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Abstract

The paper deals with the workload and busy period for the M/GI/1
system under FCFS discipline, where the customers may become impa-
tient during their waiting for service with generally distributed max-
imal waiting times and also during their service with generally dis-
tributed maximal service times depending on the time waited for service.
This general impatience mechanism, originally introduced by Kovalenko
(1961) and considered by Daley (1965), too, covers the special cases of
impatience on waiting times as well as impatience on sojourn times, for
which Boxma et al. (2010), (2011) gave new results and outlined special
cases recently. Our unified approach bases on the vector process of work-
load and busy time. Explicit representations for the LSTs of workload
and busy period are given in case of phase-type distributed impatience.

Mathematics Subject Classification (MSC 2000): 60K25, 68M20,
90B22.

Keywords: M/GI/1+GI; M/GI/1+PH; impatient customers; work-
load; busy period; waiting time dependent service.

1 Introduction and model description

In this paper we deal with the workload (virtual waiting time) and busy
period for the M/GI/1 + GI system, where the customers are served un-
der FCFS discipline with generally distributed service times and where the
customers may become impatient during their waiting for service with gen-
erally distributed maximal waiting times but also during their service with
generally distributed maximal service times depending on the time waited
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for service. More precisely: at a single server with a waiting room of infinite
capacity there arrive customers according to a Poisson process of intensity
λ. The distribution B(y) of their required service times S has finite expec-
tation. Each customer waits at most the time I for service, else he leaves
the system by impatience after having waited the time I. The distribu-
tion C(u) := P (I ≤ u) has finite expectation. If the service of a customer
starts after having waited for service the time W , then the customer waits
for service completion at most the time J , else he leaves the system by
impatience after having waited the time J during service. The distribu-
tion Gw(x) := P (J ≤ x |W = w) may be defective. Note that the system
is stable as the workload process is dominated by the workload process in
the corresponding infinite server system with required service time I + S.
For technical reasons we assume that B(y), C(u), and Gw(x) are continu-
ous functions and that C(u) < 1, u ∈ R+. For notational convenience let
B̄(y) := 1−B(y), C̄(u) := 1−C(u), and Ḡw(x) := 1−Gw(x).

We refer to the above impatience mechanism as Kovalenko’s impatience
mechanism since this general impatience mechanism was first considered –
for our best knowledge – by Kovalenko [Kov], who derived the Volterra equa-
tion for the density of the stationary workload distribution, cf. Section 2.2
below, expressed several performance measures of the system in terms of it,
and outlined the special case of mixed deterministic impatience times. Later
[Dal] investigated the system in more detail.

The general impatience mechanism covers well known impatience mech-
anisms as special cases:

(i) If Ḡw(x) ≡ 1, then the customers may become impatient only during
their waiting time. This model is denoted by M/GI/1 + GIw, where
w refers to waiting time, as proposed in [BPS].

(ii) In case of Ḡw(x) = C̄(x+ w)/ C̄(w), i.e.

P (J > x |W = w) = P (I > x+w | I > w),

the customer’s overall impatience time d.f. is C(u), i.e., the impatience
refers to the sojourn time, and his real sojourn time is the minimum of
his maximal sojourn time with d.f. C(u) and his waiting plus service
time. This model is denoted by M/GI/1 + GIs, where s refers to
sojourn time, as proposed in [BPS].

(iii) In [Kov] a mixed scheme of (i) and (ii) is proposed by choosing

Ḡw(x) =
C̄(αx+w)

C̄(w)
, x ∈ R+, (1.1)
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for α ∈ R+. In this paper we consider also the mixed scheme

Ḡw(x) =

(

C̄(x+w)

C̄(w)

)α

, x ∈ R+, (1.2)

for α ∈ R+. The mixed scheme (1.2) has the advantage that there
exists a simple relation between the workload distributions for differ-
ent values of α, cf. Section 2.2 below. Note that the schemes (1.1)
and (1.2) coincide for α = 0 and α = 1, where we obtain (i) and (ii),
respectively. Moreover, the schemes (1.1) and (1.2) coincide for expo-
nential maximal waiting times, i.e. for C̄(u) = e−γu, u ∈ R+, where
we have Ḡw(x) = e−αγx, x ∈ R+, cf. Section 3.1 below.

Thus Kovalenko’s general impatience mechanism provides a unified approach
to different particular impatience mechanisms and does not require to handle
them by a separate mathematical analysis, cf. e.g. [BPS].

There is a huge literature concerning queueing models with impatient
customers. A good overview of results for workload, busy period, number of
customers in the system, and others for various particular models, including
the systems M/GI/1+GIw and M/GI/1+GIs, and for various impatience
distributions (M, D, Ek) as well as model variants including the observable
(balking) and unobservable (reneging) case, is given in [PSZ], recently in
[BPS], and in the references therein. Thus in this paper we will only refer
to papers which are directly connected to our results.

For the systemsM/GI/1+GIw andM/GI/1+GIs in [BPS, Section 5] an
expression is derived for the LST of the busy period in terms of the solution
of a non linear integral equation for the LST of the work load to move from
a given level down to another given level. For the M/GI/1 + Dw system
in [KBL] an explicit representation for the LST of the busy period length
is given starting from an initial workload not greater than the constant
maximal impatience time. Note that in their framework the busy period
length is zero if the initial work load is zero. In [BPSZ] results are outlined
for the busy period in the systems M/M/1+GIw and M/GI/1+GIw with
a discrete impatience time distribution. Concerning results for the busy
period in case of exponentially distributed impatience times, cf. Section 3.1
below. For results concerning the workload, cf. Section 2.2 below.

The paper is organized as follows. In Section 2, a Fredholm integral equa-
tion is derived for the density of the vector process of workload and busy
time. Its solution is given in terms of the solutions of two Volterra equations
and thus by two Neumann series, cf. Theorem 2.1. In Section 2.1, the LSTs
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of workload and busy period are represented in terms of the Laplace trans-
forms of these Neumann series. In Section 2.2, the workload distribution
for any α ∈ R+ within the scheme (1.2) is given by the workload distribu-
tion for α = 0, cf. Theorem 2.2. In particular, the workload distribution in
M/GI/1+GIs is given by the workload distribution in M/GI/1+GIw. In
Section 3, we analyze the special case of phase-type distributed impatience
times for the mixed scheme (1.1). In the very special case of exponentially
distributed impatience times, the system is easily reduced to the well known
M/GI/1 + Mw system with a modified service time distribution, cf. Sec-
tion 3.1. In case of generally phase-type distributed impatience times, ex-
plicit representations for the Laplace transforms of the two Neumann series
mentioned above are derived in Sections 3.2 and 3.3, which imply explicit
representations for the LSTs of workload and busy period in case of gener-
ally phase-type distributed impatience times within the mixed scheme (1.1),
generalizing corresponding results for M/GI/1 +Mw and M/GI/1 +M s.

2 The vector process of workload and busy time

Let Vt be the workload (virtual waiting time) at time t, i.e. the duration a
virtual customer without impatience arriving at time t would have to wait
for service, and let Ut be the age of the busy period at time t if Vt > 0, else
Ut := 0. Note that (Vt, Ut), t ∈ R, is a Markov process, where the sample
paths are right continuous almost surely. In the following we assume that
the system is in steady state, i.e., that the process is stationary and ergodic.

Remark 2.1 The process (Vt, Ut), t ∈ R, is equal in distribution to the
corresponding process in the M/GI/1 system without impatience where the
required service time S depends on the time W waited for service such that

P (S>y |W =w) := C̄(w)Ḡw(y)B̄(y) = K(y+w,w), w, y ∈ R+,

cf. (2.3) below. In this system, V0 is equal in distribution to the waiting time
W due to PASTA.

The results of this section can be generalized to corresponding results
for the waiting time and busy period in general M/GI/1 systems where the
required service time depends on the time waited for service, cf. [BKNN]
and the references therein for such systems. In view of (2.15) below, it
suffices to assume that P (S>y |W =w), w, y ∈ R+, is continuous and that
maxw∈[0,y] P (S>y−w |W =w) is integrable over y ∈ R+.

4



We want to analyze the expectation

E[ I{V0>x}e−s(U0+x)], s, x ∈ R+. (2.1)

Note that in case of V0 > x the duration of the busy period running at time
t = 0 is at least U0 + x. Taking into account the dynamics of the system
during the interval [−h, 0], the balance equation for (2.1) may be written as

E[ I{V0>x}e−s(U0+x)] = (1−λh)E[ I{V−h>x+h}e−s(U
−h+x+h)]

+ λhḠ0(x+h)B̄(x+h)E[ I{V−h=0}e−s(x+h)]

+ λh

∫ x+h

h

C̄(ξ)Ḡξ(x+h−ξ)B̄(x+h−ξ)

dξE[ I{V−h≤ξ}e−s(U
−h+x+h)]

+ λhE[ I{V−h>x+h}e−s(U
−h+x+h)] + o(h) (2.2)

for sufficiently small h > 0. Using the stationarity of (Vt, Ut), t ∈ R, and
introducing the kernel

K(x, ξ) := C̄(ξ)Ḡξ(x−ξ)B̄(x−ξ), 0 ≤ ξ ≤ x, (2.3)

(2.2) is equivalent to

0 =
∂

∂x
E[ I{V0>x}e−s(U0+x)] + λ

∫ x

0
K(x, ξ)

∂

∂ξ
(−E[ I{V0>ξ}e−s(U0+x)])dξ + λp(0)K(x, 0)e−sx, (2.4)

where p(0) := P (V0 = 0) is the empty probability of the system.
Now we want to transform (2.4) into an integral equation. In view of

limx→∞E[ I{V0 > x}e−s(U0+x)] = 0, we obtain

∂

∂ξ
(−E[ I{V0>ξ}e−s(U0+x)])

=
∂

∂ξ

(

e−s(x−ξ)

∫ ∞

ξ

∂

∂η
(E[ I{V0>η}e−s(U0+η)])dη

)

= e−s(x−ξ)

(

∂

∂ξ
(−E[ I{V0>ξ}e−s(U0+ξ)])

− s

∫ ∞

ξ

∂

∂η
(−E[ I{V0>η}e−s(U0+η)])dη

)

.
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Using the notation

ϕ(s, x) :=
1

λp(0)

∂

∂x
(−E[ I{V0>x}e−s(U0+x)]), s, x ∈ R+, (2.5)

thus (2.4) is equivalent to the Fredholm integral equation

ϕ(s, x) = λ

∫ x

0
K(x, ξ)e−s(x−ξ)

(

ϕ(s, ξ)−s

∫ ∞

ξ

ϕ(s, η)dη

)

dξ

+ K(x, 0)e−sx, x ∈ R+. (2.6)

Theorem 2.1 For fixed s ∈ R+, the integral equation (2.6) has a uniquely
determined solution ϕ(s, ·) ∈ C(R+) ∩ L1(R+), which is given by

ϕ(s, x) := ϕ1(s, x)−α(s)ϕ2(s, x), x ∈ R+, (2.7)

where for j = 1, 2

ϕj(s, x) := aj(s, x) +
∞
∑

n=1

λn

∫ x

0
Kn(s, x, ξ)aj(s, ξ)dξ, x ∈ R+, (2.8)

a1(s, x) := K(x, 0)e−sx, a2(s, x) := s

∫ x

0
K(x, η)e−s(x−η)dη,

x ∈ R+, (2.9)

K1(s, x, ξ) := K(x, ξ)e−s(x−ξ) + s

∫ x

ξ

K(x, η)e−s(x−η)dη, 0 ≤ ξ ≤ x,

(2.10)

and for n = 2, 3, . . .

Kn(s, x, ξ) :=

∫ x

ξ

K1(s, x, η)Kn−1(s, η, ξ)dη, 0 ≤ ξ ≤ x, (2.11)

α(s) :=

(

λ

∫

R+

ϕ1(s, ξ)dξ

)/(

1+λ

∫

R+

ϕ2(s, ξ)dξ

)

. (2.12)

Proof. For fixed s ∈ R+ let ϕj(s, ·), j ∈ {1, 2}, be the solution of the
Volterra integral equation

ϕj(s, x) = λ

∫ x

0
K(x, ξ)e−s(x−ξ)

(

ϕj(s, ξ)+s

∫ ξ

0
ϕj(s, η)dη

)

dξ

+ aj(s, x), x ∈ R+, (2.13)
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or equivalently by using Fubini’s Theorem

ϕj(s, x) = λ

∫ x

0
K1(s, x, ξ)ϕj(s, ξ)dξ + aj(s, x), x ∈ R+. (2.14)

Note that

0 ≤ K1(s, x, ξ) ≤ max
η∈[0,x]

K(x, η) ≤ C̄(x/2)+B̄(x/2), 0 ≤ ξ ≤ x.

(2.15)

The first inequality on the r.h.s. follows by usingK(x, η) ≤ maxξ∈[0,x]K(x, ξ)
in (2.10) and the last inequality is a consequence of (2.3) and of the facts
that C̄(ξ) and B̄(ξ) are non negative decreasing functions and that C̄(ξ),
B̄(ξ), Ḡξ(x) are bounded by 1. In view of a1(s, x) + a2(s, x) = K1(s, x, 0),
x ∈ R+, from (2.15) for j = 1, 2 we find

0 ≤ aj(s, x) ≤ C̄(x/2)+B̄(x/2), x ∈ R+. (2.16)

The existence and uniqueness of a solution of (2.14) in C([0, b]) follows from
Banach’s fixed point theorem using the norm ||ϕ|| := supx∈[0,b] |e

−3λxϕ(x)|,
where the contraction of the corresponding linear operator

(Aϕ)(x) := λ

∫ x

0
K1(s, x, ξ)ϕ(ξ)dξ, x ∈ [0, b],

follows from (2.15). Considering a sequence of intervals [0, b], b → ∞, one
finds that existence and uniqueness even holds in C(R+).

The ϕj(s, x) are given by the corresponding Neumann series (2.8). From
(2.15) by induction on n = 1, 2, . . . it follows that

0 ≤ Kn(s, x, ξ) ≤ (C̄(x/2)+B̄(x/2))

1

(n−1)!

(
∫ x

ξ

(C̄(η/2)+B̄(η/2))dη

)n−1

, 0 ≤ ξ ≤ x. (2.17)

Taking into account (2.16), from (2.17) for n = 1, 2, . . . and j = 1, 2 we find

0 ≤

∫ x

0
Kn(s, x, ξ)aj(s, ξ)dξ

≤ (C̄(x/2)+B̄(x/2))
1

n!

(
∫ x

0
(C̄(ξ/2)+B̄(ξ/2))dξ

)n

(2.18)

≤ (C̄(x/2)+B̄(x/2))
(2EI+2ES)n

n!
, x ∈ R+. (2.19)
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Because of (2.8), (2.16), and (2.19), for j = 1, 2 it holds

0 ≤ ϕj(s, x) ≤ e2λ(EI+ES)(C̄(x/2)+B̄(x/2)), x ∈ R+, (2.20)

which implies ϕj(s, ·) ∈ L1(R+).
From (2.13), (2.9), and (2.12) we find that the r.h.s. of (2.7) is a solution

of (2.6). On the other hand, let ϕ(s, ·) ∈ C(R+) ∩ L1(R+) be an arbitrary
solution of (2.6). Then ϕ(s, x) + λ

∫

R+
ϕ(s, ξ)dξ ϕ2(s, x) satisfies (2.13) for

j = 1, and thus it holds ϕ(s, x)+λ
∫

R+
ϕ(s, ξ)dξ ϕ2(s, x) = ϕ1(s, x), x ∈ R+.

Integration over x ∈ R+ and (2.12) provide λ
∫

R+
ϕ(s, ξ)dξ = α(s), and

therefore ϕ(s, x) is the solution of (2.6) given by (2.7).

Let s ∈ R+ and j ∈ {1, 2} be fixed. Because of (2.8), (2.16), and (2.19),
for the Laplace transform Φj(s, θ), θ ∈ C+ := {z ∈ C : ℜz ≥ 0}, of ϕj(s, ·)
it holds

Φj(s, θ) :=

∫

R+

e−θxϕj(s, x)dx =
∞
∑

n=0

An,j(s, θ)λ
n, θ ∈ C+, (2.21)

where

A0,j(s, θ) :=

∫

R+

e−θxaj(s, x)dx, θ ∈ C+, (2.22)

is the Laplace transform of aj(s, ·), and for n = 1, 2, . . .

An,j(s, θ) :=

∫

R+

e−θx

∫ x

0
Kn(s, x, ξ)aj(s, ξ)dξdx, θ ∈ C+. (2.23)

Note that (2.16) and (2.18) imply

|An,j(s, θ)| ≤
(2EI+2ES)n+1

(n+1)!
, θ ∈ C+, n ∈ Z+. (2.24)

Due to (2.7) and (2.12), for the Laplace transform Φ(s, θ), θ ∈ C+, of
ϕ(s, ·) we have the representation

Φ(s, θ) :=

∫

R+

e−θxϕ(s, x)dx

= Φ1(s, θ)−
λΦ1(s, 0)

1+λΦ2(s, 0)
Φ2(s, θ), s ∈ R+, θ ∈ C+. (2.25)

Note that

Φ2(0, θ) = 0, θ ∈ C+, (2.26)

because of (2.21), (2.22), (2.23), and (2.9). Thus from (2.25) it follows

Φ(0, θ) = Φ1(0, θ), θ ∈ C+. (2.27)
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2.1 Performance measures

In view of limx→∞E[ I{V0 > x}e−s(U0+x)] = 0, from (2.5) we obtain

E[ I{V0>x}e−s(U0+x)] = λp(0)

∫ ∞

x

ϕ(s, ξ)dξ, s, x ∈ R+. (2.28)

Choosing s = 0, for the workload distribution it follows

P (V0≤x) = 1− λp(0)

∫ ∞

x

ϕ(0, ξ)dξ, x ∈ R+, (2.29)

and choosing x = 0 in (2.29), for the probability that the system is empty
we obtain

p(0) =

(

1 + λ

∫

R+

ϕ(0, ξ)dξ

)−1

. (2.30)

From (2.29) and (2.30) for the workload distribution we find

P (V0≤x) = p(0)

(

1 + λ

∫ x

0
ϕ(0, ξ)dξ

)

, x ∈ R+. (2.31)

Note that (2.30), (2.25), and (2.27) imply

p(0) =
1

1+λΦ1(0, 0)
. (2.32)

Further, from (2.31), (2.25), (2.27), and (2.32) for the LST V ∗(θ) := E[e−θV0 ]
of the workload V0 we obtain

V ∗(θ) =
1+λΦ1(0, θ)

1+λΦ1(0, 0)
, θ ∈ C+. (2.33)

The Poisson arrival process implies that (Vt, Ut), t ∈ R, is a regenerative
process with respect to the embedded time instants where a busy period
starts. The duration of each cycle consists of a busy period and a subsequent
idle period, which is exponentially distributed with parameter λ. Note that
Vt > 0 if and only if there is a busy period running at t. Further, the
intensity of the time instants where a busy period starts is given by λp(0).
Thus the cycle formula for regenerative processes, cf. e.g. [Asm], provides

E[ I{V0>0}e−sU0 ] = λp(0)E

[
∫ D

0
I{V 0

t >0}e−sU0
t dt

]

, (2.34)

where (V 0
t , U

0
t ) has the distribution P ((Vt, Ut) ∈ (·) |V0− = 0, V0 > 0) and

D is the duration of the cycle which starts at time t = 0. For the LST
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Z∗(s) := E[e−sZ ] of the busy period Z starting at t = 0 from (2.34) it
follows

E[ I{V0>0}e−sU0 ] = λp(0)E

[
∫ Z

0
e−stdt

]

= λp(0)
1−Z∗(s)

s
. (2.35)

Because of (2.28) for x = 0, from (2.35) we find

Z∗(s) = 1− s

∫

R+

ϕ(s, ξ)dξ, s ∈ R+, (2.36)

which implies

Z∗(s) = 1−
sΦ1(s, 0)

1+λΦ2(s, 0)
, s ∈ R+, (2.37)

because of (2.25). In view of (2.26), from (2.37) in particular we obtain

EZ = Φ1(0, 0), (2.38)

E[Z2] = 2∂+(λΦ1(0, 0)Φ2(s, 0)− Φ1(s, 0))
∣

∣

∣

s=0
, (2.39)

where ∂+ denotes the right derivative with respect to s. Note that EZ is
given by p(0) and vice versa, cf. (2.32) and (2.38), due to the cycle formula,
i.e.

EZ =
1−p(0)

λp(0)
. (2.40)

2.2 Workload distribution in M/GI/1 +GI

The workload distribution for Kovalenko’s impatience mechanism is given by
(2.31) and (2.30). From (2.8) and (2.9) it follows ϕ2(0, x) = 0, x ∈ R+, which
implies ϕ(0, x) = ϕ1(0, x), x ∈ R+, in view of (2.7), cf. (2.27). Because of
(2.9) and (2.13), thus ϕ(0, x), x ∈ R+, is determined by the Volterra integral
equation

ϕ(0, x) = λ

∫ x

0
K(x, ξ)ϕ(0, ξ)dξ +K(x, 0), x ∈ R+, (2.41)

cf. [Kov, p. 206], [Dal, p. 197].
Since by (2.31) the density v(x) of the work load distribution is related

to ϕ(0, x) via v(x) = λp(0)ϕ(0, x), x ∈ (0,∞), eq. (2.41) is equivalent to the
corresponding equation for v(x), cf. [Kov, p. 206]. For the M/GI/1 + GIw

system its solution ϕ(0, x) = ϕ1(0, x) via the Neumann series (2.8), (2.9) has
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been given in [BBH, eq. (4.13)]. The density v(x) and/or the LST V ∗(θ)
have been derived explicitly for several special cases: for M/H2/1 + Dw

in [XJA], for M/GI/1 + Dw, M/Ek/1 + Dw, M/GI/1 + Mw in [Dal], for
M/GI/1 + Ew

k in [BBH], and for M/GI/1 + Mw, M/M/1 + Dw in [St1],
[St2].

For fixed α ∈ R+, let v(x, α), x ∈ (0,∞), be the density of the work-
load distribution in M/GI/1 + GI with the mixed scheme (1.2), i.e. for
Ḡw(x) := (C̄(x + w)/C̄(w))α. Remember that v(x, 0) and v(x, 1) are the
densities of the workload distributions inM/GI/1+GIw andM/GI/1+GIs,
respectively.

Theorem 2.2 Let Ḡw(x) be given by (1.2). Then for α ∈ (0,∞) it holds

v(x, α) =
C̄(x)αv(x, 0)

1−
∫∞

0+(1−C̄(ξ)α)v(ξ, 0)dξ
, x ∈ (0,∞). (2.42)

Proof. Let ϕ(0, x, α), x ∈ R+, be the solution of (2.41) for theM/GI/1+GI
system with the mixed scheme (1.2) for some α ∈ R+, i.e. for

K(x, ξ) := C̄(x)αC̄(ξ)1−αB̄(x−ξ), 0≤ξ≤x,

cf. (2.3) and (1.2). By putting in it follows that C̄(x)αϕ(0, x, 0), x ∈ R+, is
a solution of (2.41) for the given value of α if ϕ(0, x, 0), x ∈ R+, is a solution
of (2.41) for α = 0. Thus it holds

ϕ(0, x, α) = C̄(x)αϕ(0, x, 0), x ∈ R+. (2.43)

From (2.29) we find

v(x, α) = λp(0, α)ϕ(0, x, α), x ∈ (0,∞),

where p(0, α) denotes the probability that the M/GI/1 + GI system with
the mixed scheme (1.2) is empty. Because of (2.43), thus we obtain

v(x, α) =
p(0, α)

p(0, 0)
C̄(x)αv(x, 0), x ∈ (0,∞). (2.44)

Integrating over x ∈ (0,∞) and taking into account

p(0, 0) +

∫ ∞

0+
v(ξ, 0)dξ = 1 = p(0, α) +

∫ ∞

0+
v(ξ, α)dξ,

(2.42) follows from (2.44) after some algebra.
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Remark 2.2 The results of the paper are easily generalized to the case
where the Poisson arrival process is state-dependent having another intensity
λ0 if the system is empty. In particular, the parameter of the exponentially
distributed empty period changes from λ to λ0 while the distribution of the
busy period does not depend on λ0.

3 Special cases

3.1 The M/GI/1 +M system

Consider the M/GI/1 + M system, i.e. C̄(u) := e−γu, u ∈ R+, for some
γ ∈ (0,∞), where Ḡw(x) is given by the mixed scheme (1.1) or (1.2) for
some fixed α ∈ R+, i.e. Ḡw(x) = e−αγx, x ∈ R+. In this model the maximal
waiting time until beginning of service is exponentially distributed with
parameter γ, and the maximal service time is exponentially distributed with
parameter αγ. Therefore (2.3) reads

K(x, ξ) = e−γξe−αγ(x−ξ)B̄(x−ξ), 0 ≤ ξ ≤ x.

Thus the kernel K(x, ξ), 0 ≤ ξ ≤ x, equals the kernel for the M/GI/1+Mw

system with the modified service time distribution

P (S>y) := e−αγyB̄(y), y ∈ R+, (3.1)

and the unchanged impatience distribution C̄(u) := e−γu, u ∈ R+. Conse-
quently, the distribution of the workload V0 and the distribution of the busy
period Z in the M/GI/1+M system with the with the mixed scheme (1.1)
or (1.2) are given by the corresponding distributions in the M/GI/1 +Mw

system with the modified service time distribution (3.1). Moreover, the
M/GI/1 +M system with the mixed scheme (1.1) or (1.2) is a special case
of the M/GI/1 + PH system with the mixed scheme (1.1) analyzed in the
following section, cf. (3.16) below.

The explicit formula for the LST V ∗(θ) of the work load distribution for
the M/GI/1+Mw system given in [Dal, p. 203], cf. also [St1, p. 175], follows
from (2.33) and (3.16) below, too. The LST Z∗(s) of the busy period in the
M/GI/1 +Mw system is a special result in [Sub]. More precisely, choosing
in [Sub] the balking parameter β = 1 in (19) and i = 0, z = 1 in (21), one
finds in a straight forward manner an explicit expression for Z∗(s), which
coincides with the expression resulting from our formulas (2.37) and (3.16)
below.
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3.2 The M/GI/1 + PH system

Let C(u), u ∈ R+, be given by

C̄(u) =
k

∑

κ=1

pκe
−γκu, u ∈ R+, (3.2)

for some k ∈ N, where γ1, . . . , γk ∈ {z ∈ C : ℜz > 0} and p1, . . . , pk ∈ C such
that p1+ . . .+pk = 1 and the r.h.s. of (3.2) is real-valued and monotonically
decreasing. Further, for fixed α ∈ R+ we use Kovalenko’s mixed scheme
(1.1), i.e. Ḡw(x) = C̄(αx + w)/C̄(w), thus covering the M/GI/1 + PHw

system and the M/GI/1 + PHs system as special cases for α = 0 and
α = 1, respectively, cf. Section 1.

Remark 3.1 The distributions given by (3.2) cover those phase-type dis-
tributions with no point mass at zero where the matrix of the transitions
among the transient states has only simple eigenvalues, cf. [O’C]. Note that
the distributions given by (3.2) are dense in the field of all distributions. The
case of a point mass at zero can be treated by thinning the Poisson arrival
process state-dependent, cf. Remark 2.2, the case of multiple eigenvalues can
be treated as limiting case, cf. Section 3.3 below.

Let s ∈ R+ be fixed in the following. In the case considered here (2.3) reads

K(x, ξ) =
k

∑

κ=1

pκe
−γκxB̄(x−ξ)e(1−α)γκ(x−ξ), 0 ≤ ξ ≤ x, (3.3)

and (2.10) reads

K1(s, x, ξ) =
k

∑

κ=1

pκe
−γκx

(

B̄(x−ξ)e((1−α)γκ−s)(x−ξ)

+ s

∫ x−ξ

0
B̄(η)e((1−α)γκ−s)ηdη

)

, 0 ≤ ξ ≤ x. (3.4)

Further, from (2.9) we find

a1(s, x) = B̄(x)
k

∑

κ=1

pκe
−(αγκ+s)x,

a2(s, x) = s
k

∑

κ=1

pκe
−γκx

∫ x

0
B̄(η)e((1−α)γκ−s)ηdη, x ∈ R+, (3.5)
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and thus for the Laplace transform of aj(s, ·), cf. (2.22), it follows

A0,1(s, θ) = mS

k
∑

κ=1

pκB
∗
R(s+θ+αγκ),

A0,2(s, θ) = mS

k
∑

κ=1

pκ
s

θ+γκ
B∗

R(s+θ+αγκ), θ ∈ C+, (3.6)

where mS := ES is the mean required service time and B∗
R(·) is the LST

of the stationary residual service time distribution BR(x) =
∫ x

0 B̄(ξ)dξ/mS ,
x ∈ R+. From (2.23) for n = 1 and j = 1, 2 we obtain

A1,j(s, θ) =

∫

R+

e−θx

∫ x

0
K1(s, x, η)aj(s, η)dηdx

=

∫

R+

e−θη

∫

R+

e−θyK1(s, y+η, η)dy aj(s, η)dη, θ ∈ C+, (3.7)

where we applied Fubini’s theorem and the substitution y = x − η for the
last equality. Further, from (3.4) after some algebra we find

∫

R+

e−θyK1(s, y+η, η)dy

=
k

∑

κ=1

pκe
−γκη

∫

R+

e−(θ+γκ)y

(

B̄(y)e((1−α)γκ−s)y

+ s

∫ y

0
B̄(ξ)e((1−α)γκ−s)ξdξ

)

dy

= mS

k
∑

κ=1

pκe
−γκη

s+θ+γκ
θ+γκ

B∗
R(s+θ+αγκ). (3.8)

In view of (2.22), thus from (3.7) for j = 1, 2 it follows

A1,j(s, θ) = mS

k
∑

κ=1

pκ
s+θ+γκ
θ+γκ

B∗
R(s+θ+αγκ)

∫

R+

e−(θ+γκ)ηaj(s, η)dη

= mS

k
∑

κ=1

pκ
s+θ+γκ
θ+γκ

B∗
R(s+θ+αγκ)A0,j(s, θ+γκ), θ ∈ C+.

(3.9)
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From (2.23) and (2.11) for n = 2, 3, . . . and j = 1, 2 we obtain

An,j(s, θ) =

∫

R+

e−θx

∫ x

0

∫ x

ξ

K1(s, x, η)Kn−1(s, η, ξ)dη aj(s, ξ)dξdx

=

∫

R+

e−θη

∫

R+

e−θyK1(s, y+η, η)dy

∫ η

0
Kn−1(s, η, ξ)aj(s, ξ)dξdη,

θ ∈ C+, (3.10)

where we applied Fubini’s theorem and the substitution y = x − η for the
last equality again. In view of (3.8) and (2.23), from (3.10) for n = 2, 3, . . .
and j = 1, 2 it follows

An,j(s, θ) = mS

k
∑

κ=1

pκ
s+θ+γκ
θ+γκ

B∗
R(s+θ+αγκ)

∫

R+

e−(θ+γκ)η

∫ η

0
Kn−1(s, η, ξ)aj(s, ξ)dξdη

= mS

k
∑

κ=1

pκ
s+θ+γκ
θ+γκ

B∗
R(s+θ+αγκ)An−1,j(s, θ+γκ), θ ∈ C+.

(3.11)

Summarizing, from (3.9) and (3.11) for fixed j = 1, 2 we find the recursion

An+1,j(s, θ) = mS

k
∑

κ=1

pκ
s+θ+γκ
θ+γκ

B∗
R(s+θ+αγκ)An,j(s, θ+γκ),

θ ∈ C+, (3.12)

for n ∈ Z+, where A0,j(s, θ) is given by (3.6).

Let L := {1, . . . , k}, and for ℓ ∈ Ln let ℓ = (ℓ1, . . . , ℓn). Because of (3.6),
for n = 0 and j = 1, 2 it holds the representation

An,j(s, θ) = sj−1mn+1
S

∑

ℓ∈Ln+1

∏n
m=1(s+θ+γℓ1+ . . .+γℓm)

∏n+j−1
m=1 (θ+γℓ1+ . . .+γℓm)

×
n+1
∏

m=1

pℓmB
∗
R(s+θ+γℓ1+ . . .+γℓm−1

+αγℓm), θ ∈ C+. (3.13)

Assume now that (3.13) holds for some n ∈ Z+. Then from (3.12) and (3.13)
it follows

An+1,j(s, θ) = mS

∑

ℓ0∈L

pℓ0
s+θ+γℓ0
θ+γℓ0

B∗
R(s+θ+αγℓ0)
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× sj−1mn+1
S

∑

ℓ∈Ln+1

∏n
m=1(s+θ+γℓ0+γℓ1+ . . .+γℓm)

∏n+j−1
m=1 (θ+γℓ0+γℓ1+ . . .+γℓm)

×
n+1
∏

m=1

pℓmB
∗
R(s+θ+γℓ0+γℓ1+ . . .+γℓm−1

+αγℓm)

= sj−1mn+2
S

∑

ℓ∈Ln+2

∏n+1
m=1(s+θ+γℓ1+ . . .+γℓm)
∏n+j

m=1(θ+γℓ1+ . . .+γℓm)

×
n+2
∏

m=1

pℓmB
∗
R(s+θ+γℓ1+ . . .+γℓm−1

+αγℓm), θ ∈ C+,

where (ℓ0, . . . , ℓn+1) is replaced by (ℓ1, . . . , ℓn+2) for the last equality. There-
fore, induction on n provides that the explicit representation (3.13) holds
for all n ∈ Z+. In view of (2.21), thus for j = 1, 2 we find the representation

Φj(s, θ) =
sj−1

λ

∞
∑

n=1

̺n
∑

ℓ∈Ln

∏n−1
m=1(s+θ+γℓ1+ . . .+γℓm)

∏n+j−2
m=1 (θ+γℓ1+ . . .+γℓm)

×
n
∏

m=1

pℓmB
∗
R(s+θ+γℓ1+ . . .+γℓm−1

+αγℓm), s ∈ R+, θ ∈ C+,

(3.14)

where ̺ := λmS is the offered load. Note that in case of s = 0 and j = 1
the representation (3.14) simplifies to

Φ1(0, θ) =
1

λ

∞
∑

n=1

̺n
∑

ℓ∈Ln

n
∏

m=1

pℓmB
∗
R(θ+γℓ1+ . . .+γℓm−1

+αγℓm),

θ ∈ C+. (3.15)

Further, in case of k = 1, i.e. in case of exponentially distributed impatience
C̄(u) = e−γu, u ∈ R+, for j = 1, 2 the representation (3.14) simplifies to

Φj(s, θ) =
sj−1

λ

∞
∑

n=1

̺n
∏n−1

m=1(s+θ+mγ)
∏n+j−2

m=1 (θ+mγ)

n
∏

m=1

B∗
R(s+θ+(m−1+α)γ),

s ∈ R+, θ ∈ C+. (3.16)

Now, the LST V ∗(θ) of the workload V0, the probability p(0) that the
system is empty, and the first moment EZ of the busy period Z are given
explicitly by (3.15) and (2.33), (2.32), (2.38), respectively. The LST Z∗(s)
and the second moment E[Z2] of the busy period Z are given explicitly by
(3.14) for θ = 0 and (2.37), (2.39), respectively.
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3.3 The M/GI/1+PH system in case of multiple eigenvalues

Let C(u), u ∈ R+, be given by

C̄(u) =

l
∑

ν=1

bν(u)e
−βνu, u ∈ R+, (3.17)

for some l ∈ N, where β1, . . . , βl ∈ {z ∈ C : ℜz > 0} and bν(·) is a polynomial
with complex coefficients of some degree dν such that b1(0)+ . . .+ bl(0) = 1
and the r.h.s. of (3.17) is real-valued and monotonically decreasing. We
assume here that d := max(d1, . . . , dl) > 0, cf. Section 3.2 for the case of
d = 0. Further, let Ḡw(x) be given by Kovalenko’s mixed scheme (1.1) for
some fixed α ∈ R+ again, i.e. Ḡw(x) = C̄(αx+ w)/C̄(w).

For fixed g ∈ (0, 1) and sufficiently small h ∈ (0, 1) we choose the phase-
type distribution C(u, g, h), u ∈ R+, given by

C̄(u, g, h) := ge−β0u+(1−g)
l

∑

ν=1

bν

(1−e−hu

h

)

e−βνu, u ∈ R+, (3.18)

where β0 := min(ℜβ1, . . . ,ℜβl)/2. Note that the function

f(u) :=
l

∑

ν=1

bν(u)e
−βνu −

l
∑

ν=1

bν(u)e−βνu, u ∈ C,

is identically zero as the r.h.s. of (3.17) is real-valued for u ∈ R+ and due to
the principle of permanence. Applying the fact that any system of exponen-
tial functions {eγ1u, . . . , eγnu}, where γν ∈ C such that γν 6= γµ for ν 6= µ, is
linearly independent over the polynomials with complex coefficients due to
the growth of the complex exponential function, to f , it follows that

l
∑

ν=1

I{βν=γ}bν(u)−
l

∑

ν=1

I{βν=γ}bν(u) ≡ 0, u ∈ C, γ ∈ C,

which implies that the r.h.s. of (3.18) is real-valued. Obviously, there exists
u0 ∈ (0,∞) such that ∂

∂u
C̄(u, g, h) < 0 for u ∈ (u0,∞), h ∈ (0, 1). Further,

it holds

lim
h↓0

∂

∂u
C̄(u, g, h) = −gβ0e

−β0u+(1−g)
∂

∂u
C̄(u) ≤ −gβ0e

−β0u0

uniformly for u ∈ [0, u0]. Therefore, there exists hg ∈ (0, 1) such that
∂
∂u

C̄(u, g, h) < 0 for u ∈ [0, u0], h ∈ (0, hg). Thus the r.h.s. of (3.18) is
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monotonically decreasing with respect to u for h ∈ (0, hg). Moreover, there
exists M > 0 such that for g ∈ (0, 1) and h ∈ (0, hg) it holds

C̄(u, g, h) ≤ Me−β0u, u ∈ R+. (3.19)

The binomial theorem provides that

bν

(1−e−hu

h

)

=

dν
∑

µ=0

pν,µ(h)e
−µhu, u ∈ R+, (3.20)

where hdpν,µ(h) is a polynomial of degree less or equal to d. Let

(p1(h), . . . , pk(h)) := (p1,0(h), . . . , p1,d1(h), p2,0(h), . . . , pl,dl(h)), (3.21)

(γ1(h), . . . , γk(h)) := (β1, β1+h, . . . , β1+d1h, β2, . . . , βl+dlh), (3.22)

where k := (d1 + 1) + . . .+ (dl + 1). Further, let γ0(h) := β0, p0(g, h) := g,
and pκ(g, h) := (1− g)pκ(h), κ = 1, . . . , k. Then (3.18) reads

C̄(u, g, h) =
k

∑

κ=0

pκ(g, h)e
−γκ(h)u, u ∈ R+. (3.23)

For notational convenience we use the additional arguments g, h for the
quantities connected with the impatience distribution (3.18) in the following.
Let s ∈ R+, θ ∈ C+ be fixed and let g ∈ (0, 1), h ∈ (0, hg). From (2.21),
(3.13), and (3.23) for j = 1, 2 we obtain

Φj(s, θ, g, h) =
∞
∑

n=0

An,j(s, θ, g, h)λ
n, (3.24)

where for n ∈ Z+

An,j(s, θ, g, h) = sj−1mn+1
S

∑

ℓ∈Ln+1

0

∏n
m=1(s+θ+γℓ1(h)+ . . .+γℓm(h))

∏n+j−1
m=1 (θ+γℓ1(h)+ . . .+γℓm(h))

×
n+1
∏

m=1

pℓm(g, h)B
∗
R(s+θ+γℓ1(h)+ . . .+γℓm−1

(h)+αγℓm(h)),

(3.25)

L0 := {0, 1, . . . , k}, and ℓ = (ℓ1, . . . , ℓn) for ℓ ∈ Ln
0 .
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Let n ∈ Z+ and j ∈ {1, 2} be fixed. Note that hd(n+1)An,j(s, θ, g, h) is a
holomorphic function with respect to h for ℜh > −2β0/d because of (3.25).
Further, from (2.24) and (3.19) it follows

|An,j(s, θ, g, h)| ≤
(2M/β0+2ES)n+1

(n+1)!
, h ∈ (0, hg). (3.26)

Therefore, An,j(s, θ, g, h) has a removable singularity at h = 0, and it holds

lim
h↓0

An,j(s, θ, g, h)

=
1

(d(n+1))!

∂d(n+1)

∂hd(n+1)
hd(n+1)An,j(s, θ, g, h)

∣

∣

∣

∣

h=0

. (3.27)

Since the r.h.s. of (3.27) is a polynomial with respect to g, further we find

lim
g↓0

lim
h↓0

An,j(s, θ, g, h)

=
1

(d(n+1))!

∂d(n+1)

∂hd(n+1)
hd(n+1)An,j(s, θ, 0, h)

∣

∣

∣

∣

h=0

. (3.28)

As limh↓0 C̄(u, g, h) = C̄(u, g, 0) := ge−β0u + (1 − g)C̄(u) locally uniformly
for u ∈ R+, because of (2.3) and (2.9), for fixed s ∈ R+ and j = 1, 2 it holds
limh↓0 aj(s, x, g, h) = aj(s, x, g, 0) locally uniformly for x ∈ R+, and because
of (2.3), (2.10), and (2.11), for fixed s ∈ R+ and fixed n = 1, 2, . . . it holds
limh↓0Kn(s, x, ξ, g, h) = Kn(s, x, ξ, g, 0) locally uniformly for 0 ≤ ξ ≤ x.
From (2.22), (2.23), (2.16), (2.19), and (3.19) thus we find that for s ∈ R+,
θ ∈ C+, and g ∈ (0, 1) it holds limh↓0An,j(s, θ, g, h) = An,j(s, θ, g, 0). As
also limg↓0 C̄(u, g, 0) = C̄(u, 0, 0) := C̄(u) locally uniformly for u ∈ R+,
analogously we find limg↓0An,j(s, θ, g, 0) = An,j(s, θ, 0, 0) = An,j(s, θ).

In view of (2.21), therefore for the impatience distribution (3.17) we
obtain

Φj(s, θ) =
∞
∑

n=0

An,j(s, θ)λ
n =

∞
∑

n=0

(

lim
g↓0

lim
h↓0

An,j(s, θ, g, h)
)

λn. (3.29)

Because of p0(0, h) = 0 and pκ(0, h) = pκ(h), κ = 1, . . . , k, from (3.29),
(3.28), and (3.25) for j = 1, 2 we find the representation

Φj(s, θ) =
sj−1

λ

∞
∑

n=1

̺n

(dn)!

×
∑

ℓ∈Ln

∂dn

∂hdn

∏n−1
m=1(s+θ+γℓ1(h)+ . . .+γℓm(h))

∏n+j−2
m=1 (θ+γℓ1(h)+ . . .+γℓm(h))
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×
n
∏

m=1

hdpℓm(h)B
∗
R(s+θ+γℓ1(h)+ . . .+γℓm−1

(h)+αγℓm(h))

∣

∣

∣

∣

h=0

,

s ∈ R+, θ ∈ C+, (3.30)

where pκ(h) and γκ(h) are given by (3.17) and (3.20)–(3.22), cf. (3.14) for
the case of d = 0. Note that hdpκ(h) and γκ(h) are polynomials of degree
less or equal to d and to 1, respectively. In case of s = 0 and j = 1 the
representation (3.30) simplifies to

Φ1(0, θ) =
1

λ

∞
∑

n=1

̺n

(dn)!

∑

ℓ∈Ln

∂dn

∂hdn

n
∏

m=1

hdpℓm(h)

× B∗
R(θ+γℓ1(h)+ . . .+γℓm−1

(h)+αγℓm(h))

∣

∣

∣

∣

h=0

, θ ∈ C+. (3.31)

In case of multiple eigenvalues of the matrix of the transitions among
the transient states, thus the LST V ∗(θ) of the workload V0, the probability
p(0) that the system is empty, and the first moment EZ of the busy period
Z are given explicitly by (3.31) and (2.33), (2.32), (2.38), respectively, and
the LST Z∗(s) and the second moment E[Z2] of the busy period Z are given
explicitly by (3.30) for θ = 0 and (2.37), (2.39), respectively.
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