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Abstract

This paper proposes the first model for toll enforcement optimiza-
tion on German motorways. The enforcement is done by mobile control
teams and our goal is to produce a schedule achieving network-wide con-
trol, proportional to spatial and time-dependent traffic distributions. Our
model consists of two parts. The first plans control tours using a vehi-
cle routing approach with profits and some side constraints. The second
plans feasible rosters for the control teams. Both problems can be mod-
eled as Multi-Commodity Flow Problems. Adding additional coupling
constraints produces a large-scale integrated integer programming formu-
lation. We show that this model can be solved to optimality for real world
instances associated with a control area in East Germany.

1 Introduction

In 2005 Germany introduced a distance-based toll for commercial trucks weigh-
ing twelve tonnes or more in order to fund growing investments for maintenance
and extensions of motorways. The enforcement of the toll is the responsibility
of the German Federal Office for Goods Transport (BAG). It is implemented by
a combination of 300 automatic stationary gantry bridges and by tours of 300
control vehicles on the entire highway network. The control tours are operated
by teams, composed of one or two inspectors. The vehicles and crews are based
at a number of depots and are responsible for certain control areas. The goal
of our approach is to construct a set of tours that guarantee a network-wide
control whose intensity is proportional to spatial and time dependent traffic
distributions. The tours must fit within a feasible crew roster, respecting all
legal rules, over a time horizon of several weeks. An important restriction is
that each team and vehicle can only control highway sections in their associated
control area, close to their base depots. Because of this restriction we can not
use sequential and partly anonymous planning approaches for duty scheduling
and rostering like in public transport (see [8] ch. 1), since those would lead to
infeasible staff rosters. Hence, personalized duty roster planning must be used
in our model. These two components are combined into an integrated model
using suitable constraints.
To the best knowledge of the authors no optimization approach for toll enforce-
ment has appeared in the literature. Related publications deal with problems
such as tax evasion or ticket evasion in public transport; they mainly discuss
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the expected behaviour of evaders or payers from a theoretical point of view,
e.g. [1], or optimal levels of inspection, see [2]. A recent approach to inspector
scheduling in public transport was proposed DSB S-tog in Denmark [5], but in
contrast to our problem they focus on temporal scheduling of the inspectors and
not on their routes through the network.
The paper is structured as follows: In Section 2 we present models for tour and
roster planning, and build from these components an integrated toll enforcement
optimization model. This model is used in Section 3 for a computational study.
We present results for two instances of our Toll Enforcement (Optimization)
Problem (TEP) which are part of the MIPLIB 2010[4]. Our computations show
that real-world instances of the TEP can be solved to proven optimality for an
entire control region over a time horizon of four weeks.

2 Optimal Toll Enforcement

Our toll enforcement optimization model consists of two parts. Section 2.1
presents a model for tour planning, and Section 2.2 a model for the assignment
of feasible staff rosters to all inspectors. These two components are combined
into an integrated model using suitable constraints.

2.1 A Graph and IP-Model for the Planning of Inspector

Tours

The TEP can be described in terms of a section graph G = (S,N), in which
the nodes s ∈ S represent control sections, which are sub-parts of the motorway
network with a length of approximate 25-50 km. An edge n ∈ N connects
two sections, if they have at least one motorway junction or motorway exit in
common. Furthermore, there is a given planning horizon T , e.g., four weeks,
and some given time discretization ∆. Since it is required to define both the
spatial routing and the temporal sequence of the tours, we extend G to a space-
time digraph D = (V,A), the tour planning graph. Its nodes v ∈ V are either
defined as a pair of a section and a point in time, i.e., v = (s, t) ∈ S × Z :=
{0,∆, . . . , T − ∆, T} ⊂ [0, T ], or they represent artifical start and end nodes
ds and dt for the vehicle paths (depot nodes). Directed arcs connect either
adjacent time intervals of the same section, or they connect adjacent sections,
i.e., ∀s ∈ S there is ((s, t1), (s, t2)) ∈ A with t2 = t1+∆, starting at t1 = 0 until
t2 = T , and if (s1, s2) ∈ N it holds that ((s1, t), (s2, t +∆)) ∈ A∀t ∈ Z \ {T}.
Figure 1 illustrates this construction. In addition, arcs are inserted from the
start depot to all other non-depot nodes and from all non-depot nodes to the
end depot node. Finally, a profit value is associated with each node v = (s, t).
We consider the problem of finding a feasible (ds, dt)-path in D for each vehicle
f on each day, that respects a tour length restriction of 8h30. Each control
tour corresponds to such a control path. The profit wp of a control path p is
the sum of the profit of its visited nodes. This approach could be seen as a
vehicle routing problem with profits under some additional constraints. Vehicle
routing is an well-established research area, see [6] for an overview. For the case
of dealing with profits Feillet et al. [3] give a literature survey.
There are restrictions on the feasible starting and ending times of the control
tours; the feasible times are defined by the (Working) Time Windows. Let P be
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Figure 1: Construction of the tour planning graph.

set of all control paths in D and Pf,j ⊂ P the set of all paths that are feasible
for vehicle f ∈ F and start at day j ∈ J . Furthermore for a given section s ∈ S,
the set of all paths p ∈ P that visit a node v = (s, ti) ∈ V is denoted by Ps

and the minimum control quota is named by κs. The Tour Planning Problem
(TPP) is then formulated as a 0/1 multi-commodity flow problem in D, where
vehicles f represent the commodities. We introduce 0/1-variables zp, p ∈ P ,
that indicate if tour p is chosen or not. Then the TPP can be modeled by the
following integer program:

max
∑

p∈P

wpzp (1)

∑

p∈Pf,j

zp ≤ 1, ∀(f, j) ∈ F × J (2)

∑

p∈Ps

zp ≥ κs, ∀s ∈ S (3)

zp ∈ {0, 1}, ∀p ∈ P. (4)

In this formulation the objective function (1) maximizes the profit of all selected
tours. The requirement that each vehicle f can do at most one tour per day is
assured by Constraints (2). Constraints (3) guarantee that at least κs paths,
that traverse section s, are chosen in any feasible control schedule. The last
contraints (4) are the integrality constraints.

2.2 Integration of Duty Roster Planning

The second task in the TEP is the planning of the rosters, called the Inspector
Rostering Problem (IRP). There, the objective is to minimize the costs, which
can be real costs of a duty or artifical costs that penalize some feasible but
inappropriate sequence of duties. An example for this is if a duty on the next
day respects the minimum rest times, but starts earlier than the day before,
e.g., Mo 8-17, Tu 6-15.
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We formulate the IRP as a multi-commodity flow problem in a directed graph
D̃ = (Ṽ := (V̂ ∪{s, t}), Ã) with two artifical start and end nodes s, t. The nodes
v ∈ V̂ represent duties as a pair of day and time-window. The arcs (u, v) ∈ Ã ⊆
Ṽ ×Ṽ model a feasible sequence of two duties according to legal rules. Again the
depot nodes s and t are connected with all non-depot nodes. Furthermore, letM
be the set of all inspectors and W the set of all weeks. Then V̂w ⊆ V̂ is defined
as the set of all duties in week w ∈ W . In addition, let tv be the duration of duty
v ∈ V̂ , while ammin and ammax indicate the mimimum or maximum weekly labor
time of inspector m ∈ M . Introducing flow variables xm

u,v for each arc (u, v) and
inspector m, we propose the following integer programming formulation for the
IRP:

min
∑

m∈M

∑

(u,v)∈Ã

cu,vx
m
u,v (5)

∑

v

xm
s,v = 1, ∀m ∈ M (6)

∑

k

xm
v,k −

∑

u

xm
u,v = 0, ∀v ∈ V̂ ,m ∈ M (7)

∑

u∈V̂w

∑

v

tux
m
u,v ≤ ammax, ∀w ∈ W,m ∈ M (8)

∑

u∈V̂w

∑

v

tux
m
u,v ≥ ammin, ∀w ∈ W,m ∈ M (9)

xm
u,v ∈ {0, 1}, ∀(u, v) ∈ Ã,m ∈ M. (10)

The objective function (5) minimizes the cost. Constraints (6) guarantee that
exactly one roster path is chosen for each inspector. Such a path is called
Inspector Roster Path. By (7) we model the flow conservation in each non-
depot node. Maximum and minimum weekly working times are enforced by
inequalities (8,9). Finally, in (10) we have the integrality constraints for the
flow variables.
The TPP and the IRP are connected by coupling constraints into an integrated
formulation for the TEP. To this purpose, we denote by Pf,u the set of all control

paths feasible for vehicle f and duty u ∈ V̂ . The parameter nf gives the number
of inspectors in vehicle f and by m ∈ f it is meant, that the inspector m uses
vehicle f (which is a fixed assignment). This leads to the following coupling
constraint.

∑

p∈Pf,u

nfzp −
∑

m∈f

∑

v

xm
u,v = 0 ∀f ∈ F, u ∈ V̂ (11)

The constraints (11) ensure that for each control path p in D all inspectors in
the corresponding team have a feasible inspector roster path with a duty in the
time horizon of the planned tour. The objective function is a combination of
collecting the profit (1) and minimizing the cost (5).
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Table 1: IP-Solution analysis of some instances of the control region Brandenburg. The
parameter “dc” indicates the use of duty costs, “dm” a pre-given duty mix according
to the time windows and ∆(h) the time discretization. The value of the root LP is
denoted by v(lp) and the best integer solution by v

∗. The solution time limit equals
6h = 21600sec.

inst. ∆(h) dc dm columns rows v(lp) v
∗ gap(%) time(sec.)

T1 4 x x 136264 17245 368997.56 350288.76 0.06 12283.01

T2 4 x - 136264 17237 449883.49 435343.00 opt. 181.62
T3 4 - x 128808 17257 533597.42 499561.80 1.84 21600.00
T4 2 x x 376328 22877 677133.58 644458.66 0.05 21600.00
T5 2 x - 376328 22869 732316.22 709276.99 0.04 3554.21

T6 2 - x 368872 22889 846722.87 796495.47 1.52 21600.00
bab5 4 x x 21600 4964 117062.16 106411.84 opt. 640.34
bab3 2 x x 393800 23069 686288.87 655559.30 0.45 21600.00

3 Computational Results and Conclusion

We tested our model on instances associated with the control region Branden-
burg that are based on real-world data. Six instances (T1,. . . ,T6) model four
week planning periods and basic legal rules like minimum rest times, but they
differ in some parameter settings, see Table 1. The others belong to the MIPLIB
2010, see below. In the table, columns “dc” and “dm” characterize the instances
as follows: “dc” stands for using direct duty costs while “dm” demands a duty
mix regarding to the time windows in the roster, e.g., approx. 40% of all duties
must begin at 6am and end at 15pm. All computations were done on a PC
with an Intel i7 Quad-Core processor with 2.97 GHz and 16 GB RAM. CPLEX
12.2 [7] was applied as an IP solver using four threads. Furthermore, we used a
time limit of 6h and a limit of 10 GB for the Branch&Bound tree.
Table 1 shows the results of our computations. The term v(lp) denotes the
optimal value of the root LP and v∗ the best integer value. An important result
is that all duty-cost instances could be solved to near-optimality within the
given time limit of six hours. An interesting observation is that a larger number
of rows and columns does not always lead to an increase of solution times or
higher integrality gaps. Especially in the 4h-case (T1,T2), a major part of the
complexity originates from the duty mix constraints. In fact, the solution time
is reduced drastically if we omit them. Another important observation is that
the problem becomes more difficult if we replace duty costs by coefficients that
penalize inappropriate rosters (T3, T6).
The MIPLIB 2010 problem library [4] contains two instances from the TEP.
Both model the TPP in a slightly different way then described in Section 2.1,
which, however, produces equivalent results. The first instance is bab52: It
is similar to T1, but models a plan for 8 days, see Table 1. It can be solved
optimally within 15 minutes by CPLEX 12.2.
The second instance bab3 has the same parameters as T4 (see Table 1), except
for a small difference with respect to the length of a duty. It is more difficult
to solve compared to T4 since it has a gap of 0.45% after 6 hours of running

1Memory-Limit reached
2“BAB” is the offical abbreviation of the German motorways
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CPLEX. Even after several days of computation this instance could not be
solved to optimality.
We conclude that we are able to model the TEP by two graph models and then
to formulate it by an IP that integrates all important legal rules. Solving this IP
results in high quality solutions for real-world instances with time discretizations
of two or four hours. In the future we want to integrate additional rules and
implement advanced algorithms to solve more complex instances.
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