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Undercover

a primal MINLP heuristic exploring a largest sub-MIP

Timo Berthold∗ Ambros M. Gleixner†

February 2, 2012

Abstract

We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear pro-
gramming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given
MINLP. We solve a vertex covering problem to identify a minimal set of variables that need
to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these vari-
ables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear
relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities
and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a
feasible solution of the original problem.

We present computational results on a test set of mixed-integer quadratically constrained
programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority
of these instances allow for small covers. Although general in nature, the heuristic appears
most promising for MIQCPs, and complements nicely with existing root node heuristics in
different state-of-the-art solvers.

Keywords: Primal Heuristic, Mixed-Integer Nonlinear Programming, Large Neighborhood
Search, Mixed-Integer Quadratically Constrained Programming, Nonconvex Optimization
Mathematics Subject Classification: 90C11, 90C20, 90C26, 90C30, 90C59

1 Introduction

For mixed-integer (linear) programming it is well-known that, apart from complete solving meth-
ods, general purpose primal heuristics like the feasibility pump [4, 19, 21] are able to find high-
quality solutions for a wide range of problems. Over the years, primal heuristics have become
a substantial ingredient of state-of-the-art solvers for mixed-integer programming [6, 10]. For
mixed-integer nonlinear programming (MINLP), the last three years saw an increasing interest
of the research community in general-purpose primal heuristics [8, 9, 12, 13, 16, 30, 32, 33].
An MINLP is an optimization problem of the form

min dTx

s.t. gk(x) 6 0 for k = 1, . . . ,m,

Li 6 xi 6 Ui for i = 1, . . . , n,

xi ∈ Z for i ∈ I,

(1)
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where I ⊆ {1, . . . , n} is the index set of the integer variables, d ∈ Rn, gk : Rn → R for k =
1, . . . ,m, and L ∈ (R∪{−∞})n, U ∈ (R∪{+∞})n are lower and upper bounds on the variables,
respectively. Since fixed variables can always be eliminated, we assume w.l.o.g. that Li < Ui for
i = 1, . . . , n, i.e., the interior of [L,U ] is nonempty. Note that a nonlinear objective function can
always be reformulated by introducing one additional constraint and variable, hence form (1) is
general.
If all constraint functions gk are quadratic we call (1) a mixed-integer quadratically constrained
program (MIQCP). If all constraints are linear we call (1) a mixed-integer program (MIP). If I
is empty, we refer to an MINLP, MIQCP, and MIP as a nonlinear program (NLP), quadratically
constrained program (QCP), and linear program (LP), respectively.
At the heart of many recently proposed primal MIP heuristics, such as Local Branching [20],
RINS [17], DINS [23], and RENS [7], lies large neighborhood search, the paradigm of solving a
small sub-MIP that promises to contain good solutions. In this paper, we introduce Undercover, a
large neighborhood search start heuristic that constructs and solves a sub-MIP of a given MINLP.
We demonstrate its effectiveness on a general test set of MIQCPs taken from the MINLPLib [14].
During the design of Undercover, our focus was its application as a start heuristic inside a
complete solver such as BARON [34], Couenne [5], Bonmin [11] or SCIP [3].
When primal heuristics are considered as standalone solving procedures, e.g., the RECIPE heuris-
tic [30] or the Feasibility Pump [12, 16], the algorithmic design typically aims at finding feasible
solutions for as many instances as possible, even if this takes substantial running time. However,
if they are used as supplementary procedures inside a complete solver, the overall solver perfor-
mance is the main objective. To this end, it is often worth sacrificing success on a small number
of instances for a significant saving in average running time. Primal heuristics in modern solvers
therefore often follow a “fast fail” strategy: the most crucial decisions are taken in the beginning
and in a defensive fashion such that if the procedure aborts, it will not have consumed much
running time.
Two major features distinguish Undercover from all mentioned primal heuristics for MINLP.
Firstly, unlike most of them [8, 12, 13, 16, 33], Undercover is not an extension of an existing MIP
heuristic towards a broader class of problems; moreover, it does not have a counterpart in mixed-
integer linear programming. Secondly, Undercover solves two auxiliary MIPs (one for finding a
set of variables to be fixed plus the resulting sub-MIP), and at most two NLPs (possibly one
to compute initial fixing values, one for postprocessing the sub-MIP solution). To the contrary,
most large neighborhood search heuristics [12, 16, 30, 32, 33] for MINLP solve an arbitrarily large
series of MIPs, often alternated with a sequence of NLPs, to produce a feasible start solution.
The number of iterations is typically not fixed, but depends on the instance at hand.
The paper is organized as follows. Section 2 introduces a first generic version of the Undercover
algorithm. In Section 3, we describe how to find variables to fix such that the resulting subprob-
lem is linear. Section 4 explains how to extract useful information, even if the sub-MIP proves
to be infeasible. Finally, Section 6 provides computational results that show the effectiveness of
Undercover.

2 A generic algorithm

The paradigm of fixing a subset of the variables of a given mixed-integer program in order to
obtain subproblems that are easier to solve has proven successful in many primal MIP heuristics
such as RINS [17], DINS [23], and RENS [7]. The core difficulty in MIP solving is the integrality
constraints. Thus, in MIP context, “easy to solve” usually takes the meaning of few integer
variables.
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Actually, integrality is a special case of nonlinearity, since it is possible to model the integrality of
a bounded integer variable xi ∈ {Li, . . . , Ui} by the nonconvex polynomial constraint (xi −Li) ·
. . .·(xi−Ui) = 0. This insight matches the practical experience that in MINLP, while integralities
do contribute to the complexity of the problem, the specific difficulty is the nonlinearities. Hence,
“easy” in an MINLP context can be understood as few nonlinear constraints.
Our heuristic is based on the simple observation that by fixing certain variables (to some value
within their bounds) any given mixed-integer nonlinear program can be reduced to a mixed-
integer linear subproblem (sub-MIP). Every feasible solution of this sub-MIP is then a feasible
solution of the original MINLP.
Whereas in general it holds that many or even all of the variables might need to be fixed in order
to arrive at a linear subproblem, our approach is motivated by the experience that for several
practically relevant MINLPs fixing only a comparatively small subset of the variables already
suffices to linearize the problem. The computational effort of solving this subproblem compared
to solving the original problem, however, is usually greatly reduced since we can apply the full
strength of state-of-the-art MIP solving. Before formulating a first generic algorithm for our
heuristic, consider the following definitions.

Definition 2.1. Let P be an MINLP of form (1) and C ⊆ {1, . . . , n} be a set of variable indices
of P . We call C a cover of constraint gk, k ∈ {1, . . . ,m}, if and only if the set

{(x, gk(x)) : x ∈ [L,U ], xi = x∗i for all i ∈ C} (2)

is affine for all x∗ ∈ [L,U ]. We call C a cover of P if and only if C is a cover of all con-
straints g1, . . . , gm.

Figure 1: A convex MIQCP and the Undercover sub-MIP induced by the NLP relaxation.

The following example illustrates how covers of an MINLP are used to construct a sub-MIP for
finding feasible solutions.

Example 2.2 (the Undercover sub-MIP). Consider the following convex MIQCP:

min − y − z
s.t. x+ y + z2 − 4 6 0

x, y, z > 0

x, y ∈ Z

(3)
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The only variable that appears in a nonlinear term is z, hence {z} is the minimum cover
of (3) w.r.t. the above definition. The (unique) optimal solution of its nonlinear relaxation
is (0, 3.75, 0.5) with objective function value −4.25.
Taking that relaxation, the idea of Undercover is to fix z = 0.5, which makes (3) an integer linear
program. The (unique) optimal solution of this is (0, 3, 0.5) with objective function value −3.5,
which is necessarily a feasible solution for the MIQCP (3). Taking the NLP as dual and the
Undercover solution as primal bound, this gives an optimality gap of roughly 20%. The actual
(unique) optimal solution of (3) is (0, 4, 0).
This example is illustrated in Figure 1. The light shaded region shows the solid corresponding to
the NLP relaxation; the parallel lines show the mixed-integer set of feasible solutions of (3). The
dark shaded area shows the polytope associated to the Undercover sub-MIP. The blue point B
is the optimum of the NLP, the red point A is the optimum of the Undercover sub-MIP, the
green point C is the optimum of the MIQCP. The smaller black points indicate further feasible
solutions of the Undercover sub-MIP.

A first generic algorithm for our heuristic is given in Figure 2. The clear hinge of the algorithm
is found in line 5—finding a suitable cover of the given MINLP. Section 3 elaborates on this in
detail.

input MINLP P as in (1)1

begin2

compute a solution x∗ of an approximation or relaxation of P3

round x∗i for i ∈ I4

determine a cover C of P5

solve the sub-MIP of P given by fixing xi = x∗i for all i ∈ C6

end7

Figure 2: Simple generic algorithm.

To obtain suitable fixing values for the selected variables, an approximation or relaxation of
the original MINLP is used. For integer variables the approximate values are rounded. Most
complete solvers for MINLP are based on branch-and-bound [29]. If the heuristic is embedded
within a branch-and-bound solver, using its (linear or nonlinear) relaxation appears as a natural
choice for obtaining approximate variable values.
Large neighborhood search heuristics that rely on fixing variables typically have to trade off
between eliminating many variables in order to make the sub-MIP tractable and leaving enough
degrees of freedom such that the sub-MIP is still feasible and contains good solutions. Often
their implementation inside a MIP solver demands a sufficiently large percentage of variables to
be fixed to arrive at an easy to solve sub-MIP [6, 7, 17, 23].
For our heuristic, the situation is different since we do not aim to eliminate integrality constraints,
but nonlinearities. While it still holds that fixing variables, even only few, results in a smaller
search space, the main benefit is that we arrive at a MIP.
In a nutshell: instead of solving an easier problem of the same class, we solve a smaller problem
of an easier class.
In order to linearize a given MINLP, in general we may be forced to fix integer and continuous
variables. The fixing of continuous variables, especially, in an MINLP can introduce a significant
error, even rendering the subproblem infeasible. Thus our heuristic will aim at fixing as few
variables as possible to obtain as large a linear subproblem as possible, through the utilization
of minimum covers.
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3 Finding minimum covers

This section describes our method for determining a minimum cover of an MINLP, i.e., a minimal
subset of variables to fix in order to linearize each constraint. In this section, we make the
standard assumption that the nonlinear functions involved are twice continuously differentiable.
However, the idea of Undercover can easily be applied to MINLPs in general, as will be explained
in Section 7. Note that the partial derivatives are well-defined since the domain [L,U ] has
nonempty interior.
As motivation let us first consider bilinear programs, i.e., QCPs with a bipartition of their
variables, {1, . . . , n} = A ∪ B, A ∩ B = ∅, and each quadratic term of the form xixj , i ∈ A,
j ∈ B. In this case, holding the variables of either A or B fixed, per definition one obtains a
linear program—a simple property that has been used extensively in various solution approaches.
The sets A and B each constitutes a cover. In the global optimization literature, the variables
corresponding to the smaller of both sets are often called complicating variables. If the partition
into A and B is unique, then these complicating variables form a minimum cover.
Any general quadratically constrained program can be converted to a bilinear program by dupli-
cation of variables. Hansen and Jaumard [26] showed how to perform this transformation such as
to minimize either the number of duplicated or complicating variables. The following definition
is a straightforward generalization of their notion of a co-occurrence graph to MINLPs.

Definition 3.1 (co-occurrence graph). Let P be an MINLP of form (1) with g1, . . . , gm twice
continuously differentiable on [L,U ]. We call GP = (V,E) the co-occurrence graph of P with
node set VP = {1, . . . , n} given by the variable indices of P and edge set

EP =
{
ij | i, j ∈ V,∃k ∈ {1, . . . ,m} :

∂2

∂xi∂xj
gk(x) 6≡ 0

}
,

i.e., we draw an edge between i and j if and only if the Hessian matrix of some constraint has a
structurally nonzero entry (i, j).

Remark 3.2. Since the Hessian of a twice continuously differentiable function is symmetric,
GP is a well-defined, undirected graph. It may contain loops, e.g., if square terms x2i are present.
Trivially, the co-occurrence graph of a bilinear program is bipartite; the co-occurrence graph of a
MIP is an edge-free graph.

Theorem 3.3. Let P be an MINLP of form (1) with g1, . . . , gm twice continuously differentiable
on [L,U ]. Then C ⊆ {1, . . . , n} is a cover of P if and only if it is a vertex cover of the co-
occurrence graph GP .

Proof. If h : Rn → R is twice continuously differentiable, x∗i ∈ Rn, C ⊆ {1, . . . , n}, then fixing
variables xi = x∗i , i ∈ C, and projecting to the nonfixed variables yields another twice continu-
ously differentiable function h̄ : Rn−|C| → R. Let π : Rn → Rn−|C| be the projection x 7→ (xi)i 6∈C .
Now the Hessian matrix of h̄ is simply obtained from the Hessian of h by taking the columns
and rows of nonfixed variables:

∇2h̄π(x) =
( ∂2

∂xi∂xj
h(x)

)
i,j 6∈C

for any x ∈ Rn with xi = x∗i , i ∈ C. A twice continuously differentiable function is affine if and
only if its Hessian vanishes on its domain. Hence,

C is a cover of h⇔ ∀i, j 6∈ C :
∂2

∂xi∂xj
h(x) ≡ 0.
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For the MINLP P this yields that

C is a cover of P ⇔ ∀i, j 6∈ C, k ∈ {1, . . . ,m} :
∂2

∂xi∂xj
gk(x) ≡ 0

⇔ ∀i, j 6∈ C : ij 6∈ EP
⇔ ∀ij ∈ EP d : i ∈ C ∨ j ∈ C,

i.e., if and only if C is a vertex cover of the co-occurrence graph GP .

Note that any undirected graph G = (V,E) is the co-occurrence graph of the QCP min{0 :
xixj 6 0 for all ij ∈ E}. Hence, minimum vertex cover can be transformed to computing a
minimum cover of an MINLP. Since minimum vertex cover is NP-hard [22], we have

Corollary 3.4. Computing a minimum cover of an MINLP is NP-hard.

There exist, however, many polynomial-time algorithms to approximate a minimum vertex cover
within a factor of 2, such as simply taking the vertices of a maximal matching. It is conjectured
that 2 is also the optimal approximation factor [28] and it is proven that vertex cover is NP-hard
to approximate within a factor smaller than 10

√
5−21 = 1.3606 . . . [18], hence no polynomial-time

approximation scheme exists. Approximation ratios 2−ε(G) are known with ε(G) > 0 depending
on special properties of the graph such as number of nodes [27] or bounded degree [25].
In this paper we aim at computing minimum covers exactly. For this we use a simple binary
programming formulation. For an MINLP of form (1), define auxiliary binary variables αi,
i = 1, . . . , n, equal to 1 if and only if the original variable xi is fixed. Then

C(α) := {i ∈ {1, . . . , n} : αi = 1}

forms a cover of P if and only if αi + αj > 1 for all ij ∈ EP . For an MIQCP, e.g., this requires
all square terms and at least one variable in each bilinear term to be fixed. To obtain as large a
linear subproblem as possible, we solve the binary program

min
{ n∑
i=1

αi : αi + αj > 1 for all ij ∈ EP , α ∈ {0, 1}n
}

(4)

minimizing the sum of auxiliary variables.
Note that for particular classes of MINLPs it is possible to exploit special features of the co-
occurrence graph in order to compute a minimum cover exactly in polynomial time—a simple
example is the class of bilinear programs mentioned above—or to approximate it within a factor
sufficiently close to 1. However, in our experiments the binary program (4) could always be
solved by a standard MIP solver within a fraction of a second. In all cases, optimality was
proven at the root node, hence without enumeration.

4 Domain propagation and conflict learning

Fixing a variable can have great impact on the original problem and the approximation we use.
An important detail, crucial for the success rate of Undercover, is not to fix the variables in the
cover simultaneously, but sequentially one by one. This section describes how we use domain
propagation, backtracking and conflict analysis to avoid and handle infeasibilities during this
process.
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Fix-and-propagate. The task of domain propagation is to analyze the individual structure
of single constraints w.r.t. the current domains of the variables in order to infer additional
domain reductions, thereby tightening the search space. For an overview of domain propagation
techniques applied in MIP and MINLP solvers, see [3] and [35], respectively.
To prevent obvious infeasibilities, we fix the variables in the cover one after the other applying
domain propagation after each fixing in order to further tighten the bounds, in particular of the
yet unfixed cover variables. During this process, it might happen that the value a variable takes
in the reference solution is no longer contained in its reduced domain. In this case, we instead
fix the variable to the closest bound.1 This fix-and-propagate procedure resembles a method
described in [21]. Additionally, we apply it for continuous variables.
Note that by this, the fixing values and hence the created subproblem depend on the fixing order.
Different variable orderings lead to different propagations, thereby to different subproblems and
different solutions being found.
Of course, it might also happen that a variable domain becomes empty. This means that the
subproblem with the currently chosen fixing values is proven to be infeasible without even having
started its solution procedure.
In this case, we apply a one-level backtracking, i.e., we undo the last bound change and try
alternative fixing values, see Section 5 for details. Note that if we cannot resolve the infeasibility
by one-level backtracking, Undercover will terminate. This is a “fast fail” strategy: if we cannot
easily resolve the infeasibility, we abort at an early stage of the algorithm without wasting running
time.2

Even if fix-and-propagate runs into an infeasibility, we can extract useful information for the
global solution process. Adding so-called conflict constraints prevents running into the same
deadlock twice.

Conflict analysis in MIP. Conflict learning is a technique that analyzes infeasible subprob-
lems encountered during a branch-and-bound search. Whenever a subproblem is infeasible,
conflict analysis can be used to learn one (or more) reasons for this infeasibility. This gives rise
to so called conflict constraints that can be exploited in the remainder of the search to prune
other parts of the tree.
Carefully engineered conflict analysis has lead to a substantial increase in the size of problems
modern SAT solvers can deal with [31]. It has recently been generalized to MIP [1, 2]. One main
difference between MIP and SAT solving in the context of conflict analysis is that the variables
of a MIP do not need to be of binary type. In [1] it is shown how the concept of a conflict graph
can be extended to MIPs with general integer and continuous variables.
The most successful SAT learning approaches use so called first unique implication point (1UIP)
learning, which captures a conflict that is “close” to the infeasibility and can infer new informa-
tion. Solvers for MIP or MINLP typically take a longer processing time per node and they do not
restart during search. That is why MIP solvers with conflict learning such as SCIP potentially
generate several conflicts for each infeasibility.

Conflict analysis for Undercover. The fix-and-propagate strategy can be seen as a simula-
tion of a depth-first-search in the branch-and-bound tree, applying one-level backtracking when a
fixing results in an infeasible subproblem. Hence, using conflict analysis for these partially fixed,
infeasible subproblems enables us to learn constraints that are valid for the global search of the

1Alternatively, we could recompute the reference solution to obtain values within the current bounds.
2If we want to apply Undercover more aggressively, we can try to recover from infeasibility by reordering

the fixing sequence, e.g., such that the variable for which the fixing failed will be the first one in the reordered
sequence. This resembles a simple restarting mechanism from SAT solving.
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original MINLP. This is done by building up the conflict graph that is implied by the variable
fixings and the propagated bound changes. For this, the reason for each propagation, i.e., the
bounds of other variables that implied the domain reduction, needs to be stored or reconstructed
later on.
Note that the generated conflict constraints will not be limited to the variables in the cover
since the conflict graph also contains all variables that have changed their bounds due to domain
propagation in the fix-and-propagate procedure.
Valid constraints can be learned even after fix-and-propagate. If the subsequent sub-MIP solution
process proves infeasibility and all variables in the cover are integer, we may forbid the assignment
made to the cover variables for the global solution process. The same constraint can be learned
if the Undercover sub-MIP could be solved to proven optimality, since the search space that is
implied by these fixings has been fully explored. In both cases, this is particularly useful for
small covers.

5 The complete algorithm

This section outlines the details of the complete Undercover algorithm, cf., Figure 3. In the first
step, we construct the covering problem (4) by collecting the edges of the co-occurrence graph,
see Section 3. For constraints of simple form such as quadratic ones the sparsity pattern of the
Hessian matrix can be read directly from the description of the constraint function. For general
nonlinearities, we use algorithmic differentiation to automatically compute the sparsity pattern
of the Hessian, see, e.g., [24].
To solve the covering problem we employ a standard MIP solver, which in our computational
experiments never took more than a fraction of a second to find an optimal cover. Nevertheless,
since the covering problem is NP-hard, solving it to optimality may be time-consuming, in
general. To safeguard against this, we only solve the root node and proceed with the best solution
found. Subsequently, we fix the variables in the computed cover as described in Section 4.3

As motivated in the beginning, we designed Undercover to be applied within a complete solver.
During fix-and-propagate, we call two routines provided by the solver, domain propagation in
line 23 and conflict analysis in line 27. If the former detects infeasibility, we call the latter to
learn conflict constraints for the global solution process, see Section 4.
If domain propagation detects infeasibility after fixing variable xi, i ∈ C, to the (rounded and
projected) value Xi in the reference solution, we try to recover by one-level backtracking. The
following alternatives will be tried: for binary variables the value 1−Xi; for nonbinary variables
the lower bound Li and, if this is also infeasible, the upper bound Ui. In the case of infinite
bounds Li and Ui are replaced by Xi − |Xi| and Xi + |Xi|, respectively. If Xi = 0, then −1 and
+1 will be used instead. Of course, if fixing values accidentally coincide, each value is tested
only once.
Typically, the sub-MIP solved in the next step incurs the highest computational effort and is
controlled by work limits on the number of nodes, LP iterations, etc., see Section 6 for details.
Since by construction the sub-MIP should be significantly easier than the original MINLP, we

3If we want to apply Undercover aggressively and allow for solving the covering problem multiple times, the
following two strategies can be used. First, during the fix-and-propagate routine variables outside the precomputed
cover may be fixed simultaneously. In this case, the fixing of some of the yet unfixed variables in the cover might
become redundant. Recomputing the cover with αi = 1 for all i with local bounds L̂i = Ûi may yield a smaller
number of remaining variable fixings. Second, if no feasible fixings for the cover variables are found later on, we
can re-solve the covering problem adding a cutoff constraint

∑
i∈C(1−αi)+

∑
i6∈C αi > 1 and try again. However,

both techniques appear to be computationally too expensive for the standard setting that we explored in our
computational experiments.
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input MINLP as in (1), reference point x∗ ∈ [L,U ], ni > 0 alternative fixing
values y∗i,1, . . . , y

∗
i,ni
∈ [Li, Ui] for all i ∈ {1, . . . , n}

output feasible solution x̂ (on success)

begin
/* Step 1: create covering problem */

E ← ∅ /* edge set of co-occurrence graph */1

foreach k ∈ {1, . . . ,m} do2

Sk ← {i ∈ {1, . . . , n} : gk depends on xi} /* variables in gk(x) 6 0 */3

foreach i ∈ Sk do4

if
∂2

∂x2i
gk(x) 6≡ 0 then E ← E ∪ {(i, i)} /* must fix xi */

5

else6

foreach j ∈ Sk, j > i,
∂2

∂xi∂xj
gk(x) 6≡ 0 do

7

E ← E ∪ {(i, j)} /* must fix xi or xj */8

/* Step 2: solve covering problem (4) */

α∗ ← arg min
{∑n

i=1 αi : αi + αj > 1 for all ij ∈ E,α ∈ {0, 1}n
}

9

C ← {i ∈ {1, . . . , n} : α∗i = 1}10

/* Step 3: fix-and-propagate loop */

L̂← L, Û ← U /* local bounds */11

foreach i ∈ C do12

L̂0 ← L̂, Û0 ← Û , p← 0 /* store bounds for backtracking */13

X ← ∅, success← false /* set of failed fixing values */14

while ¬success and p 6 ni do15

Xi ← if p = 0 then x∗i else y
∗
i,p16

if i ∈ I then Xi ← [Xi] /* round if variable integer */17

X ← min{max{Xi, L̂i}, Ûi} /* project to bounds if outside */18

if Xi ∈ X then19

p← p+ 1 /* skip fixing values tried before */20

else21

L̂i ← Xi, Ûi ← Xi /* fix */22

call domain propagation on [L̂, Û ] /* propagate */23

if [L̂, Û ] 6= ∅ then24

success← true /* accept fixing, go to next variable */25

else26

call conflict analysis27

L̂← L̂0, Û ← Û0 /* infeasible: backtrack */28

X ← X ∪ {Xi}, p← p+ 1 /* try next fixing value */29

if ¬success then return /* no feasible fixing found: terminate */30

/* Step 4: solve sub-MIP */

solve sub-MIP min
{
dTx : gk(x) 6 0 for k = 1, . . . ,m,

L̂i 6 xi 6 Ûi for i = 1, . . . , n, xi ∈ Z for i ∈ I
}

31

if sub-MIP solved to optimality or proven infeasible and C ⊆ I then32

add constraint
∨

i∈C(xi 6= Xi) to original problem33

/* Step 5: solve sub-NLP */

if feasible sub-MIP solution found then34

x̂← best sub-MIP solution35

if sub-MIP not solved to optimality or C 6⊆ I then36

/* restore global bounds, fix integers, solve locally */

solve sub-NLP min
{
dTx : gk(x) 6 0 for k = 1, . . . ,m,

Li 6 xi 6 Ui for i = 1, . . . , n, xi = x̂i for i ∈ I
}

37

x̂← sub-NLP solution /* update sub-MIP solution */38

return x̂39

end

Figure 3: The complete Undercover algorithm.
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expect that often it can indeed be solved to optimality or proven infeasible. As described in
Section 4, we may then forbid the assignment of fixing values to the cover variables if the latter
are all integer, stated in line 33.
Eventually, if a feasible sub-MIP solution x̂ has been found, we try to improve it further by
fixing all integer variables to their values in x̂ and solving the resulting NLP to local optimality.
Clearly, if all cover variables are integer and x̂ is optimal for the sub-MIP, this step can be
skipped. Otherwise, we reoptimize over the continuous variables in the cover and may obtain a
better objective value.

6 Computational experiments

Only few solvers exist that handle nonconvex MINLPs, such as BARON [34], Couenne [5],
and LindoGlobal [40]. Others, e.g., Bonmin [11] and SBB [41], guarantee global optimality only
for convex problems, but can be used as heuristic solvers for nonconvex problems. Recently,
the solver SCIP [2, 3] was extended to solve nonconvex MIQCPs [9] and MINLPs [35] to global
optimality. For a comprehensive survey of available MINLP solver software, see [15].

Experimental setup. The target of our computational experiments was to analyze the per-
formance of Undercover as a start heuristic for MINLPs applied at the root node. Therefore,
we evaluated the sizes of the actual covers found, the success rate of Undercover, the distribu-
tion of running time among different components of the algorithm, and benchmarked against
state-of-the-art solvers.
We implemented the algorithm given in Figure 3 within SCIP4 and used SCIP’s LP solution as
reference point x∗. To perform the fix-and-propagate procedure, we called the standard domain
propagation engine of SCIP. Secondary SCIP instances were used to solve both the covering
problem (4) and the Undercover sub-MIP.
We controlled the computational effort for solving the sub-MIP in two ways. First, we imposed
a hard limit of 500 nodes and a dynamic stall node limit5 between 1 and 500 nodes. Second,
we adjusted the SCIP settings to find feasible solutions fast: we disabled expensive presolving
techniques and used the “primal heuristics emphasis aggressive” and the “emphasis feasibility”
settings. Furthermore, if the sub-MIP is infeasible, this is often detected already when solving
the root relaxation, hence we deactivated expensive pre-root heuristics so as to not lose time on
such instances. Components using sub-MIPs themselves are switched off altogether. For details,
please refer to the source code at [38].
In our main experiment, we ran SCIP with all heuristics other than Undercover switched off
and cut generation deactivated. We used SCIP 2.1.1 with CPLEX 12.3 [39] as LP solver,
Ipopt 3.10 [36] as NLP solver for the postprocessing, and CppAD 20100101.4 [37] as expression
interpreter for evaluating general nonlinear constraints. We refer to this configuration as UC.
We tested against the state-of-the-art MINLP solvers BARON 9.3.1 [34] (commercial license),
Couenne 0.3 [5] (open source), and SCIP 2.1.1 (academic license) with Undercover disabled. In
order to investigate how Undercover can enhance the root node performance of complete solvers,
we compare UC with their root heuristics. SCIP, for instance, applies eleven primal heuristics
at the root node.
As test set we used a selection of 37 MIQCP instances from MINLPLib [14]. We excluded
lop97ic, lop97icx, pb302035, pb351535, qap, and qapw, which are linear after the default pre-

4The source code is publicly available within SCIP 2.1.1 and can be found at [38].
5With a stall node limit we terminate if no improving solutions are found within a certain number of branch-

and-bound nodes since the discovery of the current incumbent.
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Figure 4: Distribution of running time among different components of Undercover heuristic.

solving of SCIP. On the nuclear instances, the root LP relaxation of SCIP is often unbounded
due to unbounded variables in nonconvex terms of the constraints. In this case, we cannot ap-
ply Undercover since no fixing values are available. Due to this, we only included two of those
instances, nuclear14a and nuclear14b, for which the root LP of SCIP is bounded.
We further tested Undercover on general MINLPs from MINLPLib, excluding those which are
MIQCPs, linear after SCIP presolving, or contain expressions that cannot be handled by SCIP,
e.g., sin and cos. Additionally, three more instances with unbounded root LP relaxation were
removed, leaving 110 instances. We used the same settings and solvers as described above.
All experiments were conducted on a 3.00 GHz Intel Core 2 Extreme CPU X9650 with 6144 KB
Cache and 8 GB RAM using openSuse 11.4 with compiler GCC 4.5.1. Hyperthreading and
Turboboost were disabled.

Results for MIQCP. The results for the experiments on MIQCPs are shown in Table 1.
In columns “% cov” and “% nlcov”, we report the relative size of the cover used by UC as
percentage of the total number of variables and of the number of variables that appear in at least
one nonlinear term, respectively. All numbers are calculated w.r.t. the numbers of variables after
preprocessing. Note that a value of 100% in the “% nlcov” column means that the trivial cover
consisting of all variables appearing in nonlinear terms is already minimal. For all other instances,
the solution of the covering problem gives rise to a smaller cover, hence a larger sub-MIP and
potentially more solutions for the MINLP.
Column “UC” shows the objective value of the best solution found by Undercover. For all other
solvers, we provide the objective value of the best solution found during root node processing.
The best objective value among the four columns is marked bold.
The computational results for MIQCPs seem to confirm our expectation that often a low fixing
rate suffices to obtain a linear subproblem: 13 of the instances in our test set allow a cover of
at most 5% of the variables, further 13 instances of at most 25%. Only 5 instances were in a
medium range of 25%–50%, for another 6 a minimum cover contained more than 80% of the
variables.
UC found a feasible solution for 24 test instances: on 11 out of the 13 instances with a cover
of at most 5% of the variables, on 8 out of 13 instances with a cover of at most 25%, and on 5
out of the remaining 11 instances. In comparison, BARON found a feasible solution in 18 cases,
Couenne in 6, SCIP in 25. UC found an optimal solution for instances ex1266, sep1, st_e31,
and tloss, and a solution within less than 0.1% gap to the optimal solution value for instances
fac3, and util.
There were 10 instances for which UC found a solution, but BARON did not, 4 times it was the
other way around. Comparing UC to Couenne, this ratio is 20 : 2, w.r.t. SCIP it is 8 : 9. We
note that on 7 instances UC found a solution, although none of BARON, Couenne, and SCIP
did. For 11 instances UC found the single best solution and for 3 further instances it produced
the same solution quality as the best of the other solvers.
The time for applying Undercover was always less than 0.3 seconds, except for the instance waste,
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for which Undercover ran for 2.5 seconds. Figure 4 shows the average distribution of running
time spent for solving the covering problem, processing the fix-and-propagate loop, solving the
sub-MIP, polishing the solution with an NLP solver and for the remaining parts such as allocating
and freeing data structures, constructing the auxiliary problems, computing conflict constraints,
and so on. This average has been taken over all instances for which Undercover found a feasible
solution, hence all main parts of the algorithm have been executed. The major amount of time,
namely 60%, is spent in solving the sub-MIP. Solving the covering problem plus performing
fix-and-propagate took only about 15% of the actual running time.
Although the polytope described by (4) is not integral, the covering problem could always be
solved to optimality in the root node by SCIP’s default heuristics and cutting plane algorithms.
In 23 out of 37 cases, the minimal cover was nontrivial, with cover sizes of 8–50% of the nonlinear
variables.
We note that in 11 out of the 13 cases for which the resulting sub-MIP was infeasible, the
infeasibility was already detected during the fix-and-propagate stage, in the remaining two cases
during root node processing of the sub-MIP. Thus in most cases, no time was wasted to try to
find a solution for an infeasible subproblem, since the most expensive part, see Figure 4, can be
skipped. This confirms that Undercover follows a “fast fail” strategy, a beneficial property of
heuristic procedures applied within complete solvers, as argued in Section 1. Also, all feasible sub-
MIPs could be solved to optimality within the imposed node limit of 500, which indicates that—
with a state-of-the-art MIP solver at hand—the generated subproblems are indeed significantly
easier than the full MIQCP.
For 14 out of 24 successful runs, all cover variables were integral. For the remaining 10 instances,
NLP postprocessing was applied; 7 times, it could further improve the Undercover solution.
Recall that an arbitrary point x∗ ∈ [L,U ] can serve as reference solution for Undercover. A
natural alternative to the LP solution is a (locally) optimal solution of the NLP relaxation. An
additional experiment showed that, using an NLP solution, Undercover only succeeded in finding
a feasible solution for 18 instances of the MIQCP test set, instead of 24. If both versions found
a solution, the quality of the one based on the NLP solution was better in eight cases, worse in
three. Our interpretation for the lower success rate is that the advantage of the NLP solution,
namely being feasible for all nonlinear constraints, is dominated by the fact that an NLP solution
typically has a higher fractionality, which leads to a higher chance that infeasibility is introduced
in line 17 of the Undercover algorithm in Figure 3.

Results for MINLP. As expected, Undercover is much less powerful for general MINLPs
compared to MIQCPs. UC produced feasible solutions for only six out of more than a hundred
test problems from MINLPLib. During root node processing, BARON found feasible solutions
for 39 instances, Couenne for 23, SCIP for 35. Table 2 shows results only for those instances
on which Undercover succeeded. Although it is clearly outperformed by the other solvers w.r.t.
the number of solutions found, we would like to mention that for each other solver there is at
least one instance for which UC succeeded, but the solver did not.
Nevertheless, the experiments showed that fixing a small fraction of the variables would often
have sufficed to obtain a linear subproblem: for 77 out of the 110 test instances, the minimum
cover contained at most 25% of the variables, similar to the MIQCP case, but only 5 MINLPs
allowed for a cover size below 5%. Hence, compared to the MIQCP test set, cover sizes are
on average larger and very small covers occur rarely, but this alone does not explain the lower
success rate. It simply appears to be more difficult to find feasible fixing values due to the higher
complexity of the nonlinear constraints, even if we use the solution of an NLP relaxation as
the reference point x∗. Curiously enough, Undercover produced feasible solutions for the two
instances with smallest and the two instances with largest minimum cover.
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Further experiments. We experimented with the following extensions of Undercover: re-
ordering the fixing sequence if fix-and-propagate fails, see Footnote 2; re-solving the covering
problem if the sub-MIP is infeasible, see Footnote 3; using a weighted version of the covering
problem, see Section 7. None of those performed significantly better than our default strategy.
In a complete solver, primal heuristics are applied in concert, hence a feasible solution may be
already at hand when starting Undercover. In our implementation, this is exploited in two ways.
First, we use values from the incumbent solution as fixing alternatives during fix-and-propagate.
Fixing the variables to values in the incumbent has the advantage that the resulting sub-MIP is
guaranteed to be feasible, compare, e.g., [17]. Second, we add a primal cutoff to the sub-MIP to
only look for improving solutions.6 On four instances of the MIQCP testset, SCIP 2.1.1 with
default heuristics including Undercover produced a primal solution that was significantly better
than the best solution found by either SCIP or Undercover alone; a worse solution was produced
only for one instance.

7 Variants

We experimented with a few more variants of the Undercover heuristic. Some of them proved
beneficial for specific problem classes. For the standard setting presented in our computational
results, however, they showed no significant impact. As they might prove useful for future
applications of Undercover, we will give a brief description.
Our initial motivation for using a minimum cardinality cover was to minimize the impact on the
original MINLP. Instead of measuring the impact of fixing variables uniformly, we could solve
a weighted version of the covering problem (4). To better reflect the problem structure, the
objective coefficients of the auxiliary variables αi could be computed from characteristics of the
original variables xi such as the domain size, variable type, or appearance in nonlinear terms or
constraints violated by the reference solution.
Instead of fixing the variables in a cover, we could also merely reduce their domains to a small
neighborhood around the reference solution. Especially for continuous variables this leaves more
freedom to the subproblem explored and can lead to better solutions found. Of course, the
difficulty of solving the subproblem is increased. Nevertheless, small domains may allow for
sufficiently tight underestimators for an MINLP solver to tackle the subproblem.
The main idea of Undercover is to reduce the computational effort by switching to a problem
class that is easier to address. While we have focused on exploring a linear subproblem, for
nonconvex MINLPs, convex subproblems may provide a larger neighborhood to be searched and
still be sufficiently easy to solve.

8 Conclusion

In this paper, we have introduced Undercover, a primal MINLP heuristic exploring large linear
subproblems induced by a minimum vertex cover. It differs from other recently proposed MINLP
heuristics in that it is neither an extension of an existing MIP heuristic, nor solves an entire
sequence of MIPs.
We defined the notion of a minimum cover of an MINLP and proved that it can be computed by
solving a vertex covering problem on the co-occurrence graph induced by the sparsity patterns
of the Hessians of the nonlinear constraint functions. Although NP-hard, in our experiments

6A primal cutoff is an upper bound on the objective function that results in branch-and-bound nodes with
worse dual bound not being explored.
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covering problems could be solved rapidly. Several extensions and algorithmic details have been
discussed.
Undercover exploits the fact that small covers correspond to large sub-MIPs. We showed that
most instances of the MINLPLib [14] allow for covers consisting of at most 25% of their variables.
In particular for MIQCPs, Undercover proved to be a fast start heuristic, that often produces
feasible solutions of reasonable quality. The computational results indicate, that it complements
nicely with existing root node heuristics in different solvers. Undercover is now one of the default
heuristics applied in SCIP.
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Table 1: Computational results on MIQCP instances.

instance % cov % nlcov UC BARON Couenne SCIP

du-opt5 94.74 100.00 546.280975 – 157.082231 15.62177
du-opt 95.24 100.00 632.891424 108.331477 3.905155 4.904642
elf 5.56 50.00 1.675 1.675 – 0.328
ex1263 4.40 20.00 30.1 – – –
ex1264 4.88 20.00 11.1 – – –
ex1265 4.10 16.67 15.1 – – –
ex1266 3.57 14.29 16.3 – – –
fac3 80.60 100.00 31995143.5 72826487.6 – 32039523.2
feedtray2 4.67 50.00 – – – 0
meanvarx 23.33 100.00 14.824808 14.369232 14.404062 14.369212
netmod dol1 0.30 100.00 0 -0.250023 – -0.372303
netmod dol2 0.38 100.00 0 0.0571641 – 0
netmod kar1 0.88 100.00 0 -0.364809 – 0
netmod kar2 0.88 100.00 0 -0.364809 – 0
nous1 29.79 36.84 – – 1.567072 –
nous2 30.43 36.84 – 0.625967 0.625967 1.384316
nuclear14a 12.24 48.98 – -1.129079 – -1.100766
nuclear14b 12.24 48.98 – – – -1.097686
nvs19 88.89 100.00 – -1098 – -1097.8
nvs23 90.00 100.00 484.2 -1124.8 – -1122.2
nvs24 90.91 100.00 – -1027.4 – -1028.8
product2 23.80 100.00 – – – -2102.377
product 36.22 100.00 – – – -2094.688
sep1 10.53 40.00 -510.081 -510.081 -510.081 -470.13
space25a 5.84 41.86 – – – –
space25 1.04 30.77 – – – –
space960 27.74 43.43 – – – 17130000
spectra2 44.12 100.00 306.3343 119.8743 – 13.97830
st e31 3.39 40.00 -2 -2 – –
tln12 6.67 8.33 – – – –
tln5 14.29 16.67 15.1 – – 15.5
tln6 12.50 14.29 32.3 – – –
tln7 11.11 12.50 30.3 – – –
tloss 13.04 14.29 16.3 – – –
tltr 16.07 33.33 61.133333 – – 83.475
util 3.12 16.67 999.690564 999.57875 – 1005.26814
waste 2.50 13.78 661.337258 684.087647 – 692.983766
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Table 2: Computational results on selected MINLP instances.

instance % cov % nlcov UC BARON Couenne SCIP

mbtd 0.18 0.18 9.00006 – 9.6667 –
nvs09 85.00 87.18 28.865663 – -43.134337 -9.451041
nvs20 96.97 100.00 3276194408 230.922165 258.96067 –
stockcycle 9.98 100.00 357714.332 433304.376 – 306163.247
synthes1 33.33 100.00 6.009759 6.009759 7.092732 6.009759
johnall 0.14 0.16 -224.73017 -222.373032 -224.73017 -224.73017
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