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P. Deuflhard M. Wulkow 

Computational Treatment of Polyreaction 

Kinetics by Orthogonal Polynomials 

of a Discrete Variable 

Abstract 

The paper presents a new approach to the computational treatment of polyre
action kinetics. This approach is characterized by a Galerkin method based 
on orthogonal polynomials of a discrete variable, the polymer degree (or chain 
length). In comparison with the known competing approaches (statistical mo
ment treatment, Galerkin methods for continuous polymer models), the sug
gested method is shown to avoid the disadvantages and preserve the advantages 
of either of them. The basic idea of the method is the construction of a discrete 
inner product associated with a reasonably chosen probability density function. 
For the so-called Schulz-Flory distribution one thus obtains the discrete Laguerre 
polynomials, whereas the Poisson distribution leads to the Charlier polynomi
als. Numerical experiments for selected polyreaction mechanisms illustrate the 
efficiency of the proposed method. 



The authors wish to thank E. C. Körnig for her quick and careful TfeJC-typing of 
this manuscript. 
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0. Introduction 

In recent years, numerical simulation of chemical reaction systems has reached 
a level of sophistication, which makes it interesting even for chemical engineering. 
Mathematically speaking, simulation involves the numerical solution of systems 
of ordinary differential equations — possibly large, usually nonlinear and "stiff". 
In principle, these systems can be efficiently treated by chemical kinetics pack
ages such as LARKIN, which is especially designed for large systems (compare 
DEUFLHARD/NOWAK [9] for a recent survey). 

However, as soon as polyreactions arise and each individual polymer must be 
computed up to technical accuracy, then both storage requirements and com
puting times tend to increase beyond a tolerable level. In special situations, the 
actual computation of statistical moments is a sufficient alternative — see e.g. 
recent work by FRENKLACH [12, 13]. If the total polymer distribution function is 
needed, then the moment treatment will appear to be unsatisfactory. As a fur
ther alternative, continuous polyreaction models are often recommended with 
the polymer degree as a continuous non-negative variable — see e.g. RAY [18]. 
This kind of modeling leads to partial differential equations, which might be 
attacked by a Galerkin method based on Laguerre polynomials — see GAJEW-

SKl/ZACHARIAS [14] for a description and approximation study. However, mak
ing the discrete polymer degree a continuous variable is somewhat artificial — 
a feature, which shows up in poor approximations for small polymer degree. 
Details are presented in Section 1 below. 

In order to avoid this artificial modeling, the present paper proposes a differ
ent approximation scheme, which preserves the discrete structure of the polymer 
degree. This method is a Galerkin method based on orthogonal polynomials of 
a discrete variable, the polymer degree. Such polynomials are generated by a dis
crete inner product in terms of a weight function, which may be interpreted as 
a probability distribution function. The basic approach and its connection with 
the statistical moments are given in Section 2. For the Schulz-Flory distribu
tion, one obtains the so-called discrete Laguerre functions, whereas the Poisson 
distribution leads to the Charlier polynomials — see Section 3. In Section 4, the 
Galerkin scheme is applied to a selection of typical polyreaction mechanisms. 
Finally, in Section 5, numerical experiments are given that nicely illustrate the 
attractive features of the approach advocated herein. 
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1. Mathematical Polyreaction Models^ 

1.1 Kinetic Equations for Selected Mechanisms 

Let Pa(t) denote the concentration of polymers of chain length s (also: poly
mer degree s) at time t, and Na(t) the number of polymers of length 5 at time 
£. For ease of writing, the notation does not distinguish between the chemical 
species P , and its concentration Pa(t)— the notation will be clear enough from 
the context. If a polyreaction mechanism is known in sufficient detail, then the 
associated system of ordinary differential equations can be generated, in princi
ple. Throughout the paper, attention is focussed on simple model problems to 
illustrate'the special features of the new method to be proposed. 

Chain addition polymerization. Examples of this mechanism are e.g. an
ionic polymerization or free radical polymerization. Let M denote a monomer 
and Pa the polymer. Then the associated reaction mechanism is: 

P. + M iE» P,+1 3 = 1 , 2 , . . . , (1-1) 

where kp~ > 0 denotes the reaction rate coefficient. The kinetics of the reaction 
(1.1) is modelled by a system of ordinary differential equations of the form: 

P{ = -kpMP1 

P'a = -kpM{P8-Pa^) 5 = 2 , 3 , . . . ( 1 2 a ) 

M' = -kpMJTPs 
*=i 

with the given initial values 

-> .> ••• i ' A W = ^ ° 
P,(0) = 0 , " 3 = 2 , 3 , . . . (1.2.b) 

M(0) = Mo . 

Following R A Y [18], the time variable t may be rescaled according to 

jkvM{r)dr . (1.3) 
b 
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In terms of this scaled time, also denoted by t here for simplicity one obtains -

a) P[ = = , - i V L < >• ,.- . [: p. . ^ _ 

p; = - P ^ + P , - ! 5 = 2 , 3 , . . / i v ' " . 

b) ft(o) = Ao ^ , r ( V , 
:
 j;, • : , : , M ) ' ^ V .t;

:
 5 = 2 , : 3 , . 7 : • ;;. • ^ ^ • > - •••* y 

For the methods to be discussed and proposed herein, the treatment of the model- q» 
problem (1.4) is sufficient. ^ ' - -y. ?• -a 

Reversible polymerization [19], , With the notation as above, this Reaction 
mechanism reads 

*i 
- p , + M ; = t P , + 1 ,,. • s = l<2» . , . ,, ,, (1.5) r 

with reaction coefficients &i > k2 > 0. The associated simplified model equations o, 
(analogous to (1.4)) are 

v* 
a) P[ = k2P2-kiP1 

• Pi = * i ( P . - i - P . ) + * 2 ( P ^ i - f t ) 5 = 2 , 3 , . . . 

b) Px(0) = P10 

P.(0) = 0 3 = 2 , 3 , . . . 

Polymer Degradation [11]» In the present notation, this process leads to the 
model equations 

tf.' = - ( 2 * " V . + 2i;*«tfr * = 1,2,.;-;/.. , &.T) 
\r=l / r=3+l 

Let the initial distribution Na{0) be given. In [2], the following additional speci
fications are discussed: '" ' • '-

a ) ksr = Äp 

Cj n?ar = ACr • "'A—r ,* 

An example described by such models is the acid hydrolysis of dextrane. The 
specifications (1.8.a,b) permit a formal analytic solution of (1.7), which is quite 
simple in case a), but prohibitively complicated in case b) — compare [2]. 
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Coagulation [12] and irreversible polycondensation [18]. These pro
cesses caii- be modelled by-the following system of nonlinear ordinary differential 
equations:. 

N's = \ YlKs-rNT Na-r - JV a f> 5 r Nr , S = 1,2, . . . . (1.9) 
• r=rl r = l . 

Let an initial distribution Ns(0) be given. With the additional specification 

kar = kp (1.10) 

this models iss^also referred to as Smoluchowski coagulation model. At the same 
time, RAY [18] uses (1.9) with (1.10) to model the polycondensation of A-B type 
monomer. As an example of this mechanism, [18] mentions the production of 
polyesters from hydroxy acids in a well-stirred batch reactor. Note that under 
the specification (1.10) the nonlinear system (1.9) can be solved in closed analytic 
form. 

In the case ^heterogeneous reactions, fractional powers like in (1.8.b,c) may also 
arise in model (1.9) — e.g. in soot formation [13]. 

Mass conservation. For the first two models, (1.4) and (1.6), one easily ver
ifies that 

f>;(<) = o , < > o , (l.n) 
5=1 

which means mass conservation: 

f)!>.(t) = f)P.(0) , ( > 0 . (1.11') 
5=1 5=1 

For the other two models, (1.7) and (1.9), mass conservation shows up in the 
form 

£>iv;« = o , t > o , (i.i2) 
5=1 

which is equivalent to 

M h ' ^ f>JV,(*) = f>JV.(0) ', t>0., (1.12') 

1.2 Standard Computational Approaches 

Large scale stiff integration. On the basis of chemical insight into a spe
cific polyreaction process, the infinite system of differential equations may be 
truncated. The arising finite systems are usually still large and stiff — with 
a rather full Jacobian matrix. As a consequence, this kind of simulation leads to 
prohibitive array storage and computing time. 



.... * i . o ' • ;.;-.•••••" q ? ; ,c ?:i: • - i ; .... ••'..'* :tl uj o C 
Lumping. A, popular method to reduce thedarge numbert of (stiff) ordinary dif
ferential equations is the so-called lumping technique. In this approachj polymer 
species of chain lengths within certain prescribed intervals are "lumped" together 
to certain superspecies». It is clear that an appropriate interval definition requires 
a lot of a-priori insight into the chemical process (cf. [11]). Nevertheless, even in 
the best cases, this lumping technique introduces a modeling error of unknown 
size — which may be totally unacceptable especially in nonlinear models. 

Statistical moment treatment. The classical statistical moments are defined, 
as ^ i 4 , 

: V / z * ( t ) : = f > * P , ( t ) - , * = 0, 1, . . . '» . < ..(1.13) 

Insertion of this definition into the kinetic models (cf. Section 1.1) leads tc 
a system of ordinary differential equations for /zo, ^ i , . . . . 

Mathematically speaking, the (bounded) infinite sequence #o, Mir • • • essentially 
determines the distribution density Pa — which is the well-known Stieltjes prob
lem of mathematical statistics [20]. If, however, only a finite number of moments 
A*o> "-> PN is known, then associated approximations PW of the exact dis
tribution Ps may vary within an extremely wide range! A detailed theoretical 
discussion of this fact and its consequences will be given in Section 2.2 below, 
a numerical illustration in Section 5. 

For the sake of completeness, recall that mass conservation shows up in this 
treatment as 

MoM = const. , 

if (1.11) holds, or as 
Mi(i) — const. , 

if (1.12) holds. (Herein, Pa(t) in (1.13) must be replaced by Na(t), of course). 

Continuous Models. In this kind of model, the polymer degree appears as 
a continuous real variable s > 0. The polymer distribution Pa(t) = P ( s , t) 
is then determined by a partial integro-differential equation. For example, the 
kinetic equations (1.4) are transformed to (see RAY [18]): 

Ä>, £*'•*> V - ^ ^ i l l ) 2 ^ ^ , , {1.14) 
; b) p(s,o) = plQ-6(8-1), t) s : ; 

where 6 means the Dirac-distribution. However, R A Y already indicates that the 
number of terms used in the Taylor expansion of the above right-hand side needs 
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subtle consideration. A comparison of the analytic results of (1.4) and (1.7) 
shows that the continuous model introduces signifTcanrirrorj for small degree s. 
In the polymer degradation model (1.9), a short examination demonstrates that 

\\mN9(i) = -6(s). (1.15) 

Hence, asymptotically a nasty singularity is introduced by this kind of continuous 
modeling. 

In [14], GAJEWSKI and Z ACH ARIAS study the continuous analogue of the coagu
lation equation (1.7), which reads (dropping the convection term): 

) ^lf(,)i)" = ~]k(r,s-r)N(r,t)N(s-r,t)dr 
r=0 

-N(s, t)jk(sy r)N(r, t)dr ^'^ 
r=0 

b) JV(s, 0) := N0(s) 

In order to solve this nonlinear partial integro-differential equation, these authors 
suggest a Galerkin method based, for example, on finite elements or on modified 
Laguerre polynomials L%. In the latter approach (see [15]), the distribution 
density P(s, t) is approximated by 

PW(S, t) := <r°e-°J2ak(t)LZ(<7) (1.17) 
fc=0 

with a defined by 
a := ß(t)s (1.18) 

for suitably chosen /?(£). For example, BAMFORD and TOMPA [1] suggest to use 

«*):-£§. (I-») 
The artificial r^ature oC modeling the discrete length 5 by a continuous variable 
shows up in the depth of the convergence analysis in [14]: for s = 0, a singularity 
arises, which needs special regularization. Moreover, even though [14] analyse 
the approximation error introduced by the Galerkin method in detail, the before
hand introduced modeling error is overlooked. For these reasons, the continuous 
Galerkin approach seems to be not sufficiently reliable for real life scientific and 
engineering computations. 
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2. Discrete Galerkin Method 

The method to be proposed herein aims at preserving the advantages of both the 
statistical moment treatment and the continuous Galerkin method (Section 1.2) 
and, at the same time, to avoid the intrinsic disadvantages of these approaches. 
Starting point is the fact that, after all, the polymer degree (or chain length) s 
is a discrete variable.. 

2.1 Basic Approximation Scheme r 

The key to the construction of the basic scheme is the introduction of av discrete 
inner product 

(/,») :=£/«»(*) *W (2-1) 
3=1 

where / , g are grid functions defined only on the grid {1, 2, . . .} and ^ is a given 
weight function with 

V(s) > 0 s = 1, 2, . . . < oo (2.2) 

which characterizes the inner product (• , •). This inner product induces the 
norm 

ll/ll*:=(/,/) l / J (2.3) 
and an associated Hubert space if*. In if*, there exists an orthogonal polyno
mial basis {fj(s)} j = 0, 1, . . . satisfying 

(fc,W = 7i*y> 7 ; > 0 , ij = 0 , 1 , 2 , . . . (2.4) 

with Sij the Kronecker symbol. For ease of the subsequent presentation, the 
(Euclidean) inner product ' • * \.. u-,, 

( « , * ) : = £ > « * « , (2.5) 
3=1 

will also be used, where« , t? are grid functions such that (u, v) is botmdea. 
Assume that v ~ . ' '* ! • u >:v 

Then there exists a unique representation 

i W « * « ! > * « « « ) . (2-7) 
Jt=o 
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With this notation, (2.6) is readily seen to be equivalent to u i 

-:': EaJW-ft < oo. (2.6') 
fc=0 

For given Pa(t), the coefficients {CLJ} can be obtained from the relation 

aj(t) =-(lj, P,(t)) , j = 0 , 1 . . . . (2.8) 

This means that the {a,} may be interpreted as generalized moments with respect, 
to the orthogonal basis {lj}. 

In passing, one may note that mass conservation in the form (1.11') can be 
written as 

•! : <l,P,(i)> = (1,P.(0)> . (2.9) 

This directly implies 

a0(t) = !<fo,P.(*)) = l±(l,Ps(t)) 

]° 7 ° (2-10) 
= ~ ( 1 , ^ ( 0 ) > = a0(0). 

7o 

The alternative condition (1.12') in terms of Na(t) does not lead to a comparably 
simple condition, if Na(t) has a representation of the form (2.7). 

Appropriate treatment of the kinetic equations (Section 1.1) by means of the 
above formalism leads to a system of ordinary differential equations for the gen
eralized moments — as worked out in Section 4 for the special functions to be 
derived in Section 3. Truncation of the expansion (2.7) after N terras will lead 
to a Galerkin approximation of the type 

f . w W - * W & * ( * ) W (2.U) 
fc=0 

for self-closing systems or of the type 

pW(t) :=*(*)£><">(*)/*(*) (2.12) 
lk=0 

for ppen systems — see Section 4 for examples of both types. 

For the type (2.11), a minimization property is known to hold: let 11^ denote 
the space of polynomials in s of maximum degree N over the grid {1, 2, . . . } and 
define 

W ) == ^ € II„ . (2.13) 
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Then (2.11) implies 

\\P$N) ~ P.h = min l|P - P,\\9 . 
£en„ 

(2.14) 

In this case, the associated approximation error can be represented by 

\\P$N)-P.h (2.15) 

For any ^ such that (2.6) holds, one thus obtains for self-closing systems: 

lim pW(t)=P,(t). (SU6) 
JV-oo 

For open systems, however, the situation is much more complicated. On the 
basis of (2.12), there the associated approximation error is 

ii*r> - p.h = 
N 

L 
fc=o 
EG»!*0—*)'-»+£«*» 

k=N+l 

nl /2 

(2.17) 

A theoretical convergence analysis for this kind of approximation is beyond the 
scope of the present paper. A rather general scheme for such a convergence 
analysis may be found in DEIMLING [6]. In view of an algorithmic control of the 
truncation index TV, the truncation error estimates 

W" - PtN+1)h ± fa»™») 
1/2 

(2.18) 

in the case (2.11) or 

r N T 

IIP<"> - 3"+»H. ^ £ («<*> - « r * y lk+(a%+»y 7 J J (2.i9) 

l l / 2 

in the case (2.12) might be useful. 

2.2 Connection with Statistical Moments 

Recall the definition (1.13) for the statistical moments #*(*)* which is also based 
on the assumption of a discrete variable s. For given orthogonal basis {/j(s)}, 
the following expansion is easily established: 

s*=][>m /m (s) , * = 0 ,1 , . . . . 
m=0 

(2.20) 
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By definition, one knows that 

bu.j.0 , fc = 0, l, (2.21) 

Upon, inserting (2.20) and (2.7) into the definition (1.13), one obtains 

/l»(i) = (A P.(*)> = £>mf>r(t)(;m, IT) = £ &h»a»(*fr» • 
m—0 r=0 m=0 

This l^ads to an infinite-dimensional recursive linear system of the form 

A*o = &oo 7o ao 

Mi = ho 7o oo + bn 7i ai • (2.22) 

Because of 
&jfcfc 7 * 7^ 0 , 

the generalized moments ao, ai, . . . can be recursively computed from the sta
tistical moments fj,0, Pi, ••• • This fact nicely reflects the basic structure of 
the Stieltjes problem already mentioned in Section 1.2. If the infinite sequence 
{ßk } is bounded and given, then the infinite sequence {a^} can be obtained, 
which, in turn, defines the polymer distribution Pa(t) via the representation (2.7) 
— for any choice of weight function $ subject to the condition (2.6). If, however, 
only a finite number N of statistical moments is given, then only N generalized 
moments are determined — which, in turn, define associated Galerkin approxi
mations P$N). However, variation of the weight function may produce a possibly 
rather wide variation of pW — this fact is illustrated in Section 5 below. 

Summarizing, the mere computation of just a few statistical moments will only 
be useful in special situations such as: 

(a) investigations concerning physical properties that only depend on, say, 

(b) comparisons with experimental data, which anyway arise in the form of 
I statistical moments, 

(c) estimation of relaxation times — as in [12]. 

Even in these cases, the statistical moment treatment appears to be unsatisfac
tory, if one of the following situations occurs: 

(a) fractional powers of s arise in the reaction rate coefficients (compare (1.8))r >: ? 
— here approximation techniques of unclear domain of applicability are in 
common use [11, 13], 

(2.210 
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(b) open systems. 

Summarizing, it is computationally more reliable to determine a truncation index 
N in the discrete Galerkin method than in the statistical moment method. - Of 
course, a sophisticated choice of the weight function # will help to decrease the 
number of terms needed, 

Moving weight functions. The weight functions of special interest typically * 
contain at least one free parameter -— compare Section 4. A proper choice of this 
parameter will also help to keep the truncation index N small. For this purpose, 
define the statistical moments of $ by 

vu := £ « * * ( « ) = («*. *> = («*, 1) • (2-23) 

Note that a sufficient condition for the existence of an orthogonal polynomial 
basis for \& is that all the i/jt are bounded. 

Throughout the paper, the normalization =. , . - . , - b 

i / 0 : = l (2.24)/ ; 

will be imposed — thus making # a probability density function. Then a sophis- , 
ticated choice of # will aim at certain similarities between Pa(t) and ^o(*) ^ ( 5 ) - , 
With (2.24), both distributions have fj,0(t) in common. The free parameter can 
then be determined from the natural condition 

ßi(t) = ßo(t) vx • (2.25) : 

E x a m p l e : Moving exponential weight function in the continuous model 
(Section 1.2). - : f , , , : 

In this case, one starts from the continuous inner product i ; ; H 

(/, g) ••= Jf(s)g(s)<S!(s)ds ., - J:'. ; (2.26) ' 

where \£, in view of (2.24) and (1.17), is defined as 
.'• n 

*(s):=ße-ßa , ß>0. (2.27). 

From this, one concludes that >•-

vx = \ . (2.28) 

11 



Upon combining (2.25) and (2.28) one ends up with 

W = ^ # - (2-29) 

This is just (1.19), the relation given by BAMFORD and TOMPA [1]. At the 
same time, the above derivation explains the observations of these authors that 
"the more closely the molecular weight distribution approximates to the simple 
exponential distribition, the smaller the number of moments required" [1]. 

Finally, note that (2.24), (2.25) and (2.22) directly imply 

a) a0(t) = n0(t) 
(2.30) 

b) ai(t) = 0 

:' 7 
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3. Orthogonal Polynomials of a Discrete Variable 

In this Section, the discrete Galerkin method derived in Section 2 above is ex
emplified in terms of special choices of the weight function ^ . As it turns out, 
the first orthogonal polynomials of discrete variables have already been discussed 
by CHEBYSHEV [3] in 1855 and by STIELTJES [20] in 1894. Even though many 
of their properties can meanwhile be found in textbooks on special functions 
[17, 5], a summary of some properties seems to be justified — in view of the spe
cial application in mind. As a consequence of this application, most definitions 
in the literature must be rewritten for the grid {1, 2, . . . } instead of {0, 1, . . . } . 
Moreover, some necessary properties had to be newly derived. 

3.1 Discrete Laguerre Polynomials 

As shown above, the exponential weight function in connection with the contin
uous inner product (2.26) defines the classical Laguerre polynomials {£*}• For 
discrete variables, the identification 

p:=e-ß , ß>0 , (3.1) 

transforms (2.27) to the discrete weight function 

* ( 5 ) := (1 -p)pa~l , 0 < p < 1 , s = 1, 2, . . . . (3.2) 

Herein, the normalization (2.24) has been observed. In the chemical literature, 
(3.2) is also known as the Schulz-Flory distribution. With ^ from (3.2), the inner 
product (2.1) generates a set of orthogonal polynomials — to be naturally called 
discrete Laguerre polynomials, say {Ik}. These polynomials have been considered 
briefly by STIELTJES [20] in 1894 and in more detail by GOTTLIEB [16] in 1938. 

The simplest representation of the discrete Laguerre polynomials h(s) is via their 
three-term recurrence relation (k = 0, 1, . . . ) : 

(k + 1) /*+1 = [(k + l)p + k - (1 - p){s - 1)] lk - kplk-x , (3.3.a) 

to be started with 
l-x—0 , J 0 : = 1 . (3-3-b) 

(3.4) 

(3.5) 

The associated orthogonality relation is 

(li,l„) = Pk-Sill i, fc = 0 , l , . . . . 

Comparison with (2.4) shows that 

<yk = pk k = 0, 1, . . . . 

13 



As in the continuous case, a Rodrigues-formula can be proved 

3 - 1 \ - 5 A * lk(s) = p-*A (3.6) 

where A denotes the forward difference operator 

Af(s):=f(s + l)-f(s). (3.7) 

In lieu of (3.3.a, b), the following direct representation is sometimes useful: 

'P-IY ( s - i \ 
(3.8) 

From this, one readily verifies 

a) J*(0) = 1 

b) h(l) = Pk 
(3.9) 

For the treatment of the polyreaction model problems (Section 1.1 and Section 
4), the following selection of properties are selected: 

fc-i 

his+1) - IM = {P- i ) j ; A l - x w 
u=Q 

J f c - 1 

lk(s-l)-lk(s) = {l-p)J2lu(s) 
i/=0 

r=l x P 

(3.10) ;: 

(3.11) 

(3.12) 

E **(*%(* - r) = — (p W * ) -'.M-ZfiW) • (3-13) 
r=l l P 

In order to adapt the free parameter p according to (2.25), one needs that 

^ = ( l - p ) " 1 (3.14) 

which, in turn, leads to 

l - p = ^ . (3.15) 
Mi 

14 



Remark. This representation avoids cancellation of leading digits in the nu
merical evaluation, if 1 — p(t) —• 0+ . 

By definition, one has 

Pi > Po , (3.16) 

which implies 
p>0 . (3.16') 

Note that equality in (3.16) and (3.16') holds, if and only if 

P. = Pi'6.fl . (3.lf) 

In the limiting case p = 0, the weight function (3.2) degenerates to the discrete 
distribution 

* W = *.fi • (3.18) 

For the variation of p, one needs the relation 

S-ir^-«- (3.i9) 
The discrete Laguerre polynomials permit a natural extension to the heteroge
neous case — which will be presented in a forthcoming paper. 

3.2 Charlier Polynomials 

Consider the Poisson distribution 

*W := e"A • (TTJji , « = 1,2,... (3.20) 

with normalization (2.24). The associated discrete inner product (2.1) generates 
a set of orthogonal polynomials — the so-called Charlier •polynomials {cjb(s)}, 
which have already been treated by CHARLIER [3] in 1905. * 

Their three-term recurrence relation is 

A cM = (k + \ + l-s)ck-k ck-t (3.21.a) 

to be started with 
c_! := 0, co := 1 . (3.21.b) 

Orthogonality in the form (2.4) holds with 

7 t : = ^ i * = 0 , 1 , . . . , (3.22) 

15 * 



which directly implies 

7fc = 7fc-i * J » 7o := 1 , fc = 1, 2, . . . 

The discrete Rodriguez formula reads 

As direct representation one obtains 

L(5-l-fc)!j * 

(3.22') 

(3.23) 

u=o \ y ) 

3 - 1 
(3.24) 

which readily yields 

a) c»(0) = £ I * I y\ A"" 
4. I /=0 \ " . / 

b) cfc(l) = 1 . 

In analogy to (3.10) - (3.12), the following selection of properties is given: 

(3.25) 

ck(s + 1) - cfc(s) = -jCk-i(s) [17] 

ck(s - 1) - cfe(3) = A;!]T — i - c ^ s ) 

, r - l 

i /=0 

A ' " 1 

S*(P)(r-D! "(-I) ! Ck-i(s) 

Adaptation of the free parameter A according to (2.25) requires 

KI = A + 1 , 

which, in turn, leads to 

A = Mi-Mo 
Mo 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

As in Section 3.2, equality arises exactly in the case (3.17), which, in turn, then 
produces the representation (3.18) for the weight function $ . 

For the variation of A, one needs the relation 

dck k , . 
^A = A ^ ~ Ck) ' 

(3.31) 
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4. Analytic Preprocessing of Kinetic Equations T 

Application of the discrete Galerkin method as derived in Section 2 will lead 
to a system of ordinary differential equations for the associated generalized mo
ments {ajfc(t)}. This procedure is now exemplified for the two sets of orthogonal" 
polynomials presented in Section 3. The mechanisms to be treated have already 
been introduced in Section 1.1. In actual computation, these mechanisms will 
only be part of a large system to be simulated. For the sake of clarity, however, 
the new approach is demonstrated only for a few isolated model problems. For-
real life applications, an automated preprocessor will be used, of course. 

4.1 Preprocessing by Discrete Laguerre Polynomials 

Starting point is the representation (2.7) with # from (3.2) 

P.(t)i=(l-p)p-ljtah(t)lh(s) , 0 < p < l , 
fc=o 

with {Ik} the discrete Laguerre polynomials as introduced in Section 3.1. 

(4.1) 

Moving weight function. The time-dependent adaptation of p according to 
(3.15) is recalled: 

(4.2) 1_pW = ^ l > o 

which implies (2.30). Upon observing this time dependence in the representation 
(4.1), the total time derivation reads , 

' ' i _L d l k ' 
ak *fc + ak~Q^p I + 

Ar=0 

+(l-p)(s-l)p°-2 • p' • auh-p'p'^akh} . 

Upon inserting the relations (3.19) and (3.3.a,b), one ends up with 

p; = (i - rt/-»f; Uh + A H . -(** 1)4+1)1 
Jt=o L \ l P)P ''r.iv-J 

Projection onto the associated basis yields (with a_i := 0): 

: p-i ft , P.'> = aj + j i ^ ( « i " «i-0 y$ = 0. 1. • y 

f."f -L. 1 . X - / / 

(4.3) 
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For j = 0, 1 and with (2.30.b) one obtains in particular 

a) (l0,Pi) = a'0 
(4.4) 

For an individual polyreaction mechanism, the kinetic equations have to be in
serted into the left-hand side of (4.3), once more using the representation (4.1). 
This procedure generates a complete system of ordinary differential equations 
for the components 

(oo(*), P(*), «2(0 , . . . ) • 

Chain addition polymerization. This mechanism is described by the model 
equations (1.4). In view of (4.3) one has to calculate 

(h,pi) = f:h(»)p:=-h{i)Pi+i:iiW-p.+p-i)= 
3=1 

OO 

5 = 2 

= .E^.('i(*«)-'iW) 
3 = 1 

With (3.10), one concludes 

P~j (h , PI) = Z^am 
P m=0 

Combination of (4.3), (4.4), and (4.6) then yields 

a) a'0 = 0 

b) ft = (1-pf 

1-p 
c) aj = 

3-1 

J2a™+J(aj-aj-l) 
m=0 

> i = 2, 3 , . . . 

(4.5) 

(4.6) 

(4.7) 

For the transformation of the initial values (1.4.b) recall (2.8), (3.17) and (3.18) 
to obtain 

a) a0(0) = P1 0 

(4.8) 
b) p(0) = 0 

This is the degenerate case of the weight function (3.2). As a consequence, the 
representation (2.8) cannot directly be applied to yield ÖJ(0) — just recall that 

7i = P* = « 1 ) = 0 . (4.9) 
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Rather, a limiting process 
ai(°) := £ m <*i(*) (4.10) 

must be performed. Examination of the right-hand side in (4.7.c) shows that 
a regular solution a.j is only possible under the necessary algebraic conditions 

j ' - i 

ai(0) = a i - i ( 0 ) - i £ a m ( 0 ) , j = 2, 3, . . . , 
J m=0 

(4.11) 

which are seen to determine the missing initial values. Under this assumption, 
(4.7.c) has a removable singularity: by means of Taylor expansion around t — 0 
one easily verifies that the initial right-hand side 

jV J j + 1 

must be used to start the numerical integration. 

J«J-I(°) - IXW 
TO=0 

(4.12) 

Coagulation and polycondensation. This mechanism is modelled by the 
differential equations (1.9) in terms of the number Na(t) of polymers of length 
s. Of course, Ns(t) now replaces P3(t) in the representation (4.1). Moreover, 
for illustration purposes, the specification (1.10) for the Smoluchowski model is 
made. Once more, the relation (4.3) requires the calculation of 

(h, K) = | (h, XX^,-r) " K (ij, N.f^Nr 

Upon using the relations (2.30) and (1.13), rearranging the order of summation 
and applying the properties of Section 3.1, one obtains 

oo 5 - 1 

(h, W = f E <•* E « - E(i - />)V-%(*)£ J*(r)«.(«- r)-
je=0 m = 0 5 = 1 

oo oo 

Jfe=0 5 = 1 
(4.13) 

i - i 

E 
m = l 

J - l 

^ » 1 = 0 
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Combination of (4.13) and (4.3) then leads to the differential equations j 
(j = 2 ,3 , . . . . ) : 

a ) a'o = " T T 
jk 

- - X a 2 

2 ° 
b) p' = f ( l - p ) a 0 (4.14) 

«) «i = f 
J - l i - i 

P m=l Pm=0 

For general initial values Ns(0), the representations (4.2) and (2.8) are directly 
evaluated (compare [7, 8]). In [18], the degenerate case 

JV.(0) = JVio«.,-. (4.15) 

has been prescribed. As in the preceding model problem, a singularity arises in 
(4.14.c), which can be removed by setting the initial values 

j - i 

a,-(0) := a ^ O ) - -j-^-r £ aTO(0) a H . m ( 0 ) , j = 2, 3, . . . (4.16) 
^ Q 0V U ; m=0 

With a0(0) = iVio, ai(0) = 0 repeated induction in (4.16) readily yields 

fli(0) = 0 , j = 2 , 3, . . . . (4.17) 

In order to start the integration, one needs the right-hand side 

ai(°) = JTTai-i(°) , J =2, 3 , . . . , (4.18) 

which, with a[(0) = 0, directly leads to 

1 aj(0) = 0 , i = 2 , 3 , . . . . (4.19) 

As it' turns out, these initial values imply 

aj(t)=0 , j = l , 2 , . . . . (4.20) 

Summarizing, only one generalized moment and a moving Schulz-Flory weight 
function is sufficient to describe this mechanism! This structure is, of course, 
modified in the cases, when either the initial values (4.15) are different or the 
polyreaction mechanism is part of a larger reaction scheme. In any case, the 
above derivation confirms that the discrete Galerkin-Laguerre method is partic
ularly well-suited for this kind of mechanism. 
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Polymer degradation. In this paper, only the method for the homogeneous1* 
model (1.7) with (1.8.a) is presented. The treatment of the heterogeneous cases ~ 
(1.8.b, c) will be given elsewhere. As in the two preceding model problems, one 
has to calculate 

Yp (h , K) = -((»- m, *r.) + 2 (»,, £ iv^ . 

The first term on the right-hand side just requires the appHcation of the three-
term-recurrence (3.3.a, b). For the second term, the relations (3.12) and (3.9.b) 
together with a proper reordering of summations are employed. This leads to 
the result 

p-j (h. JV;> = j - ^ [j(ai-i - a>)+fU. - i)(«i« - «i)i I (4.2i);. 

Insertion of (4.21) into (4.3) then yields the differential equations 

a ) ao = T1—ao 
1 - p 

b) / = -kvp """""' (4.22) 

c ) a'i = ^ Ü - l ) ( « i + i - « i ) . i = 2 , 3 , . . . . 

Note that the system (4.22) is open, which requires a truncation rule such as 
aw+i := 0 for truncation index JV. 

Initial values Ps(0) ~ sNa(0) from experimental measurements are plotted in 
Figure 4, [2], or in Figure 13.6, [11]. In view of these experimental data, the 
following model initial values seem to be realistic: 

JV.(O) = "I e~s/r . (4.23) 
r 

With this choice, the maximum of the distribution Ns(0) roughly occurs at s = r. 
From (4.23), the initial value 

l - ? ( 0 ) : = ^ | , p ^ e - 1 ' ' - •.,,. (4.24) 

can be obtained, which then allows to compute the a0(0), a2(0), .>. from (2.8)* > 

4.2 Preprocessing by Charlier Polynomials. 

With the weight function # from (3.20) the associated representation for the , 
polymer distribution reads 

where {c*} denotes the set of Charlier polynomials as introduced in Section 3.2. 
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(4.29) 

Moving weight function. According to (3.30), the time-dependence of the 
parameter A comes out to be 

m = ̂ _m , 0 t (,26) 
which implies (2.30). Proceeding as in Section 4.1, using (3.21.a,b) and (3.31), 
one ends up with a representation for the total time derivation 

\ 3 - l OO 
P» = e"Ar1-W^ta '*cfc-a tA'c t+i] • (4-27) 

This, in turn, generates the result (with a^ := 0): 

^ ( c , - , P'a) = aj - A V i > i = 0, 1, . . . (4.28) 
3- i • 

In particular, for j = 0, 1 one has 

a) {c0,Pl) = a{, 

b ) - A ( C l , P ; ) = - a 0 - V 

With these preparations one is now ready to derive the differential equations for 
various polyreaction mechanisms. 

Cha in add i t ion po lymer iza t ion . A short calculation using the model equa
tions (1.4) and the property (3.26) of the Charlier polynomials leads to 

j(Cj, Pi) = -a , - . ! , j = 0, 1, . . . (4.30) 

and to the differential equations 

a) a'0 = 0 

b) A' = 1 (4.31) 

c) aj = 0 , j = 2 , 3 , . . . 

Transformation of the initial values (1.4.b) produces the initial values 

a) ao(0) = Pio 

b) A(0) = 0 (4.32) 

c) a,-(0) = 0 , j = 2, 3, . . . 

Note that (4.32.b) is once more the degenerate case of the weight function (3,20), 
which, however, does not induce a, singularity in (4.32). Only two components 
of the expansion turn out to be sufficient for an exact representation — a result 
derived from general principles without use of the special model structure! 
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Reversible polymerization. On the basis of the model equations (1.6) the 
above procedure leads to - - ^ ^ • -\. / i r 

j{Cj, P's) = -haj-i + k2 -(Aj-! - # ( j ) A«,) (4.33) 

with the convenient notation 

k 

a) Ak := Ylam 
m=0 

b) $(j) := £ * ( m ) < *(oo) = 1 
m=l 

(4.34) 

To derive (4.33), the relations (3.26) and (3.27) as well as the representation 

Pi =e"AAoo (4.35) 

have been used. Note that the system (4.33) is open, which means that a trun
cation rule needs to be imposed. In Section 5, the truncation 

AOO—^AN (4.36) 

has been made for varying truncation index N. Of course, such a replacement 
would require a careful convergence analysis, which is, however, beyond the scope 
of the present paper. Finally, initial values for this model problem are obtained 
from (1.4.b) in the same way as described for the other examples. 

(. y • ; s . j r ' . , • : 
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5. Numerical Experiments 

In this section, the approach derived above is now illustrated. Because of the 
different convergence theory, a splitting between self-closing and open systems is 
made. On the basis of Section 2.2 it is clear that, whenever the differential equa
tions for the statistical moments are self-closing, then this property is inherited 
for any generalized moments arising in the discrete Galerkin method. 

5.1 Self-closing Sys tems 

Among the polyreaction processes treated herein (Section 1.1), the chain addi
tion polymerization and the coagulation (or polycondensation) with the Smolu-
chowski specification lead to a self-closing differential equation system (compare 
Section 4). 

Chain addi t ion po lymer iza t ion . The preprocessing of model (1.4) by Char-
Her polynomials showed that the exact analytic solution for the initial values 
(1.4.b) is just the moving Poisson distribution with time dependent amplitude 

m = a0(t)e-wi^l. (5.1) 

This means that the discrete Galerkin-Charlier method is exact already for trun
cation index jv = 1. (Of course, (5.1) has already been derived'otherwise [18].) 
From (4.31) and (4.32) the direct analytic solution 

ao(t) = P io , X(t) = t (5.2) 

can be calculated. Note, however, that for general initial values Ps(0) the trunca
tion index N for a reasonable approximation pW will be greater than 1. Never
theless, the Poisson distribution as weight function # seems to fit particularly 
fäfell with this special polyreaction mechanism. 

Things turn out to be different when the Schulz-Flory distribution is chosen as 
weight function \I> for the discrete Galerkin method (Section 4.1). This fact is 
illustrated in Figure 1, where the discrete Galerkin-Laguerre approximation for 
I£ == 1, 10, 30 and t = 5 is depicted. At the same time, these Figures visualize 
the comments about the Stieltjes problem for finite truncaton index iV, that 
have been made in Section 2.2: recall that due to the self-closing property of the 
systern, (4.7) the first ,N + 1 statistical moments can be correctly computed via 
(2.22). . > 
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Figure 1: Various discrete Galerkin-Laguerre approximations P* \ t = 5, for the chain 
addition polymerization problem. The approximations for N = 1, 10, 30 approach the 
solution from below. Note that, in this model problem, the Galerkin-Charlier approxi
mation is exact already for N = 1. 

Coagulation/polycondensation. The preprocessing of the Smoluchowski mo
del (1.9)/(1.10) by discrete Laguerre polynomials showed that for the special ink 
tial values (4.15) the exact solution can be represented already: with N, .= 1, 
which means L .̂  ?a !i 

JV,(t) = a 0 ( t ) ( l - ? (< ) ) PC*)"1- ' ..•»:=: i J i (&») 

The functions a0, p are defined by the 2 coupled differential equations'(4.14.ayb), 
which can be solved in closed analytic form to yield: ' ; - i* «^ 

li'his example is chosen to demonstrate the importance of the Hubert space con
dition (2.6). For this purpose, the analytic solution (5.3) arid the weight function 
^ with, for the time being, arbitrary p are inserted into (2.6): this means that 
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the infinite sum 
s-£*ra ( } 

with ^ from (3.2) must be bounded. A straightforward calculation shows that 

5 = (TTW • —,Z[äTW) • (5'6) 

From this, one obtains the necessary condition 

»««KiTä)'" (5-7) 

Note that p(t) from (5.4), which is based on the general adaptation (2.25), ac
tually satisfies the condition (5.7). The question of whether (2.25) generally 
confirms (2.6) is open to further investigation. The importance of condition 
(2.6) for actual computation is illustrated in Figure 2, where truncated discrete 
Laguerre expansions with p < p and p > p are compared for increasing N. 
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Figure 2: Discrete Galerkin-Laguerre approximation N? , t = 100 in the coagulation 
model problem. The truncation index is selected as N = 1 (a,d), N = 10 (6,e), and 
N = 30 ( c , / ) . The parameter p is chosen as p = 0.960 (a,6,c) and p = 0.965 (rf,«,/).' 
Threshold value for convergence is p = 0.961 . i. . Optimal value is p = 0.980 . . . , which 
yields the exact solution with N = 1. 
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5.% ; Q p e n Sys t ems 

Among the selection of polyreaction processes in Section 1.1, the polymer degra
dation and the reversible polymerization lead to open differential systems. In 
these,cases, the estimate (2.19) of the Galerkin approximation error needs an 
additional consideration. Whenever the adapted parameters (here p or A) are 
independent of the truncation index JV, then a reasonable relative error estimate 
will be 

H P W _ P ( W ) | U 

in terms of the definition (2.19) and 

1/2 

\k=o J 

If, however, the truncation index N affects the value of p or A, then also the 
normalization factors 7* and the polynomial basis are affected. In this situation, 
the estimate (2.19) must be modified replacing 

4»> _ «<"+»> _ 4 a[N\- «i»«> + -JllL- («<»>'_ «£>) (5.10.a) 

with 
p:=pW , 6p:=pW-p^ ( 5 . 1 0 . b ) 

for the Galerkin-Laguerre approximation and replacing 

JN) ' JN+l) _ _ JN) (N+l) CA (JV) / K i i \ 
ak ~ ak. —"* ak - ak ~ * A al_[ (ö.l l .a) 

with 
£A : = \(") - \("+V (ö.H.b) 

for the Galerkin-Charlier approximation. In both cases, the factors 

T > : = l i * + 1 ) (5.12) 

are to be inserted. 

Polymer degradation. The preprocessing of model (1.7)/(1.8.a) by discrete 
Laguerre polynomials leads to the differential equations (4.22). The initial values 
(4.23) with 

r := 100 , smax = 1000 (5.13) 
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are selected. From (4.22.b) p can be seen to be independent from the truncaiiori tC 

index JV. So the error estimator (5.8) with (2.19) (replacing Ps(t) by Na(t), of 
course) is compared.....with the -.true truneationcerror i ' ' - :r 

(5.1*) 

for varying N. The results are arranged in .Table 1 showing that the error; 
estimator is useful. 

truncation estimated true error 

index iV error e# ZN " 

' l 0.245 0.387 

2 J 0.235 0.295 

3 0.170 0.195 

4 .0.112 0.124 . j 

5 0.070 0.074 i 

6 0.043 0.042 

7 ' 
"0 .026 0.023 

8 0.015 0.012 

9 0.008 0.006 

1 10 0.003 0.004 

Table 1: Comparison of estimated and true approximation error for the initial 
values (4.23)/(5.13) in the polymer degradation "problem. 

In Figure 3, the time evolution of 

P,(t):=sN,(t) (5.15) 
JO' 

is plotted on the basis of the Galerkin-Laguerre approximation for N = 10. The 
obtained error estimates for N3(t) were: 

e10(0) = 0.003 

e10(0.0.01) = 0.002 

eio(0.01) = 0.0004 J 

e10(0.1) = 0.00001: 

<v 

(5.16) 
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Figure 3: Various polymer distributions Pa(t) for the polymer degradation problem 
(N = 10, t = 0, 0.001, 0.01, 0.1). The peaks move from right to left. 

Note that the computation of the associated true errors eio would require the 
solution of 1000 stiff ordinary differential equations with full triangular Jacobiän 
— or a lumping technique, which introduces an unknown approximation error 
(cf. [11]). 

Reversible polymerization. In model problem (1.6), the reaction rate coeffi
cients ki = 1, k2 = 0.2 have been chosen. Preprocessing by Charlier polynomials 
generates the differential equations based on (4.28). and (4.33J The truncation 
rule (4.36) is more complicated than in the preceding example — leading to 
approximations A ^ , fj\ ' etc. Nevertheless, convergence can be observed: in 
Table 2, the approximation errors 

.(i) 
# ( * ) := (5.17) 

and ejv(i) from (5.8) are compared — using the replacement (5.10) in (2.19). 
Note that the high accuracy of pi does not imply a comparable accuracy of the 
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polymer distribution. A selection of approximations P ^ is depicted in Figure 4. 

\N. €tf eN 

1 

' 5 

10 

15 

0.328 

0.079 

0.033 

0.025 

0.108.10-3 I 

0.097.10"4 1 

0.087.10-5 

0.091.10-6 

Table 2: Comparison of approximation errors for the 
reversible polymerization problem (t = 150J. 

,,:^"" .;r;;-rav, 

0.3 
S (.« E*02) u f J O t l • EI i 

Figure 4 : Various Galerkin-Charlier approximations P± ' a t * =150 for the reversible 

polymerization problem. The approximations for N = 1, 5, 10, 15 approach the solution 

from above. - , . 
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Conclusion 

The paper presented the basic approximation scheme of the discrete Galerkin 
method in terms of selected model problems. The theoretical properties of this 
scheme together with the illustrative numerical experiments back the expectation 
that the method will also be efficient for more general problems, when further 
non-polymer species or a mixture of different polymer species arise. Of course, 
a lot of further work needs to be done in view of extended problem classes. 
However, the authors regard this paper as a first step towards an efficient, reliable 
and storage economic simulation of polyreaction kinetics. 
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