
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

MALTE CLASEN PHILIP PAAR1 STEFFEN PROHASKA

Level of Detail for Trees using Clustered
Ellipsoids

1Laubwerk GmbH

ZIB-Report ZR-11-41 (November 2011)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Level of Detail for Trees using Clustered Ellipsoids

M. Clasen1 , P. Paar2 and S. Prohaska1

1Zuse Institute Berlin (ZIB), Germany
2Laubwerk GmbH, Germany

Abstract
We present a level of detail method for trees based on ellipsoids and lines.We leverage the Expectation Maximiza-
tion algorithm with a Gaussian Mixture Model to create a hierarchy of high-quality leaf clusterings, while the
branches are simplified using agglomerative bottom-up clustering to preserve the connectivity. The simplification
runs in a preprocessing step and requires no human interaction. For a fly by over and through a scene of 10 k
trees, our method renders on average at 40 ms/frame, up to 6 times fasterthan billboard clouds with comparable
artifacts.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Generation
- Display algorithms—Computer Graphics [I.3.6]: Methodology and Techniques - Graphics data structures and
data types—

1. Introduction

Interactive plant visualization has many applications such
as games, flight simulators, real-time preview for architec-
tural modeling tools, and geovirtual visualization systems.
Interactivity is, for example, considered important by land-
scape planners and landscape architects, who expressed their
preoccupation with time-consuming rendering in a survey

1362 10 32

404 1208 4121 28965

Figure 1: Number of primitives for the levels of detail for a
mesh with 123 k triangles.

on applications and requirements of 3d visualization soft-
ware [Paa06]. As important as interactivity is a sufficient de-
gree of detail. Several studies have demonstrated that the de-
gree of detail, particularly for foreground features like veg-
etation, soil surface, or water, is a key factor in how people
relate to computer-generated visual simulations of landscape
scenery [Lan01]. Achieving interactivity and a sufficient de-
gree of detail at the same time for plants of realistic densities
of vegetation cover is still a problem, in particular in densely
vegetated areas such as fields and forests. Systems that are
designed for interactive use, such as mainstream geographic
information systems (GIS) for landscape planning and geo
browsers such as Google Earth, represent vegetation cover
to date only in a quite rudimentary way. Specialized land-
scape renderers that excel at high quality on the other hand,
such as E-on Software Vue or Planetside Software Terragen,
require non-interative rendering times.

Level of Detail (LoD) can be used to balance interactivity
and degree of detail. LoD methods reduce the complexity
of 3d models and thus can reduce both the resource usage
(memory, time) and aliasing artifacts, enabling the render-
ing of visually rich scenes at interactive frame rates. Many
LoD methods focus on a reduction of surface complexity.
Trees, however, with thousands of only loosely connected
leaves, have a different geometric complexity than surfaces.
So while the simplification of buildings from sophisticated



2 M. Clasen & P. Paar & S. Prohaska / LoD for Trees

façades to flat rectangles is solved in numerous ways, render-
ing the vegetation surrounding the man-made structures is
still a challenge. Specifically, rendering realistic (non-tiled)
forests at interactive frame rates on commodity PCs is still
not solved in a completely satisfactory way, as we discuss in
more detail in the section on related work below.

In this paper, we present an LoD method for trees. The
method is based on fuzzy clustering of unconnected leaf
primitives, where each cluster is represented by a noise-
textured ellipsoid. Our main contributions are, first, that an
effective generic clustering method is used instead of the
common ad-hoc techniques, which improves the accuracy
of the lower LoD steps and reduces the number of primi-
tives (Fig.1) and therefore the GPU time. Second, we ap-
ply a noise texture to the ellipsoids for surface normals and
alpha-test opacity, which yields a more natural look than the
primitives used in previous work. Third, we propose an LoD
selection based on primitive size in order to reduce aliasing.

We now discuss related work (section2). Then we present
the clustering schemes for ellipsoids and lines (section3),
followed by the image error metric used in the line clustering
step (section4), the primitive rendering (section5), and the
selection of the appropriate level of detail (section6). This is
followed by a comparison of performance and image quality
to previous methods (section7) and a discussion (section8).

2. Related Work

Many plants have a high geometric complexity, with leaves
loosely connected to a large number of twigs and branches.
Boudon et al. [BMG06] classify a wide range of LoD meth-
ods developed for this special kind of 3d models. In their
terms, our method is a multiscale approach (suitable for both
near-field views and large scenes) using structural informa-
tion with line primitives for the trunk and spatial informa-
tion with ellipsoidal primitives for the leaves, similar to the
work of Deussen et al. [DCSD02], Gilet et al. [GMN05], and
Clasen et al. [CP10].

The most popular techniques to render plants are based
on the generic Billboard Cloud (BBC) method introduced by
Décoret et al. in [DDSD03], such as the work of Fuhrmann
et al. [FUM05] and Behrendt et al. [BCF∗05]. They use a set
of textured impostors to transform the geometric complex-
ity into planar images. Leveraging the GPU texture filtering
capabilities results in low amounts of spatial and temporal
aliasing, but at the cost of spatial deviations from the ref-
erence geometry. [CP10], on the other hand, is optimized
for a low measured image error compared to a reference im-
age using the HDR-VDP metric introduced by Mantiuk et al.
in [MDMS05]. Since this metric does not discriminate dif-
ferent noise patterns with similar properties, the drawback
is visible temporal aliasing (see Fig.13). While there are
effective techniques to reduce temporal noise in videos, for
example by Kim et al. [KW97], they usually introduce a lag

of a few frames, which limits the applicability to interactive
applications. Given this trade-off, we tuned our method to-
wards the behavior of billboard clouds, because measured
image errors are usually less important in interactive appli-
cations than perceived artifacts. This can be done enforcing
a lower limit on the point size in screen space, as proposed
by Deussen et al. [DCSD02] and Gilet et al. [GMN05].

Clustering has been used by various LoD methods in dif-
ferent ways. Gilet et al. [GMN05] and Clasen et al. [CP10]
rely on hierarchical bottom-up clustering of point primi-
tives. [GMN05] is driven solely by a spatial data structure,
whereas [CP10] uses an image error metric to merge the
clusters. While the original billboard clouds in [DDSD03]
and its optimization for trees in [FUM05] use ad-hoc clus-
tering heuristics, [BCF∗05] additionally maps the billboard
cloud generation to the partitioning (non-hierarchical) k-
means algorithm. We carry the idea of using a generic
clustering scheme over to point-based LoD and use the
Expectation-Maximization (EM) algorithm first presented
in [DLR77] (of which k-means can be written as a special
case) with a Gaussian Mixture Model (GMM) for cluster-
ing.

3. Building the LoD Hierarchy

To build the LoD hierarchy, we employ two different meth-
ods for leaves and branches. Leaves are represented by sets
of clusters of ellipsoids, while a successively simplified line
hierarchy is used for branches.

3.1. Ellipsoids

In the first step, leaves from the source mesh are converted to
single ellipsoids by uniform sampling followed by a princi-
pal component analysis (PCA). To calibrate the visible area
of the ellipsoids to the mesh, we compute the image error
(Sec.4) for multiple scaling factors and choose the mini-
mum (See [CP10] for details).

Second, we build a LoD hierarchy on top of the single leaf
primitives. We use a fuzzy partitioning clustering algorithm
for each level, subsequently reducing the target number of
clusters until only a single cluster is generated for the coars-
est level. This yields more accurate representations for each
level than the agglomerative bottom-up clustering used in
previous methods such as [DVS03] and [CP10] (Fig. 2).

To improve the approximation, we use the Expectation-
Maximization (EM) algorithm with a Gaussian mixture
model (GMM) for clustering, which yields ellipsoidal clus-
ters. We chose EM/GMM over the widely used k-means
for two reasons: K-means uses a spherical cluster model
and yields equi-sized clusters. Both properties do not match
the typical structures of trees. Since the local optimum of
EM/GMM depends on the initialization values, we run the
clustering and the subsequent primitive creation (as follows)



M. Clasen & P. Paar & S. Prohaska / LoD for Trees 3

hierarchical bottom-up fuzzy partitioning

Figure 2: Hierarchical bottom-up clustering tends to result
in unbalanced clusters that depend on small variations in
the input data, whereas partitioning can find robust global
optima. Fuzzy cluster assignments further improve the ap-
proximation.

Algorithm 1: Building the ellipsoid cluster hierarchyH.

input : A setL of leaf ellipsoids; a number of triest
output: A list H of sets of ellipsoids
Ire f ← RenderImage (L);
n←‖L‖ · 1

4 ;
H←∅;
while n≥ 1 do

E←∅;
for i← 1 to t do

P← CreateRandomPoints (n);
W← FindEMClusterWeights (P, L);
Ei ← CreateEllipsoids (W, L);
I ← RenderImage (Ei);
e← ComputeImageError (I , Ire f );
E← E∪ (Ei ,e);

end
H← H ∪ SelectOptimalEllipsoids (E);
n← n · 1

4 ;
end

and error evaluation multiple times (Fig.3, Alg. 1), where
more than four times did not further improve the result.
To select the best clustering based on the multiple random
initializations, we then render the generated ellipsoids and
compute the image error (Sec.4) relative to the rendered
source leaves. While multiple runs of the EM algorithm are
usually evaluated based on the log-likelihood value, we pre-
fer the image-error-based comparison because it is a better
estimate of the image quality at run-time. Since most of the
time is spent on the EM algorithm itself, the additional im-
age rendering and comparison steps are negligible.

For each iteration, first we generate a set of random points
in the bounding box of the leaves. The EM algorithm takes
these as initial cluster center values. It then iteratively ap-
proximates the center points of the leaf ellipsoids with 3D

leaves

random
init

ellipsoids

assignment

ellipsoids

image

reference

E
M sp

at
ia

li
ze

render

co
m

p
ar

e

se
le

ct

error

r.

Figure 3: To create a LoD, we first run the EM algorithm
with a random initialization, convert the cluster weights to
ellipsoids and measure the difference between the rendered
ellipsoids and the source leaves. We repeat this several times
and select the ellipsoids with the lowest image error.

initializated running converged

Figure 4: The EM/GMM algorithm is initialized with ran-
dom cluster positions and iteratively approximates the sam-
ples with normal distributions of arbitrary orientation.

normal distributions (Fig.4). Once the EM loop has con-
verged, we use the resulting fuzzy cluster assignmentswi, j
(probability that pointi is represented by clusterj; ∑ j wi, j =
1) as weights for a PCA of the center points of the leaves
(Fig. 5). Although the EM algorithm internally uses Gaus-
sians, which could directly be interpreted as ellipsoids, we
use PCA in a separate step to create a cleaner software archi-
tecture. This allows for varying implementations of the clus-
tering method. Once the ellipsoids are generated, we discard
all those whose surface area is less than 1% of the largest.
This reduces both rendering time and aliasing due to tiny
primitives that hardly affect the resulting shape. The size of
the remaining ellipsoids is calibrated using the same method
as for the initial import.

To avoid the artificial look of perfect ellipsoids, we add
a noise texture. We create two mip-mapped cube map tex-
tures filled with white noise: One grey-scale texture as al-
pha channel and one RGB as normal map. A single pair of
noise textures is sufficient for all models. The alpha chan-
nel texture is used to create alpha-test holes in the sur-



4 M. Clasen & P. Paar & S. Prohaska / LoD for Trees

EM clustering fuzzy assignment weighted PCA

Figure 5: The EM algorithm results in assignment probabil-
ities for each sample. We use these as weights for a PCA to
compute the cluster ellipsoids.

noise mip-map interpolate alpha-test target

Figure 6: We compute frequency and threshold for the ellip-
soid noise texture based on the number and area of clustered
leaves.

face based on a threshold value t shared among all clusters
of a single level of detail, and a cluster specific mip-map
LoD level l j (Fig. 6). The mip-map texture for levell has
2l × 2l texels. Fort = 0.5, half of the texels are discarded,
so l j represents about 22l j−1 features. The target number
of features is given by the sum of leaf weights∑i wi, j , so
l j = 0.5(1+ log2 ∑i wi, j ). The thresholdt is determined us-
ing the calibration routine, where the image error (Sec.4) is
computed for multiple values oft and corresponding scaling
coefficients for the ellipsoid area to compensate the area loss
due to the alpha test. Mip-map lod level and blending coeffi-
cient of the normal map noise are computed in the same way.
The blending coefficient is used to blend between the sur-
face normal of the ellipsoid and a random unit vector from
the normal map noise texture.

To get a LoD hierarchy, we run this loop for several steps,
starting with a number of clusters of1

4 the number of leaves
and further reducing this number by14 until only a single
cluster is generated.

6

4 4

4

2 3
2 3

h

r
weight = r²h

initialize weights propagate weights

merge:

straighten:

2/3

5

5
9

Figure 7: We initialize line weights by primitive volume. We
use the weights to interpolate in merge steps.

3.2. Lines

For lines, we rely on agglomerative bottom-up clustering to
preserve the connectivity. Starting from the imported skele-
ton, we successively merge two primitives in each step until
only a single line is left. To determine the best merge candi-
date pair, we randomly select mergeable pairs and evaluate
the image error of the resulting simplified model. Then we
apply the pair with the lowest error. We use two merge op-
erations, straighten and combine. The straighten operation
replaces two consecutive lines by a single line, whereas the
combine operation replaces two lines with the same parent
line by an averaged line. We initialize the weights for the
averaging operation on the imported skeleton by line vol-
umes (Fig.7). On each merge step, we assign the sum of
the weights to the resulting line. While this follows the gen-
eral idea presented in [CP10] (see for further details), using
propagated weights instead of ad-hoc weights improves the
quality of lower LoD steps. We do not use their crop op-
eration because we observed no further improvements over
merge/straighten only.

4. Image Error Metric

To measure the difference between two images, we use a root
mean square error (RMSE) metric. RMSE is only sensitive
to differences in single pixels. Since the perceived quality is
also affected by large scale artifacts, we run the RMSE met-
ric for multiple image resolutions. While perception-based
error metrics seem to be a natural choice for comparing
image quality, we found RMSE better suited in our case.
Perception-based metrics such as HDR-VDP by [MDMS05]
and MS-SSIM by [WSB03] are designed to ignore global
differences in contrast and brightness, and emphasize the
difference between correlated and uncorrelated noise. These
kinds of errors do not appear in our controlled environment.
On the contrary, it is a significant difference in the calibration
step whether the primitives are invisibly small or cover the
entire frame buffer. But MS-SSIM would detect no structural
difference between these cases. Therefore we rely on RMSE,



M. Clasen & P. Paar & S. Prohaska / LoD for Trees 5

Figure 8: To compute the RMS in multiple resolutions in a
single pass, we use a space filling z-curve.

which is also an order of magnitude faster (996 comparisons
per second for 5122 images on a Radeon HD4850, 88 cps for
MS-SSIM in [CP10]). Our GPU implementation computes
multi-scale RMSE in a single pass on the GPU by scanning
the difference image (pixel-wiseimgsample− imgre f erence)
along a space-filling z-curve (Fig.8). This way we can ac-
cumulate the errors for each resolution band with a single
value per band, takinglog2(n) values, wheren is the width
of the image.

5. Rendering

Like [CP10], we use a sequential point tree (SPT) similar to
[DVS03] to store the primitives on the GPU. Since we do not
have an inherent parent-child relationship between the ellip-
soids, we compute the error thresholds for whole LoD steps
(Sec.6), not for single primitives. Therefore we lose the con-
tinuous LoD property. However, the steps are sufficiently
close to enable image-space blending like [MGvW98].

We render the ellipsoids using the raycaster presented in
[SWBG06]. It computes the ray-ellipsoid intersection in the
local coordinate system where the ellipsoid is a sphere. This
way we can use the coordinates of the intersection as in-
dex to the noise cube map, and simply add the normal noise
to the normal vector before transforming it to eye space. To
avoid aliasing due to the noise texture, we limit the noise fre-
quency based on the screen-space derivatives of the texture
coordinates, just like common mip-mapping. The OpenGL
functionfwidth() provides a ready-to-use upper limit on
the mip-map level.

The line renderer is based on [MSE∗06], unchanged from
the [CP10] implementation.

To improve the visual quality, we apply shadow mapping
and precomputed ambient occlusion (AO) (Fig.9). For the
mesh, we compute the AO term per vertex by path tracing
random directions in the surface normal hemisphere until the
ray leaves the model. For the LoD primitives, we choose ran-
dom points on the primitive surfaces, rejecting those inside
other primitives.

Figure 9: We use shadow mapping and precomputed am-
bient occlusion (top) to improve the realism over local il-
lumination only (bottom). Left to right: Mesh, highest LoD,
coarser LoD.

6. Level of Detail Selection

The appropriate level of detail for a given model size in
screen space is constrained by two soft limits: When the fea-
ture size falls below the limit of the Nyquist frequency, alias-
ing occurs. In our method, the feature size is determined by
the size of the lines and ellipsoids, because the noise texture
is already frequency capped. The hard edge of the primitives
has a theoretically unlimited frequency, so aliasing cannot be
avoided. Without resorting to supersampling, we can only
reduce it by reducing the number of edges, which means
lowering the level of detail to increase the primitive size.
This leads to the second soft limit, the artifacts introduced
by large primitives. Fig.1 shows that a certain number of
primitives is required to faithfully represent a model for a
given resolution. We use a default average ellipsoid size of 5
pixels in diameter and a default average line width of 1 pixel.
This sounds small, but given the uneven distribution of line
widths between trunk and twigs, the most visible lines are a
few pixels wide.

Based on these sizes, we set the error value of each prim-
itive to the inverse of the target resolution pixels per meter
in screen space. This allows us to merge primitives of differ-
ent sources (lines and ellipsoids of a single model, or mul-
tiple models to a group) without additional error normaliza-
tion steps, and it is compatible to the run-time error selection
scheme proposed in [CP10].

7. Results

We implemented out method using parts of the solution pre-
sented in [CP10] and the respective free source code avail-
able athttp://biosphere3d.org. To evaluate our new
LoD method, we compared it to [CP10] and the billboard



6 M. Clasen & P. Paar & S. Prohaska / LoD for Trees

Figure 10: We measured the performance along a camera
path through a scene of 10,000 trees.

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

F
ra

m
e

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0

1
1
0

0

1
2
0

0

1
3
0

0

1
4
0

0

Cluster

BBC

CP10

Figure 11: Time per frame to render the plants at the default
resolution for all three methods.

cloud (BBC) implementation used in [Coc08]. We calibrated
the level of detail selection for [CP10] and BBC similar to
the method described in section6, so that the feature size is
in the order of a few pixels. Shading was restricted to local
illumination to avoid image differences due to the varying
lighting terms in the implementations. We created a scene
of 10 000 plants in forest groups that could be rendered
at interactive frame-rates with all three methods and mea-
sured the performance along a camera path of 1440 frames
of 1536×864 pixels (Fig.10) on an Intel Core 2 Duo at 3
GHz and an ATI Radeon HD5870. The path starts with an
overview, followed by a descent down to human perspective
inside the main forest. Then it heads towards a smaller group
of trees and turns back to the main forest.

On each frame, we measured the time for the plant ren-
dering only by taking the difference to a run without trees.
On average, our new method took 40 ms per frame, BBC
260 ms, [CP10] 207 ms, and the mesh without LoD 925
ms. The exact frame times are shown in Fig.11 (we omit-
ted the mesh for improved clarity). Both BBC and [CP10]
show peaks when many small trees are rendered—first in
the view from above, second in the view from the side. Our
new method renders many small trees several times faster.

Since most applications allow reducing the image quality
in favor of performance, we measured the same path with

frame 0-200 250-450 600-850

Cluster BBC CP10
full 1/2 1/4

method:
resolution:

33
33
34

42
33
30

66
51
42

209
27
25

262
116
50

144
100
66

234
123
109

198
106
64

136
89
63

numeric values: average time per frame in ms

Figure 12: Performance depends on the camera view and
the target resolution for the LoD selection. The rendered im-
age resolution remained constant at1536×864pixels.

the LoD selection set to12 and 1
4 of the actual image reso-

lution. We chose three distinct frame groups to illustrate the
performance behavior (see Fig.12): In the first 200 frames,
all trees cover only a few pixels of the screen. From frame
250 to 450, the trees in the foreground are a few dozen pixels
tall. From frame 600 to 850, the camera is inside the forest
and trees cover the whole LoD range from mesh in the fore-
ground to a few pixels in the background. Our new method
shows the best overall performance, five to six times faster
than BBC and [CP10]. At lower resolutions and for distant
trees, the billboard clouds marginally outperform it.

We initially configured the LoD selection based on the
feature sizes. Based on the captured frames, we also mea-
sured the actual RMS image errors compared to a super-
sampled reference rendering of the source mesh and, addi-
tionally, to the next frame in the sequence to evaluate tempo-
ral noise (Fig.13). Temporal noise increased from BBC over
our new clustering method to [CP10], while the difference to
the reference image decreased in the same order.

We also measured the difference between a single tree
model at the highest LoD and the respective source mesh
(Fig.14). This difference causes popping artifacts in the near
field. Our new method uses the same high-level representa-
tion as [CP10]. Both show only small deviations in the order
of single pixels, while BBC shows larger artifacts due to the
plane alignments.

To analyze the behavior at low resolutions, we first cap-
tured images of all methods at 19 kb memory usage and sec-
ond at about 130 primitives (Fig.15). 19 kb corresponds to
the lowest BBC resolution with three textured quads using



M. Clasen & P. Paar & S. Prohaska / LoD for Trees 7

image

difference to
next frame

difference to
reference

ref. BBC Cluster CP10

4,9 7,7 8,5 9,5

12,0 10,7 7,4

Figure 13: Our new clustering method has an artifact inten-
sity between BBC and [CP10], where BBC is less accurate
compared to the reference image and [CP10] exhibits more
temporal noise.

Billboad Clouds

Cluster / CP10

LoD

LoD

Mesh

Mesh

diff

diff

Figure 14: The difference between the highest LoD and the
source mesh is larger for BBC, where the texture planes
change the leaf positions. For this LoD, BBC uses the source
mesh for the trunk.

GPU texture compression. Ellipsoids take 140 bytes each,
lines 48 bytes, so we took a conservative assumption of 130
primitives for the LoD steps of the new clustering method
and [CP10]. To have comparable vertex shader load, we also
added a BBC LoD step at 125 primitives, which uses 240
KB. The resulting image quality of the 19 KB clustering
is comparable to the 240 KB BBC, while the 19 KB BBC
shows considerable artifacts. The 19 KB [CP10] has hardly
visible resemblance at the rendered resolution and is only
usable at the target resolution of a few pixels.

The precomputation times depend on the number of prim-
itives. On average, our implementation took 0.9 s per source
leaf and 0.3 s per source branch to generate the complete

BBC

19 kb

3 prim.

Cluster

19 kb

136 prim.

BBC

240 kb

125 prim.

CP10

19 kb

139 prim.

Figure 15: Comparison of the methods at 19 KB (equal
memory usage) and about 130 primitives (equal vertex
shader load).

#primitives 1 k 2.7 k 5 k 10 k 27 k
time[min] 7 12 23 91 396

Table 1: Precomputation times in minutes by number of
source primitives

LoD hierarchy, resulting in the absolute times shown in ta-
ble1. For our models, ellipsoid clustering accounted for 83%
of the time.

8. Discussion

In most cases, our method is faster than the previous meth-
ods BBC and [CP10]. The single exception is rendering of
distant trees at reduced LoD resolution. In this case, BBC
has the lower draw call overhead. It uses only a single primi-
tive type, textured quads, and requires only a single draw call
for a model, while our methods requires two for ellipsoids
and lines. The peak in the BBC results for the highest reso-
lution in the first frame group is caused by the relatively large
gap between the lowest LoD used by the two reduced resolu-
tions (essentially a simple cross-billboard) and the next step.
So while the lowest BBC LoD is more efficient than the low-
est LoD of our method, the latter has a smoother transition,
avoiding sudden peaks. This yields a more predictable per-
formance behavior.

The noise analysis shows that there is a trade-off between
the difference to the reference frame and the difference to the
next frame. BBC has larger deviations from the reference,
but less temporal noise, while [CP10] shows the opposite be-
havior. Our method seems to be well balanced in between.
While contrast preservation as described in [CHPR07] hap-
pens automatically by averaging the properties of merged
primitives, the increased contrast in Fig.13 visible for both
our method and BBC is the result of the lower limit on
the primitive size to avoid aliasing. The only practical way
around this trade-off is supersampling, because per primi-
tive filters would result in translucent pixels which require a
costly depth-sort for proper blending.



8 M. Clasen & P. Paar & S. Prohaska / LoD for Trees

Our method is up to several times faster than the state-of-
the-art billboard clouds at a comparable image quality. How-
ever, as the accompanying video shows, 10 000 trees are still
not enough for larger forests. Distant views, where each in-
stance takes only a few pixels on screen, could profit from
LoD schemes for groups. Taking a random subset of prim-
itives as proposed in [DCSD02] is fast and easy to imple-
ment but prone to aliasing. Our method could be extended
by interpreting coarse LoDs of multiple models as a new
model and running the simplification process as described.
Due to our self-contained primitives, this could be applied to
groups of different models. However, in many applications
users want to modify scenes. Although the precomputation
times are acceptable for static models, this step would have
to be accelerated at least by an order of magnitude.

9. Conclusion

We presented a novel LoD method for rendering trees. It
combines the rendering efficiency of the ellipsoid and line
primitives and the sequential point tree data structure with
the accuracy of approximation of fuzzy partitional cluster-
ing. As a result, it outperforms previous methods for inter-
active rendering of forests (40 ms on average for a scene
10 000 trees).

Given the achieved efficiency of rendering instances at
low LoD, transforming, culling, and LoD selection are prob-
ably becoming the next bottlenecks in scenes with a larger
amount of tree instances. Furthermore, we consider extend-
ing the LoD hierarchy beyond single instances the most im-
portant next step towards realistic landscapes.

References

[BCF∗05] BEHRENDT S., COLDITZ C., FRANZKE O., KOPFJ.,
DEUSSENO.: Realistic real-time rendering of landscapes using
billboard clouds.Comp. Graph. Forum 24, 3 (2005), 507–516.2

[BMG06] BOUDON F., MEYER A., GODIN C.: Survey on Com-
puter Representations of Trees for Realistic and Efficient Render-
ing. Tech. Rep. RR-LIRIS-2006-003, LIRIS Lab Lyon, 2006.2

[CHPR07] COOK R. L., HALSTEAD J., PLANCK M., RYU D.:
Stochastic simplification of aggregate detail.ACM Trans. Graph.
26, 3 (2007), 79.7

[Coc08] COCONU L.: Enhanced Visualization of Landscapes and
Environmental Data with Three-Dimensional Sketches. PhD the-
sis, Univ. of Konstanz, July 2008.6

[CP10] CLASEN M., PROHASKA S.: Image-error-based level of
detail for landscape visualization. InProceedings of VMV - Vi-
sion, Modeling & Visualization(2010).2, 4, 5, 6, 7

[DCSD02] DEUSSEN O., COLDITZ C., STAMMINGER M.,
DRETTAKIS G.: Interactive visualization of complex plant
ecosystems. InIEEE Visualization(2002).2, 8

[DDSD03] DÉCORETX., DURAND F., SILLION F. X., DORSEY

J.: Billboard clouds for extreme model simplification. InACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH
2003)(2003).2

[DLR77] DEMPSTERA., LAIRD N., RUBIN D.: Maximum like-
lihood from incomplete data via the em algorithm.Journal of the
Royal Statistical Society. Series B (Metholodigical) 39(1) (1977),
1–38.2

[DVS03] DACHSBACHER C., VOGELGSANGC., STAMMINGER

M.: Sequential point trees.ACM Trans. Graph. 22, 3 (2003),
657–662.2, 5

[FUM05] FUHRMANN A. L., UMLAUF E., MANTLER S.: Ex-
treme model simplification for forest rendering. InEG Workshop
on Natural Phenomena(2005).2

[GMN05] GILET G., MEYER A., NEYRET F.: Point-based ren-
dering of trees. InEG Workshop on Natural Phenomena(2005).
2

[KW97] K IM J. ., WOODS J.: Spatio-temporal adaptive 3-d
kalman filter for video. IEEE Transactions on Image Process-
ing Volume 6 Issue 3(1997), 414–424.2

[Lan01] LANGE E.: The limits of realism: perceptions of virtual
landscapes.Landscape and Urban Planning 54(2001), 163–182.
1

[MDMS05] MANTIUK R., DALY S., MYSZKOWSKI K., SEIDEL

H.-P.: Predicting visible differences in high dynamic rangeim-
ages - model and its calibration. InIS&T/SPIE’s 17th Annual
Symp. Electronic Imaging(2005), vol. 5666, pp. 204–214.2, 4

[MGvW98] MULDER J. D., GROEN F. C. A., VAN WIJK J. J.:
Pixel masks for screen-door transparency. InProc. of VIS ’98
(1998), IEEE CS Press, pp. 351–358.5

[MSE∗06] MERHOF D., SONNTAG M., ENDERS F., NIMSKY

C., HASTREITER P., GREINER G.: Hybrid visualization for
white matter tracts using triangle strips and point sprites.IEEE
TVCG 12, 5 (2006), 1181–1188.5

[Paa06] PAAR P.: Landscape visualizations: Applications and re-
quirements of 3d visualization software for environmental plan-
ning. Computers, Environment and Urban Systems 30(2006),
815–839.1

[SWBG06] SIGG C., WEYRICH T., BOTSCH M., GROSS M.:
Gpu-based ray casting of quadratic surfaces. InProc. of EG Sym-
posium on Point-Based Graphics(2006).5

[WSB03] WANG Z., SIMONCELLI E. P., BOVIK A. C.: Multi-
scale structural similarity for image quality assessment. InIEEE
Asilomar Conference on Signals, Systems and Computers(2003).
4


