

Ralf Borndörfer Marika Karbstein

A Note on Menger's Theorem for Hypergraphs

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125
e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

A Note on Menger's Theorem for Hypergraphs*

Ralf Borndörfer Marika Karbstein

Abstract

We prove the companion Theorem to Menger's Theorem for hypergraphs. This result gives rise to a new class of blocking pairs of ideal matrices, that generalize the incidence matrices of cuts and paths.

1 Introduction

Let $H=(V, \mathcal{E})$ be an undirected hypergraph with n vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and m hyperedges $\mathcal{E}=\left\{e_{1}, \ldots, e_{m}\right\}$, where $e_{i} \subseteq \mathcal{V}, i=1, \ldots, m$. We want to allow for parallel edges, i.e., it is possible that $e_{i}=e_{j}$ for two edges e_{i} and $e_{j}, i \neq j$; we say that edges e_{i} and $e_{j}, i \neq j$, are distinct. Let s and t be two different vertices of H. An st-path $\left(v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, \ldots, e_{j_{k}}, v_{i_{k}}\right)$ in H is an alternating sequence of mutually different nodes $v_{i_{h}}, h=0, \ldots, k$, and mutually distinct hyperedges $e_{j_{h}}, h=1, \ldots, k$, such that $v_{i_{0}}=s, v_{i_{h-1}}, v_{i_{h}} \in e_{j_{h}}$ for all $h=1, \ldots, k$, and $v_{i_{k}}=t$. The sequence $\mathcal{P}=\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)$ of hyperedges in an st-path is an st-hyperpath; we write $e_{j_{i}} \in \mathcal{P}, i=1, \ldots, k$, and we say that an $s t$-hyperpath connects s and t. A set of hyperedges $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ is an $s t$ hypercut if s and t are connected in $H=(V, \mathcal{E})$, but not in $H^{\prime}=\left(V, \mathcal{E} \backslash \mathcal{E}^{\prime}\right)$. Let $\delta_{H}(W), W \subset V$, be the set of hyperedges that contain at least one node in W and one node in $V \backslash W$, i.e., $\delta_{H}(W)=\{e \in \mathcal{E} \mid e \cap W \neq \emptyset, e \cap(V \backslash W) \neq$ $\emptyset\}$. Then $\delta_{H}(W)$ is an st-hypercut for every $s \in W$ and $t \notin W$, provided that s and t are connected. A hypergraph is connected if each pair of nodes $s, t \in V$ is connected. A hypergraph $H=(V, \mathcal{E})$ is k-hyperedge connected if $H=\left(V, \mathcal{E} \backslash \mathcal{E}^{\prime}\right)$ is connected for every set of $k-1$ hyperedges $\mathcal{E}^{\prime} \subseteq \mathcal{E}$, i.e., if the removal of $k-1$ arbitrary hyperedges does not disconnect H. Let $c: \mathcal{E} \rightarrow \mathbb{N}$ be a weight function on the hyperedges with non-negative integer values. The capacity of a hypercut \mathcal{E}^{\prime} w.r.t. c is $c\left(\mathcal{E}^{\prime}\right)=\sum_{e \in \mathcal{E}^{\prime}} c_{e} /$ length of a hyperpath \mathcal{P} w.r.t. c is $c(p)=\sum_{e \in p} c_{e}$. An st-hypercut packing/st-hyperflow w.r.t. c is a set $\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{k}\right\}$ of $s t$-hypercuts/a set $\left\{p_{1}, \ldots, p_{k}\right\}$ of $s t$-hyperpaths such that each hyperedge e is contained in at most c_{e} hypercuts/hyperpaths; again, we allow for parallel hypercuts/hyperpaths. Two hypercuts/hyperpaths are disjoint if their edges are mutually distinct. The value or cardinality of an st-hypercut packing/st-hyperflow is the number k of hypercuts/hyperpaths it contains.

Figure 1 gives an example of a hypergraph with six hyperedges. Here, we illustrate a hyperedge by connecting its nodes in an arbitrary order (i.e., we represent

[^0]

Figure 1: Example of a hypergraph $G=(V, \varepsilon)$ with six hyperedges $\left(\varepsilon=\left\{e_{1}=\right.\right.$ $\left.\left.\{a, b, c, d\}, e_{2}=\{e, f, g\}, e_{3}=\{a, e\}, e_{4}=\{e, f, c\}, e_{5}=\{g, d\}, e_{6}=\{f, g, c, d\}\right\}\right)$. An edhyperpath $\mathcal{P}=\left(e_{4}, e_{1}\right)$ with associated ed-path $\left(e, e_{4}, c, e_{1}, d\right)$ contains the hyperedges e_{4} and e_{1}; an example of an $e d$-hypercut is $\left\{e_{2}, e_{3}, e_{4}\right\}$ (hyperedges depicted as paths).
hyperedges as paths).
Menger's theorem is known to hold for hypergraphs ([1, 2]).
Proposition 1 (Menger's Theorem for Hypergraphs). The minimum cardinality of an st-hypercut is equal to the maximum number of hyperedge-disjoint st-hyperpaths.
Corollary 2. A hypergraph is k-hyperedge connected if and only if there are k hyperedge-disjoint hyperpaths between each pair of nodes.

Multiplying hyperedges yields the following weighted version of Proposition 1.
Corollary 3 (Max-Flow-Min-Cut Theorem for Hypergraphs). The minimum capacity of an st-hypercut is equal to the maximum value of an st-hyperflow.

2 A Companion to Menger's Theorem

We will prove in this section a companion theorem to Proposition 3, which arises from interchanging the roles of hyperpaths and hypercuts.

Proposition 4. The length of a shortest st-hyperpath is equal to the maximum value of an st-hypercut packing.

Considering unit costs yields our main result, a companion to Menger's Theorem for hypergraphs.
Proposition 5. The minimum cardinality of an st-hyperpath is equal to the maximum number of hyperedge-disjoint st-hypercuts.

To prove Proposition 4 we first consider the following linear program

$$
\begin{array}{lr}
\min & \\
\text { s.t. } & \sum_{e \in \mathcal{E}} c_{e} x_{e} \\
& \sum_{e \in \delta_{H}(W)} x_{e} \geq 1 \\
x_{e} \geq 0 & \forall e \in \mathcal{E} . \tag{1}
\end{array}
$$

Here, x_{e} is a variable which indicates how often the hyperedge e is chosen. The inequalities guarantee that at least one hyperedge crosses each st-hypercut. Proposition 4 follows from showing that the inequality system of program (1) plus the upper bounds $x \leq 1$ is TDI.
Proposition 6. The inequality system of program (1) is TDI.
Proof. It suffices to consider st-connected hypergraphs, because otherwise program (1) is infeasible, and a nonnegative cost vector c, because otherwise program (1) is unbounded. Consider the dual of program (1):

$$
\begin{array}{rr}
\max & \sum_{W \in \mathcal{W}} y_{W} \\
\text { s.t. } \sum_{W \in \mathcal{W}: e \in \delta_{H}(W)} y_{W} \leq c_{e} & \forall e \in \mathcal{E} \tag{2}\\
y_{W} \geq 0 & \forall W \in \mathcal{W},
\end{array}
$$

where $\mathcal{W}=\{W \subseteq V \backslash\{t\} \mid s \in W\}$. We use the primal-dual shortest hyperpath Algorithm 1 to construct optimal solutions x and y for the linear programs (1) and (2), respectively. The algorithm generalizes Dijkstra's algorithm to the hypergraph setting. It computes a shortest hyperpath from node s to node t with respect to the cost function c. Note that the algorithm does not compute a tree in a hypergraph (in contrast to Dijkstra's algorithm for graphs).

The distances from node s are stored in node labels $d(v)$, and the nodes v_{i} are marked in the order of increasing distance from the root; their unions $W_{i}=$ $\bigcup_{1 \leq j \leq i}\left\{v_{j}\right\}$ produce a sequence of nested hypercuts $\delta_{H}\left(W_{i}\right)$. The shortest sthyperpath and the set of nested hypercuts give rise to primal and dual solutions x and y for programs (1) and (2), respectively. In the following we show that x and y are integral, feasible, and that the associated objective values are equal.

Consider the nodes $s=v_{1}, v_{2}, \ldots, v_{h}=t$ as marked by Algorithm 1 in line 18 and the node sets W_{0}, \ldots, W_{h} as constructed in line 20. The following properties are easy to see:

1. $W_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$ for $i=1, \ldots, h$ and $\emptyset=W_{0} \subset W_{1} \subset \ldots \subset W_{h}$. For each $W_{i}, i=1, \ldots, h-1$, we have $s \in W_{i}$ and $t \notin W_{i}$, i.e., $\delta_{H}\left(W_{i}\right)$ is an $s t$-hypercut. (For $i=h$ we have $s, t \in W_{h}$, i.e., $\delta_{H}\left(W_{h}\right)$ is not an $s t$-hypercut.)
2. $d\left(v_{i-1}\right) \leq d\left(v_{i}\right)$ for $i=1, \ldots, h$. (For $i=1$, note that $v_{0}:=s$ and $d(s):=0$ is set in line 2 , and $v_{1}:=s$ is set in the first pass through line 18.)
3. $d(t)<\infty$. (H is st-connected.)

We first show that y is a solution of program (2). Property 2 implies $y \geq 0$. In fact, the variables y_{W} are zero for all $W \neq W_{1}, \ldots, W_{h-1}$. It remains to show that

$$
\begin{equation*}
\sum_{W \in \mathcal{W}: e \in \delta_{H}(W)} y_{W} \leq c_{e} \quad \forall e \in \mathcal{E} \tag{3}
\end{equation*}
$$

Let $e \in \mathcal{E}$. If $v_{i} \notin e$ for all $i=1, \ldots, h-1$, then $e \notin \delta_{H}\left(W_{i}\right), i=1, \ldots, h-1$, i.e., $\sum_{W \in \mathcal{W}: e \in \delta_{H}(W)} y_{W}=0 \leq c_{e}$. Otherwise let $1 \leq i<h$ be the minimal

```
Algorithm 1: Primal-dual shortest hyperpath algorithm.
    Input : An st-connected hypergraph \(H=(V, \mathcal{E})\), with costs \(c \in \mathbb{R}_{+}^{\mathcal{E}}\) on
            the hyperedges, two nodes \(s, t \in V\).
    Output: A minimum cost st-hyperpath \(\mathcal{P} \subseteq \mathcal{E}\). Values for \(x\) and \(y\) for
                    programs (1) and (2).
    \(d(s):=0, d(v):=\infty \forall v \in V \backslash\{s\}, p(v):=s, P(v):=\emptyset \forall v \in V\)
    \(i:=0, v_{0}:=s, W_{0}:=\emptyset, y_{W}:=0 \forall W \in \mathcal{W}\)
    \(\mathcal{P}:=\emptyset, k:=1, u_{1}:=t, x_{p}:=0 \forall e \in \mathcal{E}, k=1\)
    All nodes are unmarked. All hyperedges are unmarked.
    while \(v_{i} \neq t\) and \(\exists\) unmarked node \(w\) with \(d(w)<\infty\) do
        Find \(v\) with \(d(v)=\min \{d(w) \mid w\) unmarked \(\}\)
        for all unmarked \(e \in \mathcal{E}\) with \(v \in e\) do
            for all unmarked \(w\) with \(w \in e\) do
                if \(d(w)>d(v)+c_{e}\) then
                \(d(w):=d(v)+c_{e}\)
                        \(p(w):=v\)
                \(P(w):=e\)
            end
            end
            mark \(e\)
        end
        mark \(v\)
        \(v_{i+1}:=v\)
        \(y_{W_{i}}:=d\left(v_{i+1}\right)-d\left(v_{i}\right)\)
        \(W_{i+1}:=W_{i} \cup\left\{v_{i+1}\right\}\)
        \(i:=i+1\)
    end
    while \(u_{k} \neq s\) do
        \(\mathcal{P}:=\mathcal{P} \cup P\left(u_{k}\right)\)
        \(x_{P\left(u_{k}\right)}:=1\)
        \(u_{k+1}:=p\left(u_{k}\right)\)
        \(k:=k+1\)
    end
    return \(\mathcal{P}, x, y\)
```

index smaller than h such that $v_{i} \in e$, i.e., $e \notin \delta_{H}\left(W_{j}\right)$ for $1 \leq j<i<h$ but $e \in \delta_{H}\left(W_{i}\right)$. Let similarly $i \leq \ell<h$ be the maximal index smaller than h such that $e \nsubseteq W_{j}$, i.e., we have $e \in \delta_{H}\left(W_{j}\right)$ for $i \leq j \leq \ell<h$ and we have $e \notin \delta_{H}\left(W_{j}\right)$ for $\ell<j<h$. Then equation (3) becomes:

$$
\begin{aligned}
\sum_{W \in \mathcal{W}: e \in \delta_{H}(W)} y_{W}=\sum_{j=i}^{\ell} y_{W_{j}} & =\sum_{j=i}^{\ell} d\left(v_{j+1}\right)-d\left(v_{j}\right) \\
& =d\left(v_{\ell+1}\right)-d\left(v_{i}\right) \leq d\left(v_{i}\right)+c_{e}-d\left(v_{i}\right)=c_{e} .
\end{aligned}
$$

For the last inequality we distinguish the cases $v_{\ell+1} \in e$ and $v_{\ell+1} \notin e$. In the first case $d\left(v_{\ell+1}\right) \leq d\left(v_{i}\right)+c_{e}$, because this value is considered in the computation of the distance label $d\left(v_{\ell+1}\right)$ in line 9 when v_{i} is marked. In the second case, $v_{\ell+1}=v_{h}=t$ and there exists a node $w \in e$ with $w \notin W_{h-1}$. Since $v_{\ell+1}$ is
marked and w not, we have $d\left(v_{\ell+1}\right) \leq d(w)$. Since w can be reached from v_{i} via e we have $d(w) \leq d\left(v_{i}\right)+c_{e}$. Again, $d\left(v_{\ell+1}\right) \leq d\left(v_{i}\right)+c_{e}$, and inequality (3) is satisfied.

We now show that x is a solution of program (1). Due to the definition of x we have $x \geq 0$. We have to show that

$$
\begin{equation*}
\sum_{e \in \delta_{H}(W)} x_{e} \geq 1 \quad \forall s \in W \subseteq V \backslash\{t\} \tag{4}
\end{equation*}
$$

Consider the nodes $t=u_{1}, \ldots, u_{k}=s$ computed in the while loop starting in line 23 and an st-hypercut $\delta_{H}(W)$. Let i be the largest index with $u_{i} \notin W$ and $u_{i+1} \in W$. This index exists since $u_{1}=t \notin W$ and $u_{k}=s \in W$. Then we have $x_{P\left(u_{i}\right)}=1, P\left(u_{i}\right) \in \delta_{H}(W)$, and inequality (4) is satisfied.
The objective value of program (2) is

$$
\sum_{i=1}^{h-1} y_{W_{i}}=\sum_{i=1}^{h-1} d\left(v_{i+1}\right)-d\left(v_{i}\right)=d\left(v_{h}\right)-d\left(v_{1}\right)=d(t)-d(s)=d(t)
$$

Using lines 23 to 28 and 9 to 13 in Algorithm 1 we get

$$
\begin{aligned}
d(t) & =d\left(u_{1}\right)=d\left(u_{2}\right)+c_{P\left(u_{1}\right)}=d\left(u_{3}\right)+c_{P\left(u_{2}\right)}+c_{P\left(u_{1}\right)}=\ldots \\
& =d\left(u_{k}\right)+\sum_{i=1}^{k} c_{P\left(u_{i}\right)}=0+\sum_{e \in \mathcal{P}} c_{e}=\sum_{e \in \mathcal{P}} c_{e} x_{e}
\end{aligned}
$$

i.e., the objective values of (1) and (2) are equal. The integrality of x is obvious. Since c_{e} is integral, it follows that $d\left(v_{i}\right)$ is integral for $i=0, \ldots, h-1$. Therefore $y_{W_{i}}, i=1, \ldots, h-1$, is also integral (line 19). This shows the claim.

$$
\begin{array}{lr}
\text { min } & \\
\text { s.t. } & \sum_{e \in \mathcal{E}} x_{e} \tag{5}\\
& \sum_{e \in \delta_{H}(W)} x_{e} \geq 1 \\
1 \geq x_{e} \geq 0 & \forall e \in \mathcal{E} .
\end{array}
$$

Corollary 7. The inequality system of program (5) is TDI.
Proof. Inequality system (5) adds upper bounds $x \leq 1$ to the inequality system (1); this adds variables z to the dual program. For solutions x and y as constructed by Algorithm 1 (note that $x \leq \mathbb{1}$) the vectors x and $(y, 0)$ are primal and dual integer solutions of the extended systems with the same objective value.

3 A New Class of Ideal Matrices

st-hypercuts and st-hyperpaths form a blocking pair similar to st-cuts and st-paths. Likewise, the incidence matrices of all (inclusion wise) minimal sthypercuts \mathcal{A}_{c} and the incidence matrices of all (inclusion wise) minimal sthyperpaths \mathcal{A}_{p} form blocking pairs of matrices. By Propositions 3 and 4, these

Figure 2: Example of a hypergraph for which the incidence matrix of all (minimal) sthypercuts is neither totally unimodular nor balanced (hyperedges are depicted as paths).
matrices are ideal, like the incidence matrices of st-cuts and st-paths. Note that these matrices are in general not totally unimodular and also not balanced, see Figure 2 for an example. The st-hypercut incidence matrix \mathcal{A}_{c} for the hypergraph associated with this example is

$$
\begin{aligned}
& \{s, a\} \\
& \{s, a, b, c\} \\
& \{s, b\} \\
& \{s\} \\
& \{s, a, b\} \\
& \{s, b, c\}
\end{aligned}\left(\begin{array}{cccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)=\mathcal{A}_{c} .
$$

The 3×3 matrix in the upper left corner has determinant -2 .
The example also shows that the incidence matrices of st-hypercuts and sthyperpaths form a new class of blocking pairs of ideal matrices which generalizes the class of incidence matrices of $s t$-cuts and $s t$-paths. This can be seen as follows. If \mathcal{A}_{c} would be an incidence matrix of $s t$-cuts in an undirected graph $G=(V, E)$, the columns of \mathcal{A}_{c} have to correspond to the edges of G, i.e., such a graph would have six edges. Each cut of the graph contains exactly three edges, i.e., the edge-degrees of s and t have to be three. Furthermore, there can not be an edge connecting s and t since this edge would be contained in every cut. Therefore, the only possible graph is shown on the upper left of Figure 2. But this graph has seven minimal st cuts instead of the six in matrix \mathcal{A}_{c}. If \mathcal{A}_{c} would be an incidence matrix of st-paths in an undirected graph $G=(V, E)$, this graph would have six edges and each (minimal) path from s to t would have to contain exactly three edges. The only possible graph of this type is shown on the lower left of Figure 2. But this graph has eight minimal st-paths.

References

[1] András Frank. Connections in combinatorial optimization. Oxford University Press, Oxford, 2011.
[2] Tamás Király. Edge-connectivity of undirected and directed hypergraphs. Phd thesis, Eötvös Loránd University, Budapest, 2003.

[^0]: *Supported by the DFG Research Center "Mathematics for key technologies" Adress of the authors: Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany; Email: \{borndoerfer, karbstein\}@zib.de

