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Abstract

We consider periodic orbits of autonomous parameter dependent
ODE’s. Starting from a shooting algorithm for the numerical compu-
tation of periodic orbits via an adaptive Poincaré-section we develop
a pathfollowing algorithm for periodic solutions based on a tangen-
tial continuation method with implicit reparametrization. For ODE’s
equivariant w.r.t. a finite group we show that spatial as well as spatio-
temporal symmetries of periodic orbits can be exploited within the
(multiple) shooting context. We describe how turning points, period
doubling bifurcations and Hopf points along the branch of periodic
solutions can be handled. Furthermore equivariant Hopf points and
generic secondary bifurcations of periodic orbits with Zm-symmetry
are treated. We tested the code with standard examples, e.g., the
period doubling cascade in the Lorenz equations. To show the ef-
ficiency of the described methods we also used the program for an
application from electronics, a ring oscillator with n inverters. In this
example the exploitation of symmetry reduces the amount of work for
the continuation of periodic orbits from O(n2) to O(n).
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Introduction

Periodic processes play an important role in science and technology, e.g.
in electronics, chemistry and also in biochemistry and biology. Often these
processes are modelled by ordinary differential equations which depend on
parameters. It is then interesting to examine the behaviour of the periodic
processes in dependence of the parameters and to compute changes of the
dynamics, i.e. bifurcations. In many cases the considered problems possess
certain symmetries which can be exploited effectively during the computer
simulation.
The aim of this paper is to compute periodic solutions of a parameter-

dependent dynamical system

x′ = f(x, λ), f : Rn ×R → Rn, λ ∈ R

with autonomous right-hand-side f und to continue the periodic solutions
w.r.t. the parameter λ. Thereby possible symmetries are to be exploited and
bifurcations to be computed. To achieve this aim we first need an algorithm
for the computation of single periodic orbits of ODE’s x′ = f(x). For this
we employ the multiple shooting algorithm presented in Deuflhard [3], which
we briefly recall in Section 1.
Section 2 deals with the numerical continuation of periodic orbits. The tan-

gential continuation method with implicit reparametrization for stationary
solutions of parameter-dependent ODE’s as described in Deuflhard, Fiedler,
Kunkel [9] is extended to the periodic case.
Of particular interest for our investigations is the case when the underlying

ODE is equivariant w.r.t. some symmetry group Γ ⊂ O(n), i.e.

γf(x) = f(γx) ∀γ ∈ Γ.

Section 3 is concerned with the exploitation of spatial and spatio-temporal
symmetries of periodic orbits.
In Section 4 bifurcations are treated, first bifurcations without symmetry

and then symmetry breaking bifurcations. Both, in Section 3 and in Section
4 numerical techniques are generalized which have been developed by Gater-
mann, Hohmann [7] for the exploitation of symmetry and the computation of
symmetry breaking bifurcations of stationary solutions. A different method
for the numerical continuation of periodic solutions with symmetry based on
Fourier expansions has been presented by Dellnitz [1], [2].
Finally, in Section 5, examples are presented to illustrate the performance

of the developed algorithmic tools.
The results and examples to be presented can be found in more details in

the diploma thesis of Wulff [15].
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� Computation of Single Periodic Orbits

In this section we briefly recollect the algorithm for the computation of pe-
riodic orbits of autonomous ODE’s

x′ = f(x), f : Rn → Rn, Φt(·) flow of f, (1.1)

which has been introduced in [3]. If x(t) = Φt(x0) is a periodic solution
of (1.1) then any time-shifted solution x(t + t0), t0 ∈ R, is also a periodic
solution, because the system (1.1) is autonomous. All these solutions de-
termine the same periodic orbit Cx(t). In order to avoid this uninteresting
non-uniqueness a well-known analytical technique is to fix a Poincaré-section
Sx0 which is an (n−1)-dimensional affine hyperplane transversal to the peri-
odic orbit Cx(t) at the point x0. We will use the Poincaré-section orthogonal
to the orbit

Sx0 = x0 + S′
x0

where S′
x0

= 〈f(x0)〉⊥.
Then x0 is a fixed point of the Poincaré-map (first return map) Πx0 : Sx0 →
Sx0. If (DxΠx0(x)|x=x0 − I) is regular, the fixed point x0 of Πx0 is locally
unique.
The most popular way of computing periodic orbits involves fixing the

Poincaré-section in advance by prescribing the value of one component xi =
const of the solution, so that the Poincaré-section is parallel to some coordi-
nate-plane. The fixed point equation

Πx0(x)− x = 0,

which is an (n − 1, n − 1)-system, is then solved by means of a Newton
method. However, since the periodic solution is not known beforehand it is
not really clear which plane to choose as a Poincaré-section. So it could and
does happen that the periodic solution which has to be computed does not
intersect the a priori fixed Poincaré-section. In this case the Newton method
will not converge.
In [3] a different method for computing periodic orbits has been presented.

It is based on an adaptive Poincaré-section, which is approximately ortho-
gonal to the periodic orbit. A point x on the periodic solution together with
its period T are computed. They satisfy the underdetermined equation

F (x, T ) = ΦT (x)− x = 0, F : Rn ×R → Rn.

The Jacobian F ′(x, T ) of F (x, T ) is given by

F ′(x, T ) = [−I +DxΦT (x), f(ΦT (x)]. (1.2)
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The equation F (y) = 0, where now y = (x, T ), is solved by an underdeter-
mined Gauss-Newton-method:

Δyk = −F ′(yk)+F (yk),

yk+1 = yk +Δyk.

Here F ′(yk)+ denotes the Moore-Penrose pseudo-inverse of F ′(yk).
Remember that for A ∈ Mat(m,n), m ≤ n, rank A = m, N kernel of A,
x ∈ Rn, b ∈ Rm, x = A+b is defined by

Ax = b, x⊥N .

The kernel vector t of F ′(y) at the solution point y = (x, T ) is the tangent
(f(x), 0) to the trajectory (disregarding normalization). Since for the kernel
vectors tk = (tkx, t

k
T ) of F

′(yk) we have tk → t as k → ∞, the Gauss-Newton-
iterates xk+1 = xk + Δxk are in the adaptive Poincaré-section xk + 〈tkx〉⊥ ≈
x+ 〈f(x)〉⊥.
The Gauss-Newton-method converges to a solution if F ′(x, T ) is regular

in the solution point (x, T ), or equivalently, if (DzΠx(z)|z=x − I) is regular.
This condition does not depend on the computed point x on the periodic
orbit Cx(t), since for all x0 ∈ Cx(t) the matrix DzΠx0(z) |z=x0 has the same
eigenvalues. Furthermore, we have the following uniqueness theorem.

Theorem 1 Let x(t) be a T -periodic solution and let F ′(x0, T ) be regular on
some point x0 on the periodic solution. Then there is a neighborhood of the
periodic orbit Cx(t) where there is no other periodic solution with period near
T .

Proof. The proof (see [15]) is based on the Gronwall Lemma.

In order to include unstable periodic solutions we use the just described
algorithm in themultiple shooting context: we compute k points on a periodic
orbit by solving the underdetermined equation

F (x1, . . . , xk, T ) = 0, F : Rkn ×R → Rkn,

where 0 = s1 < . . . < sk+1 = 1 is a partition of the unit interval, Δsi =
si+1 − si for i = 1, . . . k, and

Fi(x1, . . . , xk, T ) =

{
ΦΔsiT (xi)− xi+1 for i = 1, . . . , k − 1,
ΦΔskT (xk)− x1 for i = k.

3



The linear systems which arise in the Gauss-Newton-method are of the form
Jy = b, where y = (x, T ) ∈ Rnk+1, x = (x1, . . . , xk), b = (b1, . . . , bk),

J = F ′(x, T ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G1 −I g1
G2 −I g2

. . .
. . .

...
Gk−1 −I gk−1

−I Gk gk

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Gi = DxΦΔsiT (xi) are the Wronskian matrices and

gi = DTFi(x, T ) = DTΦΔsiT (xi) = Δsif(ΦΔsiT (xi))

are the derivatives w.r.t. the period T .
Let J = [H, g], where H is an (nk, nk)-matrix, then we have

Jy = b ⇔ [H, g]

(
x

T

)
= b ⇔ Hx = b− gT,

so we can use the well-known Gaussian block elimination for H, to solve these
linear systems which yields the following algorithm:

a) Compute the condensed vectors

bc := C(b) = bk +Gkbk−1 + · · · +Gk · · ·G2b1,

gc := C(g) = gk +Gkgk−1 + · · ·+Gk · · ·G2g1,

and the condensed matrix [Ec, gc] mit Ec := −I +Gk · · ·G1.

b) Compute a solution of the condensed system [Ec, gc]
(
x1

T

)
= bc, e.g.(

x1

T

)
= [Ec, gc]

+ bc, using QR-decomposition.

c) Compute x via the explicit recursion

xi = Gi−1xi−1 − bi−1 + gi−1T for i = 2, . . . , k.

We have now obtained a solution y = J−b where J− is an outer inverse of J .
In order to use the Moore-Penrose-pseudo inverse of J we have to add one
more step:

d) Compute the tangent t = (tx, tT ) of J , where tx = (tx1, tx2, . . . , txk
).

Starting from a tangent of the condensed system
(
tx1
tT

)
[Ec, gc]

(
tx1

tT

)
= 0, ||(tx1, tT )|| = 1,
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we obtain a tangent t of the whole system by

ti = Gi−1ti−1 + gi−1tT for i = 2, . . . , k

and normalization.
In the end we project y → y − 〈y, t〉t.

An easy computation shows that in a solution point we have

[Ec, gc] = [−I +DxΦT (x1), f(ΦT (x1)], (1.3)

so the condensed matrix [Ec, gc] equals the Jacobian of the single shooting
approach (1.2) in the point x1 which is closely related to the derivative of
the Poincaré-map at x1. This relationship between Poincaré-map on the one
hand and the shooting equations on the other hand will play an important
role in the computation of bifurcations, see section 4.
The Jacobian J is regular iff [Ec, gc] is regular. In this case theorem 1

holds and the Gauss-Newton-method converges.
It is important to use adaptive methods for the computation of the flow

x → Φt(x) and the Wronskians DxΦt(x) which are needed for the evaluation
of F rsp. F ′; we use extrapolation codes [4]. We have realized a global inexact
Gauss-Newton method (see [6]), and in the local case, when we have good
guess values x and T at hand, we can choose between ordinary, simplified
and Quasi-Gauss-Newton-method, for details see [15]. The corresponding
program package PERIOD is written in C.

� Continuation of Periodic Orbits

In this section we show how the pathfollowing method for stationary solutions
described in [9] can be extended to the case of periodic solutions. We are
concerned with the parameter-dependent dynamical system

x′ = f(x, λ), f : Rn ×R → Rn, λ ∈ Λ = R. (2.4)

We first consider stationary solutions

f(y) = 0, f : Rn+1 → Rn, y = (x, λ). (2.5)

If ȳ = (x̄, λ̄) is a stationary solution and fy(y) is regular at ȳ then (2.5) locally
defines a solution branch. We apply the tangential continuation method
based on implicit reparametrization presented in [9] to compute this solution
branch. By writing y = (x, λ) we want to express that the parameter λ
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does not play any extraordinary role so that turning points can be treated
easily. The pathfollowing algorithm works as follows: if a solution ȳ is given
a new guess point y is computed by setting ŷ = ȳ + s t(ȳ) where t(y) is the
normalized kernel vector of fy(y) and s is a suitably chosen stepsize. Then
an underdetermined Gauss-Newton-method as in section 1 is used for the
iteration from the guess value ŷ back to the solution path. The stepsize
control is described in [9].
In the case of periodic solutions we want to compute fixed points of the

parameter dependent Poincaré-map Π : S ×R → S

Π(x, λ) = x ⇔ z(x, λ) := Π(x, λ)− x = 0. (2.6)

Since the Poincaré section S is (n − 1)-dimensional we have a parameter
dependent nonlinear equation

z(x, λ) = 0, z : Rn−1 ×R → Rn−1,

and we can in principle apply the above described continuation method to
this equation. The continuation tangent in a solution point (x, λ) is simply
the kernel vector tz′ of z

′(x, λ). But in the numerical realization of this idea
we want to use the adaptive Poincaré-section of the last paragraph. So we
again introduce the period as a new variable and solve (in the single shooting
approach) the underdetermined equation

F : Rn+2 → Rn, F (x, T, λ) = ΦT (x, λ)− x = 0 (2.7)

with a Gauss-Newton-procedure. The kernel N (F ′) of F ′ is this time two-
dimensional. In a solution point (x, λ) one kernel vector of F ′ is the tangent
to the periodic orbit

(f(x, λ), 0, 0) ∈ N (F ′(x, λ)).

We want to determine the continuation tangent tcont in such a way that
it corresponds to the theoretical tangent vector tz′. First the continuation
tangent has to be in the kernel of F ′, and second the continuation tangent
should lie in the Poincaré-section S. Since we choose the Poincaré-section
orthogonal to the orbit, this leads to the conditions

tcont ∈ N (F ′), tcont⊥ (f(x, λ), 0, 0).

If the Jacobian in the solution point (x, T, λ)

F ′(x, T, λ) = [E, g, p] := [DxΦT (x, λ)− I, f(x, λ), DλΦT (x, λ)] (2.8)
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is regular then the Gauss-Newton-procedure converges. This condition does
not depend on the computed point x on the periodic orbit Cx(t) (for a proof
see [15]) and if it is satisfied then we have the following uniqueness theorem
(analogously to Theorem 1):

Theorem 2 Let (x(t), T, λ) be a periodic solution of (2.4) and let F ′(x0, T, λ)
be regular on some point x0 on the periodic orbit Cx(t). Then the branch of
periodic solutions given by (2.6) is locally unique in the following sense: there
is an ε > 0 such that every periodic solution (x̃(t), T̃ , λ̃) with

dist(Cx̃(t), Cx(t)) < ε, |T − T̃ | < ε, |λ̃− λ| < ε

lies on the path of periodic solutions defined by (2.6) .

In the multiple shooting approach we solve the parameter dependent equa-
tion

F (x1, . . . , xk, T, λ) = 0, F : Rnk ×R×R → Rnk,

and nearly everything carries over from section 1, we just have one more
column in the Jacobian consisting of the parameter derivatives

Pi = DλΦΔsiT (xi, λ), i = 1, . . . , k,

and so, to solve the linear equations Jy = b, y = (x1, . . . , xk, T, λ), we have
to compute an additional condensed vector (point a) in the Gaussian block
elimination algorithm) namely

pc := C(P ) = Pk +GkPk−1 + · · ·+Gk · · ·G2P1,

the condensed matrix is of the form [Ec, gc, pc], the recursion (point c)) has
to be modified to

xi = Gi−1xi−1 − bi−1 + gi−1T + Pi−1λ for i = 2, . . . , k,

and in point d) we compute an orthonormal basis of the 2-dimensional kernel
of J and project the preliminary solutions y = J−b onto the orthogonal
complement of this kernel.
The corresponding program is PERCON (PERiodic CONtinuation).
As can be seen from the Gaussian block elimination, J has full rank, if the

condensed matrix [Ec, gc, pc] has full rank. A simple computation shows that
the matrix [Ec, gc, pc] equals the Jacobian of the single shooting approach
(2.8). Thus the Gauss-Newton-method of the multiple shooting approach
converges under the same conditions to a solution as the Gauss-Newton-
method of the single-shooting method, namely if the asssumptions of theorem
2 are satisfied.
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Remark. For periodic solutions of Hamiltonian systems

p′ = −Hq(p, q)
q′ = Hp(p, q)

(2.9)

the derivative of the Poincaré-map DxΠ has an eigenvalue 1 because of con-
servation of energy, so that the Jacobian F ′ of the shooting method of the
previous section is singular. More precisely, since H(x) = H(ΦT (x)) for all
(p, q) = x ∈ Rn, T ∈ R, we have

DxiH(x) =
n∑

j=1

DxjH(ΦT (x))Dxi(ΦT (x))j

=⇒ Hx(x) = (DxΦT (x))
THx(ΦT (x)).

Thus, in a periodic solution characterized by (x, T ) we get

(DxΦT (x)− I)THx(x) = 0.

Furthermore

DTH(ΦT (x)) = 0 =⇒ 〈Hx(ΦT (x)), f(ΦT (x))〉 = 0,

therefore F ′(x, T )THx(x) = 0 in a solution point (x, T ) of the single-shooting
equation F (x, T ) = 0, and F ′(x, T ) is singular. Periodic orbits of Hamilto-
nian systems can be computed by adding dissipation so that (2.9) becomes
a one-parameter family, see [5]:

p′ = −Hq(p, q) + λHp(p, q)

q′ = Hp(p, q) + λHq(p, q).

For a solution (p(t), q(t)) we have

d

dt
H(p(t), q(t)) = Hp(p(t), q(t))p

′(t) +Hq(p(t), q(t))q
′(t)

= λ(Hp(p(t), q(t))
2 +Hq(p(t), q(t))

2).

So if (p(t), q(t)) is non-stationary thenH(p(t), q(t)) is strictly monotone in t if
λ �= 0. Since for a periodic solution (p(t), q(t), T, λ) we have H(p(0), q(0)) =
H(p(T ), q(T )) it follows that λ = 0. The Jacobian F ′(x, T, λ)|λ=0 given by
(2.8) is no longer singular since in a solution point (x, T, 0)

〈Hx(x), DλΦT (x, λ)|λ=0〉 = DλH(ΦT (x, λ))|λ=0

=
∫ T

0
(Hp(Φt(x, 0))

2 +Hq(Φt(x, 0))
2)dt �= 0,

and thus F ′(x, T, 0)THx(x) = 〈Hx(x), DλΦT (x, 0)〉 �= 0. So by adding the
artificial parameter λ in the equations (2.9) and using PERCON we can
follow the branches of periodic orbits parametrized by energy which occur in
Hamiltonian systems.
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� Exploitation of Symmetry

In this section we show how to exploit spatial and spatio-temporal symmetries
of periodic solutions in the multiple shooting context.
Let G be a finite group and ϑ : G → O(n) an orthogonal, faithful represen-

tation of G, that is, ϑ is a homomorphism of G into the group of orthogonal
matrices O(n) and ϑ is injective. Let Γ = ϑ(G) and let f be Γ-equivariant:

f(γx) = γf(x) ∀ x ∈ Rn, γ ∈ Γ.

If x(t) is a solution of the dynamical system then also γ x(t) is a solution.
The solution γ x(t) is called conjugate to x(t).
We first consider stationary solutions x ∈ Rn with f(x) = 0. γ ∈ Γ is

called a symmetry of x if γx = x; the set of all symmetries of x (isotropy
group of x) is given by K = {x ∈ Γ | γx = x}. It can be seen easily that the
fixed point space of K

Fix(K) = {x ∈ Rn | γx = x ∀ γ ∈ K}

is invariant under f , thus we can restrict the nonlinear equation f(x) = 0
onto the fixed point space Fix(K) which has a lower dimension nred ≤ n, and
so we obtain a symmetry-reduced system fred : Rnred → Rnred which can be
computed symbolically (see Gatermann, Hohmann [7]).
The spatial symmetries K of periodic solutions x(t) are those group ele-

ments γ ∈ Γ which leave each point on the periodic orbit invariant:

K := Γx(t) = {γ ∈ Γ | γx(t) = x(t) ∀ t}.

Since the flow Φt is also Γ-equivariant the set of spatial symmetries K of a
periodic solution x(t) does not depend on the time t. In addition to spa-
tial symmetries there are also spatio-temporal symmetries which leave the
periodic orbit C := Cx(t) invariant as a whole but not pointwise. The spatio-
temporal symmetries are given by

H := {γ ∈ Γ | γC = C}.

Each h ∈ H corresponds to a phase shift Θ(h)T of the T -periodic solution
x(t):

h ∈ H ⇒ hx(t) = x(t +Θ(h)T ), where Θ(h) ∈ R/Z.

Thereby Θ : H → R/Z is a group homomorphism with the spatial symme-
tries K as kernel and

H/K ≡ Zl, l ∈ N,
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see [11]. The spatial symmetries of periodic solutions can be exploited in
the same way as in the case of stationary solutions, namely by restriction
onto the fixed point space Fix(K) of the spatial symmetries, i.e., by using a
symmetry reduced system fred : Fix(K) → Fix(K). The remaining spatio-
temporal symmetries are a finite cyclic group H = Zl and can be exploited
in the following way: let h ∈ H be that element in H that corresponds to
the smallest possible non-zero phase-shift T/l:

x(t+
T

l
) = hx(t) ∀ t. (3.10)

Then each point on the periodic orbit satisfies the underdetermined equation

F : Rn ×R → Rn, F (x, T ) = h−1ΦT
l
(x)− x = 0, (3.11)

which can be solved by a Gauss-Newton-method. Thereby it suffices to
compute the flow and the Wronskian matrix only up to time T

l
instead of

T , which is a remarkable reduction of the computational cost in the case of
high spatio-temporal symmetries.
The same idea was used in the Poincaré-map-context by Fiedler [5] in order

to classify symmetry-breaking bifurcations of periodic orbits, see also section
4.2.
In the multiple-shooting-approach we solve the underdetermined equation

F (x1, . . . , xk, T ) = 0, F : Rkn ×R → Rkn,

where 0 = s1 < . . . < sk+1 =
1
l
, Δsi = si+1 − si for i = 1, . . . k, and

Fi(x1, . . . , xk, T ) =

{
ΦΔsiT (xi)− xi+1 for i = 1, . . . , k − 1,
h−1ΦΔskT (xk)− x1 for i = k.

The extension to parameter-dependent systems is trivial.
Remark. In the case of reversible dynamical systems there is an R ∈

GL(n) with R2 = I and

f(Rx) = −Rf(x) ∀ x ∈ Rn.

If x(t) is a solution then also Rx(−t) is a solution. A solution orbit C is
called reversible if RC = C . A reversible periodic orbit (x(t), T ) satisfies
(after an appropriate time-shift)

x(0), x(T/2) ∈ Fix(R),

where Fix(R) = {z ∈ Rn | Rz = z}. Let dimFix(R) = d and let (after some
linear transformation) Fix(R) be spanned by the first d unit vectors e1, . . . ed.
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Then reversible periodic orbits can be computed in the single shooting con-
text by solving

F : Rd×R → Rn−d, F (z1, . . . zd, T ) =

⎛⎜⎜⎝
(ΦT/2(z1, . . . , zd, 0, . . . , 0))d+1

...
(ΦT/2(z1, . . . , zd, 0, . . . , 0))n

⎞⎟⎟⎠ = 0.

If p := 2d − n + 1 = 1, that is, n = 2d, then we have a path of reversible
periodic orbits which can be computed using PERCON.
The extension to the multiple shooting context is straightforward.

� Computation of Bifurcations

In this section we show how generic bifurcations of periodic orbits on a branch
of periodic solutions can be treated. This implies the detection and compu-
tation of bifurcation points and the computation of the start-off directions
for the solution branches. In the case of symmetry we only have to follow
non-conjugate branches. Moreover, we have to distinguish between two types
of symmetry-breaking bifurcations: there are bifurcations which lead to a su-
per group of the symmetry group of the original solution, which means, that
the bifurcating solutions possess more symmetry, and we have symmetry-
breaking bifurcations which lead to a subgroup of the symmetry group of the
original solution.
We extend the techniques described in [7] for the numerical computation of

symmetry-breaking bifurcations of stationary solutions to the case of periodic
solutions. In particular, the symmetry-monitoring functions which change
sign at the bifurcation point and are used for the detection of symmetry-
breaking bifurcations are related to those used in [7]. We start with generic
bifurcations without symmetry where the ODE is not assumed to be equi-
variant.

��� Generic Bifurcations Without Symmetry

First we consider turning-points of periodic orbits. Necessary for passing a
turning point is a change of sign of the λ-component tcontλ of the continuation
tangent tcont of the periodic solution. If a turning point has been detected,
it can be computed by Hermite interpolation exactly in the same way as in
the case of stationary solutions, see [9].
We now deal with the Hopf bifurcation and the period doubling bifurcation

which can be considered as symmetry-breaking bifurcations w.r.t. the group
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Figure 1: Hopf Bifurcation

S1 which operates on a T -periodic solution x(t) by

θ x(t) = x(t+ θ T ), θ ∈ S1 = R/Z.

Hopf Bifurcation

A Hopf bifurcation point is a stationary solution (x∗, λ∗), for which the Ja-
cobian f ′(x∗, λ∗) has exactly one pair of purely imaginary eigenvalues ±ωi
and no other eigenvalues on the imaginary axis. Let μ(λ)±ρ(λ)i be the path
of this pair of eigenvalues along the branch of stationary solutions such that
μ(λ∗) = 0 und ρ(λ∗) = ω. Then we furthermore demand the transversality
condition

∂μ

∂λ
(λ∗) �= 0

to hold. Under these assumptions a unique branch of periodic solutions is
emanating from the stationary solution with small amplitude and period T ≈
2π/ω. This surface of periodic solutions is tangential to the real eigenspace
Nω of ±ωi and generically agrees (after a smooth coordinate change) to
second order with the paraboloid λ− λ∗ = C(x2 + y2) [Hopf, 1942].
We can consider the Hopf point (x∗, λ∗) as an S1-invariant 2π/ω-periodic

solution

x∗(t) ≡ x∗ ∀ t =⇒ θ x∗(t) = x∗(t) ∀ t.

Then the Hopf bifurcation is an S1-symmetry breaking bifurcation.
If a pathfollowing algorithm for periodic solutions runs through a Hopf

point the continuation direction changes its sign and the same path of peri-
odic orbits is computed again. Therefore Hopf points which occur during the
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pathfollowing of periodic orbits should be detected so that the pathfollowing
routine can be stopped at the Hopf point.
Let y(ν) denote the ν-th computed solution point where y = (x, T, λ),

x = (x1, . . . , xk). If there is a Hopf point between y(ν−1) and y(ν), the vectors
f(xi) which are the infinitesimal generators of the S1-symmetry in the point
xi go through zero. Thus f(xi) is our symmetry monitoring function in this
case. If the angle between the vectors f(xi) of the (ν − 1)-th and the ν-th
computed solution point is greater than 90 degree, i.e., if

〈f(xν
i ), f(x

ν−1
i )〉

||f(xν
i )||||f(xν−1

i )|| < 0,

then a Hopf point between the (ν − 1)-th and the ν-th solution point can be
detected.
If a Hopf point along a path of periodic orbits is detected, it can be com-

puted via the extended system of Jepson [8] where mean values of the (ν−1)-
th and the ν-th solution point and their periods can be used as guess values
for the Hopf point and its imaginary eigenvalue ω = 2π/T .
If we are given a Hopf point together with its purely imaginary eigenvalue

iω, we can use as a start-off direction for the emanating periodic orbits
any vector t in the plane Nω. Then we get starting values for the periodic
solutions by setting

xstart = x∗ + s t, λstart = λ∗, Tstart = 2π/ω.

Thereby s > 0 is the initial stepsize. This method only works because we are
using a continuation method with implicit reparametrization. In the case of
fixed parametrization the method would compute the Hopf point again.

Period Doubling Bifurcation

A point (x∗, λ∗) characterizing a periodic solution with period T ∗ is a period
doubling bifurcation point if the Jacobian of the Poincaré-map DxΠ has a
single eigenvalue −1 in (x∗, λ∗) with eigenvector y0 and if this is the only
eigenvalue on the complex unit circle. Furthermore the path μ(λ) of eigen-
values on the solution branch of Π(x, λ) = x with μ(λ∗) = −1 has to satisfy
the transversality condition

∂μ

∂λ
(λ∗) �= 0. (4.12)

Under these assumptions (x∗, λ∗) is a pitchfork bifurcation point of the map
Z(x, λ) = Π(Π(x, λ), λ) − x = 0, see [10]. The vector t = (y0, 0) is the
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Figure 2: Detection of Period Halvings

tangent vector of the bifurcating branch in (x∗, λ∗). The branching solutions
have approximately twice the period of the original periodic solution. Z is
Z2-equivariant where the nonlinear Z2-action is given by the Poincaré-map
(x, λ) → (Π(x), λ). So a period doubling bifurcation is a Z2-symmetry-
breaking bifurcation of Z. If we consider the T -periodic solutions on the
original branch as T̃ -periodic, where T̃ := 2T , the original branch has tem-
poral Z2-symmetry

θx(t) = x(t+ θT̃ ) = x(t) for θ = 1/2,

and the branching solutions are not Z2-symmetric.
Period doublings can be detected by a change of sign of det(DxΦT (x, λ) +

I) which occurs due to the transversality condition (4.12). The matrix
DxΦT (x, λ) is computed in the single-shooting approach to obtain F ′(x, T )
(see equation 1.2) and also in the multiple shooting approach in the compu-
tation of the condensed matrix (see equation 1.3).
We will now consider transitions through period doubling bifurcations from

the branch of solutions with doubled period which we will call period halvings.
They can be detected as follows: for a solution point y = (x1, . . . , xk, T, λ)
we compute

u(x) := ΦT
2
(x1, λ)− x1.

One multiple-shooting-node is set to sj = 1/2 so that no additional initial
value problem has to be solved. If there is a period-halving-point between
two consecutively computed periodic solutions y(ν) and y(ν+1) the vector u
goes through zero. Therefore a period-halving point can be detected by the
following condition on the angles:

〈u(y(ν)), u(y(ν+1))〉
||u(y(ν))||||u(y(ν+1))|| < 0.
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If a period doubling point has been detected it can be computed by use of
linear interpolation and a Gauss-Newton-procedure to iterate back to the so-
lution path (very similar to the computation of turning points). Alternatively
also extended systems for x∗, T ∗, λ∗ and y0 could be used.
We now come to the computation of the start-off directions. The continua-

tion tangent for the T -periodic branch is just the usual continuation tangent.
For the computation of the start-off direction of the 2T -periodic solutions we
first consider the single shooting approach: we want the start-off direction to
be orthogonal to the T ∗-periodic orbit, so that it lies in the Poincaré-section.
In the Poincaré-section S ×Λ the tangent should be the vector (y0, 0) where
y0 is the eigenvector to the eigenvalue−1, see above. This can be achieved by
computing the normalized kernel vector t̃ of DxΦT (x, λ) + I and projecting
it onto the orthogonal complement of the tangent f(x∗) to the periodic orbit

tx = t̃− 〈t̃, f(x∗)〉
〈f(x∗), f(x∗)〉f(x

∗).

Then (tx, 0, 0) is the start-off direction for the 2T -periodic solutions. In phase
space the 2T -periodic solutions are approximately lying on a Moebius-band
in the middle of which is the original T -periodic solution. The start-off
direction is tangential to the Moebius-band and orthogonal to the original
solution.
The adaption to the multiple-shooting-approach is straight forward.

��� Symmetry�breaking Bifurcations

In this section we deal with equivariant Hopf bifurcation and generic sec-
ondary bifurcations of periodic orbits with Zm-symmetry. The right hand
side f of the ODE is again assumed to be Γ-equivariant under a finite group
Γ ⊂ O(n).

Equivariant Hopf Bifurcation

We are starting from a stationary solution (x∗, λ∗), for which the Jacobian
f ′(x∗, λ∗) has one pair ±ωi of Γ-simple eigenvalues and no other eigenvalues
on the imaginary axis (for a definition of a Γ-simple eigenvalue see [11]). As in
the case of the standard Hopf bifurcation we assume for the path ρ(λ)±μ(λ)i
of this pair of eigenvalues the transversality condition

∂μ

∂λ
(λ∗) �= 0.
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Furthermore we define the operation of Γ× S1 on a T -periodic solution x(t)
by

(γ, θ)x(t) = γ−1x(t+ θ T ) for (γ, θ) ∈ Γ× S1,

and the operation of Γ× S1 on the real eigenspace Nω of ±ωi by

(γ, θ)z = γ−1eθJT z, (γ, θ) ∈ Γ× S1, z ∈ Nω. (4.13)

Thereby J : Nω → Nω is the restriction of fx(x
∗, λ∗) on Nω and T = 2π/ω.

Theorem 3 (Equivariant Hopf Theorem) Let the above conditions be satis-
fied. If then for a subgroup Σ ⊂ Γ× S1 the fixed point space

NΣ
ω := {z ∈ Nω : (σ, φ)z = z ∀ (σ, φ) ∈ Σ}

satisfies the condition
dimNΣ

ω = 2, (4.14)

then there is a unique branch of small-amplitude periodic solutions with min-
imal periods T near 2π/ω and Σ as symmetry group.

For a proof see [11].
The equivariant Hopf theorem provides the spatial and spatio-temporal

symmetries Σ of the periodic orbits and the planes NΣ
ω from which the start-

off directions for the emanating periodic orbits can be chosen. Therefore we
can apply the numerical methods of the standard Hopf bifurcation to treat
also the equivariant Hopf bifurcation.

Bifurcations of Periodic Orbits with Zm-Symmetry

In this section we describe how the generic secondary bifurcations of periodic
orbits with Zm-symmetry, which have been classified by Fiedler [5], can be
treated numerically. We only deal with bifurcations of periodic orbits into
other periodic orbits (not torus bifurcations).
We consider Γ-equivariant ODE’s where Γ = ϑ(G) and G = Zm is a finite

cyclic group. We are starting from a periodic solution x(t) with period T ,
spatial symmetry K, spatio-temporal symmetry H such that H/K = Z l,
homomorphism Θ and h ∈ H satisfying Θ(h) = 1

l
. For x ∈ Cx(t) define the

Poincaré-section as usual by S = x+ 〈f(x)〉⊥.
To examine bifurcations of symmetric periodic orbits the reduced Poincaré-

map
Πred = h−1Π̂, Π̂ : S → hS

is used where Π̂ maps points of S into the points where the positive semi-
flow through x first hits hS. The fixed point equation Πred(x) = x is then
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analogous to equation (3.11) which is used for the numerical computation of
symmetric periodic orbits.
The relationship between Π and Πred is given by

Π = hlΠl
red.

Using this relationship one can reduce the considered bifurcations of periodic
orbits to bifurcations of the reduced Poincaré-map Πred which arise from an
eigenvalue ±1 of the Jacobian DxΠred.
It can be seen that the reduced Poincaré-map is K-equivariant. Therefore

we have to distinguish between bifurcations with and without breaking of
the spatial symmetry.
In the second case the symmetry group K is acting trivially on the eigen-

space to the eigenvalue 1 respectively −1, in the first case it is generically
acting as multiplication by −1 on the eigenspace of the critical eigenvalue
(since these two irreducible representations are the only absolutely irreducible
representations of cyclic groups and generically eigenspaces corresponding to
real eigenvalues are absolutely irreducible representation spaces, see [11]).
Generic bifurcations of Πred without breaking of spatial symmetry are turn-

ing points and period doublings (flips); generic bifurcations of Πred with
breaking of spatial symmetry are pitchfork bifurcations called flops (eigen-
value 1) and period doublings (eigenvalue −1) called flip-flops. These bifur-
cations of Πred lead to turning points or to pitchfork bifurcations respectively
period doubling bifurcations of Π depending on h and whether l is odd or
even, for details see [5].
As an example we consider the flip pitchfork bifurcation. By restriction

onto the fixed point space Fix(K) the spatial symmetry can be exploited so
that we can assume

K = {id}, H = Zl.

Let l be even. If then Πred undergoes a flip bifurcation which means that
DxΠred has an eigenvalue −1 we can use the relationship

Π = hlΠl
red = Πl

red since hl = id

to conclude that the derivative of the Poincaré-map Π has an eigenvalue 1.
The branching solution is a fixed point x̃ of

Π2
red(x̃) = x̃.

From this equation we get

Π(x̃) = (Π2
red)

l/2(x̃) = x̃,
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so the branching solutions have approximately the same period but their
symmetry H̃ = Zl/2 has been halved, h̃ = h2, Θ̃(h̃) = 2/l, and the Poincaré-
map Π undergoes a pitchfork bifurcation.
Since all these secondary bifurcations of periodic orbits with underlying

symmetry group Zm are generated by flips, flops or flip-flops of the reduced
Poincaré-map they can be treated numerically with the methods for the
period doubling bifurcation described in section 4.1, for details see [15].

� Examples

In this section we illustrate the described methods by three examples two
of which are the notorious test problems, whereas one is of real technical
interest in electronics. All computations were done in ANSI-C and on a SUN
Sparc Workstation IPX.

Example �� Brusselator with � Cells
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Figure 3: Pathfollowing of Σ-symmetric solutions

We consider four identical cells in which the same reaction takes place and
which are coupled by diffusion. The equations for the 4-Cell-Brusselator are
the following (j = 1, 3, 5, 7, xi := xi−8 for i > 8)

x′
j = A− (B + 1)xj + x2

jxj+1 + λ(−3xj + xj+2 + xj+4 + xj+6),

x′
j+1 = Bxj − x2

jxj+1 + 10λ(−3xj+1 + xj+3 + xj+5 + xj+7),

where A = 2.0, B = 5.9. The problem is invariant w.r.t. permutations of
the cells, thus the equations are S4-equivariant. We denote the elements of
Γ = S4 by γijkl, e.g.,

γ3124 =

⎛⎜⎜⎜⎝
0 0 I 0
I 0 0 0
0 I 0 0
0 0 0 I.

⎞⎟⎟⎟⎠ , I ∈ Mat(2, 2).
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Figure 4: 4-cell-Brusselator: Σ-symmetric solutions

From [1] we took the following equivariant Hopf point

(x0, λ0) = (2.0, 2.95, 2.0, 2.95, 2.0, 2.95, 2.0, 2.95, 0.02045).

The corresponding imaginary eigenvalue ωi has the value ω = 0.62058 and
belongs to an absolutely irreducible 3-dimensional representation. The real
eigenspace Nω of ωi is of the form Nω = W1 ⊕W2 with

W1 = {(y1, 0, y2, 0, y3, 0,−y1 − y2 − y3, 0) | y1, y2, y3 ∈ R},
W2 = {(0, y1, 0, y2, 0, y3, 0,−y1 − y2 − y3) | y1, y2, y3 ∈ R}.

Using the equivariant Hopf Theorem we can now compute the symmetries
and initial planes of the emanating periodic solutions. As an example we
consider the symmetry group

Σ = {id, (γ3142, 3
4
), (γ4321,

1

2
), (γ2413,

1

4
)},

this means
H = Z4, K = {id}.

The result is shown in figure 3 and 4 (for computational details, e.g., the
number of f-evaluations which was needed etc. see [15]).
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Figure 5: Flip bifurcations in the
Lorenz equation
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Figure 6: Symmetric solution of
the Lorenz equation
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Figure 7: Unsymmetric solutions
of the Lorenz equation
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Figure 8: Lorenz equation, solu-
tion with doubled period

Example �� Lorenz Equation

The Lorenz equations are given by

x′
1 = −σx1 + σx2,

x′
2 = −x1x3 + λx1 − x2

x′
3 = x1x2 − bx3.

The problem is Z2-equivariant where the Z2-action is given by (x1, x2, x3) →
(−x1,−x2, x3). We want to compute the bifurcation diagram for the param-
eters σ = 10, b = 8/3 and λ between 147 and 163. We are starting from the
symmetric solution

xstart = (−8.4168, 32.22, 145.26), Tstart = 1.2041, λstart = 147.

According to [14] there is a flip-pitchfork-bifurcation at λ ≈ 154 and a flip-
doubling-cascade at λ ≈ 147. The symmetric solution is shown in figure 6, the
unsymmetric periodic solution which bifurcates at λ = 154.435 is shown in
figure 7. The solution with twice the period which bifurcates at λ = 148.43
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is shown in figure 8. As can be seen from figure 5 where the bifurcation
diagram is shown also a solution with fourth the period was computed. By
shifting the left parameter boundary downwards we could compute periodic
solutions up to the 32-nd of the original period.

Example �� Electronic Ring Oscillator

In this section we are concerned with the simulation of electrical circuits
consisting of nMOSFET-inverters (c.f. Kampowsky, Rentrop, Schmidt [12]).
Such a circuit can be modelled in the following way: let Ui be the voltage at
the i-th node, then using Kirchhoff’s law we get the differential equations

f , f̃ : Rn → Rn, U ′ = f(U), f(U) = −C−1f̃(U)

for the vector U = (U1, . . . , Un) of the voltages. Thereby C is the capacity
matrix

C =

⎛⎜⎜⎜⎜⎝
2Cp + C −Cp −Cp

−Cp 2Cp + C −Cp

. . .
. . .

−Cp −Cp 2Cp + C

⎞⎟⎟⎟⎟⎠ ,

and the function f is given by

f̃(U) =

⎛⎜⎜⎜⎜⎝
1/R(U1 − Uop) + g(Un, U1, U0)
1/R(U2 − Uop) + g(U1, U2, U0)

...
1/R(Un − Uop) + g(Un−1, Un, U0)

⎞⎟⎟⎟⎟⎠ ,

where

g(UG, UD, US) = K max{(UG − US − UT ), 0}2
−Kmax{(UG − UD − UT ), 0}2.

K, UT , U0, Uop, R and the capacities C and Cp are technical parameters,
which have (after appropriate scaling) the values K = 0.2, UT = 1, U0 = 0,
Uop = 5, R = 5, C = 0.21, Cp = 5 · 10−3. From [12] we got the initial values
of a periodic solution, namely U1 = 4.2087, U2 = 0.917, U3 = 2.6534, U4 =
4.2762, U5 = 0.6928, T = 6.298. This periodic solution is shown in figure
10. Furthermore there is a stationary solution given by Ui(t) ≡ 2.56155,
i = 1, . . . , 5. Our aim is now the numerical simulation of large electrical
circuits, i.e., the computation of periodic orbits for large n.
Obviously the function f : Rn → Rn is Zn-equivariant where the gen-

erating element g of Zn = {id, g, . . . gn−1} is acting on Rn by shifting the
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Figure 9: Circuit of ring oscillator

components to the right (x1, . . . , xn) → (x2, . . . , xn, x1). This representation
ϑ of Zn is called the regular representation of Zn, see [13]. Using PERIOD
we checked that the above periodic solution (with n = 5) has spatio-temporal
symmetryH = Z5. Since the stationary solution is Zn-invariant the periodic
solution might have branched from the stationary solution via an equivari-
ant Hopf bifurcation. So we introduce Uop as a continuation parameter and
examine the stationary Zn-invariant solutions U = (u, . . . , u) ∈ Rn, u ∈ R,
which are given by the quadratic equation

1/R(u − Uop) + g(u, u, U0) = 0

⇐⇒ 1/R(u − Uop) +K(max(u− UT , 0))
2 = 0.

In U = (u, . . . , u) the Jacobian fU(U) is Zn-symmetric:

γ fU (U) = fU (U) γ ∀ γ ∈ Γ = ϑ(Zn). (5.15)

From elementary representation theory it is known that in a regular repre-
sentation each irreducible representation ϑi is contained ni-times, where ni is
the dimension of the representation ϑi (see [13]). Finite cyclic groups Zn only
have one-dimensional irreducible representations (in complex vector spaces)
which are defined by

ϑj(g) = e
2πij
n , j = 0, . . . n− 1 (5.16)

(see [13]). Let Wj denote the irreducible subspace of Rn belonging to ϑj.
Then Wj , j = 0, . . . , n− 1, is spanned by the vector

vj = (1, e
2πij
n , e

2πi2j
n , . . . , e

2πi(n−1)j
n ).
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Figure 10: Periodic solution for 5 inverters

Using (5.15) we conclude that the Jacobian fU (U) can be diagonalised.
Thereby vj is an eigenvector to the eigenvalue

λj =
1/R + 2K max(u− UT , 0)e

2πi(n−1)j
n

C + (2 − 2 cos 2πj
n
)Cp

, (5.17)

as can be computed easily. Setting �(λj) = 0 we get simple expressions
for the stationary solution u = u(j) and the corresponding parameter U (j)

op for
which an equivariant Hopf bifurcation can occur, and also for the frequency ωj

of the bifurcating periodic solutions. Using the equivariant Hopf theorem we
conclude that every bifurcating periodic solution has the symmetry H = Zn.
But we also have to determine the homomorphism Θ. For this we have to
know the operation of Γ × S1 auf Nω , which is given by equation (4.13)
from the equivariant Hopf theorem. For simplicity we only consider the one-
dimensional complex eigenspace Wj = 〈vj〉. Γ × S1 operates on Wj in the
following way

(γ, θ)vj = ϑj(γ)
−1eλjTθvj = ϑj(γ)

−1e2πiθvj, (5.18)

where γ ∈ Γ, θ ∈ S1 ≡ R/Z. We can characterize Θ by Θ(g). It is
(g,Θ(g))vj = vj, thus from (5.18) and (5.16) we get

Θ(g) = j/n.

Let r be the g.c.d. of n and j, nred := n/r. Then K is generated by gnred and
the fixed point space Fix(K) contains all vectors in Rn which consist of r
equal sections of length nred. Therefore nred is the dimension of the reduced
system.
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Table I: Amount of work for the computation of the circuits depending on n

with symmetry without symmetry

flow Φt(x) O(n) C n
Wronskian matrix DxΦt(x) O(n) C n2

linear algebra O(n) O(n3)

After restriction onto the fixed point space Fix(K) = Rnred we obtain
H = Znred

, K = {id}. Let g ≡ gK be the generating element of Znred
,

then g is again acting on Rnred by shifting the components to the right. The
representation ϑjred with jred := j/r is the irreducible representation of Znred

on Rnred which corresponds to ϑj. Thus

Ered = 〈�(vjred),�(vjred)〉 ⊂ Rnred

is the initial plane for the periodic solutions in the reduced coordinates.
Finally we have to determine the element h ∈ H with the smallest phase
shift Θ(h). Let h = gk, where k is a natural number between 1 and nred − 1.
Then h is given by the equation Θ(h) = 1/nred, i.e.,

ϑjred(h)
−1e2πi/nred = 1 ⇔ jred k ≡ 1 (mod nred).

By the just described method we can compute initial values for periodic solu-
tions for arbitrary n, and by exploiting symmetry we can reduce the amount
of work effectively: if the considered periodic solution has large spatial sym-
metry then the ODE is reduced to a system with small dimension nred. In
this case the amount of work does not depend on the dimension n. For ex-
ample, in the case n = 1000, there is a periodic solution with K = Z200,
nred = 5, which corresponds to the above computed solution with n = 5.
In the worst case the periodic solution does not have any spatial symme-

try, but only spatio-temporal symmetry. In this case only the integration
interval can be reduced by exploitation of symmetry. Let C be the number
of integration steps for the full integration interval [0, T ]. If the symmetry is
not exploited, C n multiplications are needed for the computation of the flow;
exploiting the symmetry we can reduce the number of integration steps from
C to C/n, since the integration interval is only [0, T/n]. Since the derivatives
fx(x) have sparse-structure (they contain only O(n) non-zero components),
C n2 multiplications are needed for the computation of the Wronskian matri-
ces if the symmetry is not exploited; by exploitation of symmetry the amount
of work reduces to O(n). For the solution of the linear equations which arise
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in the Gauss-Newton method O(n3) multiplications are needed if the sym-
metry is not exploited. If the symmetry is exploited then for large n only
few steps of integration are necessary for the computation of the Wronskian
matrices, e.g., in the case n = 100 the integration interval has the order
of 10−2 and only one integration step is needed. Therefore the Wronskian
matrices are sparse, and the amount of work for the linear algebra reduces
to O(n). Altogether we obtain a remarkable reduction of the computational
cost by exploitation of symmetry, cf. table I.
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