

-3
1
0
.8

n
v
s1

1
7
5
.0

0
1
0
0
.0

0
-2

7
0
.8

-4
3
1

-4
3
1

-4
3
1

-4
3
1

n
v
s1

2
8
0
.0

0
1
0
0
.0

0
-3

5
8
.4

-4
8
1
.2

—
-4

8
1
.2

-4
8
1
.2

n
v
s1

3
8
3
.3

3
1
0
0
.0

0
-1

7
2

-5
8
0
.4

—
-5

8
2
.8

-5
8
5
.2

n
v
s1

4
3
3
.3

3
6
0
.0

0
-3

9
8
8
6
.6

6
4

-4
0
3
5
8
.1

5
5

-4
0
3
5
8
.1

5
5

—
—

n
v
s1

5
4
0
.0

0
1
0
0
.0

0
1

1
1

1
3

n
v
s1

7
8
7
.5

0
1
0
0
.0

0
0

-1
0
9
8
.6

—
-1

0
9
8
.6

-1
1
0
0
.4

n
v
s1

8
8
5
.7

1
1
0
0
.0

0
-1

0
6
.8

-7
7
7

-6
7
8
.4

-7
7
6
.6

-7
7
8
.4

n
v
s1

9
8
8
.8

9
1
0
0
.0

0
0

-1
0
9
7
.8

—
-1

0
9
8

—
n
v
s2

3
9
0
.0

0
1
0
0
.0

0
4
8
4
.2

-1
1
2
2
.2

—
-1

1
1
8

-1
1
1
3
.8

n
v
s2

4
9
0
.9

1
1
0
0
.0

0
—

-1
0
2
8
.8

—
-1

0
2
5
.8

-1
0
3
1
.8

p
ro

b
0
2

1
6
.6

7
1
6
.6

7
7
9
2
0
0
0

1
1
2
2
3
5

1
1
2
2
3
5

1
1
2
2
3
5

1
1
2
2
3
5

p
ro

b
0
3

5
0
.0

0
5
0
.0

0
1
0

1
0

1
0

1
0

1
0

p
ro

d
u
c
t2

2
3
.8

0
1
0
0
.0

0
—

-2
1
0
2
.3

7
7
1

—
—

-2
0
9
3
.4

4
7
9

22

T
a
b
le

2
c
o
n
ti

n
u
e
d

%
c
o
v

%
n
lc

o
v

U
C

S
C

IP
2
.1

.1
C

O
U

E
N

N
E

0
.3

B
A

R
O

N
9
.3

.1
B

O
N

M
IN

1
.6

p
ro

d
u
c
t

3
6
.2

2
1
0
0
.0

0
—

-2
0
9
4
.6

8
8

—
—

-1
8
6
8
.5

4
4
6

e
n
ip

la
c

re
fo

rm
u
la

te
d

1
9
.5

1
1
0
0
.0

0
—

—
—

-1
2
8
4
7
3
.3

2
-1

2
9
6
5
8
.8

1
fo

7
2

re
fo

rm
u
la

te
d

8
.5

4
5
0
.0

0
—

—
—

—
3
1
.9

8
0
8
7
3

fo
7

re
fo

rm
u
la

te
d

8
.5

4
5
0
.0

0
—

—
—

—
2
8
.3

3
5
0
8
2

fo
8

re
fo

rm
u
la

te
d

7
.8

4
5
0
.0

0
—

—
—

—
4
0
.7

8
9
9
3
6

fo
9

re
fo

rm
u
la

te
d

7
.2

6
5
0
.0

0
—

—
—

—
5
9
.3

0
5
6
1
5

m
3

re
fo

rm
u
la

te
d

1
3
.6

4
5
0
.0

0
3
7
.8

4
6
.3

0
6
3
1
4

6
7
.8

3
7
.8

4
9
.8

m
6

re
fo

rm
u
la

te
d

9
.6

8
5
0
.0

0
—

—
—

—
1
0
6
.2

5
6
8
8

m
7

re
fo

rm
u
la

te
d

8
.7

5
5
0
.0

0
—

—
—

—
1
3
0
.7

5
6
8
8

o
7

2
re

fo
rm

u
la

te
d

7
.7

8
5
0
.0

0
—

—
—

—
1
6
7
.6

8
0
5
8

o
7

re
fo

rm
u
la

te
d

7
.7

8
5
0
.0

0
—

—
—

—
1
8
9
.6

6
4
2
9

se
p
1

1
0
.5

3
4
0
.0

0
-5

1
0
.0

8
0
9
8

-4
7
0
.1

3
0
0
9

-5
1
0
.0

8
0
9
8

-5
1
0
.0

8
0
9
8

-5
1
0
.0

8
0
9
8

sp
a
c
e
2
5
a

5
.8

4
4
1
.8

6
—

—
—

—
4
8
7
.0

7
4
3
3

sp
a
c
e
2
5

1
.0

4
3
0
.7

7
—

—
—

—
4
8
7
.0

7
4
3
3

sp
a
c
e
9
6
0

2
7
.7

4
4
3
.4

3
—

1
7
1
3
0
0
0
0

—
4
2
1
5
5
0
0
0

—
sp

e
c
tr

a
2

4
4
.1

2
1
0
0
.0

0
3
0
6
.3

3
4
3

1
3
.9

7
8
3
0
3

—
2
8
.1

4
3
4
5
6

3
0
6
.3

3
4
3

st
e
1
3

5
0
.0

0
1
0
0
.0

0
2

2
2

2
2

st
e
2
7

4
0
.0

0
1
0
0
.0

0
9

2
2

2
2

st
e
3
1

3
.3

9
4
0
.0

0
-2

.0
0
0
0
0
1
5

—
—

—
-2

st
m

iq
p
2

4
0
.0

0
1
0
0
.0

0
2

2
—

2
—

st
m

iq
p
3

5
0
.0

0
1
0
0
.0

0
-6

-6
-6

-6
-6

st
m

iq
p
4

5
0
.0

0
1
0
0
.0

0
-4

5
7
4

-4
5
7
4

-4
5
7
4

-4
5
7
4

-4
5
7
4

st
m

iq
p
5

2
5
.0

0
1
0
0
.0

0
-3

3
3
.8

8
8
9
1

-3
3
3
.8

8
8
9
1

-3
3
3
.8

8
8
8
9

-3
3
3
.8

8
8
8
9

-3
3
3
.8

8
8
8
9

st
te

st
4

2
8
.5

7
1
0
0
.0

0
-7

-7
-7

-7
—

st
te

st
8

9
6
.0

0
1
0
0
.0

0
-2

6
0
4
1

-2
9
6
0
5

-2
9
5
7
5

-2
9
6
0
5

-2
9
6
0
5

st
te

st
g
r1

9
0
.9

1
1
0
0
.0

0
-6

.6
8
8

-1
2
.7

9
9
5
5

-1
2
.7

8
4
2

-1
2
.7

3
9
2

-7
.7

1
3

st
te

st
g
r3

9
5
.2

4
1
0
0
.0

0
-2

0
.2

7
4
7
5

-2
0
.5

7
9
5

-2
0
.4

9
1
0
5

-2
0
.4

7
6
3
5

-2
0
.0

7
9
6

st
te

st
p
h
4

7
5
.0

0
1
0
0
.0

0
-5

6
-8

0
.5

-8
0
.5

-8
0
.5

-8
0
.5

tl
n
1
2

6
.6

7
8
.3

3
—

—
—

—
—

tl
n
2

3
3
.3

3
3
3
.3

3
1
7
.3

5
.3

5
.3

—
—

tl
n
4

1
6
.6

7
2
0
.0

0
1
1
.1

1
2
.4

—
—

—
tl

n
5

1
4
.2

9
1
6
.6

7
1
5
.1

1
5
.5

—
—

1
1

tl
n
6

1
2
.5

0
1
4
.2

9
3
2
.3

—
—

—
—

tl
n
7

1
1
.1

1
1
2
.5

0
3
0
.3

—
—

—
—

tl
o
ss

1
3
.0

4
1
4
.2

9
1
6
.3

—
—

—
—

tl
tr

1
6
.0

7
3
3
.3

3
6
1
.1

3
3
3
3
3

8
3
.4

7
5

—
—

—
u
ti

l
3
.1

2
1
6
.6

7
9
9
9
.6

9
0
5
6

1
0
0
5
.2

6
8
1

—
1
0
0
0
.0

4
9
8

9
9
9
.5

7
8
7
5

w
a
st

e
2
.5

0
1
3
.7

8
6
2
6
.8

9
1
2
4

6
9
2
.9

8
3
7
7

—
7
1
0
.3

5
2

1
0
1
1
.5

2
5
7

S
a
ra

w
a
k

S
c
e
n
a
ri

o
1
6

4
.9

7
1
9
.0

5
-3

1
4
7
9
.4

0
5

-3
1
8
6
8
.0

9
9

-3
1
9
2
1
.5

7
-3

1
4
0
9
.4

0
5

—
S
a
ra

w
a
k

S
c
e
n
a
ri

o
1

4
.0

4
1
9
.0

5
-3

2
4
3
5
.4

0
5

-3
1
1
1
5
.5

4
3

-2
7
8
4
0
.7

5
9

-3
2
3
9
9
.4

0
5

-2
2
6
0
5
.0

7
4

S
a
ra

w
a
k

S
c
e
n
a
ri

o
8
1

5
.0

3
1
9
.0

5
-3

1
4
7
9
.4

0
5

-3
1
8
6
5
.3

5
5

-3
0
5
1
5
.4

4
3

-3
1
4
0
9
.4

0
5

—
le

e
1

1
6
.3

3
4
0
.0

0
—

—
—

-4
6
4
0
.0

8
2
4

-4
2
9
6
.9

5
1
1

le
e
2

2
2
.6

4
5
0
.0

0
—

—
—

—
—

m
e
y
e
r0

4
1
0
.1

7
4
2
.8

6
—

—
—

—
1
4
2
2
1
7
5
.2

m
e
y
e
r1

0
7
.6

1
2
3
.0

8
—

—
—

3
6
9
8
1
6
8
.3

—
m

e
y
e
r1

5
6
.1

3
1
6
.6

7
—

—
—

—
1
0
0
8
0
4
6
.4

a
h
m

e
to

v
ic

1
p
w

4
2
.4

0
3
5
.0

0
—

—
—

—
6
0
6
4
6
6
.4

2
a
h
m

e
to

v
ic

2
p
w

4
2
.0

9
2
8
.5

7
—

—
—

—
1
2
1
7
5
0
9
.3

23

T
a
b
le

2
c
o
n
ti

n
u
e
d

%
c
o
v

%
n
lc

o
v

U
C

S
C

IP
2
.1

.1
C

O
U

E
N

N
E

0
.3

B
A

R
O

N
9
.3

.1
B

O
N

M
IN

1
.6

k
a
ru

p
p
ia

h
1

2
7
.5

9
3
4
.7

8
—

1
3
9
.3

2
5
0
8

—
1
1
7
.0

5
2
6
3

1
1
7
.4

5
2
6
3

k
a
ru

p
p
ia

h
2

p
w

4
1
4
.7

4
2
6
.4

2
—

3
8
1
3
9
6
.6

4
9
0
9
9
9
.7

4
4
8
0
4
3
5
.2

9
—

k
a
ru

p
p
ia

h
3

p
w

4
1
7
.7

2
2
8
.5

7
—

1
7
5
3
6
9
8
.3

1
7
5
3
6
9
8
.3

—
—

k
a
ru

p
p
ia

h
4

p
w

4
1
8
.5

7
2
7
.9

6
—

1
4
3
0
0
6
7
.5

2
3
7
6
4
3
6
.2

—
1
0
4
6
4
0
6
.2

ru
iz

c
o
n
c
b
a
se

d
p
w

4
1
3
.3

3
3
6
.3

6
—

4
1
4
7
4
8
.3

1
—

—
—

ru
iz

fl
o
w

b
a
se

d
p
w

4
8
.3

3
4
5
.4

5
—

—
—

3
4
6
3
4
5
.3

9
—

24

Table 3: Comparison of overall performance of SCIP 2.1.1 with and without Undercover on MIQCP test set.
Columns “nodes” and “time” show the number of branch-and-bound nodes and the running time needed to solve
an instance to proven optimality, respectively. Column “pb root” depicts the primal bound after the root node.

SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

CLay0203M 48 0.1 41572.98 48 0.2 41572.98
CLay0204M 661 0.7 9199.995 721 0.7 9199.995
CLay0205M 10 690 4.2 81611.33 9 655 3.9 81611.33
CLay0303M 87 0.1 – 87 0.1 –
CLay0304M 316 0.6 78552.09 298 0.6 78552.09
CLay0305M 9 205 3.9 70332.47 8 969 4.1 70332.47
SLay04H 31 0.6 14395.62 31 0.3 9975.662
SLay04M 71 0.6 11676.06 132 0.8 12544.86
SLay05H 288 2.5 24998.52 286 2.3 24998.52
SLay05M 24 0.6 25589.95 56 0.7 27119.52
SLay06H 992 5.1 135525.5 1 670 8.6 135525.5
SLay06M 266 1.4 41921.2 618 2.0 42920.4
SLay07H 5 406 66.9 266528.1 5 895 71.9 266528.1
SLay07M 730 3.8 71077.43 1 430 9.6 99366.75
SLay08H 4 769 61.2 370075 32 232 310.3 370075
SLay08M 1 079 5.8 102746.5 1 493 7.0 102746.5
SLay09H 6 971 107.8 152428 31 680 383.1 152428
SLay09M 3 561 24.8 136774.1 1 453 22.4 135783.8
SLay10H >212 055 >3600.0 577942.5 144 350 2144.1 577942.5
SLay10M 27 922 181.9 144233.4 170 975 1034.2 144233.4
LeeCrudeOil1 05 25 1.0 – 13 0.8 –
LeeCrudeOil1 06 14 1.3 – 27 1.5 –
LeeCrudeOil1 07 29 1.5 – 29 1.4 –
LeeCrudeOil1 08 40 4.3 – 39 4.3 –
LeeCrudeOil1 09 62 3.9 – 108 4.4 –
LeeCrudeOil1 10 141 7.4 – 179 8.6 –
LeeCrudeOil2 05 32 2.1 – 80 2.1 –
LeeCrudeOil2 06 21 3.5 -101.1746 46 3.3 -101.1746
LeeCrudeOil2 07 397 6.5 – 384 6.2 –
LeeCrudeOil2 08 261 7.3 -101.1738 371 8.0 -101.1738
LeeCrudeOil2 09 713 17.5 – 517 16.5 –
LeeCrudeOil2 10 672 20.5 – 682 30.0 –
LeeCrudeOil3 05 2 141 7.3 – 6 821 18.3 –
LeeCrudeOil3 06 14 851 53.1 – 21 515 65.0 –
LeeCrudeOil3 07 20 341 77.2 – 28 851 95.2 –
LeeCrudeOil3 08 52 781 259.0 – 32 411 160.6 –
LeeCrudeOil3 09 48 118 289.9 – 51 121 270.9 –
LeeCrudeOil3 10 41 941 308.5 – 37 141 264.0 –
LeeCrudeOil4 05 106 2.5 – 23 3.3 –
LeeCrudeOil4 06 20 3.5 -132.5307 16 4.5 -132.5307
LeeCrudeOil4 07 118 5.7 -132.16 21 5.8 -132.16
LeeCrudeOil4 08 67 8.8 -132.4783 212 15.0 -132.4783
LeeCrudeOil4 09 43 15.5 -131.9602 28 11.9 -131.9602
LeeCrudeOil4 10 419 20.8 – 157 21.9 –
LiCrudeOil ex01 >1 318 676 >3600.0 – >1 178 319 >3600.0 –
LiCrudeOil ex02 >1 096 681 >3600.0 64752230 >1 074 998 >3600.0 64752230
LiCrudeOil ex03 >285 396 >3600.0 – >307 358 >3600.0 –
LiCrudeOil ex05 >375 180 >3600.0 – >408 032 >3600.0 –
LiCrudeOil ex06 19 790 313.8 – 60 296 805.1 –
LiCrudeOil ex11 >269 067 >3600.0 – >271 844 >3600.0 –
LiCrudeOil ex21 >232 969 >3600.0 – >242 431 >3600.0 –
alan 6 0.1 2.924996 6 0.1 2.924996
du-opt5 80 0.5 13.60875 58 0.4 15.62177
du-opt 238 0.7 7.246512 162 0.6 4.904643
elf 293 0.3 0.328 293 0.4 0.328
ex1223a 1 0.1 4.579582 1 0.0 4.579582
ex1263a 229 0.2 29.3 126 0.2 29.6
ex1263 596 0.7 30.1 194 0.4 –
ex1264a 176 0.2 10.3 128 0.1 11.1
ex1264 86 0.2 11.1 179 0.2 –
ex1265a 72 0.1 14.3 70 0.1 15.1
ex1265 69 0.3 11.3 186 0.4 –

25

Table 3 continued

SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

ex1266a 1 0.0 16.3 397 0.5 –
ex1266 1 0.1 16.3 209 0.6 –
ex4 11 0.7 -8.064135 11 0.8 -8.064136
fac3 8 0.2 31995140 12 0.1 32039520
feedtray2 1 0.1 0 1 0.1 0
fuel 3 0.1 10286.14 5 0.1 11925
gbd 1 0.0 2.2 1 0.0 2.2
meanvarx 4 0.1 14.36921 4 0.1 14.36921
netmod dol1 >42 355 >3600.0 -0.3740157 >40 552 >3600.0 -0.372303
netmod dol2 793 71.7 0 80 33.4 0
netmod kar1 315 4.5 -0.3717949 279 3.7 0
netmod kar2 315 4.5 -0.3717949 279 3.7 0
nous1 >2 196 718 >3600.0 – >2 174 442 >3600.0 –
nous2 3 311 2.9 1.384316 4 764 3.4 1.384316
nuclear104 >62 874 >3600.0 – >66 256 >3600.0 –
nuclear10a >49 >3600.0 – >43 >3600.0 –
nuclear10b >1 >3600.0 – >1 >3600.0 –
nuclear14a >62 466 >3600.0 -1.111458 >57 760 >3600.0 -1.100766
nuclear14b >47 549 >3600.0 -1.097686 >47 568 >3600.0 -1.097686
nuclear14 >1 473 004 >3600.0 – >1 471 465 >3600.0 –
nuclear24a >62 343 >3600.0 -1.111458 >57 760 >3600.0 -1.100766
nuclear24b >47 556 >3600.0 -1.097686 >47 482 >3600.0 -1.097686
nuclear24 >1 474 515 >3600.0 – >1 463 971 >3600.0 –
nuclear25a >55 186 >3600.0 -1.057131 >49 835 >3600.0 -1.057131
nuclear25b >33 525 >3600.0 – >35 924 >3600.0 –
nuclear25 >1 380 060 >3600.0 – >1 374 983 >3600.0 –
nuclear49a >5 883 >3600.0 – >6 729 >3600.0 –
nuclear49b >2 920 >3600.0 – >3 032 >3600.0 –
nuclear49 >379 308 >3600.0 – >378 649 >3600.0 –
nuclearva >2 988 726 >3600.0 – >2 978 098 >3600.0 –
nuclearvb >3 004 258 >3600.0 – >3 005 785 >3600.0 –
nuclearvc >2 983 650 >3600.0 – >3 002 087 >3600.0 –
nuclearvd >2 719 871 >3600.0 – >2 715 102 >3600.0 –
nuclearve >2 735 734 >3600.0 – >2 732 253 >3600.0 –
nuclearvf >2 740 055 >3600.0 – >2 743 820 >3600.0 –
nvs03 1 0.0 16 1 0.0 16
nvs10 1 0.0 -310.8 1 0.0 -310.8
nvs11 3 0.0 -431 3 0.0 -431
nvs12 6 0.1 -481.2 5 0.0 -481.2
nvs13 12 0.1 -580.4 9 0.1 -580.4
nvs14 1 0.0 -40358.15 1 0.0 -40358.15
nvs15 4 0.1 1 5 0.0 1
nvs17 51 0.1 -1098.6 45 0.1 -1098.6
nvs18 23 0.1 -777 20 0.1 -777
nvs19 89 0.2 -1097.8 84 0.2 -1097.8
nvs23 106 0.3 -1124.2 103 0.3 -1122.2
nvs24 104 0.3 -1028.8 103 0.3 -1028.8
prob02 1 0.0 112235 1 0.0 112235
prob03 1 0.0 10 1 0.0 10
product2 >3 258 756 >3600.0 -2099.124 >3 311 596 >3600.0 -2102.377
product 7 317 21.1 -2094.688 7 989 23.3 -2094.688
iplac reformulated 282 0.7 – 282 0.8 –
fo7 2 reformulated 57 203 33.5 – 62 818 35.6 –
fo7 reformulated 185 976 108.2 – 210 033 125.2 –
fo8 reformulated 364 808 230.3 – 426 135 250.6 –
fo9 reformulated 1 689 569 1130.6 – 2 775 675 1831.0 –
m3 reformulated 14 0.2 37.8 21 0.1 46.30631
m6 reformulated 8 958 4.1 – 1 601 1.5 –
m7 reformulated 4 635 3.6 – 5 988 4.2 –
o7 2 reformulated 1 461 823 773.7 – 1 501 419 790.7 –
o7 reformulated 3 647 967 2124.1 – 3 838 657 2191.2 –
sep1 37 0.3 -510.081 47 0.2 -470.1301
space25a >339 329 >3600.0 – >188 127 >3600.0 –
space25 >6 611 >3600.0 – >70 227 >3600.0 –
space960 >3 760 >3600.0 17130000 >3 479 >3600.0 17130000
spectra2 19 0.8 13.9783 23 0.6 13.9783
st e13 1 0.0 0 1 0.0 0
st e27 1 0.0 2 1 0.0 2

26

Table 3 continued

SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

st e31 1 647 1.0 -2.000001 2 038 1.0 –
st miqp1 1 0.0 281 1 0.0 281
st miqp2 1 0.0 2 1 0.0 2
st miqp3 1 0.0 -6 1 0.0 -6
st miqp4 1 0.1 -4574 1 0.0 -4574
st miqp5 1 0.1 -333.8889 1 0.0 -333.8889
st test1 1 0.0 0 1 0.0 0
st test2 1 0.0 -9.25 1 0.0 -9.25
st test3 1 0.0 -7 1 0.0 -7
st test4 1 0.0 -7 1 0.0 -7
st test5 1 0.0 -110 1 0.0 -110
st test6 1 0.0 471 1 0.0 471
st test8 1 0.0 -29605 1 0.0 -29605
st testgr1 48 0.1 -12.79955 20 0.1 -12.79955
st testgr3 28 0.1 -20.5795 23 0.1 -20.5795
st testph4 1 0.0 -80.5 1 0.0 -80.5
tln12 >1 549 104 >3600.0 – >1 481 337 >3600.0 –
tln2 1 0.0 5.3 1 0.0 5.3
tln4 2 658 1.5 11.1 2 784 1.5 12.4
tln5 171 037 105.1 15.1 104 002 63.1 15.5
tln6 >5 322 038 >3600.0 32.3 >5 432 291 >3600.0 –
tln7 >3 010 846 >3600.0 30.3 >3 179 741 >3600.0 –
tloss 1 0.0 16.3 145 0.2 –
tltr 38 0.2 61.13333 94 0.2 83.475
util 7 0.3 999.6906 213 0.4 1005.268
waste >2 080 248 >3600.0 621.8648 >2 068 008 >3600.0 692.9838
Sarawak Scenario16 >706 322 >3600.0 -31868.1 >668 385 >3600.0 -31868.1
Sarawak Scenario1 502 1.1 -32435.4 541 1.4 -31115.54
Sarawak Scenario81 >152 074 >3600.0 -31865.36 >153 286 >3600.0 -31865.36
lee1 2 828 2.2 – 21 451 19.3 –
lee2 37 584 44.8 – 31 580 36.9 –
meyer04 >3 106 891 >3600.0 – >3 047 664 >3600.0 –
meyer10 >1 391 651 >3600.0 – >1 338 247 >3600.0 –
meyer15 >183 963 >3600.0 – >358 139 >3600.0 –
ahmetovic1 pw4 42 842 36.1 – 63 195 58.2 –
ahmetovic2 pw4 >684 192 >3600.0 – >640 108 >3600.0 –
karuppiah1 1 941 1.8 139.3251 1 031 1.1 139.3251
karuppiah2 pw4 >4 650 797 >3600.0 381396.6 >4 299 998 >3600.0 381396.6
karuppiah3 pw4 34 191 23.0 1753698 61 191 33.9 1753698
karuppiah4 pw4 >1 198 193 >3600.0 1430067 >1 110 591 >3600.0 1430067
ruiz concbased pw4 8 511 8.3 414748.3 27 271 22.7 414748.3

27

	Introduction
	A generic algorithm
	Finding minimum covers
	Domain propagation and conflict learning
	The complete algorithm
	Computational experiments
	Variants
	Conclusion

