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Abstract

We derive a-priori estimates on the length of the primal-dual path that
results from a Moreau-Yosida approximation of the feasible set for state con-
strained optimal control problems. These bounds depend on the regularity of
the state and the dimension of the problem. Comparison with numerical re-
sults indicates that these bounds are sharp and are attained for the case of a
single active point.
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1 Introduction

In recent years, path-following methods based on the Moreau-Yosida (or quadratic
penalty) regularization of state constrained problems have received considerable at-
tention. While general results on the convergence of this method can be derived
under very mild assumptions, deriving estimates on the length of corresponding ho-
motopy path, the “primal-dual path”, and its asymptotic behavior is more delicate.
In particular, numerical experience shows that this asymptotic behavior varies from
problem to problem.

The purpose of this note is twofold. First, we present a-priori error estimates on
the order of convergence of the primal-dual path that depend on the dimensionality
of the problem and the smoothness of the solution. In comparison to the estimates
that were derived in [9] we obtain an improvement in the rate, compared to [3] our
results are based on a considerably weaker set of assumptions.

Second, we try to develop an understanding on the principles that govern the
rate of convergence of the primal dual path. This will be accomplished by compar-
ison of numerical and theoretical results. It will turn out that the topology of the
active set plays a decisive role for the rate of convergence. For the “worst case”,
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namely the case that the active set is a single touch point, our theoretical estimates
coincide with the numerical observations.

To render the discussion concrete, we consider the primal-dual path-following
method for a state constrained model problem in optimal control. The techniques
presented here are, however, applicable in a much broader context. The main idea
is to replace the problem:

min
y∈H2(Ω),u∈L2(Ω)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to − ∆y − u = 0 in Ω

y = 0 in ∂Ω

y ≤ ψ in Ω

(1)

(here Ω is a smoothly bounded domain in R
d for d = 1, 2, 3, yd ∈ L2(Ω), and ψ is a

smooth, strictly positive function on Ω), by a family of problems

min
y∈H2(Ω),u∈L2(Ω)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) +
γ

2
‖max(y − ψ, 0)‖2

L2(Ω)

subject to − ∆y − u = 0 in Ω

y = 0 in ∂Ω

(2)

and consider a sequence of solutions xγ := (yγ , uγ) of (2). It has been shown in [4]
that this sequence converges to the original solution x∗ := (y∗, u∗) of (1) as γ tends
to infinity.

Practical algorithms use a semi-smooth Newton method to solve discretizations
of the subproblems (2) approximately or exactly. For this purpose the first order
necessary conditions are derived for (2) which assert existence of an adjoint state
pγ ∈ H2(Ω) such that

yγ − yd + γmax(yγ − ψ, 0) − ∆pγ = 0 in Ω

pγ = 0 in ∂Ω
(3)

αuγ − pγ = 0 in Ω (4)

.
−∆yγ − uγ = 0 in Ω

yγ = 0 in ∂Ω.
(5)

This can be compared with the first order necessary conditions for the original
problem, which state existence of a measure valued Lagrangian multiplier m ∈
M(Ω) and an adjoint state p∗ ∈W 1,q′(Ω) (q′ < d/(d − 1)), such that

y∗ − yd +m− ∆p∗ = 0 in Ω

p∗ = 0 in ∂Ω

−∆y∗ − u∗ = 0 in Ω

y∗ = 0 in ∂Ω

αu∗ − p∗ = 0 in Ω

m ≥ 0, y∗ ≤ ψ, 〈m, y∗ − ψ〉
M(Ω)×C(Ω) = 0 in Ω.
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We observe that the function γmax(yγ −ψ, 0) plays the role of m in the regularized
setting.

Elimination of uγ from (3)–(5) yields the system

F (x; γ) :=















y − yd + γmax(y − ψ, 0) − ∆p = 0 in Ω
p = 0 in ∂Ω

−∆y − α−1p = 0 in Ω
y = 0 in ∂Ω,

(6)

which can be tackled by a semi-smooth Newton method as shown in [4].

2 Analysis of the Length of the Primal-Dual Path

In constrained optimization and in particular in state constrained optimal control
(c.f. e.g. [1]) the existence of a strictly feasible point (a Slater point) is a standard
assumption for the existence of Lagrange multipliers. In state constrained optimal
control this assumption is used to show that the corresponding Lagrange multipliers
are positive measures. We will assume existence of a Slater point throughout the
paper:

Assumption 2.1. Assume that there is a constant e > 0, such that

ψ − y̆ > e on Ω

for some pair (y̆, ŭ) that satisfies the state equation.

Existence of a strictly feasible point and smoothness of the state variable y will
allow us to bound the length of the primal-dual path by a power of γ−1, which is
clearly a stronger result that mere convergence of the primal-dual path for γ → ∞.

2.1 A-priori bounds for the Constraint Violation in L
1

In the following, denote by y+
γ the function max(y−ψ, 0). Our first aim is to show

that γ
∥

∥y+
γ

∥

∥

L1 is bounded uniformly for γ → ∞. The following technique is well
established by now, and used in various contexts (cf. e.g. [2, 8, 5]).

Lemma 2.2. The expression γ
∥

∥y+
γ

∥

∥

L1 is uniformly bounded for γ → ∞.

Proof. Let S be the solution operator of the PDE, i.e., the control to state map-
ping. We test (3) and (4) with a feasible direction (Sv, v) from the optimal control
problem, and add them (taking into account that 〈−∆pγ , Sv〉 = 〈pγ , v〉) to obtain

〈uγ , v〉 + 〈yγ − yd, Sv〉 + γ〈y+
γ , Sv〉 = 0 ∀v ∈ L2(Ω).

Inserting v := ŭ, Sŭ = y̆ we obtain

α〈uγ , ŭ〉 + 〈yγ − yd, y̆〉 − γ〈y+
γ , y̆〉 = 0.
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Since uγ , yγ , ŭ, y̆, yd are bounded in L2 independent of γ we conclude

γ〈y+
γ , y̆〉 = γ

∫

Ω
y̆y+

γ dt ≤ c

and thus by non-negativity of y+
γ and positivity of y̆:

γ
∥

∥y+
γ

∥

∥

L1 ≤
γ〈y+

γ , y̆〉
min{y̆} ≤ c

e
.

Let us discuss, which exponents s are to be expected for estimates of the form
γs

∥

∥y+
γ

∥

∥

Lq ≤ c in generic situations. If s ≥ 1, then we conclude that

γ
∥

∥y+
γ

∥

∥

Lq ≤ c

hence, γy+
γ is either bounded in Lq or converges to 0 in Lq. If q > 1, one can

conclude that a Lagrangian multiplier for the original problem exists in Lq:

Proposition 2.3. If
∥

∥y+
γ

∥

∥

Lq ≤ cγ−1

for some 1 < q <∞, then there is a Lagrangian multiplier for the state constraints

of problem (1) which is contained in Lq(Ω).

Proof. Since γ
∥

∥y+
γ

∥

∥

Lq ≤ c, the function γy+
γ has a weak accumulation point m ∈

Lq(Ω), which is positive due to weak closedness of the positive cone in Lq. Moreover,

〈m, y∗〉 = lim
γ→∞

〈γy+
γ , y∗〉 = 0

by strong convergence of yγ → y∗ ≤ ψ. Then, by compactness, pγ , the solution of
(3), converges strongly in L2 to some p∗, so that, since uγ → u∗ in L2(Ω), also (4) is
fulfilled in the limit. Hence, m is Lagrangian multiplier for the state constraints.

Generically, however, one observes that these multipliers are only measures. So
the case s ≥ 1 for p > 1 will only appear in cases of exceptionally regular Lagrangian
multipliers (or completely inactive state constraints), and thus, we generically ex-
pect s < 1 for p > 1. Consequently, Lemma 2.2 is a result as good, as we can
expect.

2.2 Estimates, depending on the Constraint Violation in L
∞

We approach our aim via the value functional

V (γ) := Jγ(xγ) = J(xγ) +
γ

2

∥

∥y+
γ

∥

∥

2
.

It was shown in [4] that limγ→∞ V (γ) = J(x∗). Here we show that the rate of
convergence depends on ‖y+

γ ‖∞.
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Theorem 2.4. We have the following estimate for the derivative of the value func-

tional:

0 ≤ d

dγ
V (γ) ≤ c

γ

∥

∥y+
γ

∥

∥

L∞ . (7)

If
∥

∥y+
γ

∥

∥

L∞ ≤ cγ−s, then also

J(x∗) − V (γ) ≤ cγ−s (8)

and √
α ‖u∗ − uγ‖U ≤ cγ−s/2. (9)

Proof. In [4, Proposition 4.1] differentiability of V was shown and the expression

d

dγ
V (γ) =

1

2

∥

∥y+
γ

∥

∥

2

L2

was derived. Since V is monotonically increasing, and by the estimate ‖v‖2
L2 ≤

‖v‖L1 ‖v‖L∞ , it follows

0 ≤ d

dγ
V (γ) ≤

∥

∥y+
γ

∥

∥

L1

∥

∥y+
γ

∥

∥

L∞

By Lemma 2.2 we know that
∥

∥y+
γ

∥

∥

L1 ≤ c

γ
,

and (7) follows. If
∥

∥y+
γ

∥

∥

L∞ ≤ cγ−s, then

0 ≤ d

dγ
V (γ) ≤ cγ−1−s

Let now γ1 > γ2 be given. Then, by the fundamental theorem of calculus (cf. e.g.
[7, Thm. 25.18])

V (γ1) − V (γ2) =

∫ γ1

γ2

d

dγ
V (γ) dγ ≤

∫ γ1

γ2

cγ−1−s dγ = c(γ−s
2 − γ−s

1 ).

Hence, since limγ→∞ V (γ) = J(x∗),

J(x∗) − V (γ2) = lim
γ1→∞

V (γ1) − V (γ2) ≤ cγ−s
2 ,

which yields (8). Finally, (9) follows straightforwardly from the uniform convexity
of Jγ with respect to u and (8):

α

2
‖u∗ − uγ‖2

L2 ≤ Jγ(x∗) + Jγ(xγ) − 2Jγ

(

1

2
x∗ +

1

2
xγ

)

≤ Jγ(x∗) + Jγ(xγ) − 2Jγ(xγ) = Jγ(x∗) − Jγ(xγ)

= J(x∗) − V (γ) ≤ cγ−s.
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L
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Figure 1: Geometrical idea of our considerations.

2.3 A Worst Case Estimate for the Constraint Violation in L
∞

The bottonline of the previous section is that we have to find an estimate for ‖y+
γ ‖∞

as sharp as possible. This can be achieved by exploiting the smoothness of y.
The essence of our technique is a geometric idea, which we will explain for

illustration at a simple example (cf. Figure 1). Let f(t) = a(−t2 + ε2) be a concave
parabola, and f+(t) := max(f(t), 0) its positive part. Then f(t) ≥ 0 for t ∈ [−ε,+ε]
with a maximum ‖f+‖

∞
= f(0) = aε2, and ‖f+‖L1 =

∫ ε
−ε f(t) dx = a4/3ε3. Thus,

we have

∥

∥f+
∥

∥

∞
= aε2 = a1/3(3/4)2/3(a4/3ε3)2/3 ≤ c ‖f‖1/3

C2

∥

∥f+
∥

∥

2/3

L1 .

Hence, from the boundedness of the second derivatives (by 2a) one can conclude a
relation between the L1 norm and the L∞ norm of a function with zero boundary
values. The following proposition generalizes this observation.

To this end, we introduce following notation: let m ∈ N0. For m < β ≤ m+ 1
let Cβ(Ω) the subspace of Cm(Ω) of those functions which have Hölder continuous
derivatives of order m. These spaces are equipped with the usual norms:

‖v‖Cβ := ‖v‖Cm + ‖v(m)‖Cβ−m .

In this setting we can show the following interpolation type estimate:

Proposition 2.5. Let Ω ⊂ R
d be bounded and open, 0 ≤ y ∈ Cβ(Ω), y ∈ Lq(Ω),

1 ≤ q <∞, 0 < β ≤ 2. Moreover, assume that y = 0 on ∂Ω. Then

‖y‖L∞ ≤ c ‖y‖1−Θ
Cβ ‖y‖Θ

Lq (10)

with Θ = β
β+q−1d

. The constant is independent of Ω.

Proof. Assume without loss of generality that 0 ∈ Ω and y(0) = ‖y‖L∞ . Denote by
Br(0) the ball of radius r and center 0.
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Since y ∈ C1 for β > 1, and y necessarily obtains a maximum at 0, we conclude
∇y(0) = 0 for β ≥ 1. By the Hölder-continuity of y (and possibly of ∇y for β > 1)
we infer that y(t) > y(0)− ‖y‖Cβ rβ for all t ∈ Br(0). In particular, y(t) is positive
for t ∈ B(0, R) with

R =

(

y(0)

‖y‖Cβ

)1/β

=

(‖y‖L∞

‖y‖Cβ

)1/β

.

By the assumption y = 0 on ∂Ω it follows that BR(0) ⊂ Ω. Hence, we can compute

‖y‖q
Lq =

∫

Ω
|y(t)|q dt ≥ c

∫

[0,R]

∣

∣

∣
y(0) − ‖y‖Cβ r

β
∣

∣

∣

q
rd−1 dr (11)

= c ‖y‖q
Cβ

∫

[0,R]

(

y(0)

‖y‖Cβ

− rβ

)q

rd−1 dr

= c ‖y‖q
Cβ

∫

[0,R]

(

Rβ − rβ
)q
rd−1 dr

≥ c ‖y‖q
Cβ R

βq+d = c ‖y‖q−βq+d
β

Cβ ‖y‖
βq+d

β

L∞ .

Solving this estimate for ‖y‖L∞ , we conclude

‖y‖L∞ ≤ c ‖y‖
βq

βq+d

Lq ‖y‖1− βq
βq+d

Cβ .

Observe that (10) is only true for β ≤ 2, which means that we can only use
smoothness up to order 2. This corresponds to the fact that maximizers yield
vanishing derivatives of first, but not of higher order.

A similar technique has been used in the context of interior point methods to
show positive distance of the central path to the bounds [8]. Also, in [6, Lemma
4.7] similar techniques seem to be used, at least for the case β ≤ 1 for the virtual
control approach.

Corollary 2.6. If yγ is uniformly bounded in Cβ(Ω) for γ → ∞ and some 0 < β ≤
2, we have the following estimate on the constraint violation:

‖y+
γ ‖∞ ≤ cγ−s, where s =

β

β + d
. (12)

In particular, we have for every ε > 0:

‖y+
γ ‖∞ ≤







cγ−2/3 : d = 1

cγ−1/2+ε : d = 2

cγ−1/4+ε : d = 3.

(13)
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Proof. The result (12) follows readily from Lemma 2.2 and Proposition 2.5.
To derive (13), we have to invoke standard regularity results for equations with

right hand side measures. Let q′ = d/(d − 1) for d > 1 and q′ arbitrarily large
otherwise. Then, since γ ‖yγ+‖ is uniformly bounded in L1(Ω), it follows that uγ is
uniformly bounded in W 1,q′(Ω), implying that yγ is uniformly bounded in W 3,q′(Ω).
It follows by the Sobolev embedding theorems that yγ is uniformly bounded in Cβ

for β = 3−ε, 2−ε, 1−ε in the cases d = 1, 2, 3, respectively, and for every ε > 0.

In our numerical experiments below, we will see that our technique yields sharp
estimates, if the geometric situation (an elliptic paraboloid) modelled by the proof
actually occurs. This is the case if the active set is a single point. In more regular
situations, however, higher values of s are observed.

Remark 2.7. Under the assumption that yγ is in C2, uniformly, we get the heuristic
bound O(γ−2/5) for the constraint violation in the case d = 3.

Finally, we give a generic upper bound for s:

Proposition 2.8. If s ≥ 1, then problem (1) has a Lagrangian multiplier in Lq(Ω)
for each q <∞.

Proof. This is a direct consequence of Proposition 2.3.

2.4 The Length of the Primal-Dual Path

Combination of our estimates finally yields the following convergence estimate:

Theorem 2.9. If yγ is uniformly bounded in Cβ(Ω) for γ → ∞ and 0 < β ≤ 2, we

have the following convergence estimate for the primal dual path:

√
α ‖u∗ − uγ‖U ≤ cγ

−
β

2(β+d) . (14)

In particular, we have for every ε > 0:

√
α ‖u∗ − uγ‖U ≤







cγ−1/3 : d = 1

cγ−1/4+ε : d = 2

cγ−1/8+ε : d = 3.

(15)

Proof. The result (14) follows from Theorem 2.4 and corollary 2.6. In the same
way, (15) follows from (13).
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s for active interval
s for single active point
s=3/4
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Figure 2: Experimental results on the exponent s of the relation
∥

∥y+
γ

∥

∥

L∞ = O(γ−s)
in a one-dimensional setting.

3 Comparison with Experimental Results

We conclude our paper with numerical experiments in 1d and 2d, which illustrate
the close relationship between our theoretical estimates and the convergence in
practice. However, they also indicate that, under additional geometric assumptions,
the estimates may be refined.

To measure the exponent s we perform a numerical path-following method for
the system (6), implemented in Matlab. We use a prescribed sequence of parameters
γj . In our test problem we choose a positive, constant desired state yd = 10,
a regularization parameter α = 1, and obtain different types of active sets by
varying the spatially constant upper bounds ψ. Our discretization of y and p is
done simply by classical finite differences, i.e, the 3-point and the 5-point star in
the one-dimensional and the two-dimensional setting, respectively. We compute an
estimate for s by the following formula:

sj :=
ln(‖y+

γj
‖∞) − ln(‖y+

γj+1
‖∞)

ln γj+1 − ln γj
.

Observe that this formula is quite sensitive to perturbations of y, which explains in
part the oscillations, seen in the plots.

Experimental results in 1d. In the one-dimensional case our computational
domain is the unit interval, discretized uniformly by 10000 nodes. In our first
setting (with ψ ≡ 0.06), the active set consists of a single point, and the optimal
state y∗ has a parabolic shape, i.e. a second derivative, which is bounded away from
zero. Here, according to Figure 2, s ≈ 2/3 behaves as predicted by Corollary 2.6.

In our second setting (with ψ ≡ 0.01), the active set is proper interval. Here
we observe experimentally s ≈ 3/4, which is a higher rate than predicted by by
Corollary 2.6. However, this rate can be explained by the following heuristic model.

9



−2

−1

0
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2

3

4

5

x 10
−6

||f+||∞

||f+||
L

1

Figure 3: Geometric situation for yγ near an active interval. Left: observed in
numerical experiments for γ = 107, 108, and 109. Right: idealized model.

Since y∗ is constant on the active interval y
(m)
∗ = 0 for all m ∈ N0 there.

Consider on [0,∞[ the functions f(t) = a(−t3+εt2) and f+ = max(f, 0). Obviously,
f (m)(0) = 0 for m = 1, 2. Clearly, f is positive on [0, ε] and has a maximum at t =
2/3ε with f(2/3ε) = 10/27aε3 , i.e. ‖f+‖

∞
= caε3. Further, ‖f+‖L1 =

∫ ε
0 f(t) dt =

aε4/12. Hence, similarly as above, we may conclude that (using 6a = ‖f‖C3)

∥

∥f+
∥

∥

∞
≤ c ‖f‖1/4

C3

∥

∥f+
∥

∥

3/4

L1 .

These considerations cannot easily be carried over to y+
γ rigorously, since y′γ = 0

need not hold on the active set of y∗, as assumed. However, as illustrated by Figure 3
the numerical experiments indicate that practically this situation occurs.

−2

0

2

4

6

8

10

12
x 10

−4

Figure 4: Transition from single maximum to double maximum of yγ for γ =
7.5 · 10−5, 5 · 10−5, 2.5 · 10−5, and 10−5.

Another interesting aspect is the high value of s in the range γ ∈ [104, 105]. A
close look at the corresponding intermediate solutions shows that for these values yγ

has a very flat maximum, which explains this behavior. For larger values of γ this
single maximum splits into two maxima, which can be nicely observed in Figure 4.

Experimental results in 2d. In the two dimensional case we use the unit square
as computational domain and a uniform grid of 512 × 512 nodes. Compared to the
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1d case, the geometric situation for d = 2 (and even more for d = 3) is much
more complex, but still our analysis and numerical experiments suggest the con-
jecture that the rate of convergence of the primal-dual path will depend largely on
the geometry of the active set, or equivalently on the structure of the Lagrangian
multipliers.

If the active set is a single point (for ψ ≡ 0.015), we observe in Figure 5 that our
estimates in Corollary 2.6 coincide with the numerical rate of convergence, namely
s ≈ 0.5. We attribute the oscillatory behavior of s to grid effects, because for large
γ we have y+

γ > 0 only on a few nodes of the grid.
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s for large active set
s for single active point
s=3/4
s=1/2

Figure 5: Experimental results on the exponent s of the relation
∥

∥y+
γ

∥

∥

L∞ = O(γ−s)
in a two-dimensional setting.

However, if the active set is a subset of Ω with non-empty interior (setting
ψ ≡ 0.001), the radial integral estimate (11), including the factor rd−1 will lead to
an over-estimation of ‖y+

γ ‖∞. If the boundary of the active set is e.g. a submanifold

of dimension d∂A < d, then one might rather expect a factor rd−1−d∂A in (11), since
y+

γ then tends to be curved with respect to directions orthogonal to this submanifold.
In this case one would expect results of the form

‖y+
γ ‖∞ ≤ cγ−s, where s =

β

β + (d− d∂A)
. (16)

In this light, and taking into account the insight gained from the one-dimensional
case that close to a flat surface formula (16) can be used with β = 3, one might
expect that in the case of an active set with non-empty interior (i.e. d∂A = 1)

s ≈ 3

3 + (2 − 1)
=

3

4
.

Figure 5 verifies that this rate is actually observed in numerical practice. The
“hump” in the pre-asymptotic phase is again explained by a very flat maximum of
yγ in this range of parameters.
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s=3/4
h=1/8
h=1/16
h=1/32
h=1/64
h=1/512

Figure 6: Experimental results on the exponent in a two-dimensional setting with
large active set for various coarse grids. For comparison the asymptotics for a fine
grid h = 1/512 is added as a dashed line.

Effect of a fixed discretization on the rate. If on a fixed grid yγ is computed
to very high values of γ it can be observed (see Figure 6) that a rate s = 1 finally
occurs. This can simply be explained by the fact that in finite dimensional spaces
all norms are equivalent, so that for uniformly bounded discrete γ‖(y+

γ )h‖L1 we
eventually observe the upper bound

‖(y+
γ )h‖L∞(Ω) ≤ c(h)‖(y+

γ )h‖L1(Ω) ≤ c(h)γ−1 ⇔ s = 1.

If such a behavior is observed in practice, it is a clear indication that the problem
has been “oversolved” numerically.

4 Conclusion

Numerical experiments indicate that the asymptotics on the constraint violation
derived in this note are sharp, if the active set is a single point, at least in one-
and two-dimensional problems. Moreover, by heuristic arguments we were able to
explain the higher rates of convergence, observed numerically in the case of larger
active sets. It might be a topic of future research to render these considerations
rigorous.

From a practical point of view, the observation that s generically varies in an
interval s ∈ [spoint, 1[, so that the rate of convergence varies in [spoint/2, 1/2[, may
help in the construction of adaptive algorithms, which try to balance algebraic errors
and discretization errors.
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