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� Introduction

Orthogonal polynomials have wide applications in mathematics, mathemat-
ical physics, numerical analysis, and other fields. Consequently there exists
an enormous variety of such polynomials and relations that describe their
properties and interdependencies, see e.g. [Sze39], [AS64], [Chi78], [NU88],

[PBM90]. Polynomials related to the interval such as the Legendre, Cheby-
shev, Jacobi, Gegenbauer, and others are intimately connected to the Gauss
hypergeometric function F that will be discussed in an intermediate step.
The same is true for polynomials that are orthogonal with respect to some

discrete scalar product such as e.g. the discrete Laguerre and the Meixner
polynomials [NU88]. Although the presented results therefore have an im-
pact on discrete polynomials as well, we will focus the discussion on the
Jacobi polynomials P α,β

k (x) for conciseness here. Further investigations will

be reported in a forthcoming paper.

References as the above and the vaste literature on the classical orthogonal
polynomials give the impression of nearly every aspect already being investi-
gated. The belowmentionedGalerkin method, however, triggered the interest

in parameter derivatives which seem not having been discussed yet. Stan-
dard references treat the derivatives of the polynomials with respect to the
spatial variable x in an exhaustive way (differential equations, recurrence re-
lations for derivatives etc.). Concerning the parameters, however, the author

could only find equations relating parameter values to their integer shifts,
say α→ α+1 for example, as well as some involved relations such as [Sze39]
(4.10.13):

(1− x)α−μPα+μ,β
n (x) = (1 + x)n+α+1Pα+μ,β

n (1) ×
2μΓ(α+ μ + 1)

Γ(α + 1)Γ(μ)

∫ 1

x

(1− y)α(y − x)μ−1

(1 + y)n+α+μ+1

Pα,β
n (y)

Pα,β
n (1)

dy

which could in principle be used to get ∂αP
α,β
k = limμ→0(P

α+μ,β
n − Pα,β

n )/μ.
A reference giving a simple expression for ∂αP

α,β
k (x) and ∂βP

α,β
k (x) suitable

for numerical evaluation could not be discerned.

To motivate the relevance of such expressions we briefly indicate an example
of application to numerical analysis. Galerkin methods using orthogonal
polynomials {bk} (generally termed spectral methods) are based on a series
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representation

uN (x) =
N−1∑
k=0

ûk bk(x) (1.1)

where uN is an approximation to the exact solution u(x) of a differential

equation. The basis {bk} is orthogonal with respect to a weight g(x), i.e.

〈bj, bk〉g =
∫
bj(x) bk(x) g(x) dx = γk δjk γk ∈ IR�=0 (1.2)

The use in an evolutionary problem requires the expression ∂tu(x, t) which,
due to (1.1), is approximated by

∂tu
N(x) =

N−1∑
k=0

dtûk bk(x)

Classical methods employ trigonometric functions, Legendre polynomials or
Chebyshev polynomials of the first kind (mostly due to the existence of fast

transforms). The latter two are scaled Jacobi polynomials with α = β = 0,
and α = β = − 1

2
, respectively.

Regardless of convergence properties one can use a different ansatz instead
of (1.1) reading

uN(x) = g(x)
N−1∑
k=0

ûk bk(x) (1.3)

which then requires the test functions {bk/g} to obtain orthogonality with

respect to the scalar product (1.2). This ”moving weight approach” was
first introduced in [DW89] for bk being the discrete Laguerre polynomials.
The representation (1.3) is particularly advantageous if the weight function

g(x) already is a good approximation to u(x). If bk and hence g depend on
one or more parameters, the approximation (1.3) may be supplemented with
an adaption of the parameters through additional requirements [DW89]. In
the continuous case, using Jacobi polynomials, the solution of a space-time

dependent problem would then be approximated by

uN (x, t) = wα(t),β(t)(x)
N−1∑
k=0

ûk(t) P
α(t),β(t)
k (x) (1.4)

where g = wα,β is the weight function for bk = Pα,β
k in (1.2). It is now

obvious that a Galerkin method based on (1.4) requires the knowledge of
∂αP

α,β
k (x) and ∂βP

α,β
k (x), or more precisely of 〈∂αPα,β

j (x), Pα,β
k (x)〉wα,β and

〈∂βPα,β
j (x), Pα,β

k (x)〉wα,β .
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The paper is layed out as follows. In a first step the relation of the above
scalar products to the Gaussian hypergeometric function F is recalled. Next,
we determine the parameter derivatives of F which can also be useful in
various other contexts as already mentioned. Finally, the derivation formulas

for the Jacobi polynomials are given supplemented by a discussion of different
properties. The calculations are elementary and all proofs have been carried
out by hand. For the generation of the appropriate hypotheses the package
REDUCE eased the tedious work.

� Required properties of the Gaussian hypergeo�

metric function

In order to make the paper self-contained and to fix notation we start with
recalling some definitions to be found in references such as [AS64], [PBM90].

A general hypergeometric function pFq is defined by

pFq(a1, a2, . . . , ap; c1, c2, . . . , cq; z) =
∞∑
k=0

(a1)k(a2)k . . . (ap)k
(c1)k(c2)k . . . (cq)k k!

zk (2.1)

ai, z ∈ IR, ci ∈ IR\ZZ≤0

where the Pochhammer symbol is

(a)k = a(a+ 1)(a + 2) . . . (a + k − 1) (a)0 = 1 a ∈ IR, k ∈ IN

The Gaussian hypergeometric function F is the important special case that

we will be concerned with:

F (a, b, c, z) = 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk (2.2)

If a or b are equal to a non-positive integer, the sum in (2.2) (analogeously

in (2.1)) becomes finite. Thus we have for later use

F (−n, b, c, z) =
n∑

k=0

(−n)k(b)k
(c)kk!

zk n ∈ IN0, b ∈ IR, c ∈ IR\ZZ≤0 (2.3)

The Jacobi polynomials can be related to the Gauss hypergeometric function
in different ways. The most useful equations for our purpose are [NU88]

Pα,β
n (x) =

(−1)nΓ(n + β + 1)

n!Γ(β + 1)
F (−n, n+ α+ β + 1, β + 1,

1 + x

2
) (2.4)
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Pα,β
n (x) =

Γ(n + α+ 1)

n!Γ(α + 1)
F (−n, n+ α+ β + 1, α + 1,

1 − x

2
) (2.5)

with α, β > −1, n ∈ IN0 and usually x ∈ [−1, 1]. The reason is that α in
(2.4) and β in (2.5) appear only in the second argument of F . Consequently,
for the parameter derivatives of P α,β

k we are led to compute ∂bF (−n, b, c, z)
with the appropriate substitutions. Let us take (2.4) and (2.5) as definitions

of Pα,β
k here. It is observed immediately that

F (0, b, c, z) = 1 ⇒ ∂bF (0, b, c, z) = ∂cF (0, b, c, z) = 0

and

Pα,β
0 (x) = 1 ⇒ ∂αP

α,β
0 (x) = ∂βP

α,β
0 (x) = 0

In the sequel we can therefore restrict ourselves to n ∈ IN which avoids

distinguishing between different cases.

Before continuing it should be noted, that a relation that expresses ∂αP
α,β
n (x)

in terms of {P α,β
k (x)}k=0,...,n must exist, indeed. The reason is that P α,β

n (x)
is a polynomial of degree n in x of which the coefficients depend on α and
β. Deriving with respect to the latter still yields a polynomial of degree n in

x which can always be written in the basis {Pα,β
k (x)}k=0,...,n.

� The derivative of F with respect to the second

and third argument

For the following we assume in view of the application that the first argument

of F is a negative integer. Deriving F as given by (2.3) with respect to b
results in

∂bF (−n, b, c, z) = (
n−1∑
m=0

1

b+m
)F (−n, b, c, z) −

n−1∑
m=0

1

b+m

m∑
k=0

(−n)k(b)k
(c)kk!

zk

(3.1)

Having in mind b = n + α + β + 1 with n ≥ 1 from (2.4), (2.5) we assume
b > 0 for (3.1) and the sequel. The second term on the right hand side of

(3.1) is a polynomial of degree n − 1 in z, so that it can be expressed as a
linear combination of hypergeometric functions of degree 0, . . . , n− 1:

n−1∑
m=0

1

b+m

m∑
k=0

(−n)k(b)k
(c)kk!

zk =
n−1∑
m=0

A(n,m)F (−m, b, c, z)

Equating coefficients for z leads to the relation

(−n)k
n−1∑
m=k

1

b+m
=

n−1∑
m=k

A(n,m)(−q)k k = 0, . . . , n− 1 (3.2)
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which is equivalent to the recurrence

A(n,k) =

(
n
k

)
n−1∑
m=k

1

b+m
−

n−1∑
q=k+1

A(n,q)

(
q
k

)

Using the relation

j−m∑
p=0

(−1)p
(
j
p

)(
j − p− 1
m− 1

)
= (−1)j−m j ∈ IN, m = 1, . . . , j

it can be shown that

A(n,k) = (−1)n−k

(
n
k

)
n−k∑
p=1

(−1)p
(
n− k − 1
p− 1

)
1

b+ n− p
(3.3)

The identity

n∑
j=0

(−1)j
(
n
j

)
1

z − j
= (−1)n

n!

(z − n)n+1
n ∈ IN0, z ∈ IR\ {0, 1, . . . , n}

(3.4)

which is verified apart finally leads to the

theorem 1. For n ∈ IN, b ∈ IR>0, c ∈ IR\ZZ≤0, z ∈ IR the derivative of

F with respect to the second argument is given by

∂bF (−n, b, c, z) = (
n−1∑
k=0

1

b+ k
)F (−n, b, c, z) (3.5)

−
n−1∑
m=0

n!

m!(n−m)

1

(b+m)n−m
F (−m, b, c, z)

Remark: The assumption on b can immediately be relaxed to b ∈ IR \
{0,−1, . . . ,−n+ 1}. For negative integers similar expressions can be devel-
oped considering F as a polynomial in z as above. For b = 0 this is impossible

as F (−n, 0, c, z) = 0 whereas ∂bF (−n, b, c, z) |b=0 is not, in general.

Remark: Formula (3.5) is different with respect to what is found in litera-
ture. For ∂α(pFq), [PBM90] give a relation which leads after the appropriate

substitutions to

∂bF (−n, b, c, z) =
n∑

k=0

(−n)k(b)k
(c)kk!

(ψ(b+ k)− ψ(b) ) zk
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This is merely a restatement of (3.1) since

ψ(b+ k)− ψ(b) =
k−1∑
j=0

1

b+ j

For the sake of completeness we now turn to the expression ∂cF (−n, b, c, z).
The equality

∂c ( (c)nF (−n, b, c, z) ) =
n−1∑
k=0

(c)k n!

(n− k)k!
F (−k, b, c, z) (3.6)

can be established similarly to the previous one by using the definition of F ,
equating coefficients, and applying (3.2), (3.3), and (3.4). This yields

theorem 2. For n ∈ IN, b ∈ IR, c ∈ IR\ZZ≤0, z ∈ IR the derivative of F
with respect to the third argument is given by

∂cF (−n, b, c, z) = − (
n−1∑
k=0

1

c+ k
)F (−n, b, c, z) (3.7)

+
n−1∑
m=0

n!

m!(n−m)

1

(c+m)n−m
F (−m, b, c, z)

Astonishing enough, the coefficients in (3.7) differ from (3.5) only by sign if
c is substituted by b.

Remark: Let us indicate that (3.6) can also be obtained from the relation

∂α l
α,ρ
n =

n−1∑
ν=0

ρn−ν

n− ν
lα,ρν (3.8)

in [Wul90]. The functions lα,ρn are modified discrete Laguerre polynomials
defined by

lα,ρn (s) =
ρn

n!
m1+α,ρ

n (s− 1) =
ρn

n!
(1 + α)n F (−n, 1− s, 1 + α, 1 − 1

ρ
) (3.9)

n ∈ IN0, s ∈ IN, 0 < ρ < 1, α > −1

where mγ,μ
n are the Meixner polynomials. Inserting (3.9) in (3.8) yields (3.6)

[Koe94]. This connection illustrates the potential applications of the param-
eter derivatives of F to an easier development of relations involving discrete
orthogonal polynomials.
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� Application to Jacobi polynomials

Let us now set b = n+B with B = α+β+1 > −1 and use (2.4) to determine
∂αP

α,β
k (x) from (3.5) with c = β + 1, z = (1 + x)/2. It is obvious that in

∂αP
α,β
n (x) =

(−1)nΓ(n + c)

n!Γ(c)

(
(
n−1∑
k=0

1

B + n + k
)F (−n, n+B, c, z) (4.1)

−
n−1∑
m=0

A(n,m)F (−m,n+B, c, z)

)

we cannot convert F (−m,n+B, c, z) directly back to an expression in terms
of Pα,β

k by (2.4) in case of n �= m. For this purpose we prove an important

relation treating integer shifts in the first two arguments of F :

lemma 1. For n ∈ IN, B > −1, c ∈ IR�=0, z ∈ IR the coefficients

ρ(n,j,p) = (−1)j−p(n− j)j−p

(
j
p

)
(B + n)p (B + 2p)

(B + p)j+1
(4.2)

allow the decomposition

F (−j, n+B, c, z) =
j∑

p=0

ρ(n,j,p) F (−p, p+B, c, z) j = 0, . . . , n− 1 (4.3)

Proof. Inserting (4.2) in (4.3), equating coefficients, and setting Q = j −m
leads to

1 = (−1)Q
Q∑

q=0

(
Q

q

)
(k)Q−q

(B +Q+ k)q
(B + q)Q+1

(B + 2q) (4.4)

which can be proved by double induction. First, (4.4) is verified for k = 1
by induction on Q. Next, we assume that (4.4) holds for k = 1, . . . , K and
Q ∈ IN0 (since j = 0, . . . , n − 1, m = 0, . . . , j, but n ∈ IN). It has then
to be shown that the same holds for k = K + 1 and all Q. The case Q = 0

being verified the step from Q to Q + 1 requires to show that

1 =
(B+Q+K+2)Q+1

(B+Q+1)Q+1
− Q+1

B+Q+K+1
Q!(−1)Q

∑Q
q=0

(−1)q

q
(B + 2q)(

(K+1)Q�q

(Q−q)!
(B+Q+K+1)q

(B+q)Q+1

) (
K

Q+1−q
+ 1

) (
K

B+Q+1+q
+ 1

)
(4.5)
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Application of the assumption for K + 1 and Q leads to the appearance of
a similar sum as in (4.5), but with K replaced by K − 1. Repeating this K
times yields with Z = B +Q+ 1 ∈ IR>0 and p = Q + 1 > 1

(Z +K)(Z)p − (Z +K)p+1 = −p(Z)p
K∑
j=0

(Z + p+ 1 +K − j)j
(z +K − j)j

This is true by the subsequent relation.

For z ∈ IR>0, k ∈ IN0, p ∈ IN

k∑
j=0

1

(z + k − j)p+1

=
1

p

(
1

(z)p
− 1

(z + k + 1)p

)

which is verified by induction on k.

Relation (4.3) is now inserted into (4.1). After changing the order of sum-
mation we obtain a sum on A(n,m)ρ(n,m,p) which can be simplified by the

following statement.

lemma 2.

n−1∑
m=p

A(n,m)ρ(n,m,p) = (−1)n−p−1 n!

p!

1

n − p

B + 2p

B + n + p

1

(B + p)n−p
(4.6)

n ∈ IN, p = 0, . . . , n− 1, b ∈ IR>0

Proof. Straightforward simplifications lead, with J = n− 1− p, to prove

J∑
j=0

(−1)j
1

J + 1− j

(
J

j

)
(z + j)J = (−1)J

(z + J + 1)J
J + 1

z ∈ IR, J ∈ IN0

which is again done by induction.

Applying the above relations to (4.1) using the same procedure for ∂βP
α,β
k (x)

we are now in the position to state our main theorem.

theorem 3. For α, β > −1, n ∈ IN0, and x ∈ [−1, 1]

∂αP
α,β
n (x) =

n∑
k=0

dα,βn,k

Γ(β + 1 + n)

Γ(β + 1 + k)
Pα,β
k (x) (4.7)

∂βP
α,β
n (x) =

n∑
k=0

dα,βn,k

Γ(α + 1 + n)

Γ(α + 1 + k)
(−1)n−k Pα,β

k (x)
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where

dα,βn,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑n−1
m=0

1
α+β+1+n+m

n ≥ 1, k = n

1
n−k

α+β+1+2k
α+β+1+k+n

1
(α+β+1+k)n�k

n ≥ 1, k = 0, . . . , n− 1

0 n = k = 0

The abbreviation

fα,β
n (x) = ∂αP

α,β
n (x) (4.8)

gα,βn (x) = ∂βP
α,β
n (x)

will be used for convenience.

� Properties of the generated polynomials

It has been stated before, and is obvious from (4.7), that fα,β
n and gα,βn are

polynomials of degree n in x.

The symmetry of the Jacobi polynomials with respect to α and β [AS64]

Pα,β
n (−x) = (−1)nP β,α

n (x)

and the symmetry of the coefficients in (4.7) yield

gα,βn (x) = (−1)n fα,β
n (−x) (5.1)

Hence, for the remainder we concentrate on the function fα,β
n , as gα,βn (x)

behaves analogeously.

For illustration let us explicitly write down the expression for low degrees:

fα,β
0 (x) = 0 (5.2)

fα,β
1 (x) =

1

2
x+

1

2

fα,β
2 (x) =

2α + 2β + 7

8
x2 +

2α + 3

4
x+

2α − 2β − 1

8

fα,β
3 (x) =

3α2 + 6αβ + 30α + 3β2 + 30β + 74

48
x3 +

3α2 + 2αβ + 18α − β2 + 20

16
x2

+
3α2 − 2αβ + 6α − β2 − 10β − 10

16
x+

3α2 − 6αβ − 6α+ 3β2 − 16

48

Figure 1 shows plots of fα,β
n (x) for n = 1, . . . , 5 and different parameter

values.

From (4.7) the scalar products mentioned in the introduction can now be
identified.
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corollary 1. For fα,β
n , gα,βn defined by (4.8), j, n ∈ IN0

〈fα,β
n (x), Pα,β

j (x)〉wα,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n ≥ 1, j > n

2α+β+1Γ(α+1+n)Γ(β+1+n)
(2n+α+β+1)n!Γ(α+β+1+n)

∑n−1
m=0

1
α+β+1+n+m

n ≥ 1, j = n

2α+β+1Γ(α+1+j)Γ(β+1+n)
j!(n−j)(α+β+1+j+n)Γ(α+β+1+n)

n ≥ 1, j < n

0 n = 0, j ≥ 0

and

〈gα,βn (x), Pα,β
j (x)〉wα,β = (−1)n−k 〈fβ,α

n (x), P β,α
j (x)〉wβ,α (5.3)

Proof. Recall that the Jacobi polynomials are related to the weight

wα,β(x) = (1− x)α(1 + x)β

leading to the constants γk = γα,βk in the orthogonality relation (1.2) [AS64]

γα,βk =
2α+β+1

2k + α+ β + 1

Γ(k + α + 1)Γ(k + β + 1)

k! Γ(k + α+ β + 1)
k ∈ IN0

Equation (5.3) directly follows from (5.1).

Remark: It is also obvious that neither the scalar products nor the functions
themselves exhibit a singularity for α=0 or β=0 as do ∂αw

α,β and ∂βw
α,β,

respectively.

Let us now discuss the numerical evaluation of fn at a given point x. Even if
this can be accomplished by (4.7) it is often computationally more efficient

to employ a recursion. In our case such a relation follows immediately from
the recursion for the Jacobi polynomials, e.g. [AS64]

a1,k Pk+1(x) = (a2,k + x a3,k)Pk(x)− a4,k Pk−1(x) k ∈ IN0 (5.4)

with P−1(x) = 0, P0(x) = 1 and

a1,k = 2(k + 1)(α + β + k + 1)(α+ β + 2k) (5.5)

a2,k = (α+ β + 2k + 1)(α2 − β2)

a3,k = (α+ β + 2k)(α+ β + 2k + 1)(α + β + 2k + 2)

a4,k = 2(α + k)(β + k)(α+ β + 2k + 2)
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The superscripts are dropped here for better readability. Deriving (5.4) with
respect to α yields

a1,k fk+1(x) = −(∂αa1,k)Pk+1(x) + (∂αa2,k + x ∂αa3,k)Pk(x)− (∂αa4,k)Pk−1(x)

+ (a2,k + x a3,k)fk(x)− a4,k fk−1(x) (5.6)

so that first Pk+1(x) is determined from (5.4), subsequently fk+1(x) from

(5.6).

As an application of the above we discuss the values of fn at the boundaries
x = 1, x = −1. Let us first recall that

Pα,β
n (−1) =

Γ(n + β + 1)

n!Γ(β + 1)
(−1)n (5.7)

Pα,β
n (1) =

Γ(n + α + 1)

n!Γ(α+ 1)
(5.8)

which is nicely deduced from (2.4), and (2.5), respectively. The plots reveal
that

fα,β
n (−1) = 0 (5.9)

With the help of (5.6) this is readily verified by assuming that fk(−1) =
fk−1(−1) = 0 (true for k = 1, 2, 3, see (5.2)) and inserting (5.5) and (5.7).
An interesting consequence for the coefficients in (4.7) is

n∑
k=0

dα,βn,k

Γ(β + 1 + n)

Γ(β + 1)

(−1)k

k!
=

n∑
k=0

dα,βn,k

Γ(α+ 1 + n)

Γ(α + 1)

(−1)k

k!
= 0

Catching the value of fn(1) at the right boundary is less obvious. First of all
gn(1) = ∂βPn(1) = 0 due to the symmetry (5.1), so that

∂α(∂βPn(1)) = ∂βfn(1) = 0

showing that fn(1) does not depend on β. Inserting (5.8) and (5.5) into (5.6)
we get a polynomial of second degree in β. Because of the independency from
β each of its coefficients has to equate to zero leading to three individual
recurrence relations. The simplest one reads

f̃k+1(1) = (α)k + (α+ 2k + 1)f̃k(1) − k(α+ k)f̃k−1(1) k ∈ IN

with f̃k = k! fk being started with f̃0(1) = 0 and f̃1(1) = 1, (5.2).
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We terminate the discussion here, conscious that properties of fn and gn such
as range, distribution of zeros, possible orthogonality with respect to some
weight and others still remain to be investigated.
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Fig. 1. Plots of fα,β
k (x)=∂αP

α,β
k (x) for α=β=�0.7 and α=β=10.
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