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§ CORE, Université Catholique de Louvain, Belgium

Abstract In this paper we consider the problem of k-partitioning the nodes of a graph
with capacity restrictions on the sum of the node weights in each subset of the partition,
and the objective of minimizing the sum of the costs of the edges between the subsets of
the partition. Based on a study of valid inequalities, we present a variety of separation
heuristics for cycle, cycle with ears, knapsack tree and path-block-cycle inequalities among
others. The separation heuristics, plus primal heuristics, have been implemented in a
branch-and-cut routine using a formulation including variables for the edges with nonzero
costs and node partition variables. Results are presented for three classes of problems:
equipartitioning problems arising in finite element methods and partitioning problems
associated with electronic circuit layout and compiler design.
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1 Introduction

Graph partitioning problems arise as soon as graphs are used as a modelling
tool. The particular class of partitioning problems that is considered here
involves partitioning the node set of a graph so that the sum of node weights
within each set of the partition is limited, and the objective is to minimize
the sum of the costs of edges having their endpoints in different sets of the
partition (the associated multicut). This problem can perhaps be viewed as
the prototype for breaking up a graph into smaller pieces where the edge
weights wij measure in some sense the importance of considering the nodes
i and j together in the same subgraph.

Such problems are usually tackled heuristically. A recent study of Johnson et
al [8] involves extensive testing and comparison of simulated annealing and
a successful deterministic heuristic due to Kernighan and Lin [11] on graphs
with 500 nodes and upwards. The paper [8] also contains a large number of
references to earlier works. The results on the exact solution of such problems
are however sparse. A recent paper of Johnson, Mehotra and Nemhauser
[9] presents a heuristic column generation algorithm that terminates with
upper and lower bounds on the optimal value, and an optimality proof if
the two are equal. For a set of compiler design problems involving graphs
with between 31 and 61 nodes discussed further below 9 of 12 problems are
solved to optimality. Holm and Sorensen [7] have implemented a branch-
and-cut algorithm for the node capacitated graph partitioning problem that
is based on simple cuts and on reducing the symmetry of the solutions in
order to keep the size of the branch-and-bound tree as small as possible. The
algorithm has been tested on randomly generated graphs and the authors
proved optimality for instances up to 20 nodes.

Various special cases or closely related problems such as the equipartitioning
problem, the max cut problem, and the equivalent problem of optimizing a
quadratic function in 0/1 variables have received a lot of attention. Based
largely upon polyhedral studies of the convex hull of incidence vectors of
these problems, computational results for cut problems on special graphs
with up to 1600 nodes are presented in [1], and equipartitioning problems on
complete graphs with up to 70 nodes have been tackled, see [2], [3].

These works, plus the three applications discussed below, motivated us to
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study the polyhedral structure of the node capacitated graph partitioning
problem. The theoretical results obtained are discussed in a companion paper
[4], whereas here we report on our experience attempting to incorporate the
families of valid inequalities discovered into a branch-and-cut system to solve
the three classes of problem instances.

The outline of the paper is as follows. In the next section we discuss the three
classes of applications from which our test problems are drawn. In Section 3
we briefly describe the inequalities to be used. For most of the inequalities
the separation problem is NP-complete and we resort to heuristic ideas in
order to generate different families of valid inequalities. In Section 4 we
present these heuristics in some detail. Because of the limited literature
on separation and because these heuristics involve very common structures
such as trees, cycles and minimal infeasible sets, we feel that such details are
worth reporting. In Section 5 we discuss other details of the branch-and-cut
implementation such as primal heuristics and branching rules, and finally in
Section 6 we present our computational results.

2 Applications

Partitioning problems arise quite frequently as subproblems in different prac-
tical settings. In this paper we deal with instances arising from three different
applications: compiler design, finite elements computations associated with
meshes and partitioning problems coming from the design of electronic cir-
cuits.

The compiler design application is described in [9]. A compiler consists of
several modules, where each module is a set of procedures or subroutines
with a corresponding memory requirement. The modules must be combined
to form clusters whose size is restricted by storage capacity. Modules as-
signed to different clusters cause high communication costs, because such
communications might cause memory swapping. The objective of the com-
piler designer is to assign the modules to clusters so as to meet the storage
requirements and to minimize the total communication costs between mod-
ules in different clusters. Representing the modules as nodes of a graph and
the communication between modules as edges of this graph, the problem
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translates into a node capacitated graph partitioning problem as pointed out
in [9].

Another application involves the use of parallelism in Finite Element com-
putations. Typically in a Finite Element mesh each element is associated to
a set of variables and equations of a linear system. The central question is
how to solve such a system efficiently when several processors are available
to execute that task.

It is known that to have an efficient parallel algorithm one has to balance
the workload and to minimize the communication among the processors. In
terms of the Finite Element problem above, this corresponds to partitioning
the mesh into K (the number of processors) subregions containing several
elements and having small ”boundaries” between these subregions.

Roughly speaking the workload on the processors depends upon the number
of elements (variables and equations) associated to it. It is reasonable then
to try to assign the same (or almost the same) number of elements to each
processor. Thus, if n is the number of elements in the mesh, the problem
to be solved is that of finding a partition of the mesh into K subregions
containing at most � n

K
� elements and minimizing the ”boundaries”. Such a

problem can be modeled as a graph partitioning problem (see [13] and [14]
for more details).

Finally, the node capacitated graph partitioning problem appears as a sub-
problem in the layout of electronic circuits (see [10], [16]). Given a set of cells
where each cell i covers an area fi, a ground area (also called the master)
and a list of nets specifying the connections between cells so as to realize
a certain logic function, the layout problem is to find an assignment of the
cells to locations on the master and to route the nets by wires so that certain
side constraints are met and an objective function, such as the total wiring
length, is minimized. The side constraints include, for instance, that no two
cells must overlap, that certain wires must not exceed a given length, or
restrictions on the feasible locations for certain cells. A common approach
used to tackle this problem is to apply decomposition techniques (see [12] ,
[16]). One such approach involves the problem of grouping cells into clusters
filling at most a prespecified area so that the number of nets connecting cells
of different clusters is as small as possible. Introducing a graph G = (V,E)
whose nodes represent the cells and where an edge (i, j) indicates that cells
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i and j must be connected by a wire, we obtain a node capacitated graph
partitioning problem.

These three classes of instances differ considerably with respect to the distri-
bution of the node weights, the knapsack capacity relative to the total node
weight, and the structure of the graphs.

In the compiler design instances the graphs are sparse and there are just a
few nodes having both a very large weight and a high degree. For the mesh
problems the underlying graphs are again sparse and the node degrees are
at most four. All the node weights are one, and the objective is to find an
equicut in the graph of minimum size. The instances arising from VLSI-
design involve a small number of different node weights. Typically, about 50
% of the items have weight one, 30 % of the items have weight two and the
node weights of the remaining 20 % of the items lie in the range from 3 up
to 100. The graphs are sparse, yet without any well-defined structure.

3 Polyhedral Background: A Short Survey

In this section we briefly present the formulation and the valid inequalities
we use to tackle the node capacitated graph partitioning problem. For the
proofs and a more detailed discussion, we refer to the companion paper [4].

Introducing variables zki , i ∈ V , k = 1, . . . , K and ye, e ∈ E such that zki = 1
if node i lies in cluster k and zki = 0 otherwise and ye = 1 if e lies in the
multicut δ(V1, . . . , VK) and ye = 0 otherwise, we obtain a formulation

z = min
∑
e∈E

ceye,

K∑
k=1

zki = 1, for all i ∈ V,

(P )
∑
i∈V

fiz
k
i ≤ F, for all k = 1, . . . , K,

yij ≥
∑

k∈K1

zki −
∑

k∈K1

zkj , for K1 ⊆ {1, . . . , K}, (i, j) ∈ E,

yij, z
k
i ∈ {0, 1}, for all (i, j) ∈ E,

for all i ∈ V and k = 1, . . . , K.

Observing that the zki variables do not appear in the objective function, the
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next step is to consider the model

(P ′) z = min
∑

e∈E ceye,
y ∈ Y,

where Y ∈ IRE is the projection onto the y-space of the feasible region of
model (P ).

In [4] we have introduced several classes of valid, and under certain as-
sumptions, facet-defining inequalities for the polytope PK,F (G) := conv(Y ).
Though this polytope is a natural one to study, there is a potentially impor-
tant drawback: given an edge subset E ′ ⊆ E, it is NP-hard to verify whether
its associated incidence vector χE′ ∈ Y . In order to guarantee feasibility of
the solution, we need to incorporate the number of clusters and the vari-
ables zki . As every inequality valid for PK,F (G) is also valid for the polytope
associated with model (P ), we can work for computational purposes with
formulation (P ). Below we list some of the valid inequalities for PK,F (G).

First we present some definitions. A node set S forms a q-cover if
∑

i∈S fi >
qF . The q-cover is said to be minimal if no proper subset of it is a q-cover.
A 1-cover is just called a cover. A graph (S,ES) is a cycle with tails, if it
consists of a cycle plus a set of one or more paths each starting at some
node of the cycle, and otherwise disjoint both among themselves and from
the cycle, i.e. if there exists a cycle (C,EC), C ⊆ S and paths P1, . . . , Pt

such that V (Pi)∩C = {ui} for i = 1, . . . , t and V (Pi)∩ V (Pj)∩ (S \C) = ∅,
(i, j ∈ {1, . . . , t}, i �= j) and (C ∪ V (P1) ∪ . . . ∪ V (Pt), EC ∪ E(P1) ∪ . . . ∪
E(Pt)) = (S,ES). Let G = (V,E) be a graph. An ear decomposition of G is
a decomposition

G = C ∪ P1 ∪ . . . ∪ Pr,

where C is a cycle and Pi+1 is a path whose endnodes belong to C∪P1∪. . .∪Pi,
but its inner nodes do not. The path Pi+1 is called an ear and the ear
decomposition is said to be nondegenerate if the two endnodes of Pi are
distinct for all ears i = 1, . . . , r.

Proposition 3.1. ((Multiple) cover inequalities).
Let a graph G = (V,E) be given and assume that S ⊆ V is a q-cover.
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(i) If the subgraph (S,ES) is a tree, the q-cover tree inequality

∑
e∈ES

ye ≥ q

is valid for PK,F (G).

(ii) If the subgraph (S,ES) is a cycle, the q-cover cycle inequality

∑
e∈ES

ye ≥ q + 1

is valid for PK,F (G).

(iii) If the subgraph (S,ES) has an ear decomposition, the q-cover cycle
with ear inequality ∑

e∈ES

ye ≥ q + 1

is valid for PK,F (G).

(iv) If the subgraph (S,ES) is a cycle with tails where (C,EC) denotes the
cycle in (S,ES), the q-cover cycle with tails inequality

∑
e∈EC

ye + 2
∑

e∈ES\EC

ye ≥ q + 1

is valid for PK,F (G).

When the tree subgraph is a star with nodes in S = {r} ∪N(r), ES = δ(r)
where N(r) := {u ∈ V : (r, u) ∈ δ(r)} and when S forms a 1-cover, there is
an easy way of strengthening the tree inequality.

Proposition 3.2 (Star inequality).
If the subgraph (S,ES) is a star and S is a cover, the inequality

∑
e∈ES

ye ≥ |N(r)| − nr

is valid for PK,F (G), where nr = max{|U | : U ⊆ N(r),
∑

j∈U fj ≤ F − fr}.
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The cycle with ear inequality can also often be strengthened. We consider
the case of q = 1. Given a particular nondegenerate ear decomposition
C∪P1∪. . .∪Pr of GS, let ui, vi be the distinct endnodes of Pi, for i = 1, . . . , r,
and A := {e ∈ E : e = (ui, vi)for some i} and ge be the number of ocurrences
of e in the list {(u1, v1), . . . , (ur, vr)}.

Proposition 3.3 (Cycle with ear inequality).
If (S,ES) is a subgraph of G = (V,E) that has an ear decomposition and S
is a cover, then the inequality∑

e∈ES

ye −
∑

e∈E∩A
geye ≥ 2

is valid for PK,F (G).

To define the next family of inequalities, we suppose a set X = {x1, . . . , xt} of
nodes is given with t ≥ 2, and r ≥ 2 node sets C1, C2, . . . , Cr inducing cycles
where Ci ∩ Cj = X for all i, j ∈ {1, . . . , r}. Thus each cycle Cj decomposes
into t subpaths {Pij}ti=1 starting at xi, followed by a possibly empty node set
Qij, and terminating at x(i+1)(mod t). The weight of a node set Qij is simply
the sum of the weights of the nodes in Qij. The sets Q1, Q2, . . . , Qk, for
1 ≤ k ≤ tr, are defined to be the k distinct node sets {Qij} of largest weight.

Setting S :=
r⋃

j=1
Cj and ES :=

⋃r
j=1 E(Cj), the graph (S,ES) is called a

path-block cycle. An example of such a graph is illustrated in Figure 1.

Proposition 3.4 (Path-Block Cycle Inequality).
If (S,ES) is a subgraph of G = (V,E) that is a path block cycle, the inequality

r∑
j=1

∑
e∈E(Cj)

ye ≥ 2r

is valid for PK,F (G) if and only if S\
(
r−1⋃
j=1

Qj

)
is a cover.

Finally we introduce the class of knapsack tree inequalities, see [4]. Let∑
i∈V aixi ≤ a0 be a valid inequality for the knapsack polytope conv{x ∈
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Figure 1:

IRV :
∑

i∈V fixi ≤ F, xi ∈ {0, 1}, i ∈ V }, with ai ≥ 0 for all i ∈ V . We
choose a node r, and a subtree (T,ET ) of G rooted at r. For i ∈ T , let Pi

denote the edge set of the path joining i to the root r in (T,ET ). Moreover,
p(j) is the (unique) predecessor of node j on the path Pi.

Proposition 3.5 (Knapsack Tree Inequality).
If

∑
i∈V aixi ≤ a0 is a valid inequality for the knapsack polytope conv{x ∈

IRV :
∑

i∈V fixi ≤ F, xi ∈ {0, 1}, i ∈ V }, with ai ≥ 0 for all i ∈ V , then the
inequalities ∑

i∈T
ai(1 −

∑
e∈Pi

ye) ≤ a0

and ∑
i∈T

min{αi, α0, a0}yp(i),i ≥ α0

are valid for PK,F (G), where αi :=
∑

{j:i∈V (Pj)}
aj and α0 :=

∑
i∈T ai − a0.
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4 Separation and Strengthening of Inequal-
ities

Having presented several inequalities valid for the polyope PK,F (G) in the
previous section, we now discuss how to use them in a branch-and-cut al-
gorithm. Here, the key issue is separation. For a class I of inequalities for
problem (P ), the separation problem is defined as follows:

Given (z′, y′) ∈ IRK|V |+|E|, decide whether (z′, y′) satisfies all in-
equalities in I and, if not, find an inequality in I violated by
(z′, y′).

This issue is now addressed for the different classes of inequalities introduced
in Section 3. Below we assume that (z′, x′) is the current fractional solution
that we would like to cut off.

4.1 Trees and Stars

It can be shown that the separation problem for the (1-cover)tree inequal-
ities is NP-hard by reduction from the Steiner Tree Problem. Thus, we
concentrate on heuristic procedures for the separation of such inequalities.

The main difficulty in finding violated tree inequalities lies in the fact that
two conflicting objectives need to be taken into account. On the one hand
we look for a tree whose sum of edge weights (weights given by y ∈ IRE) is
as small as possible, while on the other hand the nodes of the tree must form
a cover. The first objective calls for small trees, and the second for large
trees. Our heuristic tries to play on both objectives so as to find violated
tree inequalities. We proceed iteratively. Each iteration begins with a tree T
such that

∑
e∈ET

y′e < 1, i.e., it is a “potentially” violated tree inequality. If
the set VT is a cover, then T induces a violated tree inequality and we stop.
Otherwise we try to enlarge this tree, selecting among all nodes j ∈ V \ VT

for which there exists an edge (i, j) ∈ E with i ∈ VT , one with minimum

weighted distance, i.e., we compute j∗ := arg min {y′
(i,j)

fj
: i ∈ VT} and add

node j∗ and edge (i, j∗) to the tree. If
∑

f∈ET∪{e} y
′
f > 1 the procedure fails,

otherwise we repeat the above steps with the tree T + (i, j∗).
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In our implementation, this procedure is called several times using different
isolated nodes as initial tree.

A simple observation is that the same procedure can be used for the separa-
tion of q-cover tree inequalities by replacing the value of the cluster capacity
F by qF .

Now we discuss a way to strengthen the tree inequalities. Let T be a tree
subgraph of G, VT a cover and

∑
e∈ET

ye ≥ 1 the corresponding tree inequality.
Let A := E(VT ) \ ET , and consider an edge (i, j) ∈ A (see Figure 2).

Figure 2: Strengthening of the tree inequality

Let C be the fundamental cycle contained in T + e. It is not difficult to see
that the inequality ∑

e∈ET \EC

2ye +
∑
e∈EC

ye ≥ 2

is valid for PK,F (G) (it is nothing but a cycle with tails inequality), and all
points satisfying the tree inequality at equality also satisfy this inequality at
equality. Thus in some sense this inequality is a strengthening of the initial
tree inequality.

Similar ideas can be used to iteratively bring in other edges of A. Of course,
the resulting inequality depends on the order in which we consider the edges.
Our code includes two strengthening procedures that we now discuss in more
detail.

The first works as follows. Suppose that, in some iteration of the strengthen-
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ing procedure, T is the current support of the inequality and A := E(VT )\ET .
For every edge e = (i, j) ∈ A, let Pe be a shortest path in T between i and
j with edge lengths y′. If Pe contains more than one edge whose coefficient
is equal to one in the current inequality, then we delete this edge from A.
Having performed this step, the updated set A ⊆ E(VT ) \ ET consists of all
edges (i, j) such that the shortest path between i and j contains only edges
with coefficient 2, with at most one exception. Next, we determine e∗ ∈ A
such that

∑
e∈Pe∗ y

′
e − y′e∗ is maximum. A new inequality is than obtained by

reducing coefficients of the variables ye by one for all e ∈ Pe∗ and setting the
coefficient of variable ye∗ to one. The face defined by the new inequality in
PK,F (G) is of higher dimension than the previous one, since all points in the
old face lie on the hyperplane

∑
e∈Pe∗ ye = ye∗ . The edge e∗ is added to T

and a new iteration is started.

The second strengthening procedure tries to create an inequality with a lower
left hand side value than the original tree inequality, though here the dimen-
sion of the corresponding face does not necessarily increase. Initially we sort
the edges of A in decreasing order according to the gain if the edge e is added
to the tree, i.e., let (i, j) ∈ A and Pij be the shortest path between i and j
in the support where the value of the current LP solution y′e is interpreted
as the cost of an edge e. The gain from adding edge (i, j) to the tree is∑

e∈Pij
y′e− y′(i,j). We consider the edges in A in this fixed order, though after

some iterations the value
∑

e∈Pij
y′e − y′(i,j) will no longer correspond to the

actual gain when adding (i, j) to the graph induced by the current inequality.

Each iteration starts by eliminating from A the edges which are chords of
some cycle in the current support graph. Suppose that πy ≥ 2 is the current
inequality. Let e be the next edge in A that is being considered for possible
addition to the structure and C be the smallest cycle that e creates in the
support graph. The coefficient of edge e is set to one. The coefficients of the
remaining edges in C are updated as follows.

If C has at most one edge in common with other cycles in the support, then
these coefficients are all reduced by one (see Figure 3). If C has more than
one edge in common with other cycles in the support, the coefficients of
the edges that do not belong to other cycles in the support are reduced by
one while the others remain unchanged. The coefficients of the latter edges
cannot be reduced because then the resulting graph would be disconnected
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Figure 3: Strengthening of the tree inequality

and the inequality would no longer be valid. This situation is illustrated in
Figure 4 where we assume that fi = 1 for all i ∈ V and F = 10. If edge e
is added and we reduce the coefficients for all edges in the cycle C by one,
node i is no longer connected in the resulting support graph and since the
remaining nodes no longer form a cover, the resulting inequality is not valid.
Let π′ be the support vector of the inequality obtained after changing the
coefficients as explained above. If π′y′ < πy′, then we replace π by π′ and
iterate. At the end of the strengthening procedure, the support of the final
inequality is either a tree or a cycle with ears and tails and the corresponding
node set a cover.

Figure 4: Strengthening of the tree inequality
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We have also implemented a separation routine for the star inequalities, see
Proposition 3.2. Often we can obtain a more violated star inequality if we
only choose a subset of the edges incident to the root node r. As illustra-
tion, consider the following example. Suppose F = 10, r = 1, f1 = 5 and
the neighbors of r are {2, 3, 4, 5, 6, 7} with weights 1, 2, 2, 4, 4, 4, respectively.
Here, nr = 3 and |N(r)| = 6. Considering only the edges (1, 4), (1, 5), (1, 6)
and (1, 7) we obtain nr = 1 and |N(r)| = 4. Hence, the left hand side of the
original star inequality is reduced by the value y1,2 + y1,3 and the right hand
side remains unchanged. We have implemented a routine for this “strength-
ening”.

In addition, our code tries to find violated star inequalities not only in the
original graph but also in the graph obtained by contracting certain edges.
This contraction yields nodes of higher weights that help in finding other
violated star inequalities. Suppose, we have contracted just one edge (i, j) ∈
E and the corresponding star inequality is

∑
e∈δ(i)∪δ(j)\{(i,j)} ye ≥ α. In order

to guarantee validity of the inequality we must calculate the coefficient of
the contracted edge in the inequality via the formula α− ((|δ(i) \ {(i, j)}| −
ni)+(|δ(j)\{(i, j)}|−nj)). This value can be computed in polynomial time.
In our implementation we contract all edges e whose value in the current
LP solution is below a given threshold parameter. As outlined above we can
calculate the coefficient of the first contracted edge exactly. For the other
edges that have been contracted we choose the right hand side of the star
inequality as the corresponding coefficient. This provides an upper bound on
the exact value of this coefficient.

4.2 Cycles and Cycles with Ears

One can show that the separation problem for the (1-cover)cycle inequalities
is NP-hard by reduction from the Traveling Salesman Problem. Hence, we
concentrate again on heuristic separation routines for such inequalities.

We have implemented two different heuristic ideas to find violated cycle in-
equalities. Below these are referred to as Cycles 1 and Cycles 2.

The Cycles 1 routine is executed for each edge e = (i, j) in the graph and
is based on shortest path computations. It works as follows. For every
(i, j) ∈ E, we determine a shortest path P between i and j in (V,E \ (i, j))
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using as costs on the edges the value of the current LP solution y′. If no such
path exists the procedure fails, and otherwise we check if

∑
e∈EP∪{(i,j)} y

′
e < 2.

In this case we have a “potentially violated” cycle inequality. If in addition
V (P ) is a cover, the cycle P + (i, j) induces a violated cycle inequality.
Otherwise V (P ) is not a cover and we try to extend the cycle P + (i, j) by
adding ears as explained after the presentation of the Cycles 2 procedure.

Procedure Cycles 2 is executed for each node in the graph and works as
follows. For every node i0 in V , a tree T is built as described in the tree
separation routine. Let A be the set of edges e in E(VT ) \ ET that induce a
cycle (C,EC) in T + e with

∑
e∈EC

y′e < 2 and i0 ∈ C. If there exists an edge
e ∈ A whose induced cycle is a cover, then a violated cycle inequality is found
and we stop. Otherwise, let e∗ be the edge in A and (Ce∗ , ECe∗ ) the induced
cycle for which

∑
u∈Ce∗ fu is maximized. We order the edges in ECe∗ \ {e∗}

according to decreasing values y′. Let ẽ be the next edge with respect to this
ordering. We define a new tree T (ẽ) by setting T (ẽ) := T + e∗ − ẽ. Let A(ẽ)
be the set of edges e′ in E(VT (ẽ)) \ET (ẽ) whose induced cycle Ce′ in T (ẽ) + e′

satisfies
∑

e∈ECe′
y′e < 2 and i0 ∈ VCe′ . If there exists an edge e′ ∈ A(ẽ)

such that Ce′ satisfies
∑

u∈VCe′
fu > F , then a violated cycle inequality has

been found. Otherwise, let e′ be the edge for which
∑

u∈VCe′
fu is maximum

among all edges in A(ẽ). If
∑

u∈VCe′
fu >

∑
u∈VCe∗

fu, then a new iteration

is started after replacing T , e∗ and Ce∗ by T (ẽ), e′ and Ce′ respectively. If,
for all ẽ in Ce∗ and for all e′ ∈ A(ẽ), we have that

∑
u∈VCe′

fu ≤ ∑
u∈VCe∗

fu,

then the maximum cycle found so far does not define a cover and we apply
a procedure that repeatedly tries to add paths to the cycle so as to obtain a
violated cycle with ears and tails inequality. This routine is described next.

In each iteration we have a cycle with ears C such that
∑

e∈EC
y′e < 2 (in

the first iteration it is only a cycle). If
∑

i∈VC
fi > F , the cycle with ears

C induces a violated inequality. Otherwise, we choose a node i in VC to
be the source and look for a shortest path P between i and some node in
VC \ {i} in the graph G − EC , where the costs on the edges are the values
of the current LP solution y′ (see Figure 5). If such a path exists, we check
if

∑
e∈EC∪EP

y′e < 2 and, if so, we add this ear to C. Moreover, if i and j
are the endnodes of the path P we have just added and (i, j) ∈ E, then
the coefficient of edge (i, j) is reduced by one (see also Proposition 3.3). If
no such a path P exists, we try to enlarge the current support (VC , EC) by
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appending tails. Let πy ≥ 2 be the inequality generated so far and suppose,∑
i∈VC

fi ≤ F . We determine a node i ∈ V \ VC such that for some j ∈ VC ,
y′(i,j) = min{y′(u,v) : u ∈ V \ VC , v ∈ VC}. If πy′ + 2y′(i,j) < 2 then the edge
is added to C and we set π(i,j) = 2. This gives rise to a new cycle with ears
and tails inequality and we continue the above steps until the nodes of the
support define a cover.

C

P

i

j

Figure 5: A Cycle with one ear

If the Cycles 1 or Cycles 2 routine returns a cycle (C,EC) whose nodes define
a cover, we try to strengthen the corresponding inequality in the following
way. We verify if there exists some chord a in G such that one of the two
cycles formed by adding this chord (C ′, EC′) say, defines a cover. If this situ-
ation occurs, we can delete the edges in EC \EC′ and the resulting inequality
defines a face of higher dimension.

Finally, the routine Cycles 1 is adapted to separate cycle inequalities whose
node set forms a 2-cover.

4.3 PBCs

The separation problem for the PBC inequalities is also believed to be NP-
hard. Thus we have implemented a heuristic separation routine which looks
for violated PBC inequalities. The support graph of the generated inequali-
ties are PBCs made of two cycles (r = 2 in Proposition 3.4), i.e., they are of
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the form y(C1)+y(C2) ≥ 4. Before explaining this routine in more detail, we
need to introduce some notation. Let X = {x1, . . . , xt} be a set of nodes with
t ≥ 2 and let VC1 and VC2 be node sets inducing cycles (VCj

, ECj
), j = 1, 2)

where VC1 ∩ VC2 = X. Thus each cycle (VCj
, ECj

) (j = 1, 2) decomposes into
t subpaths {Pij}ti=1 starting at xi, followed by a possibly empty node set Qij,
and terminating at x(i+1)(mod t). The weight of a node set Qij is the sum of the
weights of the nodes in Qij. If S := VC1∪VC2 and ES := EC1∪EC2 , the graph
(S,ES) is called a path-block cycle. Finally, we denote, for all i = 1, . . . , t, by
B(i) the set of paths {Pij}2

j=1. B(i) is called the i-th block of the PBC.

The main obstacle in separating PBC inequalities is to satisfy the validity
conditions. Essentially, for all the inequalities discussed so far, validity is
easily checked since it reduces to verifying that the nodes in the support
graph form a cover (possibly a 2-cover). For a PBC (S,ES) on two cycles,
the validity condition implies that, for every block B(k) of the PBC, the
nodes in S \Q1k and S \Q2k form covers.

The idea of the separation routine is to enlarge the set of nodes in the support
graph while keeping the sum of the node weights in the sets Qij small. First
a node r, called the root, is taken such that the degree of r is at least three
(the routine runs once for every possible choice of such a root node). Then,
using the routine Cycles 2 (see Subsection 4.2), a cycle (VC1 , EC1) is built
such that y′(EC1) < 2 − ε (the value of ε used in our implementation is .20)
and r is in VC1 . The cycle (VC2 , EC2) initially coincides with (VC1 , EC1), i.e.,
the starting PBC has two identical cycles and no blocks. Typically, at this
point, the corresponding inequality, given by y(EC1)+y(EC2) = 2y(EC1) ≥ 4
is not valid as the node set S = VC1 ∪ VC2 is not a cover (if it is, the routine
stops with a violated cycle inequality).

To meet the validity conditions, the PBC is modified so that a new block
is created at each iteration. The procedure that creates new blocks is quite
involved and we refer to [13] for a detailed description of it. The basic idea
is to keep cycle (VC1 , EC1) unchanged while cycle (VC2 , EC2) is modified by
deleting a subpath of edges that it has in common with EC1 and replacing
it by an alternative subpath whose edges are not in EC1 and whose nodes
are not in the current set S. At each iteration the current inequality must
satisfy y′(EC1) + y′(EC2) < 4 and, in some sense, we have to ensure that
we are getting closer to satisfying the validity condition. The latter goes as
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follows.

Let Q be the set Qij in the current PBC with largest sum of the node weights.
The validity of the corresponding inequality implies that

∑
i∈S fi−

∑
i∈Q fi >

F . Thus, new blocks are created in such a way that the value of
∑

i∈S fi −∑
i∈Q fi increases monotonically.

The separation routine stops creating new blocks when one of the following
two conditions holds: (i) no new block can be created such that y′(C1) +
y′(C2) < 4, in which case it fails to generate a violated PBC inequality or
(ii) the validity condition is satisfied and the current inequality is violated.
In the latter case, we check for a possible strengthening of the inequality.

We have implemented two types of strengthenings. For both strengthenings,
we check for the existence in the PBC of a path P with nodes {v0, . . . , vi, vi+1}
such that (vj, vj+1) ∈ EC1 ∩ EC2 , for all j = 0, . . . , i, and (v0, vi+1) ∈ E.

If
∑

j∈S fj −
∑

j∈Q fj −
∑

j∈{v1,...,vi} fj > F , then the subpath v1, . . . , vi can
be removed and the resulting PBC inequality is still valid. We strengthen
the inequality as follows. The coefficients of the edges (vj, vj+1), for all j =
0, . . . , i, are reduced from two to zero (these edges are removed from EC1 and
EC2) and the coefficient of edge (v0, vi+1) is increased from 0 to 2 (this edge
is added to EC1 and EC2). It can be easily verified that all points satisfying
the original inequality at equality also lie on the face defined by the resulting
inequality. This situation is illustrated in Figure 6 where |S| = 20 and we
suppose that F = 16 and fi = 1 for all i ∈ V .

Figure 6: PBC Inequality (Strengthening type 1)
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In the second type of strengthening, we also assume the existence of a path P
with nodes v0, . . . , vi+1 as before and such that (v0, vi+1) is in E. Now suppose
that

∑
j∈S fj−

∑
j∈Q fj−

∑
j∈{v1,...,vi} fj ≤ F and

∑
j∈{v1,...,vi} fj <

∑
j∈S fj−F .

In this case a new block can be created by removing the edges (vj, vj+1), for
all j = 0, . . . , i, from C2 and adding the edge (v0, vi+1) to C2. The previous
operations correspond to reducing the coefficients of the edges removed from
EC2 from 2 to 1 and to increasing the coefficient of edge (v0, vi+1) from 0
to 1. Again, it is easy to check that the new inequality defines a face of
higher dimension in PK,F (G) that contains the face defined by the original
inequality. An example of such a situation is illustrated in Figure 7 where
|S| = 20 and we suppose that F = 16 and fi = 1 for all i ∈ V .

Figure 7: PBC Inequality (Strengthening type 2)

4.4 Knapsack Trees

Given a graph G = (V,E), we need to find a subtree (T,ET ) of G rooted at
a node r ∈ V and a knapsack tree inequality

∑
i∈T ai(1 − ∑

e∈Pi
ye) ≤ a0. So

the first step is to find an appropriate subtree.

Note that, when y is a nonnegative vector, if we delete from (T,ET ) the
nodes for which (1−∑

e∈Pi
ye) ≤ 0, the resulting tree is the support graph of

a new knapsack tree inequality which is valid and has a bigger left-hand side
than the original inequality. Therefore, when looking for violated knapsack
tree inequalities, we can concentrate on subtrees of G such that the distance
(measured by the y′ variables) from the root to any leaf is less than one. Thus,
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starting from r, the first step in the heuristic is to compute the shortest path
tree (T,ET ) where

∑
e∈Pi

y′e < 1 for all i ∈ T .

The second step, having fixed a tree (T,ET ) with root r, is to look for a vio-
lated inequality. The weaker form of the inequality:

∑
i∈T ai(1−

∑
e∈Pi

ye) ≤
a0 where ax ≤ a0 is a valid inequality for X = {x ∈ {0, 1}V :

∑
i∈T fixi ≤ F}

with a ≥ 0 can be rewritten as:
∑

i∈T αiyp(i),i ≥ α0.

This immediately suggests two possibilities:

i) Separate x′, where x′
i = 1 − ∑

e∈Pi
y′e, over the knapsack polytope X.

If an inequality ax ≤ a0 is found, take the possibly strengthened version∑
i∈T min{αi, α0, a0}yp(i),i ≥ α0 and test for violation of y′.

ii)
∑

i∈T fixi ≤ F is a valid inequality for X, and thus y′ must satisfy the
strengthened form:

∑
i∈T min{αi(f), α0(f), F}yp(i),i ≥ α0(f), where αi(f), α0(f)

are calculated as above from the inequality
∑

i∈T fixi ≤ F in place of
∑

i∈T aixi ≤
a0. Thus we separate y′ over the knapsack polytope

X ′ = {y ∈ {0, 1}E :
∑
i∈T

min{αi(f), α0(f), F}yp(i),i ≥ α0(f)}.

Our implementation is thus, with minor modifications, to call two knap-
sack separation routines over the polyhedra X and X ′. The example below
demonstrates the two forms of inequality as well as some possibilities for
strengthening.

Consider the tree (T,ET ) shown in Figure 8 where F = 10 and fi = 1 for all
i ∈ T . Taking ai = fi = 1 and a0 = F = 10, we obtain the knapsack tree
inequality ∑

i∈T
(1 −

∑
e∈Pi

ye) ≤ 10.

or equivalently

11y1,2 + y2,3 + 8y2,4 + y2,5 + 4y4,6 + 3y4,7 + 3y6,10 + y10,11+
y10,12 + y7,8 + y7,9 + 5y1,13 + 4y13,14 + 3y14,15 + 2y15,16 + y16,17 ≥ 7

which leads to the strengthened inequality

7y1,2 + y2,3 + 7y2,4 + y2,5 + 4y4,6 + 3y4,7 + 3y6,10 + y10,11+
y10,12 + y7,8 + y7,9 + 5y1,13 + 4y13,14 + 3y14,15 + 2y15,16 + y16,17 ≥ 7
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However, the coefficient of edge (1, 2) can be reduced further in the following
way. If edge (1,2) is removed from T , we obtain two subtrees (T 1, E1

T ) and
(T 2, E2

T ) where T 1 = {1, 13, . . . , 17} and T 2 = {2, . . . , 12}. The knapsack
tree inequalities corresponding to T 1 and T 2 are given by:

5y1,13 + 4y13,14 + 3y14,15 + 2y15,16 + y16,17 ≥ −4 for T 1 and,

y2,3 +8y2,4 + y2,5 +4y4,6 +3y4,7 +3y6,10 + y10,11 + y10,12 + y7,8 + y7,9 ≥ 1 for T 2.

Validity is not affected for the inequality of T 1 when the right hand side is
set to zero. From these two inequalities we conclude that if edge (1,2) is
in a feasible multicut, the second tree also has to be cut at least once, and
therefore the coefficient of edge (1,2) can be reduced by one more unit, i.e.,
it can be reduced from 7 to 6.

In general, given an edge (p(u), u) in T , let (T u, Eu
T ) be the subtree of T

hanging from node u and (T p(u), E
p(u)
T ) be the subtree obtained from T by

deleting the nodes in T u (including u). We compute the right hand side of
the knapsack tree inequalities defined for T u (rooted at node u) and T p(u)

(rooted at r), say αu
0 and α

p(u)
0 respectively, and one can show formally that

the new coefficient of edge (u, v) is given by

α(u, v) − max {α(u, v) + max{0, αu
0} + max{0, αp(u)

0 } − α0, 0}.

Note that in the first approach of separating over X, we ignore important
information concerning the order relations between the variables, namely the
constraints xp(j) ≥ xj, where p(j) is the tree predecessor of j. Separating
over X ′ partially takes this information into account. Surprisingly perhaps it
appears in practice that the choice of subtree (T,ET ) is at least as important
as the choice of knapsack set.

5 Implementation

There are several features of a branch-and-cut algorithm that require careful
tuning to the classes of problem instances. Besides separation algorithms
and strategies, there are several other issues that play an important role in
influencing the performance of the overall procedure.
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Figure 8: Strengthening of the knapsack tree inequality

Initial LP. In our implementation, the first LP consists of the equations∑K
k=1 z

k
i = 1 for all i ∈ V and the knapsack inequalities

∑
i∈V fiz

k
i ≤ F

for all k ∈ M := {1, . . . , K}. Note that these two types of inequalities do
not give an integer programming formulation for the node capacitated graph
partitioning problem, because the edge constraints

∑
k∈K1

zki +
∑

k/∈K1
zkj −

y(i,j) ≤ 1 do not appear in the first LP. The reason for this choice is that, for
every edge (i, j) ∈ E, there exist exponentially many edge constraints and
adding them all explicitly to the LP is impossible. Moreover, we can solve
the separation problem for these inequalities in polynomial time using the
following procedure.

Given (i, j) ∈ E, we compute z = max{zki , zkj } for every k ∈ M .
If z = zki , we add k to set K1.

If K1 = M , this procedure yields an inequality
∑

k∈M zki − y(i,j) ≤ 1 which
cannot be violated because of the equation

∑
k∈M zki = 1. Otherwise K1 �= M ,

and it is easy to see that the edge constraint corresponding to K1 is the one
with maximum slack for edge (i, j).

Based on these observations, our approach is to add the edge constraints “on
the fly”, as they are needed.
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LPs. As LP solver we use CPLEX. In order to control the size of the LPs,
we restrict the number of cutting planes to be added in one step by some
parameter p. If the number of violated inequalities found by our separation
routines exceeds this parameter, we use the following strategy to select p
inequalities.

Let s be a scaling parameter (typically, s = 20). We generate a “double
hash table” by using the hash function h(inequality) := (s × slack, type).
Here “slack” denotes the violation of the inequality and “type” its type, i.e.,
tree, cycle, etc. We select p (typically, p = 1000) inequalities according to
decreasing values of s × slack. Among the inequalities with the same value of
s × slack, we select inequalities of different types by exhausting the buckets
in cyclic order.

Since different separation algorithms may generate the same inequality, we
test for redundancy of the inequalities to be selected. As a byproduct of
our hash implementation we only need to check redundancy among the in-
equalities with the same hash function value. Inequalities in the LP and the
inequalities with different hash function values are guaranteed to be different.

Another way to keep the size of the LPs under control is to eliminate in-
equalities with large slack. These inequalities are added to a “pool” and
kept for a certain number of iterations. In each iteration of the branch-and-
cut algorithm we scan through the pool and look for violated inequalities. If
such inequalities are found, they are inserted into the hash data structure for
violated inequalities and removed from the pool. The inequalities that are
not violated for a certain number of iterations are removed from the pool by
a garbage disposer.

Finally, we have implemented a procedure for fixing variables based on re-
duced cost arguments and on logical implications.

Branching Strategy. For the test problems introduced in the next section,
we have choosen a fixed strategy. We add cutting planes given by our sepa-
ration algorithms until no more violated inequalities are found or tailing off
is observed, i.e., the improvement of the lower bound over several iterations
is below a given threshold parameter. We then proceed to the enumerative
phase of our code.
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To branch, we choose a variable whose value is closest to 0.5, and we create
two subproblems by fixing this variable to 0 and 1, respectively. Priority is
given to branching on the edge variables. Each of the subproblems generated
is represented by its branching node and added to the list of active nodes.
An active node is selected with the minimum value of the local lower bound
associated with the subproblem. The initial LP for this node consists of the
constraints of the last LP loaded plus the variable fixing corresponding to
the node.

Primal Heuristics. We have implemented two LP based heuristics that
try to find feasible partitions of the graph, and an improvement heuristic.
Suppose that y′ is the current fractional LP solution.

The first heuristic called the Edge heuristic only uses the information pro-
vided by the edge variables to generate an upper bound. It is based on the
idea that, if y′ij is close to 0, nodes i and j will probably be together in some
cluster of the partition. Thus, given a positive (small) value ε, let E ′ be the
set of edges in E satisfying y′e < ε. Consider now the problem of finding a
minimum cost forest T in (V,E ′) such that: (i) the number of components
in T is at most K (the size of a feasible partition) and (ii) the sum of the
node weights in each component in T is at most F (the cluster capacity).
Clearly, any solution of this problem immediately converts into a solution
of the graph partitioning problem by making a one-to-one correspondence
between the components of the forest and the clusters in the partition.

Therefore, a modified version of Kruskal’s algorithm for the minimum span-
ning tree problem is used to find the forest T . The aim of these modifications
is to avoid the creation of components for which the sum of the node weights
is larger than F . If this modified version of Kruskal’s algorithm terminates
with a forest that has at most K components, a feasible solution for the graph
partitioning problem is available. Otherwise, the number of components in
T exceeds K and the Edge heuristic tries to find a feasible solution for the
bin packing problem in which the components in T are interpreted as items
that have to be packed into bins (cluster) of size F . If a solution is found for
the bin packing problem with cost at most K, then a feasible solution for the
partitioning problem is available. Otherwise, the heuristic fails to produce a
feasible partition of G and is unable to give an upper bound.
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The second heuristic called the Random heuristic, uses the node variable in-
formation. It is based upon a heuristic for the Unconstrained Global Routing
Problem in VLSI design (see [12]). Since we have the equality constraints∑K

k=1 z
k
u = 1 in our model, we can interpret the zku variables as a probability

distribution for node u. For instance, for an equipartition problem, suppose
that we have a fractional solution such that z1

u = 0.6 and z2
u = 0.4. In this

case, we assume that node u has 60% probability of being in cluster 1 and
40% of being in cluster 2.

The heuristic simulates a series of experiments in which the nodes are as-
signed to the clusters according to these probability distributions and, among
the solutions generated, the feasible solution of minimum cost is chosen. At
the beginning of an experiment, the n nodes of the graph are unassigned, and
the experiment consists of n iterations. At each iteration an unassigned node
u is chosen and it is assigned to cluster k with probability zku. If the capacity
remaining in cluster k is less than wu, then a new trial has to be made for
node u since this assignment is infeasible. In the new trial, the probability
distribution is adjusted so as to prevent node u from reassignment to cluster
k. This is repeated until either there are no more clusters available in which
u fits and the experiment is aborted, or a cluster is found that can accept
node u and the iteration terminates. The number of times the heuristic is
called is proportional to the number of fractional variables.

Besides these primal heuristics, we have implemented an Improvement heuris-
tic. This routine is a local search procedure based on ideas of Fiduccia and
Mattheyses [6]. Iteratively, either two nodes assigned to different clusters are
exchanged or some node is assigned to a different cluster. We have evaluated
the performance of the primal heuristics and the Improvement heuristic in a
series of tests. The best trade-off between running time and quality of the
solution has been reached by a combination of the Edge and Improvement
heuristics.

6 Computational Results

We have applied our branch-and-cut algorithm to test instances arising from
the applications discussed in Section 2. We now briefly report on the strategy
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chosen to attack these instances and then present the computational results.

Having designed and implemented various separation algorithms for different
classes of inequalities, it is necessary to decide for each class of instances
which separation routines to call and in what order. So we have evaluated
our separation procedures empirically and drawn some conclusions that we
now discuss.

1) For all the test instances, cycle and knapsack tree inequalities are indis-
pensible for obtaining satisfactory lower bounds.
2) Tree and star inequalities are useful only for the compiler design instances.
One possible explanation is that the corresponding graphs contain a small
number of nodes with very high node weight and degree and that star in-
equalities are well suited to these graphs.
3) The PBC inequalities are strong for the mesh application problems. More
precisely, for all of the smaller examples, the number of PBC inequalities
needed in order to prove optimality is significantly less than the number of
cycle (with ears and tails) and knapsack tree inequalities needed. However,
the PBC separation routine is very expensive in terms of running time, and
it is not used in our final runs.
4) We have also compared the two cycle routines Cycles 1 and Cycles 2.
Though we have not drawn any final conclusion, we observe that a) cycle
inequalities are rarely sufficient to solve any of the examples to optimality
and in some cases the lower bound is still more than 50 % away from the
optimum solution and b) the Cycles 1 routine usually provides better lower
bounds than does the Cycles 2 routine, at the price of a higher running time.
For the final runs we call the Cycles 2 routine for the mesh and VLSI exam-
ples, and we call both routines for the compiler design instances.

For the problem instances we use the following convention. The compiler
design instances start with cb, the instances associated with the mesh ap-
plication start with mesh and the VLSI instances start with vlsi. The first
number corresponds to the number of nodes in the graph, the second number
is the upper bound on the number of elements of the partition and the third
number reflects the number of edges in the graph. Thus, ”vlsi.42.4.132” is
a VLSI instance that involves 42 nodes and 132 edges, and the task is to
partition the node set into no more than 4 elements.
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Problem lb ub B&C Total Time root lb Time
cb450.30.30.47 827 827 1 26 827 26
cb450.30.30.56 1217 1217 1 16 1217 16
cb450.45.45.98 3320 3320 9 20:44 3304 11:28
cb450.47.47.99 2069 2069 9 18:43 2060 7:31
cb450.47.47.101 3585 3585 119 163:25 3518 6:35
cb450.61.61.187 10912 11064 7 � 300:00 10805 113:24
cb512.30.30.47 752 752 1 21 752 21
cb512.30.30.56 1111 1111 1 34 1111 34
cb512.45.45.98 3010 3010 5 17:04 3000 12:39
cb512.47.47.99 1913 1913 15 56:50 1903 11:32
cb512.47.47.101 3194 3194 9 26:09 3147 10:50
cb512.61.61.187 9716 9716 3 176:47 9709 173:03

Table 1: Computational results for compiler design instances

6.1 Compiler design problems

These problems have been introduced by Johnson, Mehrotra and Nemhauser
in [9] who solved 9 out of 12 problem instances to optimality using column
generation techniques. We have run our branch-and-cut algorithm on these
instances by calling the separation routines for trees, stars and knapsack
trees as well as the routines Cycles 1, Cycles 2. To obtain an upper bound,
we apply the Edge heuristic with the Improvement heuristic. The results are
shown in Table 1. In the second and third columns the final lower and upper
bound, respectively, are given after spending at most 300 minutes of CPU
time. The number of branch-and-cut nodes explored during the run is given
in column 4. The CPU times measured in minutes and seconds on a SUN
4/50 are presented in column 5. The symbol � in column 5 means that we
could not solve the corresponding example to optimality. Finally, columns 6
and 7 contain the values of the lower bound in the root node of the branch
and cut tree and the CPU time that is needed to achieve the corresponding
lower bound.

As shown in Table 1 we have solved all problems to optimality except the in-
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Problem lb ub B&C Total Time root lb Time
mesh.31.2.50 6 6 1 5 6 5
mesh.70.2.120 7 7 1 1:43 7 1:16
mesh.138.2.232 8 8 1 108:36 8 108:36
mesh.148.2.265 7 7 1 14:11 7 7:11
mesh.274.2.469 7 7 1 92:02 7 92:02

Table 2: Computational results for mesh problems

stance cb450.61.61.187. For this instance the results after several more hours
of computation indicate that days of computation time would be necessary
to prove optimality.
A comparison of our results to those presented in [9] is difficult, since the
codes are implemented on different machines and different LP solvers are
used. However, we prove optimality for two of the three instances not solved
to optimality in [9].

6.2 Mesh problems

The instances for this application are based on finite element meshes appear-
ing in [14] and [13]. Most of these practical instances give rise to graphs with
hundreds or thousands of nodes which are too large for our approach (even
solving an initial LP may be impossible). These instances have been split
into smaller instances to which our exact branch-and-cut algorithm can be
applied. Our data set consists of five equipartition instances with between
31 and 274 nodes and between 50 and 469 edges. Thus K = 2, fi = 1 for all
i ∈ V and F = �n

2
�.

In our runs we call the Cycles 2 and Knapsack tree separation routines and a
combination of the Edge and the Improvement heuristic to find upper bounds.
The results obtained are shown in Table 2.

We are able to solve all these equipartition problems at the root node of the
branch-and-cut tree.

In many mesh applications the number of clusters is K = 2p. A typical ap-
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Problem Partition into 4 Series of equipartitions
Optimum value CPU Time Optimum value Total Time

mesh.31.2/4.50 12 34 12 8
mesh.70.2/4.120 14 2:38 16 1:52
mesh.148.2/4.265 23 2313:15 23 22:40

Table 3: Splitting tests for mesh problems

proach to solve such problems heuristically, called the hierarchical approach,
is to solve a series of 2p−1 equipartition problems. Using our code and taking
p = 2, we have compared the heuristic solution obtained by solving a series
of three equipartition problems to optimality against the optimal solution
obtained by directly partitioning the mesh into K = 4 parts directly. These
results are shown in Table 3.

For the test instances the strategy of solving a series of equipartition prob-
lems is apparently superior. For the example mesh.70.120 the hierarchical
approach does not produce the optimum solution for the partition into 4
parts, but on the other two problems the solutions obtained by both meth-
ods have identical values. The total CPU Time used for solving the three
equipartition problems is far less than the time needed for solving the 4-
partitioning problems directly.

This suggests that good solutions for the mesh partitioning problem can per-
haps be obtained with a hierarchical approach, provided that the equiparti-
tioning problems are solved to optimality.

6.3 VLSI problems

Typical instances arising in the layout of electronic circuits involve several
thousands of cells ([10], [16]) and even when trying to split a circuit with
1000 cells into four pieces, it takes several hours to solve the first linear
programming relaxation. In order to create instances of smaller size, we have
executed one iteration of the placement and decomposition code developed
in [16], [10] in which the cells are distributed on 16 locations on the master.
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Problem lb ub B&C Total Time root lb Time
vlsi.17.4.39 44 44 27 17:07 41 1:07
vlsi.15.4.29 55 55 1 8 55 0:08
vlsi.34.4.71 78 78 3 1:33 77 1:30
vlsi.37.4.92 156 156 1 1:39 156 1:39
vlsi.38.4.105 275 277 75 � 300:00 272 15:11
vlsi.42.4.132 256 256 3 20:10 255 19:29
vlsi.44.4.105 164 164 5 2:00 163 1:39
vlsi.46.4.79 94 94 35 59:15 90 6:22
vlsi.48.4.81 99 99 267 300:00 94 7:36
vlsi.166.4.504 179 244 1 � 300:00 179 300:00
vlsi.239.4.375 281 297 7 � 300:00 281 200:00
vlsi.278.4.396 358 437 1 � 300:00 358 300:00

Table 4: Computational results for VLSI problems

All the cells that are assigned to the same position of the master form a
subcircuit suitable for partitioning into smaller pieces. The instances we
obtained in this way involve between 17 and 278 nodes and between 39 and
504 edges.

Our separation strategy is to use the Cycles 2 and knapsack tree separation
routines. The upper bounds are computed by the Edge and Improvement
heuristics. In Table 4 we summarize the results.

For the instances up to 50 nodes, the gap between lower and upper bounds
is very small. Indeed, for 8 out of 9 instances optimality is proved without
too much branching. For the instances beyond 150 nodes we have not suc-
ceeded in proving optimality and the gap between lower and upper bounds
lies between 5% and 30%.

In circuit design a common approach to solving partitioning problems heuris-
tically is again to proceed hierarchically, i.e., instead of partitioning the graph
(circuit) into K = 2p parts, a series of 2p−1 equipartition problems is solved.
We have compared both strategies on small examples with p = 2. The results
are shown in Table 5.
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Problem Partition into 4 Series of equipartitions
Optimum value CPU Time Optimum value CPU Time

vlsi.17.2/4.39 44 17:07 46 3:06
vlsi.15.2/4.29 55 8 58 5
vlsi.37.2/4.92 156 1:39 163 20:40
vlsi.42.2/4.132 256 20:10 314 12:17

Table 5: Splitting tests for VLSI problems

Contrary to the results for the mesh problems, the hierarchical strategy does
not appear to be competitive with the direct approach. In all four examples,
the solution found by the hierarchical strategy is not an optimum solution
of the original problem. Moreover it appears that, the larger the graph, the
larger the gap between the heuristic and the optimum solution. For one
instance the time needed to solve the problem optimally is even smaller than
the time needed to obtain the heuristic solution.

These results suggest that it may not be worthwhile spending too much effort
in solving equipartitioning problems to optimality when using the hierarchical
approach to circuit partitioning problems.

7 Conclusions

The results presented above can be interpreted in different ways. They are
disappointing in the sense that we are still a long way from solving problems
of the size that occur in many applications: mesh problems can easily have
103 to 106 nodes and VLSI problems are nearly as large. The largest problem
we have solved to optimality is a mesh problem with 274 nodes and 469 edges.

On the other hand, our branch-and-cut routine appears to be a step forward.
We are not aware of any literature in which this general model has been
studied from a polyhedral point of view, or in which such a variety of node
capacitated graph partitioning problems have been solved to optimality. Us-
ing our code, two more of the compiler design problems of [9] can be solved,
equipartitioning problems with more than 200 nodes have been solved, some-
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thing which initially appeared to be a very distant goal, and finally as far as
we can judge the VLSI problems solved are far from trivial.

Comparing our results to those in [3], involving equipartitioning problems
on complete graphs, is difficult, because the test instances treated there are
dense and, our code handles a much more general class of partitioning prob-
lems on sparse graphs. It does however seem likely that, as for special cases
like quadratic optimization or max cut, one of the crucial factors in measuring
problem difficulty is edge density.

Another point of comparison is the column generation approach applied by
Johnson et al. [9] and Vanderbeck [15]. The latter has very recently tackled
our test set with an exact integer programming column generation approach.
For the majority of the smaller instances his resolution times are of the same
order of magnitude as ours. In several cases the bound he obtains at the first
node of the branch-and-bound tree is superior to ours, which indicates that
there is considerable room for improvement in our cutting plane approach.

Our limited tests comparing 4-partitioning with a hierarchical use of equipar-
titioning can certainly not be judged conclusive. However, they suggest that
a hierarchical use of equipartitioning may be effective for mesh problems. On
the other hand, our results on VLSI instances suggest that here one should
try working directly on the multi-partitioning problem. Such tentative con-
clusion s (though restricted to problems of small size) can only be drawn
because the associated instances have been solved to optimality. Verifying
whether similar conclusions carry over to problems of bigger size is obviously
an open question and a major challange.
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