
Mathematical Optimization

and Public Transportation

Dr. Ralf Borndörfer

Kumulative Habilitationsschrift an der

Fakultät II – Mathematik und Naturwissenschaften

der Technischen Universität Berlin

Lehrgebiet:

Mathematik

Eröffnung des Verfahrens: 30.09.2009

Verleihung der Lehrbefähigung: 20.06.2010

Gutachter

Prof. Dr. Dr. h.c. mult. Martin Grötschel

Prof. Dr. Thomas Liebling

Prof. Dr. Rolf H. Möhring

Prof. Dr. Uwe Zimmermann

Berlin 2010

D 83

Table of Contents

Titlepage i

Table of Contents i

List of Figures iii

List of Tables v

List of Publications vii

Introduction viii

I Set Packing Relaxations of Some Integer Programs 1

1 Introduction . 1

2 Terminology . 3

3 The Acyclic Subdigraph and the Linear Ordering Problem 7

4 The Clique Partitioning Problem 16

5 The Set Packing Problem 20

II Combinatorial Packing Problems 32

1 Introduction . 32

2 Combinatorial Packing . 34

3 Dantzig-Wolfe Set Packing Formulations 39

III Decomposing Matrices into Blocks 49

1 Introduction . 50

2 Integer Programming Formulation and Related Problems . 52

3 Polyhedral Investigations 55

4 A Branch-And-Cut Algorithm 67

5 Computational Results . 78

IV A Bundle Method for Integrated Multi-Depot Vehicle
and Duty Scheduling in Public Transit 92

1 Introduction . 93

2 Notation . 95

3 Integrated Vehicle and Duty Scheduling 95

4 A Bundle Method . 98

5 Computational Results . 109

6 Conclusions . 115

i

Table of Contents ii

V Models for Railway Track Allocation 118
1 Introduction . 119
2 The Optimal Track Allocation Problem 120
3 Integer Programming Models 122
4 Computational Results . 129

VI A Column Generation Approach to Line Planning in Pub-
lic Transport 135
1 Introduction . 135
2 Related Work . 137
3 Line Planning Model . 138
4 Column Generation . 143
5 Computational Results . 149
6 Conclusions . 154

Index 157

Curriculum Vitae 174

List of Figures

I Set Packing Relaxations of Some Integer Programs 1

1 A 4-Fence. 9

2 A Möbius Ladder of 5 Dicycles. 9

3 A Fence Clique of Forks. 10

4 A Möbius Cycle of Dipaths. 10

5 A 2-Chorded Cycle. 17

6 Labeling Lower Triangles. 18

7 An Odd Cycle of Lower Triangle Inequalities. 19

8 A 5-Wheel. 22

9 A Cycle of Nodes and Edges. 22

10 Two Generalizations of Odd Wheel Inequalities. 23

11 A 5-Wheel of Type I and a 5-Cycle of Paths. 24

12 A 5-Wheel of Type II and a 5-Cycle of Paths. 25

13 A 5-Cycle of 5-Cycles. 27

II Combinatorial Packing Problems 32

1 Bipartite 2-Coloring. 38

2 Intersection Graph of a Combinatorial 2-Packing Problem. 42

III Decomposing Matrices into Blocks 49

1 Decomposing a Matrix into Bordered Block Diagonal Form. 50

IV A Bundle Method for Integrated Multi-Depot Vehicle
and Duty Scheduling in Public Transit 92

1 IS-OPT Runtime Chart. 107

2 Scheduling Graph for Scenario Fulda. 113

V Models for Railway Track Allocation 118

1 Optimal Track Allocation Problem: Infrastructure Network
(left), and Train Routing Digraph (right); Individual Train
Routing Digraphs Bear Different Colors. 121

2 Block Conflicts on a Single Track: Trips for a Slow (blue)
and a Fast (red) Train (left), a Conflict-Free Configuration
of Four Trips on this Track (middle), and the Block Conflict
Graph Associated With the Track (right). 123

iii

List of Figures iv

3 Configuration Routing Digraph for a Single Track: Train
Routing Digraph (left), Configuration (half-left), Configu-
ration Routing Digraph (half-right), and the Corresponding
Path (right). 127

4 Solving Models APP′, ACP, and PCP. 131

VI A Column Generation Approach to Line Planning in Pub-
lic Transport 135
1 Multi-Modal Transportation Network in Potsdam. Black:

Tram, Lightgray: Bus, Darkgray: Ferry, Large Nodes: Ter-
minals, Small Nodes: Stations, Grey: Rivers and Lakes. . . 139

2 The Node Splitting Gadget in the Proof of Proposition 4.1 145
3 Total Traveling Time (solid, left axis) and Total Line Cost

(dashed, right axis) in Dependence on λ (x-axis in logscale). 153

List of Tables

I Set Packing Relaxations of Some Integer Programs 1

II Combinatorial Packing Problems 32

III Decomposing Matrices into Blocks 49
1 Decomposing Linear Programming Basis Matrices. 81
2 Decomposing Matrices of Mixed Integer Programs. 83
3 Decomposing Transp. Matrices of Mixed Integer Programs. 85
4 Comparing Integer Programming Branching Rules. 86
5 Decomposing Steiner-Tree Packing Problems. 88
6 Equipartitioning Matrices. 89

IV A Bundle Method for Integrated Multi-Depot Vehicle
and Duty Scheduling in Public Transit 92
1 Statistics on the RVB Instances. 110
2 Results for the RVB Sunday Scenario. 111
3 Results for the RVB Workday Scenario. 112
4 RKH Scenarios Marburg and Fulda. 113
5 Solutions for Scenarios Marburg and Fulda. 114
6 Results for ECOPT-Instances with 2 Depots Variant A. . . 114
7 Results for ECOPT-Instances with 4 Depots Variant A. . . 115

V Models for Railway Track Allocation 118
1 Notation for the Optimal Track Allocation Problem. 120
2 Sizes of Packing Formulations for the Track Alloc. Problem. 124
3 Sizes of Packing Formulations for the Track Alloc. Problem. 126
4 Test Scenarios. 131
5 Solving Model APP′ for Scenario 570. 132
6 Solving Model ACP for Scenario 570. 132
7 Solving Model PCP for Scenario 570. 133

VI A Column Generation Approach to Line Planning in Pub-
lic Transport 135
1 Notation and Terminology. 140
2 Experimental Line Planning Results for λ = 0.9978. 151

v

List of Algorithms

I Set Packing Relaxations of Some Integer Programs 1

II Combinatorial Packing Problems 32

III Decomposing Matrices into Blocks 49
1 Separating z-Cover Inequalities With a Greedy Heuristic. . 68

IV A Bundle Method for Integrated Multi-Depot Vehicle
and Duty Scheduling in Public Transit 92

1 Generic Proximal Bundle Method (PBM). 101
2 Inexact Proximal Bundle Method (PBM) with Column Gen-

eration. 106

V Models for Railway Track Allocation 118

VI A Column Generation Approach to Line Planning in Pub-
lic Transport 135

vi

List of Publications

[1] R. Borndörfer & R. Weismantel.
Set packing relaxations of some integer programs.
Mathematical Programming 88:425–450, 2000.

[2] R. Borndörfer.
Combinatorial packing problems.
In M. Grötschel, (Ed.), The Sharpest Cut – The Impact of Manfred

Padberg and His Work, pp. 19–32. SIAM, Philadelphia, 2004.

[3] R. Borndörfer, C. E. Ferreira & A. Martin.
Decomposing matrices into blocks.
SIAM Journal on Optimization 9(1):236–269, 1998.

[4] R. Borndörfer, A. Löbel & S. Weider.
A bundle method for integrated multi-depot vehicle and duty scheduling

in public transit.
In M. Hickman, P. Mirchandani & S. Voß, (Eds.), Computer-aided

Systems in Public Transport, vol. 600 of Lecture Notes in Economics
and Mathematical Systems, pp. 3–24. Springer-Verlag, 2008.

[5] R. Borndörfer & T. Schlechte.
Models for railway track allocation.
In C. Liebchen, R. K. Ahuja & J. A. Mesa, (Eds.), Proceeding of the

7th Workshop on Algorithmic Approaches for Transportation Model-
ing, Optimization, and Systems (ATMOS 2007), Dagstuhl, Germany,
2007. Internationales Begegbnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany.

[6] R. Borndörfer, M. Grötschel & M. E. Pfetsch.
A column-generation approach to line planning in public transport.
Transportation Science 41(1):123–132, 2007.

vii

Introduction

I submit in this cumulative thesis the following six papers for obtaining the
habilitation at the Technische Universität Berlin, Fakultät II – Mathematik
und Naturwissenschaften:

(1) Set packing relaxations of some integer programs.
(2) Combinatorial packing problems.
(3) Decomposing matrices into blocks.
(4) A bundle method for integrated multi-depot vehicle and duty scheduling

in public transit.
(5) Models for railway track allocation.
(6) A column-generation approach to line planning in public transport.

I have made some changes to the papers compared to the published versions.
These pertain to layout unifications, i.e., common numbering, figure, table,
and chapter head layout. I have not changed any notation or symbols, but
I have eliminated some typos, updated the references, and added links and
an index. The mathematical content is identical.

The papers are about the optimization of public transportation systems, i.e.,
bus networks, railways, and airlines, and its mathematical foundations, i.e.,
the theory of packing problems. The papers discuss mathematical models,
theoretical analyses, algorithmic approaches, and computational aspects of
and to problems in this area.

Papers 1, 2, and 3 are theoretical. They aim at establishing a theory of
packing problems as a general framework that can be used to study traffic
optimization problems. Indeed, traffic optimization problems can often be
modelled as path packing, partitioning, or covering problems, which lead
directly to set packing , partitioning , and covering models. Such models are
used in papers 4, 5, and 6 to study a variety of problems concerning the plan-
ning of line systems, buses, trains, and crews. The common aim is always
to exploit as many degrees of freedom as possible, both at the level of the
individual problems by using large-scale integer programming techniques, as
well as on a higher level by integrating hitherto separate steps in the plan-
ning process. I give in the following an outline of these papers; for surveys
on optimization in public transportation I refer the reader to the papers
(not included here) Borndörfer, Grötschel & Löbel (2000) [6]; Borndörfer,
Grötschel & Pfetsch (2006) [9]; Borndörfer, Grötschel & Jaeger (2008) [11].

(1) Set Packing Relaxations of Some Integer Programs. Packing,
i.e., finding a conflict free subset of some objects, is a basic task in combina-

viii

ix

torial optimization. The prototype of packing problems is node packing in
graphs, an intensively investigated area which gave rise to deep and beau-
tiful results and concepts such as antiblocking theory, the theory of perfect
graphs and matrices, semidefinite programming, and polyhedral combina-
torics. There is, in particular, a substantial body of knowledge about the
set packing polytope. Many facet defining and/or polynomial time separa-
ble types of inequalities have been identified, among them the classes of
clique, odd cycle, odd wheel, orthonormal representation, web, and antiweb
inequalitites. All of these inequalities are potentially useful in cutting plane
algorithms.

The idea of paper 1, jointly written with Robert Weismantel, is that the
structures and construction principles that give rise to these inequalities
can also be applied to other problems that involve a packing component.
Just as one can build a clique or an odd cycle of nodes in a graph, one
can build a clique or an odd cycle of general objects, where the edges cor-
respond to pairwise conflicts. The paper shows that affine transformations
can be used to associate, in an algebraically simple way, a set packing relax-
ation to another problem, that allows to transfer inequalities and separation
algorithms from the set packing problem to the problem of interest.

In fact, this philosophy had, in a sense, already been applied before. Namely,
many well-known classes of inequalities for a variety of combinatorial opti-
mization problems can be explained in this way, e.g., the 2-chorded cycle
inequalities for the clique partitioning problem, the fence and the Möbius
ladder inequalities for the acyclic subdigraph problem, and the generalized
wheel inequalities for the set packing problem. Using set packing relaxation
techniques it was for the first time possible to show that the Möbius ladder
inequalities can be separated in polynomial time. The possibilities for the
construction of new classes are illustrated by creating a novel class of cycle-
of-cylces inequalitites. Some more results in this direction can be found in
the follow-on paper Borndörfer & Weismantel (2001) [4] (not included here).

(2) Combinatorial Packing Problems. An important class of general
packing problems are couplings of individual combinatorial problems. Typi-
cal examples of such combinatorial packing problems are the multicommod-
ity flow problem (packings of paths or flows), the multiple knapsack problem
(packings of knapsacks), and the coloring problem (packings of stable sets).

Multicommodity flows are very close to traffic applications. They have inte-
gral subproblems, i.e., their difficulty stems solely from the coupling equa-
tions. Can such a problem be naturally integral , i.e., can it be that the
integrality of the individual subproblems carries over to the entire problem?
The answer of paper 2 is “yes, sometimes”, e.g., the bipartite 2-coloring

x

and the matroid packing problem are naturally integral. Moreover, general
2-packing problems have perfect conflict graphs such that their polytopes
can be completely understood in terms of projections of clique inequalities
from an associated extended Dantzig-Wolfe formulation.

(3) Decomposing matrices into blocks. The reverse approach is taken
in paper 3, which is joint work with Carlos Ferreira and Alexander Martin.
Here, we try to identify (automatically and without any problem specific
knowledge) a block structure (of individual problems) with a minimal cou-
pling part in a general MIP. Such a block decomposition, if it can be discov-
ered, is useful in several ways: It paves the way for the application of parallel
linear algebra methods such as parallel LU factorizations or parallel Cholesky
factorizations, it allows the application of polyhedral knowledge from stan-
dard problems with block structure such as the generalized assignment or
multiple knapsack problem, and it can be used in a branch-and-bound ap-
proach to break up a large problem into independent subproblems that can
also be solved in parallel. General MIPs offer potential in this direction,
because they often model individual components of a process, machine, or
company that are coupled by a number of linking constraints.

The matrix decomposition problem is closely related to graph decomposition
problems such as the node separator problem, to the set packing , and the set
covering problem. It features, in particular, a natural set packing relaxation
in the original variables, and has been, in this way, a precursor to paper 1.
However, knapsack structures and symmetry breaking also play a major role
in our branch-and-cut approach to the solution of this interesting problem.
It turns out that indeed not all, but quite a number of general MIP instances
from the Netlib and the Miplib problem libraries can be well decomposed
into 2 and 4 blocks of roughly the same size.

(4) A Bundle Method for Integrated Multi-Depot Vehicle and
Duty Scheduling in Public Transit. Vehicle and crew scheduling are
prime examples for the successful application of mathematical optimization
techniques in practice. The need to solve such problems was among the
driving forces behind the development of the multicommodity flow, set par-
titioning, and column generation machinery that is now used with great
success in numerous applications ranging from network design to political
districting. Today, all major airlines, public transit companies, and for a
short time also the large railways use or are beginning to use mathemati-
cal vehicle and crew optimizers on a routine basis to deploy their vehicles
and personnel. I was involved in the development of the vehicle scheduling
optimizer VS-OPT for public transit as well as the crew scheduling optimiz-
ers DS-OPT for public transit and CS-OPT for airlines, that are part of the

xi

commercial scheduling systems ivu.plan (formerly known as MICROBUS II)
by IVU Traffic Technologies AG and NetLine by Lufthansa Systems Berlin
GmbH (under the brand xOPT Crew). These optimizers are used by many
companies all over the world, e.g., at Berlin’s public transit company BVG,
at the Italian railway Trenitalia, and at the Brasilian airline GOL.

Solving two, otherwise sequentially tackled, planning problems simultane-
ously discloses further optimization potentials that can be used to improve
the service and to cut costs. A simple idea, but easier said than done.
Setting up two models and adding suitable coupling constraints is not the
hard part, and, in fact, many such models have been published. However,
not much is known about methods that work for solving integrated real-
world scheduling problems. As far as I know, paper 4, which is joint work
with Andreas Löbel and Steffen Weider, is the first to report on the so-
lution of industrial large-scale integrated scheduling problems, namely, on
integrated vehicle and duty scheduling problems in public transit. Integrated
scheduling is necessary in regional transit, not only for cost optimization,
but simply for feasibility. Our method is part of the commercial schedul-
ing system ivu.plan by IVU Traffic Technologies AG, and used, e.g., by the
DB Stadtverkehr group (the former “Bahnbusse”), the largest provider of
regional public transit in Germany.

The key to the solution of this problem is the proximal bundle method , an
algorithm for the solution of non-differentiable convex optimization prob-
lems. The bundle method can be seen as an advancement of subgradient
or volume methods. It has a very similar computational performance, but
superior convergence properties, in particular, automatic dual stabilization,
and it produces not only a converging series of dual estimates, but also
primal values, that are extremely useful in heuristics. Another advantage
is that it can also be used to handle quadratic objectives, which come up,
e.g., in crew rostering problems. This feature is also very handy in order to
get some control on the integrality of 0/1 variables by putting terms such as
x(1−x) into the objective function. “Whenever you think of using subgradi-
ent methods, you should use the bundle method”, said Christoph Helmberg
when he introduced the method to us some years ago. This is indeed true.
It turns out that the method can deal with the very large coupling sys-
tems that come up in integrated scheduling, that it can exploit separability
of the objective, that one can make it work with inexact information, and
that it provides sufficient synchronization of the individual problems in a
superordinate Lagrangean relaxation approach.

I find it surprising that, until today, the bundle method has not gained the
acceptance and popularity in the optimization community that it deserves,
even though very good open-source implementations are readily available,
e.g., on Christoph Helmberg’s homepage (http://www-user.tu-chemnitz.

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

xii

de/~helmberg/ConicBundle/). Interesting research directions are crossover
techniques and higher-order extensions. An additional publication on inte-
grated vehicle and duty scheduling (not included here) is Borndörfer, Löbel
& Weider (2002) [7], in German, complementary papers on crew scheduling
(not included here) are Borndörfer et al. (1999) [5], in German, Borndörfer,
Grötschel & Löbel (2003) [8], and Borndörfer et al. (2006) [10].

(5) Models for Railway Track Allocation. The bundle method plays
also a major role in our approach to the solution of track allocation prob-
lems, i.e., the packing of train paths in a railway network. As most railway
problems, technical constraints make this problem much harder than its
public transit or airline counterparts, such that it is, today, still a challenge
to optimize railway traffic through a path-type system such as a tunnel, a
mountain pass such as the Brenner, or a corridor like the Rhine route. In
fact, several groups in Germany and Italy are currently working on exactly
these scenarios.

The most popular approach is to set up a direct packing model, eliminating
conflicts by cutting planes. Thomas Schlechte and I propose in paper 5
a different formulation that is based on track configuration variables, that
model the feasible assignments of slots to trains over a time horizon on
a single track. It can be shown that this model produces the same LP
bound as the standard model including all clique inequalities and that it
is algorithmically tractable (configurations can be priced solving a shortest
path problem). In our computationas, it was clearly the best model that
allows to solve scenarios involving several hundred trains.

The work is part of a project on railway track auctioning. Additional publi-
cations (not included here) are Borndörfer & Schlechte (2008) [2]; Borndörfer
& Schlechte (2008) [3]; Borndörfer, Mura & Schlechte (2009) [14].

(6) A Column-Generation Approach to Line Planning in Public
Transport. Large effects could be achieved if the use of mathematical
optimization could be established in the design phase of transportation sys-
tems in a similar way as it is already the case in the subsequent steps of
resource allocation. This is currently not the case; today, strategic traffic
infrastructure and system design decisions are taken by hand planning us-
ing rules of thumb and, in good case, simulation tools. One reason for this
lack of mathematical support in service design is certainly that the planning
problems are very difficult such that often the available methods are not yet
adequate to live up to the requirements from practice. Problems in service
design involve multiple parties and are therefore inherently integrated, they
feature multiple, contradicting objectives such as cost vs. quality, and they

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

xiii

have stochastic and game theoretic traits, e.g., in the prediction of user
behaviour. Considering the importance of service design, however, these
difficulties can be no reason to defer working on these problems.

Paper 6, coauthored by Martin Grötschel and Marc Pfetsch, investigates the
line planning problem to set up a cost efficient and high-quality line system
in public transit. Decisions involve the routing of lines, and the frequency
of service. The passengers choose their travel routes with respect to the line
system, i.e., the model integrates line planning and passenger routing. In
fact, passengers are routed in a system optimum, which, in this case, is also
a user equilibrium, i.e., the routing is relatively realisitc.

As far as I know, this paper was the first in proposing and investigating a
mathematical optimization approach to this integrated problem. We show
that the LP-relaxation of our line planning model can be solved in poly-
nomial time, if the lines have logarithmic lengths. A computational study
for ViP Verkehr in Potsdam GmbH, the public transit company of Pots-
dam, shows that it is indeed possible to compute line plans for medium
sized cities in this way. Further publications on line planning (not in-
cluded here) are Borndörfer & Liebchen (2008) [1]; Borndörfer, Grötschel
& Pfetsch (2008) [12]; Borndörfer, Neumann & Pfetsch (2008) [13]; Pfetsch
& Borndörfer (2006) [15]; Torres et al. (2008) [16, 17].

*

There are several people that played an important role in the development
of this thesis. I want to thank Martin Grötschel, who got me into combi-
natorial optimization, taught me a lot, and had the vision to bring integer
programming into traffic planning. My friends and associates Andreas Löbel
and Steffen Weider share these ideas and are ideal partners. Thanks to my
other coauthors Marc Pfetsch, Thomas Schlechte, and Robert Weismantel,
and to the traffic group at ZIB. Special thanks to Henry Thieme, the former
administrative director of ZIB, for supporting me through a long time.

I am indebted to the Zuse Institute Berlin, to BMBF, BMWi, and Matheon

for their financial support, and to the companies Berliner Verkehrsbetriebe
AöR, DB Stadtverkehr GmbH, IVU Traffic Technologies AG, Lufthansa Sys-
tems Berlin GmbH, Regensburger Verkehrsbetriebe GmbH, and ViP Verkehr
in Potsdam GmbH.

I dedicate this thesis to the memory of my father.

Berlin, 21.08.2009, Ralf Borndörfer

References xiv

References

[1] R. Borndörfer & C. Liebchen. When Periodic Timetables are Sub-
optimal. In J. Kalcsics & S. Nickel, (Eds.), Operations Research
Proceedings 2007, pp. 449–454. Springer Verlag, Berlin, 2008. ZIB Re-
port 07-29 available at http://opus.kobv.de/zib/volltexte/2007/

1056/. Cited on page xiii.

[2] R. Borndörfer & T. Schlechte. Solving railway track allocation
problems. In J. Kalcsics & S. Nickel, (Eds.), Operations Research
Proceedings 2007, pp. 117–122. Springer Verlag, Berlin, 2008. ZIB Re-
port 07-20 available at http://opus.kobv.de/zib/volltexte/2007/

974/. Cited on page xii.

[3] R. Borndörfer & T. Schlechte. Balancing efficiency and robust-
ness. In M. Ehrgott, B. Naujoks, T. Stewart & J. Wallenius,
(Eds.), MCDM for Sustainable Energy and Transportation Systems,
Lecture Notes in Economics and Mathematical Systems. Springer Ver-
lag, Berlin, 2008. ZIB Report 08-22 available at http://opus.kobv.

de/zib/volltexte/2008/1105/. Cited on page xii.

[4] R. Borndörfer & R. Weismantel. Discrete relaxations of com-
binatorial programs. Discrete Appl. Math. 112(1–3):11–26, 2001.
ZIB preprint SC 97-54 available at URL http://opus.kobv.de/zib/

volltexte/1997/324/. Cited on page ix.

[5] R. Borndörfer, A. Löbel, U. Strubbe & M. Völker. Zielo-
rientierte Dienstplanoptimierung. In M. Boltze, (Ed.), Heureka ’99:
Optimierung in Verkehr und Transport, pp. 171–194. VDV, Forschungs-
gesellschaft für Strassen- und Verkehrswesen, Köln, 1999. ZIB Report
98-41 available at http://opus.kobv.de/zib/volltexte/1998/385/.
Cited on page xii.

[6] R. Borndörfer, M. Grötschel & A. Löbel. Der schnellste Weg
zum Ziel. In M. Aigner & E. Behrends, (Eds.), Alles Mathematik,
pp. 45–76. Vieweg Verlag, Braunschweig/Wiesbaden, 2000. ISBN 3-
528-03131-X. ZIB Report 99-32 available at http://opus.kobv.de/

zib/volltexte/1999/421/. Cited on page viii.

[7] R. Borndörfer, A. Löbel & S. Weider. Integrierte Umlauf-
und Dienstplanung im öffentlichen Nahverkehr. In M. Boltze, (Ed.),
Heureka ’02, pp. 77–98. VDV, Forschungsgesellschaft für Strassen- und
Verkehrswesen, Köln, 2002. ZIB Report 02-10 available at http://

opus.kobv.de/zib/volltexte/2002/678/. Cited on page xii.

[8] R. Borndörfer, M. Grötschel & A. Löbel. Duty scheduling in
public transit. In W. Jäger & H.-J. Krebs, (Eds.), MATHEMATICS
– Key Technology for the Future, pp. 653–674. Springer Verlag, Berlin,

http://opus.kobv.de/zib/volltexte/2007/1056/
http://opus.kobv.de/zib/volltexte/2007/1056/
http://opus.kobv.de/zib/volltexte/2007/974/
http://opus.kobv.de/zib/volltexte/2007/974/
http://opus.kobv.de/zib/volltexte/2008/1105/
http://opus.kobv.de/zib/volltexte/2008/1105/
http://opus.kobv.de/zib/volltexte/1997/324/
http://opus.kobv.de/zib/volltexte/1997/324/
http://opus.kobv.de/zib/volltexte/1998/385/
http://opus.kobv.de/zib/volltexte/1999/421/
http://opus.kobv.de/zib/volltexte/1999/421/
http://opus.kobv.de/zib/volltexte/2002/678/
http://opus.kobv.de/zib/volltexte/2002/678/

References xv

2003. ISBN 3-540-44220-0. ZIB Report 01-02 available at http://

opus.kobv.de/zib/volltexte/2001/629/. Cited on page xii.

[9] R. Borndörfer, M. Grötschel & M. E. Pfetsch. Public trans-
port to the fORe! OR/MS Today 33(2):30–40, 2006. ZIB Report 05-22
available at http://opus.kobv.de/zib/volltexte/2005/856/. Cited
on page viii.

[10] R. Borndörfer, U. Schelten, T. Schlechte & S. Weider. A
column generation approach to airline crew scheduling. In H. Haasis,
(Ed.), Operations Research Proceedings 2005, pp. 343–348. Springer
Verlag, Berlin, 2006. ZIB Report 05-37 available at http://opus.kobv.
de/zib/volltexte/2005/871/. Cited on page xii.

[11] R. Borndörfer, M. Grötschel & U. Jaeger. Planungsprob-
leme im öffentlichen Verkehr. In M. Grötschel, K. Lucas &

V. Mehrmann, (Eds.), PRODUKTIONSFAKTOR MATHEMATIK
– Wie Mathematik Technik und Wirtschaft bewegt, acatech DISKU-
TIERT, pp. 127–153. acatech – Deutsche Akademie der Technikwis-
senschaften und Springer, 2008. ISBN 978-3-540-89434-6. ZIB Re-
port 08-20 available at http://opus.kobv.de/zib/volltexte/2008/

1103/. Cited on page viii.

[12] R. Borndörfer, M. Grötschel & M. E. Pfetsch. Models for
line planning in public transport. In M. Hickman, P. Mirchandani &

S. Voß, (Eds.), Computer-aided Systems in Public Transport (CASPT
2004), vol. 600 of Lecture Notes in Economics and Mathematical Sys-
tems, pp. 363–378. Springer Verlag, Berlin, 2008. ZIB Report 04-10
available at http://opus.kobv.de/zib/volltexte/2004/786/. Cited
on page xiii.

[13] R. Borndörfer, M. Neumann & M. E. Pfetsch. Angebotsplanung
im öffentlichen Nahverkehr. In M. Boltze, (Ed.), Heureka ’08. VDV,
Forschungsgesellschaft für Strassen- und Verkehrswesen, Köln, 2008.
ZIB Report 08-04 available at http://opus.kobv.de/zib/volltexte/
2008/1084/. Cited on page xiii.

[14] R. Borndörfer, A. Mura & T. Schlechte. Vickrey auctions for
railway tracks. In B. Fleischmann, K. H. Borgwardt, R. Klein &

A. Tuma, (Eds.), Operations Research Proceedings 2008, pp. 551–556.
Springer Verlag, Berlin, 2009. ZIB Report 08-34 available at http://

opus.kobv.de/zib/volltexte/2008/1122/. Cited on page xii.

[15] M. E. Pfetsch & R. Borndörfer. Routing in line planning for
public transportation. In H. Haasis, (Ed.), Operations Research Pro-
ceedings 2005, pp. 405–410. Springer Verlag, Berlin, 2006. ZIB Report
05-36 available at http://opus.kobv.de/zib/volltexte/2005/870/.
Cited on page xiii.

[16] L. M. Torres, R. Torres, R. Borndörfer & M. E. Pfetsch.
Line planning on paths and tree networks with applications to the Quito

http://opus.kobv.de/zib/volltexte/2001/629/
http://opus.kobv.de/zib/volltexte/2001/629/
http://opus.kobv.de/zib/volltexte/2005/856/
http://opus.kobv.de/zib/volltexte/2005/871/
http://opus.kobv.de/zib/volltexte/2005/871/
http://opus.kobv.de/zib/volltexte/2008/1103/
http://opus.kobv.de/zib/volltexte/2008/1103/
http://opus.kobv.de/zib/volltexte/2004/786/
http://opus.kobv.de/zib/volltexte/2008/1084/
http://opus.kobv.de/zib/volltexte/2008/1084/
http://opus.kobv.de/zib/volltexte/2008/1122/
http://opus.kobv.de/zib/volltexte/2008/1122/
http://opus.kobv.de/zib/volltexte/2005/870/

References xvi

Trolebus system. In M. Fischetti & P. Widmayer, (Eds.), AT-
MOS 2008 - 8th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. ZIB Re-
port 08-35 available at http://drops.dagstuhl.de/opus/volltexte/
2008/1580. Cited on page xiii.

[17] L. M. Torres, R. Torres, R. Borndörfer & M. E. Pfetsch.
On the line planning problem in tree networks. ZIB Report 08-52,
ZIB, Takustr. 7, 14195 Berlin, 2008. URL http://opus.kobv.de/zib/

volltexte/2008/1147/. Cited on page xiii.

http://drops.dagstuhl.de/opus/volltexte/2008/1580
http://drops.dagstuhl.de/opus/volltexte/2008/1580
http://opus.kobv.de/zib/volltexte/2008/1147/
http://opus.kobv.de/zib/volltexte/2008/1147/

Paper I

Set Packing Relaxations of

Some Integer Programs

R. Borndörfer & R. Weismantel.
Set packing relaxations of some integer programs.
Mathematical Programming 88:425–450, 2000.

Abstract. This paper is about set packing relaxations of combinatorial op-
timization problems associated with acyclic digraphs and linear orderings,
cuts and multicuts, and set packings themselves. Families of inequalities
that are valid for such a relaxation as well as the associated separation
routines carry over to the problems under investigation.

Keywords. Set packing, polyhedral combinatorics, cutting planes, integer
programming

Mathematics Subject Classification (MSC 2000). 90C10, 90C57

1 Introduction

This paper is about relaxations of certain combinatorial optimization prob-
lems in the form of a set packing problem and the use of such relaxations in
a polyhedral approach.

The set packing or stable set problem (SSP) is to find, in a graph G = (V, E)
with node weights c, a set packing or stable set, i.e., a set of pairwise non-
adjacent nodes, of maximum weight. Set packing problems are among the
best studied combinatorial optimization problems with beautiful theories
connecting this area of research to Fulkerson’s antiblocking theory, see Fulk-
erson (1971) [12], the theory of perfect graphs, see Lovász (1971) [19], per-
fect and balanced matrices, see Padberg (1973) [26] and Berge (1971) [4],

1

1 Introduction 2

semidefinite programming, see Grötschel, Lovász & Schrijver (1988) [16],
and other fields, see Grötschel, Lovász & Schrijver (1988) [16] for a survey.
Likewise, the set packing polytope, i.e., the convex hull of all set packings of
a graph, see, e.g., Padberg (1973) [26], plays a prominent role in polyhedral
combinatorics not only because large classes of (facet defining) inequalities
are known. Perhaps even more important, many of them can be separated in
polynomial time. In particular, odd cycle, orthonormal representation, and
(superclasses of) odd antihole constraints are polynomial time separable,
see again Grötschel, Lovász & Schrijver (1988) [16] and Lovász & Schrijver
(1991) [20].

Our aim in this paper is to transfer some of these results to other combi-
natorial optimization problems. We show that the acyclic subdigraph and
the linear ordering problem, the max cut, the k-multicut, and the clique
partitioning problem, and the set packing problem itself have interesting
combinatorial relaxations in form of a set packing problem. Families of in-
equalities that are valid for these relaxations and the associated separation
routines carry over to the problems under investigation. The procedure is
an application of a more general method to construct relaxations of combi-
natorial optimization problems by means of affine transformations that we
discuss in a forthcoming paper. This method is in the tradition of projection
techniques such as Balas & Pulleyblank (1989) [1], Pulleyblank & Shepherd
(1993) [29], and Chopra & Rao (1994) [7, 8] and, in particular, Padberg &
Sung (1991) [28] approach to use affine transformations for the comparison
of TSP formulations.

The paper is subdivided into four parts. Section 2 lists notation and results
on set packing for future reference. It also recalls three earlier frameworks
that give results similar, yet not identical, to ours; we shall point out similar-
ities and differences throughout the article. Section 3 is devoted to a study
of the acyclic subdigraph and the linear ordering problem, see Grötschel,
Jünger & Reinelt (1985) [14, 15]. A main result in this section is that a
class of Möbius ladders with dicycles of arbitrary length belong to a (larger)
class of odd cycles of an appropriate set packing relaxation; this superclass
is polynomial time separable. Section 4 deals with set packing relaxations
of the clique partitioning, the k-multicut, and the max cut problem, see
Grötschel & Wakabayashi (1990) [13] and Deza & Laurent (1997) [10]. We
introduce a class of “inequalities from odd cycles of lower triangle inequali-
ties” that contains the 2-chorded cycle inequalities. Section 5 treats the set
packing problem itself. We show, in particular, that the wheel inequalities
of Barahona & Mahjoub (1994) [3] and Cheng & Cunningham (1997) [6] are
odd cycle inequalities of a suitable set packing relaxation. We also introduce
a new family of facet defining inequalities for the set packing polytope: The
“cycle of cycles” inequalities. This class can be separated in polynomial
time.

2 Terminology 3

2 Terminology

The subsequent sections resort to the following notation and results about
the set packing problem. The set packing problem for a graph G with node
weights c can be formulated as an integer program

max cT x Ax ≤ 1, x ∈ {0, 1}V , (SSP)

where A = A(G) ∈ {0, 1}E×V is the edge-node incidence matrix of G and 1
a vector of all ones of compatible dimension. Associated with this program
is the stable set polytope or set packing polytope

PI := conv
{
χS : S is a stable set in G

}
= conv

{
x ∈ {0, 1}n : Ax ≤ 1

}
,

the convex hull of all incidence vectors of stable sets in G or, equivalently,
of all solutions of (SSP). Occasionally, we will denote this polytope also by
PI(G). For technical reasons, we will actually not work with the stable set
polytope PI itself, but with its antidominant

̂

P SSP := PI − RV
+ =

{
x ∈ RV : ∃y ∈ PI : x ≤ y

}
.

This construction allows to consider vectors with arbitrary negative coor-
dinates without destroying the polyhedral structure of PI : Obviously, the
valid inequalities for

̂

P SSP are exactly the valid inequalities for PI of the
form aTx ≤ α with non-negative coefficients. Since the stable set polytope
PI is down-monotone, its non-trivial valid inequalities all have non-negative
coefficients. We can thus work with

̂

P SSP as well as with PI .

We list some terminology to state five fundamental results on PI (or

̂

P SSP).
A clique in a graph G is a set of pairwise adjacent nodes. A walk consists
of a sequence v1, e1, v2, e2, . . . , ek, vk+1 of nodes vi and edges ei such that
ei = vivi+1, i = 1, . . . , k. A closed walk has v1 = vk+1. A walk is a path if all
its nodes are different, except possibly the first and the last, which can be
identical; in this case, the path is called a cycle. The analogous concepts for
digraphs, with the additional stipulation that all arcs have to be “oriented
in the same direction”, are called diwalk, closed diwalk, dipath, and dicycle,
respectively. A (di)walk (and hence a (di)path or (di)cycle) is odd if k is
odd, i.e., if it contains an odd number of nodes, even otherwise. An edge
that joins two nodes of a cycle, but is not a member of the cycle, is a chord.
A 2-chord is a chord of the form vivi+2 (indices > k taken modulo k). A
chordless cycle is a hole. For convenience of notation, we will occasionally
consider (di)paths and (di)cycles as sets of nodes, edges, or arcs, and we
will denote edges as well as arcs with the symbols ij and (i, j); the latter
will be used in cases like (i, i + 1). Finally, supp(x) = {i ∈ V : xi 6= 0} is
the support of a vector x ∈ RV .

2 Terminology 4

The results on PI that we need are summarized in the following two theo-
rems; we state them for

̂

P SSP.

Theorem 2.1 (Clique, Odd Cycle, and Orthonormal Representa-
tion Inequalities, Padberg (1973) [26], Grötschel, Lovász & Schri-
jver (1988) [16]).

Let G = (V, E) be a graph and

̂

P SSP the antidominant of the associated set
packing polytope.

(i) If Q is a clique in G, the clique inequality
∑

i∈Q xi ≤ 1 is valid for̂

P SSP; it is facet defining if and only if Q is a maximal clique (with
respect to set inclusion).

(ii) If C is an odd cycle in G, the odd cycle inequality
∑

i∈C xi ≤ (|C| −
1)/2 is valid for

̂

P SSP.

(iii) Let u ∈ RV be an orthonormal representation of G, i.e., |ui| = 1 for
all i ∈ V and uT

i uj = 0 holds for all ij 6∈ E, and let c ∈ RV be an ad-
ditional arbitrary vector with |c| = 1. The orthonormal representation

inequality
∑

i∈V (cTui)
2xi ≤ 1 is valid for

̂

P SSP.

Separation of clique inequalities is NP-hard. But the clique inequalities
belong to the more general class of orthonormal representation inequalities
which can be separated in polynomial time.

Theorem 2.2 (Orthonormal Representation & Odd Cycle Inequal-
ities, Grötschel, Lovász & Schrijver (1988) [16]).

Let G = (V, E) be a graph,

̂

P SSP the antidominant of the associated set
packing polytope, and x ∈ QV . Suppose that xi + xj ≤ 1 holds for all edges
ij ∈ E. Then:

(i) Orthonormal representation inequalities violated by x can be separated
in polynomial time.

(ii) Odd cycle inequalities violated by x can be separated in polynomial
time.

The literature has three frameworks that give results similar to this article:

• The independence system approach, see Nemhauser & Trotter (1973)
[24], Sekiguchi (1983) [32], Euler, Jünger & Reinelt (1987) [11], Lau-
rent (1989) [18], Nobili & Sassano (1989) [25], and others.

• The transitive packing approach of Müller (1996) [21], Müller & Schulz
(1995) [22]; Müller & Schulz (1996) [23], Schulz (1996) [31].

• The {0, 1
2}-Chvátal-Gomory cuts of Caprara & Fischetti (1996) [5].

2 Terminology 5

We recall these concepts for later comparisons with our approach. We do
neither discuss the relation to projection techniques nor to Padberg & Sung
(1991) [28] here; this would blast the scope of this article.

Independence System Approach. An independence system (IS) arises
from a set system C ⊆ 2V of circuits on a finite ground set V of elements i
with weights wi. A subset I of V is independent if it contains no circuit. The
independence system problem (ISP) asks for an independent set of maximum
weight. An integer programming formulation of the ISP reads

max
∑

i∈V

wixi

(i)
∑

i∈C

xi ≤ |C| − 1 ∀ circuits C ∈ C

(ii) xi ∈ {0, 1} ∀ i ∈ V.

(ISP)

The set packing problem, the acyclic subdigraph problem, and the knapsack
problem are prominent examples of independence system problems, others,
such as the set covering problem, can be transformed into this setting, see,
e.g., Laurent (1989) [18] or Nobili & Sassano (1989) [25]. This means that, in
principle, these problems and their associated polytopes can be understood
completely in terms of the IS framework.

Facets for the independence system polytope PISP include generalized clique,
generalized cycle, generalized anticycle, and generalized antiweb inequalities,
see, e.g., Nemhauser & Trotter (1973) [24], Sekiguchi (1983) [32], Euler,
Jünger & Reinelt (1987) [11], Laurent (1989) [18], Nobili & Sassano (1989)
[25]. These results unify and/or extend individual results on special inde-
pendence system polytopes such as the matroid and the set packing poly-
tope (Nemhauser & Trotter (1973) [24], Laurent (1989) [18]), the knapsack
polytope (Padberg (1975) [27], Laurent (1989) [18]), the acyclic subdigraph
polytope (Euler, Jünger & Reinelt (1987) [11], Nobili & Sassano (1989) [25]),
etc.

On the algorithmic side, virtually no polynomial separation algorithms for
general classes of IS inequalities seem to be known. There are, on the con-
trary, many negative results on the separation of subclasses, e.g., the NP-
hardness of the separation of fence inequalities, which happen to be gen-
eralized clique inequalities for the acyclic subdigraph polytope, see Müller
(1996) [21]. To the best of our knowledge, the only tractable general IS
inequalities are those that happen to be polynomial time separable {0, 1

2}-
Chvátal-Gomory cuts, see below.

Transitive Packing Approach. An extended set system D ⊆ 2V ×V con-
sists of pairs

(
C, tr(C)

)
of (hyper)edges C ⊆ V and associated sets of tran-

2 Terminology 6

sitive elements tr(C) ⊆ V \ C. V is a finite ground set of elements i with
weights wi. A subset I of V is a transitive packing (TP) if it contains,
for every

(
C, tr(C)

)
such that C ⊆ I, at least one element from tr(C). The

transitive packing problem (TPP) is to find a transitive packing of maximum
weight. An integer programming formulation is

max
∑

i∈V

wixi

(i)
∑

i∈C

xi −
∑

i∈tr(C)

xi ≤ |C| − 1 ∀
(
C, tr(C)

)
∈ D

(ii) xi ∈ {0, 1} ∀ i ∈ V.

(TPP)

Every ISP with circuit system C is a TPP with extended set system D :=
{(C, ∅) : C ∈ C}. This means that transitive packing captures all inde-
pendence system problems. It subsumes, however, additional combinatorial
optimization problems that are not ISPs, among them the clique partitioning
problem, the max cut problem, the transitive acyclic subdigraph problem,
and the interval order problem, see Müller & Schulz (1996) [23], Schulz
(1996) [31].

All types of IS inequalities have been extended to classes of valid inequalities
for the transitive packing polytope PTPP. This unifies and/or generalizes re-
sults on inequalities for individual transitive packing and related polytopes,
among them the clique partitioning polytope and several subpolytopes of
the acyclic subdigraph polytope, namely, the transitive acyclic subdigraph
polytope, the interval order polytope of a digraph, and the linear order-
ing polytope, see Müller (1996) [21], Müller & Schulz (1995) [22]; Müller &
Schulz (1996) [23], Schulz (1996) [31].

While the general classes of TP inequalities are as difficult to separate as
their IS antecedents, polynomial time separation algorithms are known for
interesting subclasses of generalized cycle inequalities for special transitive
packing polytopes. Polynomial time separable instances of these weak odd
closed walk inequalities (later called weak generalized (k, 2)-cycle inequal-
ities) include (and generalize) well studied classes such as the 2-chorded
cycle and the odd wheel inequalities for the clique partitioning polytope,
see Müller (1996) [21], and most of the known types of inequalities for the
linear ordering polytope, see Müller & Schulz (1995) [22]. Polynomial time
separation of weak odd closed walk inequalities carries over to these classes.

{0, 1
2}-Chvátal-Gomory Cuts. This concept applies to integer linear sys-

tems

Ax ≤ b, x ∈ Zn, (IP)

3 The Acyclic Subdigraph and the Linear Ordering Problem 7

where A ∈ Zm×n and b ∈ Zm. A {0, 1
2}-Chvátal-Gomory cut for IP is an

inequality of the form

λTAx ≤ ⌊λTb⌋,

where λTA ∈ Zn and λ ∈ {0, 1
2}m, hence the name. Separation of {0, 1

2}-
Chvátal-Gomory cuts, although NP-hard in general, is polynomial in im-
portant cases, e.g., when the system IP has at most two odd coefficients per
row , see Caprara & Fischetti (1996) [5].

LU weakening is a way to proceed when the system IP does not have this
property. We may assume that IP contains the bounds 0 ≤ x ≤ u, u ∈
(Z ∪ {∞})n. Denote by Oi := {1 ≤ j ≤ n : aij odd } the index set of
the odd coefficients in row i for i = 1, . . . , m. With each row i of IP with
|Oi| ≥ 3 one associates 2|Oi|(|Oi|−1)/2 (weaker) inequalities by adding upper
and lower bound constraints

(Ai·x ≤ bi) +
∑

j∈Li

(−xj ≤ 0) +
∑

j∈Ui

(xj ≤ uj),

where (Li, Ui) runs through all possible partitions of Oi \{k, ℓ}, for all index
pairs of odd coefficients k, ℓ ∈ Oi, k 6= ℓ. Note that all of these so-called
LU weakenings of row i have exactly 2 odd coefficients. Let IP′ be the
system that arises from IP by replacing each row with |Oi| ≥ 3 by all its LU
weakenings. IP′ has, in general, an exponential number of rows. Caprara
& Fischetti (1996) [5], however, have shown that one can separate in time
polynomial in the encoding length of the original system IP over all {0, 1

2}-
Chvátal-Gomory cuts that can be obtained from its LU weakening IP′.

Well known classes of inequalities for combinatorial optimization problems
including the clique partitioning problem, the acyclic subdigraph problem,
and the asymmetric travelling salesman problem are {0, 1

2}-Chvátal-Gomory
cuts from appropriate IP formulations or their LU weakenings. Whenever
IP has polynomial size, these cuts can be separated in polynomial time. This
applies, among others, to the 2-chorded cycle and the odd wheel inequalities
for the clique partitioning polytope, and to a large class of facet defining
Möbius ladder inequalities for the linear ordering polytope.

3 The Acyclic Subdigraph and the Linear Order-

ing Problem

Our aim in this section is to construct a set packing relaxation of the acyclic
subdigraph and the linear ordering problem in a space of exponential dimen-
sion. It will turn out that clique and odd cycle inequalities of this relaxation

3 The Acyclic Subdigraph and the Linear Ordering Problem 8

give rise to (and generalize) several classes of inequalities for the acyclic sub-
digraph and the linear ordering problem, namely, fence and Möbius ladder
inequalities. References are Grötschel, Jünger & Reinelt (1985) [14] for the
acyclic subdigraph problem and Grötschel, Jünger & Reinelt (1985) [15] for
the linear ordering problem, see also the monographs of Jünger (1985) [17]
and Reinelt (1985) [30].

The acyclic subdigraph and the linear ordering problem involve a complete
digraph Dn = (V, A) on n nodes with integer weights wa on its arcs a ∈ A.
An acyclic arc set in A contains no dicycle. The acyclic subdigraph problem
(ASP) asks for an acyclic arc set of maximum weight. Acyclic arc sets that
contain, for any pair of nodes i and j, either the arc ij or the arc ji, are called
tournaments. The linear ordering problem (LOP) is to find a tournament of
maximum weight. Integer programming formulations for the ASP and the
LOP read as follows:

max
∑

ij∈A

wijxij

(ii)
∑

ij∈C

xij ≤ |C| − 1 ∀ dicycles C ⊆ A

(iii) −xij ≤ 0 ∀ ij ∈ A
(iv) xij ≤ 1 ∀ ij ∈ A
(v) xij ∈ Z ∀ ij ∈ A

(ASP)

max
∑

ij∈A

wijxij

(i) xij + xji = 1 ∀ i, j ∈ V, i 6= j

(ii)
∑

ij∈C

xij ≤ |C| − 1 ∀ dicycles C ⊆ A : |C| = 3

(iii) −xij ≤ 0 ∀ ij ∈ A
(iv) xij ≤ 1 ∀ ij ∈ A
(v) xij ∈ Z ∀ ij ∈ A.

(LOP)

It can be shown that (ASP) is a relaxation of (LOP) and, even more, that
the linear ordering polytope PLOP is a face of the acyclic subdigraph polytope
PASP. In particular, all inequalities that are valid for PASP are also valid
for PLOP. Two such classes of inequalities for both the ASP and the LOP
are the k-fence and the Möbius ladder inequalities, see Grötschel, Jünger
& Reinelt (1985) [14].

A simple k-fence has disjoint sets of “upper” and “lower” nodes {u1, . . . , uk}
and {l1, . . . , lk} that are joined by a set of k pales P ↓

i := {uili}, i = 1, . . . , k.
The pales are oriented “downward”. The k-fence is completed by adding all
“upward” pickets P ↑

ij := {liuj} with the exception of the antiparallel pales.
A (general) k-fence is obtained from a simple one by repeated subdivision

3 The Acyclic Subdigraph and the Linear Ordering Problem 9

of arcs, replacing pale and picket arcs by dipaths. Figure 1 shows a simple
4-fence.

A Möbius ladder consists of an odd number 2k + 1 of dicycles C0, . . . , C2k

such that Ci and Ci+1 (indices taken modulo 2k + 1) have a dipath Pi in
common, see Figure 2.

Fences and Möbius ladders give rise to valid inequalities for PASP: For a
k-fence Fk and a Möbius ladder M of 2k + 1 dicycles we have

∑

ij∈Fk

xij ≤ |Fk| − k + 1 and
2k∑

i=0

∑

ij∈Ci\Pi

xij ≤
(

2k∑

i=0

|Ci \ Pi|
)

− (k + 1).

l1

u1 u2 u3 u4

l2

u1 u2 u3 u4

l3

u1 u2 u3 u4

l4

u1 u2 u3 u4

Figure 1: A 4-Fence.

C0C4

C1C3

C2

Figure 2: A Möbius Ladder of 5 Dicycles.

A Möbius ladder inequality as above has coefficients larger than one if an
arc is contained in more than one of the dipaths Ci \ Pi. In this situation
of arc repetition, there is a difference to Grötschel, Jünger & Reinelt (1985)
[14] original definition, where the coefficients take only values of zero and
one, the right hand side is smaller, and the Möbius ladder must meet a
number of additional technical requirements to support a valid inequality.
The definitions coincide if and only if there is no arc repetition.

We will show now that fences and Möbius ladders are cliques and odd cycles,
respectively, in an (exponential) conflict graph G(Dn) = (V, E). G has the
set of all acyclic arc sets of Dn as its nodes. We draw an edge uv between two
acyclic arc-set nodes u and v if their union contains a dicycle. In this case,
we say that u and v are in conflict, because they can not be simultaneously
contained in a solution to (ASP).

It is now easy to identify the fences and Möbius ladders with cliques and odd
cycles of G. To obtain a k-fence Fk, we look at the k acyclic arc sets F i

k that

consist of a pale P ↓
i and the pickets P ↑

ij that go up from li, for i = 1, . . . , k.

We call such a configuration a k-fork. Any two forks F i
k and F j

k, i 6= j,
are in conflict (they contain a dicycle). Hence, all of them together form

3 The Acyclic Subdigraph and the Linear Ordering Problem 10

l1

u1 u2 u3 u4

l2

u1 u2 u3 u4

l3

u1 u2 u3 u4

l4

u1 u2 u3 u4

F4

l1

u1 u2 u3 u4

F 1
4

l2

u1 u2 u3 u4

F 2
4

l3

u1 u2 u3 u4

F 3
4

l4

u1 u2 u3 u4

F 4
4

Figure 3: A Fence Clique of Forks.

a clique in G. Figure 3 illustrates this construction. Likewise, the Möbius
ladders correspond to odd cycles of conflicting dipaths, namely, the dipaths
Ci \ Pi, see Figure 4.

The next step to obtain the fence and the Möbius ladder inequalities from
the clique and odd cycle inequalities of the (antidominant of the) set packing

polytope

̂

P SSP(G) associated with the conflict graph G, is to construct a set
packing relaxation of the ASP. To this purpose, consider the function π :

C0C4

C1C3

C2

C0 \ P0C4 \ P4

C1 \ P1C3 \ P3

C2 \ P2

Figure 4: A Möbius Cycle of Dipaths.

3 The Acyclic Subdigraph and the Linear Ordering Problem 11

RA → RV defined as

πv(x) :=
∑

ij∈v

xij − (|v| − 1) ∀ acyclic arc sets v ∈ V. (1)

π(x) is integral for all integral x ∈ RA. Moreover, for every incidence vector
x ∈ PASP of an acyclic arc set supp(x) in Dn, we have that π(x) attains
its maximum value of one in component πv(x) if and only if v is contained
in supp(x). Since two conflicting acyclic arc sets can not simultaneously be
contained in supp(x), we have that

uv ∈ E ⇐⇒ πu(x) + πv(x) ≤ 1 ∀ x ∈ PASP ∩ ZA

and, by convexity, also for all x ∈ PASP. This argument proves that

̂

P SSP(G)
is a set packing relaxation of PASP in the sense that

Lemma 3.1 (Set Packing Relaxation of the ASP).

π (PASP) ⊆

̂

P SSP

(
G(Dn)

)
.

Note that it is not possible to replace

̂

P SSP with PI , because the components
of π can take negative values. More precisely, π(x) is in general not the

incidence vector of a stable set in

̂

P SSP(G), but max{0, π(x)}, with the
maximum taken in every component, is.

Lemma 3.1 allows us to expand an inequality aT π ≤ α which is valid for

̂

P SSP

into the inequality aT π(x) ≤ α which is valid for PASP. Our next theorem
states that, with this terminology, the fence and Möbius ladder inequalities
are expansions of clique and odd cycle inequalities, respectively.

Theorem 3.2 (Fence and Möbius Ladder Inequalities).
Let Dn be the complete digraph on n nodes, PASP the corresponding acyclic
subdigraph polytope, G the conflict graph associated with Dn, and

̂

P SSP(G)
the set packing relaxation of PASP.

(i) Every k-fence inequality for PASP is the expansion of a clique inequality

for

̂

P SSP(G).

(ii) Every Möbius ladder inequality for PASP is the expansion of an odd

cycle inequality for

̂

P SSP(G).

Proof. (i) Let Fk be a k-fence. The forks F i
k, i = 1, . . . , k, defined on page 9,

are acyclic arc sets and they form a clique in G, see the discussion on the
previous page. An expansion of the corresponding clique inequality yields

3 The Acyclic Subdigraph and the Linear Ordering Problem 12

the desired k-fence inequality:

k∑

i=1

πF i
k
(x) ≤ 1

⇐⇒
k∑

i=1

∑

ij∈F i
k

xij − (|F i
k| − 1)

 =
∑

ij∈Fk

xij − |Fk| + k ≤ 1

⇐⇒
∑

ij∈Fk

xij ≤ |Fk| − k + 1.

(ii) Let M be a Möbius ladder consisting of an odd number 2k + 1 of dicy-
cles C0, . . . , C2k such that Ci and Ci+1 have a dipath Pi in common. The
argument on page 10 showed that the dipaths Ci \ Pi form an odd cycle
of 2k + 1 acyclic arc sets in G. Expanding the corresponding odd cycle
inequality for

̂

P SSP(G), one obtains the Möbius ladder inequality for M :

2k∑

i=0

πCi\Pi
(x) ≤ k

⇐⇒
2k∑

i=0

∑

ij∈Ci\Pi

xij − (|Ci \ Pi| − 1)

 ≤ k

⇐⇒
2k∑

i=0

∑

ij∈Ci\Pi

xij ≤
(

2k∑

i=0

|Ci \ Pi|
)

− (k + 1).

Looking at the separation of Möbius ladder inequalities, we notice that the
construction that we just presented to prove Theorem 3.2 (ii) yields a class
of odd cycle of dipath inequalities that coincides with the Möbius ladder in-
equalities as defined in this paper and subsumes Grötschel, Jünger & Reinelt
(1985) [14] Möbius ladder inequalities without arc repetition. Generalizing
this class further by allowing the paths Ci \ Pi to intersect themselves on
nodes and/or arcs, i.e., by substituting in the definition of a Möbius ladder
on page 9 diwalk for dipath and closed diwalk for dicycle, we obtain an even
larger class of odd cycle of diwalk inequalities for the acyclic subdigraph
polytope. Note that these inequalities do in general not correspond to odd
cycles of conflicting acyclic arc sets in the graph G, because diwalks do not
have to be acyclic (they may contain dicycles). This obstacle can be over-
come by extending G in an appropriate way (including only certain relevant
diwalks). At this point, however, we do not want to enter this formalism
and defer the details of the extension to the proof of Theorem 3.3.

We can devise a polynomial time separation algorithm for odd cycle of diwalk
inequalities, even though the number of diwalks is, in fact, infinite and their

3 The Acyclic Subdigraph and the Linear Ordering Problem 13

length is not even bounded. The idea is to construct a most violated cycle
of diwalks out of properly interlinked longest diwalks. Suppose that M
is an odd cycle of diwalks (we want to denote these diwalks with a slight
extension of our notation by Ci \Pi) that induces a violated inequality, and
consider the diwalk Pi linking the two (successive) closed diwalks Ci and
Ci+1. Rearranging, we can isolate the contribution of Pi in the constraint
as

|Pi| −
∑

ij∈Pi

xij <
∑

j 6=i+1

(∑

ij∈Cj\Pj

xij − |Cj \ Pj |
)

+
∑

ij∈Ci+1\(Pi∪Pi+1)

xij − |Ci+1 \ (Pi+1 ∪ Pi)| + (k + 1).

(Here, all sets are supposed to be multisets. We have < because the con-
straint is, by assumption, violated.)

Replacing Pi with a diwalk P that has the same endpoints, but is shorter
with respect to the length function

|P | −
∑

ij∈P

xij =
∑

ij∈P

(1 − xij), (2)

we get a more violated cycle of diwalks inequality. If we think of any closed
diwalk Ci as being composed out of four diwalks, namely, the diwalk P 1

i :=
Pi that Ci has in common with the succeeding closed diwalk Ci+1, the diwalk
P 2

i from P 1
i ’s head to the diwalk P 3

i := Pi−1, that Ci has in common with
the preceding closed diwalk Ci−1, and the remaining diwalk P 4

i from P 3
i ’s

head to P 1
i ’s tail, the same argument holds for any of these diwalks. This

observation allows us to show

Theorem 3.3 (Polynomial Separability of Odd Cycle of Diwalk
Inequalities).
Let Dn be the complete digraph on n nodes and PASP the associated acyclic
subdigraph polytope. Suppose that x ∈ QA satisfies the dicycle and bound
constraints (ASP) (ii)–(iv). Then:

Odd cycle of diwalk inequalities violated by x can be separated in polynomial
time.

Proof. Using Dijkstra’s algorithm, we can compute a shortest diwalk P (u, v)
with respect to the length (2) from any node u to any node v of Dn. We can
assume these diwalks P (u, v) w.l.o.g. to be of polynomial length (actually we
could even assume them to be dipaths). This yields a polynomial number of
(2)-shortest diwalks of polynomial length and, moreover, (not every, but) a
most violated cycle of diwalks inequality will consist only of these shortest
diwalks.

3 The Acyclic Subdigraph and the Linear Ordering Problem 14

We can find a set of them forming an odd cycle of diwalks as follows. We
think of all diwalks P (u, v) as a possible common diwalk Pi of two successive
closed diwalks Ci and Ci+1 in a cycle of diwalks. To get the diwalks Ci \ Pi

as the pieces of the cycle, we compute for any two diwalks Pi and Pj the
(2)-shortest diwalk Pi〈Pj〉 that starts at Pi’s head, contains Pj , and ends
at Pi’s tail. Such a diwalk Pi〈Pj〉 will link (on Pj) properly with another
diwalk Pj〈Pk〉 to form a cycle of diwalks. Computation of the Pi〈Pj〉 can be
performed in polynomial time and yields, in particular, a polynomial number
of n(n−1)

(
n(n−1)−1

)
= O(n4) diwalks of polynomial length. Again, (not

every, but) a most violated cycle of diwalks inequality will consist only of
these diwalks Pi〈Pj〉.

We can construct a graph that has these diwalks Pi〈Pj〉 as its nodes with
node weights equal to the values

∑
ij∈Pi〈Pj〉

xij −
(
|Pi〈Pj〉| − 1

)
(see (1) on

page 11) and that has all edges of the form (Pi〈Pj〉,Pj〈Pk〉). A most violated
cycle of diwalks inequality corresponds to a most violated odd cycle inequal-
ity in the Pi〈Pj〉-graph. Note that this means, in particular, that there is
a most violated cycle of diwalks inequality that consists of a polynomial
number of diwalks, even though the total number of diwalks is infinite.

The node weights on an edge in the Pi〈Pj〉-graph never exceed one because
x satisfies the dicycle inequalities (ASP) (ii). Hence, we can find a most
violated odd cycle inequality there with the algorithm of Grötschel, Lovász
& Schrijver (1988) [16], Lemma 9.1.11.

Corollary 3.4 (Separation of Möbius Ladder Inequalities).
A superclass of the Möbius ladder inequalities can be separated in polynomial
time.

The same technique can be used for the separation of (general) k-fence in-
equalities for fixed, but arbitrary k. Note that one can not enumerate these
constraints because general k-fences can contain long dipaths. We sketch the
construction. Generalizing k-forks to k-forkings by allowing for arbitrary di-
walks as pales and pickets, we can construct classes of clique of k-forking
inequalities, or even k-forking orthonormal representation constraints, that
subsume the k-fence inequalities. Similar to the proof of Theorem 3.3, one
can show that not every, but a most violated clique of k-forkings inequal-
ity, or a most violated k-forking orthonormal representation constraint, will
consist of k-forkings that are solely composed from (2)-shortest pickets and
pales. For fixed k, these k-forkings can be enumerated in polynomial time
and turned into the nodes of a forking conflict graph of polynomial size that
has an edge for any two such k-forkings R1 and R2 that contain a closed
diwalk of the form “pale(R1)-picket(R1)-pale(R2)-picket(R2)”. Associating
a weight of x(R)− (|R| − 1) to each forking-node R (where R is a multiset),
we enumerate a most violated k-clique or use Grötschel, Lovász & Schrijver

3 The Acyclic Subdigraph and the Linear Ordering Problem 15

(1988) [16] techniques to separate orthonormal representation constraints.
These arguments prove

Theorem 3.5 (Separation of k-Fence Inequalities for Fixed k).
A superclass of the k-fence inequalities can be separated in polynomial time
for fixed, but arbitrary k.

Fence and Möbius ladder inequalities have been discussed in the contexts of
independence systems, transitive packings, and {0, 1

2} Chvátal-Gomory cuts
in the literature.

Before we start a comparison of results, we want to draw the readers atten-
tion to the following subtle difference between the ASP and the LOP. While
the length of the dicycles in a facetial Möbius ladder inequality without
node and arc repetition for the acyclic subdigraph polytope can be arbitrar-
ily large, the same constraint can only define a facet for the linear ordering
polytope if the length of each dicycle is either three or four, see Grötschel,
Jünger & Reinelt (1985) [14]. This characteristic is responsible for differences
in Möbius ladder separation between the LOP and the ASP. No complete
facet characterizations for Möbius ladders, neither for PASP nor for PLOP,
are known in the presence of node and/or arc repetition. Reinelt (1985)
[30], Definition 2.4.1 gave the best known sufficient conditions for a Möbius
ladder to be a facet of PLOP; the LOP literature focusses on these (Reinelt’s)
Möbius ladders.

Euler, Jünger & Reinelt (1987) [11] have shown that the (simple) fences
are generalized cliques of the independence system of acyclic arc sets of
a complete digraph, and that the Möbius ladders without node and arc
repetitions are generalized cycles of this IS. In both cases, their arguments
prove faceteness of the associated inequalities for PASP, but they do, per se,
not lead to separation algorithms.

Müller & Schulz (1996) [23] and Schulz (1996) [31] give similar results in
the context of transitive packing. They also show that general fences are
generalized cliques as well. A slight extension of their cutting plane con-
structions and inequality classes, with appropriate modifications to allow
for arc repetitions, would classify our cliques of forkings as “extended gen-
eralized cliques” and our cycles of diwalks as “extended weak generalized
(k, 2)-cycles”.

Müller (1996) [21] has proved that fence separation is NP-hard. Müller &
Schulz (1995) [22] and Schulz (1996) [31], extending results of Müller (1996)
[21], give a polynomial algorithm to separate a superclass (of so-called odd
closed walk inequalities) of the Möbius ladder inequalities of Reinelt (1985)
[30] for the linear ordering polytope.

Caprara & Fischetti (1996) [5] exhibit the Möbius ladder inequalities of

4 The Clique Partitioning Problem 16

Reinelt (1985) [30] for the linear ordering polytope as {0, 1
2} Chvátal-Gomory

cuts from an LU weakening of the system (LOP) (i)–(iv), which is of poly-
nomial size. This already establishes polynomial separability of this class.

To a limited extent, similar results hold for the separation of Möbius ladder
inequalities for the acyclic subdigraph polytope. Caprara & Fischetti (1996)
[5] separate a class of inequalities similar to Möbius ladder inequalities (their
cut (10)) that consists of {0, 1

2} Chvátal-Gomory cuts from an LU weakening
of the system (ASP) (ii)–(iv), where (ASP) (ii) is restricted to a polynomial
number of dicycle inequalities, e.g., those from dicycles of some arbitrary,
but bounded length. In case of arc repetition, Caprara & Fischetti (1996)
[5] cut (10) is stronger than a corresponding cycle of diwalks inequality
whenever the structure of the latter gives also rise to the former. Möbius
ladders with dicycles of arbitrary length, however, can not be separated in
this way.

4 The Clique Partitioning Problem

In this section, we investigate set packing relaxations of combinatorial op-
timization problems in connection with cuts: The clique partitioning, the
k-multicut, and the max cut problem. We will see that the 2-chorded cy-
cle inequalities for the clique partitioning polytope can be seen as cycles
of “lower” triangle inequalities. As a reference to the clique partitioning
problem, we suggest Grötschel & Wakabayashi (1990) [13], see also Wak-
abayashi (1986) [33], for the multicut and the max cut problem Deza &
Laurent (1997) [10].

The three cut problems of this section come up on a complete graph Kn =
(V, E) on n nodes with integer weights w : E → Z on its edges. The clique
partitioning problem (CPP) is to find a partition of V into an arbitrary
number k of cliques V = C1 ·∪ . . . ·∪ Ck (where ·∪ denotes a union of
disjoint sets), such that the sum of the weights of the edges that run between
different cliques is maximal. In other words, we are trying to find a multicut
δ(C1 : · · · : Ck) of maximum weight, where the number k of (non-empty)
members Ci of the clique partition C1 ·∪ . . . ·∪ Ck is arbitrary. One obtains
the k-multicut problem (k-MCP) from this formulation by restricting the
number of cliques to be less than or equal to some given number k, and the
max cut problem (MCP) by prescribing k = 2. Thus, any (max) cut is a
k-multicut (k ≥ 2), and any k-multicut comes from a clique partition. We
remark that the CPP is commonly stated in an equivalent version to find
a clique partition that minimizes the sum of the edge weights inside the
cliques.

Denote by V∆ the set of all ordered triples (i, j, k) ∈ V 3 of distinct nodes of

4 The Clique Partitioning Problem 17

Kn, such that, in particular, (i, j, k) forms a triangle. With this notation,
integer programs for the CPP and the k-MCP read

max
∑

ij∈E

wijxij

(ii) xij − xjk − xik ≤ 0 ∀ (i, j, k) ∈ V∆

(iii) −xij ≤ 0 ∀ ij ∈ E
(iv) xij ≤ 1 ∀ ij ∈ E
(v) xij ∈ Z ∀ ij ∈ E

(CPP)

max
∑

ij∈E

wijxij

(i)
∑

ij∈E(W)

xij ≤ |E(W)| − 1 ∀ W ⊆ V : |W | = k + 1

(ii) xij − xjk − xik ≤ 0 ∀ (i, j, k) ∈ V∆

(iii) −xij ≤ 0 ∀ ij ∈ E
(iv) xij ≤ 1 ∀ ij ∈ E
(v) xij ∈ Z ∀ ij ∈ E.

(k-MCP)

Inequalities (CPP) and (k-MCP) (ii) are called “lower” triangle inequalities
(their normal vectors are oriented “downward” such that the induced face is
on the “downside” of the polytope). Setting k to 2, inequalities (k-MCP) (i)
turn out to be the “upper” triangle inequalities xij + xjk + xik ≤ 2 for all
(i, j, k) ∈ V∆, and (2-MCP) is an integer programming formulation for the
max cut problem. For k = n, on the other hand, (k-MCP) (i) becomes void
and (n-MCP) coincides with (CPP). Hence, (CPP) is a relaxation of (k-
MCP) which in turn is a relaxation of (MCP) and the associated polytopes
PCPP, Pk−MCP, and PMCP satisfy

PCPP ⊇ Pk−MCP ⊇ PMCP.

In particular, any valid inequality for the clique partitioning polytope is also
valid for the k-multicut and the max cut polytope. One such family are the
2-chorded cycle inequalities of Grötschel & Wakabayashi (1990) [13].

A 2-chorded cycle is an odd cycle C of Kn together with its set of 2-chords C,
see Figure 5. The associated inequality states that

∑

ij∈C

xij −
∑

ij∈C

xij ≤ (|C| − 1)/2.

0

4

3

21

C

C

Figure 5: A 2-Chorded Cycle.

4 The Clique Partitioning Problem 18

We show next that the 2-chorded cycle inequalities arise from odd cycle in-
equalities of a set packing relaxation of the clique partitioning (or k-multicut
or max cut) problem. Our arguments establish the polynomial time sepa-
rability of this class in an alternative way to earlier proofs of Müller (1996)
[21] and Caprara & Fischetti (1996) [5].

The relaxation involves a “lower triangle” conflict graph G∆(Kn) = (V∆, E∆).
V∆ consists of all ordered triples (i, j, k) ∈ V 3 of distinct nodes of Kn, the
edges E of G are of the form (i, j, k)(l, i, j), (i, j, k)(l, j, i), (i, j, k)(l, i, k), and
(i, j, k)(l, k, i) (the meaning of this definition will become clear in a second).

i

j

(i, j, k)

k

+1 −1

0
i

j

(j, i, k)

k

+1 0

−1
i

j

(k, j, i)

k

−1 +1

0
i

j

(k, i, j)

k

−1 0

+1
i

j

(j, k, i)

k

0 +1

−1
i

j

(i, k, j)

k

0 −1

+1

Figure 6: Labeling Lower Triangles.

To construct a set packing relaxation of the clique partitioning problem with
this graph, we define a mapping π : RE → RV∆ as

π(i,j,k)(x) := xij − xjk ∀ ordered triples (i, j, k) ∈ V∆.

π(i,j,k)(x) is integral if x ∈ RE is integral. Moreover, for every multicut
x ∈ PCPP, the component π(i,j,k)(x) attains its maximum value of one if and
only if the nodes j and k belong to the same clique (xjk = 0), but node i
does not (xij = xik = 1). The reader may think of the triples (i, j, k) as
“edge-labelled triangles” as shown in Figure 6; then, it is easy to see that

uv ∈ E∆ ⇐⇒ πu(x) + πv(x) ≤ 1 ∀ x ∈ PCPP ∩ ZE

and thus for all x ∈ PCPP. In other words, E∆ was defined in such a way
that two triples are joined by an edge if and only if it is impossible that both
attain their maximum value of one under π simultaneously. This argument
shows that PI(G∆) is a “lower triangle” set packing relaxation of PCPP:

Lemma 4.1 (Set Packing Relaxation of the CPP).
π(PCPP) ⊆ PI

(
G∆(Kn)

)
.

The construction is called a “lower triangle set packing relaxation”, because
one obtains the components π(i,j,k)(x) = xij − xjk ≤ 1 of π from the lower
triangle inequalities (CPP) (ii) by setting xik = 1:

xij − xjk − xik ≤ 0 ⇐⇒ xij − xjk ≤ xik.

4 The Clique Partitioning Problem 19

We are now ready to state our result that the 2-chorded cycle inequalities
are expansions (see the definition on page 11) of odd cycle inequalities of̂

P SSP(G∆).

Theorem 4.2 (2-Chorded Cycle Inequalities).
Let Kn be the complete graph on n nodes, PCPP the corresponding clique
partitioning polytope, G∆ the lower triangle conflict graph, and

̂

P SSP (G∆)
the lower triangle set packing relaxation of PCPP.

Every 2-chorded cycle inequality for PCPP is the expansion of an odd cycle
inequality for

̂

P SSP (G∆).

0

4

3

21

C

C

0

1 2
−1

0

+1

v2

1 2

3

−1

0

+1

v3

0

1

4

0
+1

−1

v1

2

3

4

+1
−1

0

v4

0

4

3
+1

−10v0

Figure 7: An Odd Cycle of Lower Triangle Inequalities.

Proof. Let C ·∪ C be a 2-chorded cycle in Kn with node set {0, . . . , 2k}.
By definition, C = {ij : i = 0, . . . , 2k, j = i + 1} and C = {ij : i =
0, . . . , 2k, j = i + 2} (where indices are taken modulo 2k + 1).

Consider the 2k+1 triples vi := (i, i−2, i−1), i = 0, . . . , 2k (indices modulo
2k +1). One verifies that vivi+1 ∈ E are in conflict and form the edge set of
an odd cycle in G∆, see Figure 7 for an example. The associated odd cycle
inequality expands to the 2-chorded cycle inequality in question:

2k∑

i=0

π(i,i−2,i−1)(x) =
2k∑

i=0

x(i,i−2)−x(i−2,i−1) =
∑

ij∈C

xij−
∑

ij∈C

xij ≤ (|C|−1)/2.

Calling the expansions of odd cycle inequalities for

̂

P SSP(G∆) inequalities
from odd cycles of lower triangle inequalities, we obtain

Corollary 4.3 (Separation of Inequalities from Odd Cycles of Lower
Triangle Inequalities).
Let Kn be the complete graph on n nodes and PCPP the associated clique

5 The Set Packing Problem 20

partitioning polytope. Suppose x ∈ QE satisfies the constraints (CPP) (ii)–
(iv). Then:

Inequalities from odd cycles of lower triangle inequalities violated by x can
be separated in polynomial time.

Proof. The conflict graph G∆ has 6 ×
(
n
3

)
= O(n3) triple-nodes. Its size

is polynomial. The sum of the node weights on an edge never exceeds
one. Applying the algorithm of Grötschel, Lovász & Schrijver (1988) [16],
Lemma 9.1.11, we can find a most violated odd cycle inequality in G∆ in
polynomial time.

Corollary 4.4 (Separation of 2-Chorded Cycle Inequalities).
A superclass of the 2-chorded cycle inequalities can be separated in polyno-
mial time.”

Note that the conflicts between two successive triples vi = (i, i − 2, i − 1)
and vi+1 = (i + 1, i − 1, i) in a 2-chorded cycle stem from the common
edge connecting nodes i and i − 1, that has a coefficient of −1 in πvi+1

and 0 in πvi
. But conflicts arise also from common edges with +1 and

−1 coefficients. Thus, besides possible node/edge repetitions and the like,
odd cycle of lower triangle inequalities give rise to inequalities that do not
correspond to 2-chorded cycle inequalities.

Müller (1996) [21] obtained similar results in a transitive packing context.
He showed that the 2-chorded cycles belong to a larger class of odd closed
walk inequalities and gave a polynomial time separation algorithm.

Caprara & Fischetti (1996) [5] derived the 2-chorded cycle inequalities as
{0, 1

2} Chvátal-Gomory cuts from an LU weakening of the polynomial sized
system (CPP) (ii)–(iv), thereby proving their polynomial separability.

5 The Set Packing Problem

We have demonstrated in the examples of the preceding sections that cer-
tain combinatorial optimization problems have interesting set packing re-
laxations. Perhaps a bit surprising, we show now that the set packing prob-
lem itself also has interesting set packing relaxations! These considerations
yield alternative derivation and separation techniques for several classes of
wheel inequalities, including two classes introduced by Barahona & Mahjoub
(1994) [3] and Cheng & Cunningham (1997) [6], as well as a new class of
cycle of cycles inequalities. A survey on results for the set packing problem
can be found in Grötschel, Lovász & Schrijver (1988) [16].

5 The Set Packing Problem 21

The examples of this sections are based on a “rank” set packing relaxation
that we introduce now. Given a set packing problem (SSP) on a graph
G = (V, E), the associated conflict graph G = (V, E) of the relaxation
has the set V := {G[H] : H ⊆ V } of all node induced subgraphs of G
as its nodes. In order to define the set of edges, we consider the mapping
π : RV → RV defined as

πG[H](x) =
∑

i∈G[H]

xi−(α(G[H])−1) ∀ node induced subgraphs G[H] ∈ V,

where α(G[H]) denotes the rank, i.e., the maximum cardinality of a stable
set, of G[H]. We draw an edge between two subgraphs G[H] and G[W] if
there is no stable set in G such that its restrictions to G[H] and G[W] are
simultaneously stable sets of maximum cardinality in G[H] and G[W], i.e.,

G[H]G[W] ∈ E ⇐⇒ πG[H](x) + πG[W](x) ≤ 1 ∀ x ∈ PI(G) ∩ ZV .

Well known arguments show that

̂

P SSP(G) is a set packing relaxation of PI

in the exponential space RV:

Lemma 5.1 (Rank Set Packing Relaxation of the SSP).

π(PI) ⊆
̂

P SSP(G).

5.1 Wheel Inequalities

One method to derive polynomial time separable expansions of inequalities
from the rank relaxation is to consider subgraphs of G of polynomial size.
A natural idea is to restrict the set of nodes of G to

Vk := {G[H] : H ⊆ V : |H| ≤ k},

the node induced subgraphs G[H] of G with bounded numbers of nodes
|H| ≤ k for some arbitrary, but fixed bound k. The smallest interesting
case is k = 2, where G[H] (|H| ≤ 2) is either empty, a singleton, an edge,
or a coedge (complement of an edge). The odd cycle inequalities that one

obtains from this restricted relaxation

̂

P SSP(G[V2]) contain, among other
classes, the odd wheel inequalities of the set packing polytope.

A 2k + 1-wheel is an odd cycle C of 2k + 1 nodes {0 . . . , 2k}, say, plus an
additional node 2k + 1 that is connected to all nodes of the cycle C. C is
the rim of the wheel, node 2k + 1 is the hub, and the edges connecting the
node 2k +1 and i, i = 0, . . . , 2k, are called spokes. For such a configuration,
the following inequality holds:

5 The Set Packing Problem 22

kx2k+1 +

2k∑

i=0

xi ≤ k.
5

0

1
5

23

4
5

0

Figure 8: A 5-Wheel.

An odd wheel inequality can be obtained by a sequential lifting of the hub
into the odd cycle inequality that corresponds to the rim. This can be used
to construct a polynomial time separation algorithm for wheel inequalities
which tries all possible hubs. An alternative derivation is

Theorem 5.2 (Odd Wheel Inequalities).
Let G = (V, E) be a graph, PI the associated set packing polytope, G the

rank conflict graph, and

̂

P SSP(G) the rank set packing relaxation of PI .

Every odd wheel inequality for PI is the expansion of an odd cycle inequality
for

̂

P SSP(G[V2]).

5

0

1

23

4

0 v0

5
1

v1

2
v2

5

3
v3

4

v4

Figure 9: A Cycle of Nodes and Edges.

Proof. Consider a 2k+1 wheel with rim C = {0, . . . , 2k} and hub node 2k+1.
The subgraphs vi := G[{i, 2k+1}], i = 1, 3, . . . , 2k−1, induced by the spokes
with odd rim nodes, and the subgraphs vi = G[{i}], i = 0, 2, . . . , 2k, induced
by the even rim nodes, form an odd cycle in G, see Figure 9 (the original
wheel is on the left, the nodes of the conflict graph are right, the dotted edges
indicate conflicts). Expanding the associated odd cycle inequality yields the
wheel inequality:

2k∑

i=0

πvi(x) =
∑

i=1,3,...,2k−1

(xi + x2k+1) +
∑

i=0,2,...,2k

xi = kx2k+1 +
2k∑

i=0

xi ≤ k.

5 The Set Packing Problem 23

Proposition 5.3 (Separation of Inequalities from Odd Cycles of
Nodes, Edges & Coedges).
Let G = (V, E) be a graph and PI the associated set packing polytope. Sup-
pose x ∈ QV satisfies all edge constraints xi + xj ≤ 1, ij ∈ E, and the
bounds 0 ≤ xi ≤ 1, i ∈ V . Then:

Inequalities from odd cycles of nodes, edges, and coedges violated by x can
be separated in polynomial time.

We show now two examples of cycles of nodes, edges, and coedges that give
rise to facetial inequalities that do not correspond to odd wheels. The cycle
on the left side of Figure 10 consists of the nodes 0, 2, and 3 and the edges
(1, 5) and (4, 6), the one on the right of the edges (1, 6), (2, 7), (3, 8), and
(4, 9) and the coedge (0, 5). The associated inequalities are

x0 + (x5 + x1) + x2 + x3 + (x6 + x4) ≤ 2 ⇐⇒
6∑

i=0

xi ≤ 2

(x5 + x0 − 1) + (x6 + x1) + (x7 + x2) + (x8 + x3) + (x9 + x4) ≤ 2 ⇐⇒
9∑

i=0

xi ≤ 3.

6∑

i=0

xi ≤ 2

0

5
1

23

6
4 9∑

i=0

xi ≤ 3

0

5

1
6

2

7

3

8

4
9

Figure 10: Two Generalizations of Odd Wheel Inequalities.

Another generalization of odd wheel inequalities was given by Barahona &
Mahjoub (1994) [3] and Cheng & Cunningham (1997) [6]. They introduce
two classes of inequalities that have subdivisions of odd wheels as support
graphs, where each face cycle must be odd, see Figure 11. Formally, a
generalized 2k + 1-wheel consists of an odd number 2k + 1 of spoke(path)s
Si, i = 0, . . . , 2k, that all have one common endnode, the hub h. The
opposite endnodes of any two successive spokes Si and Si+1 (indices taken
modulo 2k + 1) are joined by a rim path Ri, i = 0, . . . , 2k, such that the
face cycle formed by Si, Ri and Si+1 is odd. Following for the remainder of
this subsection the terminology of Cheng & Cunningham (1997) [6], a spoke
is called even and odd if it has an even and odd number of edges (not of
nodes!), respectively. (We temporarily override here the node oriented parity
definition of the introduction for notational consistency with the literature.)

5 The Set Packing Problem 24

Let E and O be the endnodes of the even and odd spokes of an odd wheel W
of this kind with some number 2k+1 of faces, and let h be the hub. A wheel
inequality of type I states that

kxh +
∑

i∈W\{h}

xi +
∑

i∈E

xi ≤
|W | + |E|

2
− 1. (3)

A second variant of wheel inequalities (of type II, associated with the same
wheel) states that

(k + 1)xh +
∑

i∈W\{h}

xi +
∑

i∈O

xi ≤
|W | + |O| − 1

2
. (4)

We remark that these wheels do in general not arise from cycles of subgraphs
of bounded size because they contain potentially very long paths.

Theorem 5.4 (Odd Wheel Inequalities).
Let G = (V, E) be a graph, PI the corresponding set packing polytope, G the

rank conflict graph, and

̂

P SSP(G) the rank set packing relaxation of PI .

Every odd wheel inequality of type I and II for PI is the expansion of an odd
cycle inequality for

̂

P SSP(G).

0

1

2 3

0

4

5

6

0

7

6

8

0

9

0

10
11 2

hub h = 0
even spoke ends E = {2, 6}
odd spoke ends O = {4, 9, 10}

0

1

2 3

P0

0

4

5

6

P1

0

7

6

8
P2

0

9
P3

0

10
11 2

P4

Figure 11: A 5-Wheel of Type I and a 5-Cycle of Paths.

Proof. (i) Wheel inequalities of type I.

The idea of the proof is to obtain the wheel inequality (3) of type I as a
cycle of paths, namely, the paths

Pi := Si∪
{

Ri, if Si+1 is even

Ri \ Si+1, if Si+1 is odd

}
\
{
∅, if i is odd

{h}, if i is even

}
, i = 0, . . . , 2k,

5 The Set Packing Problem 25

see Figure 11. By definition, a path Pi consists of the spoke Si plus minus
the hub depending on i, and the full rim path Ri if the end node of the next
spoke (in clockwise order) is even, or the rim path Ri without the end of the
next spoke in case this spoke is odd. In this way, the even spoke ends, having
a coefficient of two in the wheel inequality, appear in two paths, the odd
spoke ends in one. (Recall that in this context a spoke was odd/even if it
contained an odd/even number of edges.) It is not hard to see that any two
successive paths Pi and Pi+1 are in pairwise conflict: The subpaths Pi \ {h}
with the hub removed are all odd and in pairwise conflict, and, likewise,
the hub is in conflict with any of these subpaths. The odd cycle inequality
corresponding to the paths Pi expands into the odd wheel inequality (3):

2k∑

i=0

πPi
(x) ≤ k

⇐⇒
k∑

i=0

∑

j∈P2i

xj − (|P2i| − 1)/2

 +

k−1∑

i=0

∑

j∈P2i+1

xj − (|P2i+1| − 2)/2

 ≤ k

⇐⇒ kxh +
∑

j∈W\{h}

xj +
∑

j∈E

xj −
|W | − 1 + k + |E| − (k + 1) − 2k

2
≤ k

⇐⇒ kxh +
∑

j∈W\{h}

xj +
∑

j∈E

xj ≤ |W | + |E| − 2k − 2

2
+ k =

|W | + |E|
2

− 1.

(Here, |Pi| denotes the number of nodes in path Pi).

0

1

2 3
4

0

4

50

7

6

8

9

0

9

10

0

10
11

hub h = 0
even spoke ends E = {2, 6}
odd spoke ends O = {4, 9, 10}

0

1

2 3
4

P0

0

4

5
P1

0

7

6

8

9

P2

0

9

10

P3

0

10
11

P4

Figure 12: A 5-Wheel of Type II and a 5-Cycle of Paths.

(ii) Wheel inequalities of type II.

The wheel inequalities (4) of type II can be derived in much the same way
as their relatives of type I. For the sake of completeness, we record the path

5 The Set Packing Problem 26

decomposition

Pi := Si∪
{

Ri, if Si+1 is odd

Ri \ Si+1, if Si+1 is even

}
\
{
∅, if i is even

{h}, if i is odd

}
, i = 0, . . . , 2k.

One can verify that, again, any two successive paths are in conflict. A final
calculation to expand the resulting odd cycle inequality yields the wheel
inequality (4) of type II:

2k∑

i=0

πPi
(x) ≤ k

⇐⇒
k∑

i=0

∑

j∈P2i

xj − (|P2i| − 1)/2

 +

k−1∑

i=0

∑

j∈P2i+1

xj − (|P2i+1| − 2)/2

 ≤ k

⇐⇒ (k + 1)xh +
∑

j∈W\{h}

xj +
∑

j∈O

xj −
|W | − 1 + (k + 1) + |O| − (k + 1) − 2k

2
≤ k

⇐⇒ (k + 1)xh +
∑

j∈W\{h}

xj +
∑

j∈O

xj ≤ |W | + |O| − 2k − 1

2
+ k =

|W | + |O| − 1

2
.

One can also derive polynomial time separation algorithms of much the same
flavour as for the odd cycle of diwalk inequalities; Cheng & Cunningham
(1997) [6] give such procedures.

5.2 A New Family of Facets for the Stable Set Polytope

The rank relaxation of the set packing problem offers ample possibilities to
define new classes of polynomially separable inequalities for the set pack-
ing problem. We discuss, as one such example, a class of cycle of cycles
inequalities.

The way to construct a cycle of cycles inequality is to link an odd num-
ber 2k + 1 of odd cycles C0, . . . , C2k to a circular structure, such that any
two successive cycles are in pairwise conflict, i.e., πCi

(x) + πCi+1
(x) ≤ 1

(indices taken modulo 2k + 1).

One way to do this is to select from each cycle Ci three successive nodes
Li ⊆ Ci that will serve as a part of the inter-cycle links yet to be formed.
The link Li has the property that πCi

(x) = 1 implies that at least one of
the nodes in Li is contained in the stable set supp(x), i.e.,

πCi
(x) = 1 =⇒

∑

j∈Li

xj ≥ 1.

5 The Set Packing Problem 27

If we make sure that any two successive links Li and Li+1 are joined by the
edge set of the complete bipartite graph K3,3, then the inequality

∑

j∈Li

xj +
∑

j∈Li+1

xj ≤ 1

holds for all incidence vectors x of stable sets in G. But then, the correspond-
ing two successive cycles Ci and Ci+1 are in conflict, i.e., πCi

(x)+πCi+1
(x) ≤

1, and the cycles Ci form an odd cycle in G, see Figure 13.

L0C0

L1

C1

L2

C2

L3

C3
L4

C4

Figure 13: A 5-Cycle of 5-Cycles.

Theorem 5.5 (Cycle of Cycles Inequality).
Let G = (V, E) be a graph and PI be the corresponding set packing polytope.
Let Ci, i = 0, . . . , 2k, be an odd cycle and Li ⊆ Ci, i = 0, . . . , 2k, a set of
three successive nodes in Ci. Assume further that Li and Li+1, i = 0, . . . , 2k,
are joined by a complete K3,3.

Then the following cycle of cycles inequality is valid for PI :

2k∑

i=0

∑

j∈Ci

xj ≤
2k∑

i=0

(|Ci| − 1)/2 − (k + 1).

5 The Set Packing Problem 28

Proof.

2k∑

i=0

πCi
(x) ≤ k

⇐⇒
2k∑

i=0

∑

j∈Ci

xj −
(
(|Ci| − 1)/2 − 1

)

 ≤ k

⇐⇒
2k∑

i=0

∑

j∈Ci

xj ≤
2k∑

i=0

(
(|Ci| − 1)/2 − 1

)
+ k =

2k∑

i=0

(|Ci| − 1)/2 − (k + 1).

A cycle of cycles inequality will in general not be facet inducing, for example,
if one of the cycles has a chord that does not join two nodes of its link. But
one can come up with conditions that ensure this property. The most simple
case is where the cycles Ci are holes, all node disjoint, and the only edges
that run between different holes belong to the links, i.e., we have a “hole of
holes”.

Theorem 5.6 (Facet Inducing Cycle of Cycles Inequalities).
If every cycle in a cycle of cycles inequality is a hole, all node disjoint, and
the only edges that run between different holes emerge from the links, then
the cycle of cycles inequality is facet inducing.

Proof. The proof is based on a sufficiency criterion for the faceteness of rank
inequalities by Chvátal (1975) [9]. It is based on the notion of critical edges
in a graph G = (V, E): An edge ij ∈ E is critical if its removal increases
G’s rank, i.e., if α(G− ij) = α(G)+1. The criterion states that if the graph
G∗ := (V, E∗) is connected, where E∗ is the set of critical edges of G, the
rank inequality

∑
i∈V xi ≤ α(G) is facet defining for PI(G). It is easy to see

that this condition holds in this case.

Theorem 5.7 (Separation of Cycle of Cycles Inequalities).
Let G = (V, E) be a graph and PI the associated set packing polytope. Sup-
pose x ∈ QV satisfies all bound, edge, and odd cycle constraints. Then:

Cycle of cycles inequalities violated by x can be separated in polynomial time.

Proof. The number of potential links Li is polynomial of order O(|V |3). We
set up a link graph, that has the links as its nodes; this device will, in a
second, turn out to be a subgraph of G. Two links are connected by an edge
if and only if they are joined by a K3,3. To assign weights to the links, we
calculate for each link Li the shortest even path Pi in G that connects the
two endpoints of the link (see, e.g., Barahona & Mahjoub (1985) [2] how to

References 29

find even paths); here, shortest means shortest with respect to the length
function

(1 − xi − xj)/2 ∀ edges ij ∈ E.

Li∪Pi forms an odd cycle Ci through Li. We set the weight of link Li to the
value πCi

(x), obtain the link graph as a subgraph of G[{Ci}] (some edges
that correspond to “non-link conflicts” are possibly missing), and detect a
violated odd cycle inequality in the link graph if and only if a violated cycle
of cycles inequality in G exists.

Acknowledgment. The work of the second author was partially supported by
the Gerhard Hess Forschungsförderpreis of the Deutsche Forschungsgemein-
schaft, the Kultusministerium Sachsen Anhalt, and an EU Donet Project.
We thank Adam Letchford, Akiyoshi Shioura, and four anonymous referees
for helpful suggestions and comments.

References

[1] E. Balas & W. Pulleyblank. The perfectly matchable subgraph
polytope of an arbitrary graph. Combinatorica 9:321–327, 1989. Cited
on page 2.

[2] F. Barahona & A. Mahjoub. On the cut polytope. Math. Program-
ming 36:157–173, 1985. Cited on page 28.

[3] F. Barahona & A. Mahjoub. Compositions of graphs and polyhedra
II: Stable sets. SIAM J. Discrete Math. 7:359–371, 1994. Cited on pages
2, 20, 23.

[4] C. Berge. Balanced matrices. Math. Programming 2:19–31, 1971.
Cited on page 1.

[5] A. Caprara & M. Fischetti. {0, 1
2}-Chvátal-Gomory cuts. Math.

Programming 74(3):221–235, 1996. Cited on pages 4, 7, 15, 16, 18, 20.

[6] E. Cheng & W. H. Cunningham. Wheel inequalities for stable set
polytopes. Math. Programming 77(3):389–421, 1997. Cited on pages 2,
20, 23, 26.

[7] S. Chopra & M. Rao. The steiner tree problem I: Formulations,
compositions, and extensions of facets. Math. Programming 64:209–
229, 1994. Cited on page 2.

[8] S. Chopra & M. Rao. The steiner tree problem II: Properties and
classes of facets. Math. Programming 64:231–246, 1994. Cited on page
2.

[9] V. Chvátal. On certain polytopes associated with graphs. J. Combin.
Theory Ser. B 18:138–154, 1975. Cited on page 28.

References 30

[10] M. Deza & M. Laurent. Geometry of Cuts and Metrics. Springer
Verlag, Berlin, 1997. Cited on pages 2, 16.

[11] R. Euler, M. Jünger & G. Reinelt. Generalizations of cliques,
odd cycles and anticycles and their relation to independence system
polyhedra. Math. Oper. Res. 12(3):451–462, August 1987. Cited on
pages 4, 5, 15.

[12] D. Fulkerson. Blocking and Anti-Blocking Pairs of Polyhedra. Math.
Programming 1:168–194, 1971. Cited on page 1.

[13] M. Grötschel & Y. Wakabayashi. Facets of the clique partitioning
polytope. Math. Programming 47(3):367–387, 1990. Cited on pages 2,
16, 17.

[14] M. Grötschel, M. Jünger & G. Reinelt. On the acyclic subgraph
polytope. Math. Programming 33:28–42, 1985. Cited on pages 2, 8, 9,
12, 15.

[15] M. Grötschel, M. Jünger & G. Reinelt. Facets of the linear
ordering polytope. Math. Programming 33:43–60, 1985. Cited on pages
2, 8.

[16] M. Grötschel, L. Lovász & A. Schrijver. Geometric Algorithms
and Combinatorial Optimization, vol. 2 of Algorithms and Combina-
torics. Springer Verlag, Berlin, 1988. ISBN 3-540-13624-X, 0-387-13624-
X (U.S.). Cited on pages 2, 4, 14, 15, 20.

[17] M. Jünger. Polyhedral Combinatorics and the Acyclic Subdigraph
Problem. Heldermann Verlag, Berlin, 1985. Cited on page 8.

[18] M. Laurent. A generalization of antiwebs to independence systems
and their canonical facets. Math. Programming 45:97–108, 1989. Cited
on pages 4, 5.

[19] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Dis-
crete Math. 2:253–267, 1971. Cited on page 1.

[20] L. Lovász & A. Schrijver. Cones of matrices and set-functions and
0-1 optimization. SIAM J. Optim. 1:166–190, 1991. Cited on page 2.

[21] R. Müller. On the partial order polytope of a digraph. Math. Pro-
gramming 73(1):31–49, 1996. Cited on pages 4, 5, 6, 15, 18, 20.

[22] R. Müller & A. S. Schulz. The interval order polytope of a digraph.
In E. Balas & J. Clausen, (Eds.), Integer Programming and Com-
binatorial Optimiziation, Proc. 4th Int. IPCO Conf., pp. 50–64, 1995.
Cited on pages 4, 6, 15.

[23] R. Müller & A. S. Schulz. Transitive packing. In W. H. Cun-

ningham, S. T. McCormick & M. Queyranne, (Eds.), Integer
Programming and Combinatorial Optimization, Proc. 5th Int. IPCO
Conf., pp. 430–444, 1996. Cited on pages 4, 6, 15.

[24] G. L. Nemhauser & L. E. Trotter, Jr. Properties of vertex packing

References 31

and independence system polyhedra. Math. Programming 6:48–61, 1973.
Cited on pages 4, 5.

[25] P. Nobili & A. Sassano. Facets and lifting procedures for the set
covering polytope. Math. Programming 45:111–137, 1989. Cited on
pages 4, 5.

[26] M. W. Padberg. On the facial structure of set packing polyhedra.
Math. Programming 5:199–215, 1973. Cited on pages 1, 2, 4.

[27] M. W. Padberg. A note on zero-one programming. Oper. Res. 23(4):
833–837, 1975. Cited on page 5.

[28] M. W. Padberg & T.-Y. Sung. An analytical comparison of differ-
ent formulations of the travelling salesman problem. Math. Program-
ming 52(2):315–357, 1991. Cited on pages 2, 5.

[29] W. Pulleyblank & F. Shepherd. Formulations for the stable set
polytope of a claw-free graph. In G. Rinaldi & L. Wolsey, (Eds.),
Integer programming and combinatorial optimization 3, Proc. of the 3rd
Int. IPCO Conf., pp. 267–279, 1993. Cited on page 2.

[30] G. Reinelt. The linear ordering problem: Algorithms and applications,
vol. 8 of Res. and Exposition in Math. Heldermann Verlag, Berlin, 1985.
Cited on pages 8, 15, 16.

[31] A. S. Schulz. Polytopes and Scheduling. PhD thesis, Technische Uni-
versität Berlin, 1996. Cited on pages 4, 6, 15.

[32] Y. Sekiguchi. A note on node packing polytopes on hypergraphs. Oper.
Res. Lett. 2(5):243–247, 1983. Cited on pages 4, 5.

[33] Y. Wakabayashi. Aggregation of Binary Relations: Algorithmic and
Polyhedral Investigations. PhD thesis, Universität Augsburg, 1986.
Cited on page 16.

Paper II

Combinatorial Packing Prob-

lems

R. Borndörfer.
Combinatorial packing problems.
In M. Grötschel, (Ed.), The Sharpest Cut – The Impact of Manfred Pad-

berg and His Work, pp. 19–32. SIAM, Philadelphia, 2004.

Abstract. This article investigates a certain class of combinatorial packing
problems and some polyhedral relations between such problems and the set
packing problem.

Mathematics Subject Classification (MSC 2000). 90C27, 90C57

Keywords. Packing problems, polyhedral combinatorics

1 Introduction

Packing constraints are one of the most common problem characteristics in
combinatorial optimization. They come up in problems of vehicle and crew
scheduling, VLSI and network design, and frequency assignment, see Frank
(1990) [16]; Padberg (1979) [39] for surveys. The pure form is the set pack-
ing or stable set problem (SPP) in a graph G = (V, E) with node weights
w; it asks for a maximum weight set of mutually non-adjacent nodes. This
problem has been studied extensively, and deep structural and algorithmic
results have been achieved in areas such as anti-blocking theory, the theory
of perfect graphs, perfect and balanced matrix theory, and semidefinite pro-
gramming, see Balas & Padberg (1976) [6]; Borndörfer (1998) [8]; Grötschel,
Lovász & Schrijver (1988) [20]; Nemhauser & Wolsey (1988) [34] for surveys.
There is, in particular, a substantial structural and algorithmic knowledge

32

1 Introduction 33

of the set packing polytope, with many classes of strong and polynomial
time separable inequalities such as odd hole, odd antihole, orthonormal rep-
resentation constraints and other classes, see Grötschel, Lovász & Schrijver
(1988) [20]; Nemhauser & Trotter (1973) [33]; Padberg (1973) [36]; Padberg
(1977) [38]; Trotter (1975) [45].

Several research directions try to translate some of these results to broader
settings. A first line investigates generalizations of set packing such as node
packing in hypergraphs, see Sekiguchi (1983) [42], independence systems, see
Euler, Jünger & Reinelt (1987) [13]; Laurent (1989) [26]; Nemhauser & Trot-
ter (1973) [33]; Padberg (1975) [37], transitive packing, see Müller (1996)
[30]; Müller & Schulz (1995) [31]; Müller & Schulz (1996) [32]; Schulz (1996)
[41], and mixed integer packing, see Atamturk, Nemhauser & Savelsbergh
(1998) [2]; Atamtrk, Nemhauser & Savelsbergh (2000) [3]. This work aims
at a unified polyhedral theory. A second direction is the theory of matrix
cuts, see Lovász & Schrijver (1991) [27], which generalizes the semidefinite
separation machinery that had been developed for the solution of the stable
set problem in perfect graphs, see Grötschel, Lovász & Schrijver (1988) [20],
to arbitrary 0/1 programs. A third approach is the construction of discrete
set packing relaxations, see Borndörfer & Weismantel (2000) [9]; Borndörfer
& Weismantel (2001) [10] and also Padberg & Sung (1991) [40]. This tech-
nique allows to transfer set packing inequalities and separation algorithms
to other combinatorial problems.

Our aim in this paper is to continue in this general direction. We con-
sider a class of combinatorial optimization problems of packing type where
a Dantzig-Wolfe decomposition gives rise to a canonical, yet exponential, set
packing formulation, namely, the formulation that one would use in a column
generation approach. This alternative formulation allows, at least in prin-
ciple, to understand combinatorial packing problems completely in terms of
set packing theory. We show that such Dantzig-Wolfe set packing formu-
lations of combinatorial packing problems have structural properties that
relate them to the original formulation and make them interesting sources
of cutting planes.

The article consists of two parts. In Section 2 we introduce the concept
of combinatorial packing. We give two examples of such problems, namely,
on packings of two stable sets in bipartite graphs and independent sets in
any number of matroids, which are naturally integral. Dantzig-Wolfe set
packing formulations of combinatorial packing problems are discussed in
Section 3. It is shown that such formulations give rise to cutting planes and
that the intersection graphs associated with Dantzig-Wolfe formulations of
combinatorial 2-packing problems are perfect.

2 Combinatorial Packing 34

2 Combinatorial Packing

We introduce in this section the notion of combinatorial packing. This
concept subsumes a variety of combinatorial optimization problems, among
them the Steiner tree packing problem, the multicommodity flow problem
with unit capacities, the multiple knapsack problem, and the coloring prob-
lem. It will turn out that for some problems of this type, namely, the
2-coloring problem in bipartite graphs and the matroid packing problem,
the integrality of the individual subproblems carries over to the packing
composition.

Consider a family of some number k of combinatorial optimization problems

(IPi) max ciTxi, M ixi ≤ bi, 0 ≤ xi ≤ 1, xi ∈ ZE , i = 1, . . . , k (1)

on the same ground set E. These are the individual problems. Associated
with each of them is an individual polytope P I

IPi = conv{xi ∈ {0, 1}E |
M ixi ≤ bi} and its fractional relaxation PIPi = {0 ≤ xi ≤ 1 | M ixi ≤ bi}.
An individual problem with the property P I

IPi = PIPi is called integral .

A packing is a collection of individual solutions x1, . . . , xk of IP1,. . . ,IPk, re-
spectively, such that each element of the ground set is contained in at most
one solution. The problem to find a maximum weight packing is the com-
binatorial packing problem (CPP) associated with the individual problems
IPi, i = 1, . . . , k. A CPP with k individual problems is a (combinatorial)
k-packing problem. The IP formulation of a CPP reads

(CPP) max
∑k

i=1 ciTxi

(i) M ixi ≤ bi, i = 1, . . . , k
(ii) xi ≥ 0, i = 1, . . . , k

(iii)
∑k

i=1 xi ≤ 1
(iv) xi ∈ ZE , i = 1, . . . , k.

(2)

We call CPP (iii) the packing constraints. It will be convenient to use

the notation xT = (x1T
, . . . , xkT

) and cT = (c1T
, . . . , ckT

). Likewise, we
shall view the ground set of a combinatorial k-packing problem as a disjoint
union ·⋃ Ei = E1 ·∪ . . . ·∪ Ek of copies of the ground sets of the individual
problems, where Ei is the copy of the ground set of problem IPi. Associated
with the CPP are finally the combinatorial packing polytope and its fractional
relaxation

PCPP = conv{x ∈ {0, 1} ·∪Ei | ∑k
i=1 xi ≤ 1, M ixi ≤ bi, i = 1, . . . , k}.

PCPP = {x ∈ [0, 1] ·∪Ei | ∑k
i=1 xi ≤ 1, M ixi ≤ bi, i = 1, . . . , k}. (3)

2 Combinatorial Packing 35

A CPP is integral if PCPP = PCPP. If all individual problems as well as
CPP itself are integral, we say that CPP is naturally integral .

2.1 Examples of Combinatorial Packing Problems

The Multicommodity Flow Problem with Unit Capacities involves
a supply digraph DS = (V, AS) and a demand digraph DD = (V, AD), both
on the same node set V . We denote an arc from a node s to a node t in
these digraphs by st. There are non-negative weights w ∈ QAS

+ on the arcs
AS of the supply digraph. A multiflow is a collection of pairwise arc disjoint
directed st-paths in DS , one for each arc st ∈ AD of the demand digraph.
The multicommodity flow problem with unit capacities (MCFP) asks for a
multiflow of minimum weight, see Ahuja, Magnanti & Orlin (1989) [1]; Deza
& Laurent (1997) [12]; Frank (1990) [16].

The MCFP is a combinatorial path packing problem. The individual prob-
lems are shortest path problems, one for each demand arc st ∈ AD:

min wTxst

xst(δ+(v)) − xst(δ−(v)) = es − et, ∀v ∈ V
0 ≤ xst ≤ 1

xst ∈ ZAS .

(4)

Combining the shortest path problems in a CPP adds the packing con-
straints

∑
st∈AS

xst ≤ 1 that model the edge disjointness of the paths.

The Steiner Tree Packing Problem involves a graph G = (V, E), some

number k of sets of terminal nodes T 1, . . . , T k ⊆ V , and non-negative edge
weights w1, . . . , wk ∈ QE

+. The Steiner tree packing problem (PST) is to find
a collection of Steiner trees S1, . . . , Sk spanning the terminals T 1, . . . , T k,
respectively, such that no two Steiner trees have an edge in common, see
Grötschel, Martin & Weismantel (1996) [21, 22, 23, 24]; Martin (1992) [29].
Note that terminal sets of two nodes will be joined by paths such that the
PST subsumes the MCFP.

The PST is a combinatorial packing problem. The individual problems, one
for each terminal set T i, i = 1, . . . , k, are Steiner tree problems

min wiTxi

xi(δ(W)) ≥ 1, ∀W ⊆ V : W ∩ T i 6= ∅ 6= (V \ W) ∩ T i

0 ≤ xi ≤ 1
xi ∈ ZE .

(5)

Combining the problems in a CPP forces the Steiner trees to be edge disjoint.

2 Combinatorial Packing 36

The Generalized Assignment Problem deals with a set of jobs J to
be processed by a set of machines I with capacities αi. There are resource
demands ai

j and profits wi
j for the assignment of job j to machine i. The

generalized assignment problem (GAP) is to find a maximum profit assign-
ment of jobs to machines, see Gottlieb & Rao (1990) [18]; Martello & Toth
(1990) [28]. The special case where the resource demands and availabilities
do not depend on the machines, i.e., when ai = ak and αi = αk for all
i, k ∈ I, is known as the multiple knapsack problem (MKP), see Ferreira
(1994) [14]; Ferreira, Martin & Weismantel (1996) [15]; Martello & Toth
(1990) [28].

The GAP models combinatorial packings of job-machine assignments. There
is an individual knapsack problem for each of the machines i ∈ I

max wiTxi, aiTxi ≤ αi, 0 ≤ xi ≤ 1, xi ∈ ZJ . (6)

The packing constraints forbid assignments of jobs to more than one ma-
chine.

The k-Coloring Problem involves a graph G = (V, E) with node weights
w ∈ QV

+ and some number k ∈ N of colors. The k-coloring problem (k-
COL) asks for a collection of k mutually disjoint stable sets (color classes)
of maximum weight, see Toft (1995) [44].

A combinatorial packing formulation of the k-coloring problem is based on
k individual stable set problems

max wTxi, xi
u + xi

v ≤ 1 ∀uv ∈ E, 0 ≤ xi ≤ 1, xi ∈ ZV , (7)

one for each color 1 ≤ i ≤ k. The packing constraints
∑k

i=1 xi ≤ 1 guarantee
that each node can take at most one color.

We finish our list of examples here and remark that, in the same way, graph
decomposition problems, constrained path packing problems that arise, e.g.,
in vehicle routing and duty scheduling, and a variety of other problems are
also combinatorial packing problems.

2.2 Natural Integrality

The example of the multicommodity flow problem shows that combinatorial
packing problems can be hard even if all of the individual subproblems are
easy and, in particular, even if complete descriptions of the individual poly-
hedra are explicitly known. There are, however, cases where the integrality
of the individual problems carries over to the entire combinatorial packing
problem. We give now two examples of combinatorial packing problems that
have this natural integrality property.

2 Combinatorial Packing 37

The Bipartite 2-Coloring Problem (BIP-2-COL) is the special case
of the 2-coloring problem where G = (V, E) is a bipartite graph G. The
individual problems are two set packing problems in this graph G. Their IP
formulations can be stated as

max wTxi, Axi ≤ 1, xi ≥ 0, xi ∈ ZV , (i = 1, 2) (8)

where A = A(G) denotes the edge-node incidence matrix of G. It is well
known (see, e.g., Nemhauser & Wolsey (1988) [34], III.1., Corollary 2.9) that
the edge-node incidence matrices of bipartite graphs are totally unimodular.
Hence, the individual coloring problems are integral.

The IP formulation of the entire bipartite 2-coloring problem reads

(BIP-2-COL) max wTx1 + wTx2

(i) x1
u + x1

v ≤ 1 ∀uv ∈ E

(ii) x2
u + x2

v ≤ 1 ∀uv ∈ E

(iii) x1
v + x2

v ≤ 1 ∀v ∈ V

(iv) x1
v, x

2
v ≥ 0 ∀v ∈ V

(v) x1
v, x

2
v ∈ {0, 1}V ∀v ∈ V.

(9)

Propositiondd 2.1. The bipartite 2-coloring problem is naturally integral.

Proof. We show that the constraint matrix of the bipartite 2-coloring prob-
lem is totally unimodular. This is easily done be noting that BIP-2-COL can
again be seen as a set packing problem in a larger bipartite graph H. Using
the convention to view the ground set of a combinatorial packing problem
as a disjoint union of the ground sets of the individual problems, this graph
H has as its node set the ground set V 1 ·∪ V 2 of the bipartite 2-coloring
problem, where V 1 is a copy of the node set of the first individual coloring
problem, and V 2 a copy of the second node set. For every constraint BIP-
2-COL (i), there is an edge u1v1 between the first copies u1 and v1 of nodes
u and v; this edge is a copy of the respective edge uv in the first individual
problem. Analogously, there is an edge u2v2 between the second copies u2

and v2 of nodes u and v for every constraint BIP-2-COL (ii); this edge is a
copy of the respective edge uv in the second individual problem. The graph
H contains thus two disjoint copies G1 and G2 of G, one on the nodes V 1,
the other one the nodes V 2. The only additional edges between these copies
come from the constraints BIP-2-COL (iii). There is an edge v1v2 that joins
the two copies of each original node for every packing constraint.

Let X ·∪ Y be a bipartition of the nodes of G. The nodes of H can be par-
titioned into corresponding copies X1, Y 1, X2, and Y 2. Edges run between

2 Combinatorial Packing 38

X1 X2

Y 1 Y 2

G1

· · ·

· · ·

G2

· · ·

· · ·

Figure 1: Bipartite 2-Coloring.

X1 and Y 1 (first copy G1 of G), X2 and Y 2 (second copy G2 of G), X1 and
X2 (packing constraints on the copies of X), and Y 1 and Y 2 (packing con-
straints on the copies of Y), see Figure 1. It follows that (X1∪Y 2)∪(X2∪Y 1)
is a bipartition of H.

The Matroid Packing Problem involves some number k of not nec-
essarily identical matroids on the same ground set E with not necessarily
identical non-negative weights w1, . . . , wk ∈ QE

+. The matroid packing prob-
lem (MPP) is to find a maximum weight collection of independent sets, one
from each matroid, such that no two independent sets intersect on a common
element.

The matroid packing problem can be stated as the following integer program:

(MPP) max
∑

wiTxi

(i) xi(F) ≤ ri(F) ∀F ⊆ E, i = 1, . . . , k

(ii) xi ≥ 0 i = 1, . . . , k

(iii)
∑

xi ≤ 1

(iv) xi ∈ {0, 1}E i = 1, . . . , k.

(10)

Here, ri denotes the rank function of matroid i. It is known (see, e.g.,
Nemhauser & Wolsey (1988) [34], Theorem 3.5) that the individual matroid
problems are integral.

Propositiondd 2.2. The matroid packing problem is naturally integral.

Proof. The reason for the natural integrality of the matroid packing problem
is that this problem can be reinterpreted as a matroid intersection problem
involving two matroids. Both of these matroids have E1 ·∪ . . . ·∪ Ek as
their ground set. The first matroid is simply the disjoint union of the k

3 Dantzig-Wolfe Set Packing Formulations 39

individual matroids. The second matroid is also a disjoint union of k ma-
troids, namely, the |E| uniform matroids that are induced by the packing
constraints MPP (iii). Consider the packing constraint

∑k
i=1 xi

e ≤ 1 for ele-
ment e. The matroid that is associated with this constraint has as its ground
set the set {e1, . . . , ek} of copies of the element e. The non-trivial indepen-
dent sets of this matroid are precisely the one-element sets {e1}, . . . , {ek}.
The disjoint union of these |E| uniform matroids forms the second matroid.

By definition, MPP (i) and (ii) are a complete polyhedral description for the
first matroid. Trivially, MPP (iii) and (ii) are also a complete polyhedral
description of the second matroid. It is, however, well known (see, e.g.,
Nemhauser & Wolsey (1988) [34], III.3., Theorem 5.9) that the union of two
such systems is a complete description of the polytope that is associated
with the intersection of two matroids.

Having seen two examples of naturally integral CPPs, a “converse” question
that comes up is whether the integrality of the individual problems is a
necessary condition for the natural integrality of a CPP. This is true if the
individual problems are down monotone. The following example shows,
however, that this is not true in general.

Exampledd 2.3. Consider the combinatorial 2-packing problem

max x1 + x2 + x3 + x4

x1 + x2 ≥ 1
2x1 + 2x2 ≤ 3

x3 + x4 ≥ 1
2x3 + 2x4 ≤ 3

x1, x2, x3, x4 ≥ 0
x1 + x3 ≤ 1

x2 + x4 ≤ 1
x1, x2, x3, x4 ∈ Z.

(11)

The individual problems produce the polytopes PIPi = conv
(

0 1
2

1 1

1 1 0 1
2

)
, i =

1, 2, which have fractional vertices. The entire CPP is, however, integral;

its associated polytope is PCPP = conv
(

0 1 1 0
1 0 0 1

)T
= PCPP.

3 Dantzig-Wolfe Set Packing Formulations

Combinatorial packing problems give rise to a natural alternative set pack-
ing formulation via Dantzig-Wolfe decomposition. This connection creates a
possibility to study combinatorial packing problems in terms of set packing

3 Dantzig-Wolfe Set Packing Formulations 40

theory. We show in this section that such Dantzig-Wolfe set packing for-
mulations have interesting structural properties that make them potentially
useful sources of cutting planes for combinatorial packing problems.

Consider a combinatorial packing problem (2). Let M i ∈ {0, 1}E×Vi
be a

matrix whose columns are the incidence vectors of the 0/1 solutions of the
individual problem IPi, i = 1, . . . , k. Let us identify the index v ∈ Vi of such
a column M i

·v with the set associated with that column, i.e., we view v as a
subset of the ground set Ei whose incidence vector is M i

·v (i.e., χv = M i
·v).

A Dantzig-Wolfe decomposition subject to the substitutions

xi = M iλi, 1Tλi = 1, λi ≥ 0, λi ∈ {0, 1}Vi

, i = 1, . . . , k, (12)

transforms (2) into the form

(XPP) max
∑k

i=1 wiTM iλi

(i) 1Tλi = 1, i = 1, . . . , k

(ii)
∑k

i=1 M iλi ≤ 1
(iii) λi ≥ 0, i = 1, . . . , k

(iv) λi ∈ {0, 1}Vi
, i = 1, . . . , k.

(13)

We call XPP the Dantzig-Wolfe formulation associated with CPP. Con-
straints XPP (i) are the convexity constraints, and constraints XPP (ii) are

the packing constraints. Introducing the notation λT = (λ1T
, . . . , λkT

), M =

(M1, . . . , Mk), C = diag(1T), wT = (w1T
, . . . , wkT

), and V = V1 ·∪ . . . ·∪ Vk,
XPP becomes

(XPP) max wTMλ, Cλ = 1, Mλ ≤ 1, λ ≥ 0, λ ∈ {0, 1}V. (14)

XPP is closely related to the set packing problem

(SPP) max wTMλ, Cλ ≤ 1, Mλ ≤ 1, λ ≥ 0, λ ∈ {0, 1}V. (15)

In fact, XPP arises from SPP by forcing the relaxed convexity constraints
Cλ ≤ 1 to equality. This is, however, not an essential change. XPP can, e.g.,
be transformed into the form SPP by adding a suitably large constant M ·1
to the objective. As a (modified) packing problem, XPP can be restated
in graph theoretical language in terms of the intersection graph G = (V, E)

that is associated with the constraint matrix A =
(

C
M

)
. This graph G has

a node v ∈ V = V1 ·∪ . . . ·∪ Vk for each individual 0/1 solution. There is an
edge uv for any two individual solutions u and v that can not simultaneously
be contained in a packing. This is the case when either u and v are both
solutions of the same individual problem such that the columns A·u and A·v

intersect on a convexity row, or when u and v contain both the same element

3 Dantzig-Wolfe Set Packing Formulations 41

e ∈ E, i.e., A·u and A·v intersect on the packing row associated with the
element e. In terms of G, XPP is the problem to find a maximum weight
packing in G such that each “convexity clique” is covered exactly once.
This connection to set packing has polyhedral consequences. Consider the
polytopes

P I
XPP = {λ ∈ {0, 1}V : Cλ = 1, Mλ ≤ 1}

P=
I = {λ ∈ {0, 1}V : Aλ ≤ 1} (16)

associated with XPP and SPP and their respective fractional relaxations
PXPP and PSPP. The polytope P=

I is the set packing polytope associated
with G and P I

XPP is a face of P=
I . The combinatorial packing polytope can

be obtained from P I
XPP by projection.

Propositiondd 3.1. PCPP is the projection of the “extended set packing
polytope”

{x | x = diag(M i)λ, λ ∈ P I
XPP} (17)

on the space of the x-variables.

Proposition 3.1 states that all facets of the combinatorial packing polytope
are projections of set packing inequalities in some high dimensional space.
This means that it is, at least in principle, possible to study combinatorial
packing problems in terms of set packing theory. We remark that such a
study is necessary because a Dantzig-Wolfe formulation per se does only con-
tain information on the individual problems, but not on packings. Namely,
Proposition 3.1 implies the following relationship between CPP and XPP
(see, e.g., Sol (1994) [43], Section 2.3 for essentially the same result):

Corollarydd 3.2. Let CPP be a combinatorial packing problem with integral
individual problems and let XPP be its Dantzig-Wolfe formulation. Then:

The value of the LP relaxation of CPP is equal to the value of the LP relax-
ation of XPP.

For combinatorial packing problems with integral individual problems such
as the multicommodity flow problem, one can therefore not gain much from
just restating the problem in column generation form.

The natural way to exploit Proposition 3.1 algorithmically is by using lift-
and-project techniques, see Balas (1979) [4]; Balas, Ceria & Cornuéjols (1993)
[7]. Suppose we want to check some point x for membership in PCPP. Sup-
pose also for the moment that we have a complete description Dλ ≤ d of

3 Dantzig-Wolfe Set Packing Formulations 42

P I
XPP at hand. Then, by the Farkas lemma,

x 6∈ PCPP

⇐⇒ {λ | Dλ ≤ d, diag(M i)λ = x} = ∅
⇐⇒ ∃a, b : aTD + bTdiag(M i) ≥ 0, a ≥ 0, aTd + bTx < 0.

(18)

However, as 0 ≤ aTDλ+bTdiag(M i)λ ≤ aTd+bTx is valid for any x ∈ PCPP,
the inequality

aTd + bTx ≥ 0 (19)

is a valid inequality for PCPP that is violated by x; such a cut can be deter-
mined by solving an appropriate LP (involving an additional normalization
constraint to bound the recession cone).

Ignoring the technical difficulty of this projection process for the moment,
the success of the procedure clearly depends on the quality of the description
Dλ ≤ d for P I

XPP. Knowledge of a complete description of P I
XPP is surely

an elusive goal in general. There are, however, significant cases where such
a complete description is, in some sense, in fact available.

Propositiondd 3.3. The intersection graph associated with the Dantzig-
Wolfe formulation of a combinatorial 2-packing problem is perfect.

V
1

V
1

V2 V2

G

· · ·

· · ·

G

· · ·

· · ·

Figure 2: Intersection Graph of a Combinatorial 2-Packing Problem.

Proof. We show that G is the complement of a bipartite graph. The nodes of
G consist of the two sets V = V1 ·∪ V2 that correspond to the solutions of the
first and the second individual problem, respectively. As there can be only
one solution of each individual problem in a packing, the nodes of V1 and
V2 form two cliques in G. These cliques are joined by the remaining edges,
connecting solutions that have elements from the ground set in common, see
Figure 2. In the complement graph G, the sets V1 and V2 form two stable
sets. Therefore, they induce a bipartition in G, and hence G is perfect.

3 Dantzig-Wolfe Set Packing Formulations 43

Proposition 3.3 shows that all facets of combinatorial 2-packing polytopes
are projections of clique inequalities, see Padberg (1973) [36]. The clique
inequalities are subsumed by the larger class of orthonormal representation
constraints which can be separated in polynomial time, see Grötschel, Lovász
& Schrijver (1988) [20]. Proposition 3.3 suggests that such separation tech-
niques, combined with lift-and-project methods, are potentially useful tools
for the solution of combinatorial 2-packing problems. We remark that such
techniques can, however, not lead to polynomial time algorithms for gen-
eral combinatorial 2-packing problems, because this class contains NP-hard
problems such as the 2-commodity flow problem with unit capacities, see
Garey & Johnson (1979) [17], Problem ND38.

A practical use of lift-and-project cutting planes from Dantzig-Wolfe for-
mulations can not be that one builds up a larger and larger description of
P I

XPP in the exponential space RV, adding more and more cutting planes and
columns. Doing so would be equivalent to a combined column generation
and cutting plane approach to combinatorial packing problems with its well-
known difficulties. Instead, we propose to accumulate cutting planes only in
the compact original space R ·∪Ei

, and to use the Dantzig-Wolfe formulation
solely as a separation tool.

The straightforward way to do that is as follows. Suppose we are given a
point x to be tested for membership in PCPP. The first step is to express
x as a convex combination of individual solutions in the form xi = M iλi,
i = 1, . . . , k. By Caratheodory’s theorem, this can be done in such a way
that the resulting multipliers λi have at most |E| + 1 nonzero components
each. We then set up a subproblem of XPP that consists of the columns that
appear in these convex combinations, apply whatever separation algorithms
we have at hand, and add the resulting cuts. Projecting back, we have to be
careful that our cut is dual feasible for the global XPP, i.e., we potentially
have to lift a number of additional variables (this can happen because there
may be more than one way to express x as a convex combination of 0/1
solutions). When this process results in a violated cutting plane for PCPP,
we add it to our current description of PCPP, resolve, and iterate. The
procedure that we have just sketched is admittedly expensive, but it points
into a direction of a possible future algorithmic use of structural results such
as Proposition 3.3.

We close this paper with an example that is supposed to avoid a possible
misunderstanding. Proposition 3.3 does not make a statement that would
relate perfection of the constraint matrix A of a Dantzig-Wolfe formulation
or its intersection graph G with natural integrality of the original formula-
tion. The obstacle that prevents us from establishing such a connection is
that the LP relaxation of a Dantzig-Wolfe formulation can have fractional
vertices that correspond to integral packings.

3 Dantzig-Wolfe Set Packing Formulations 44

Exampledd 3.4. Consider the following combinatorial packing problem
with two uniform matroids of rank 2.

max x1
1 + x1

2 + x1
3 + x2

1 + x2
2 + x2

3

x1
1 + x1

2 + x1
3 ≤ 2

x2
1 + x2

2 + x2
3 ≤ 2

x1
1 + x2

1 ≤ 1
x1

2 + x2
2 ≤ 1

x1
3 + x2

3 ≤ 1
x1

1 x1
2, x1

3, x2
1, x2

2, x2
3 ≥ 0

x1
1 x1

2, x1
3, x2

1, x2
2, x2

3 ∈ Z.

(20)

By Proposition 2.2, the problem is naturally integral. The Dantzig-Wolfe
formulation is

max (0, 1, 1, 1, 2, 2, 2)λ1 + (0, 1, 1, 1, 2, 2, 2)λ2

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

(
λ1

λ2

)
= 1
= 1
≤ 1
≤ 1
≤ 1

λ1, λ2 ≥ 0
λ1, λ2 ∈ Z7.

(21)

The constraint matrix A of this formulation is not perfect. The perfect
clique matrix associated with the intersection graph of the Dantzig-Wolfe
formulation is

1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

. (22)

This matrix adds 13 missing cliques to A. The clique in the last row contains
the highlighted columns of A.

References 45

Similarly, one can verify that the 3-packing problem associated with three
uniform matroids of rank 2 has an imperfect intersection graph.

Acknowledgement. I would like to thank an anonymous referee for help-
ful comments and suggestions, among them the idea to investigate the ques-
tion behind Example 2.3. I would also like to thank Robert Weismantel and
Alexander Martin for helpful comments.

References

[1] R. K. Ahuja, T. L. Magnanti & J. B. Orlin. Network Flows,
chap. IV, pp. 211–369. In vol. 1 of Nemhauser, Rinnooy Kan & Todd
(1989) [35], 1989. Cited on page 35.

[2] A. Atamturk, G. L. Nemhauser & M. W. P. Savelsbergh. Con-
flict graphs in solving integer programming problems. European J. Oper.
Res. 121(1):40–55, 1998. Cited on page 33.

[3] A. Atamtrk, G. L. Nemhauser & M. W. P. Savelsbergh. The
mixed vertex packing problem. Math. Programming 89:2000, 2000.
Cited on page 33.

[4] E. Balas. Disjunctive programming. Ann. Discrete Math. 5:3–51,
1979. Cited on page 41.

[5] E. Balas & J. Clausen, (Eds.). Integer Programming and Combina-
torial Optimiziation, Proc. 4th Int. IPCO Conf., 1995. Cited on page
47.

[6] E. Balas & M. Padberg. Set partitioning: A survey. SIAM Rev. 18:
710–760, 1976. Cited on page 32.

[7] E. Balas, S. Ceria & G. Cornuéjols. A lift-and-project cutting
plane algorithm for mixed 0-1 programs. Math. Programming 58:295–
324, 1993. Cited on page 41.

[8] R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering.
Berichte aus der Mathematik. Shaker Verlag, Aachen, 1998. ISBN 3-
8265-4351-3. URL http://www.shaker.de/Online-Gesamtkatalog/

Details.idc?ISBN=3-8265-4351-3. PhD thesis, Technische Uni-
versität Berlin, 1998. Available at http://www.zib.de/bib/books/

borndoerfer.thesis.ps. Cited on page 32.

[9] R. Borndörfer & R. Weismantel. Set packing relaxations
of some integer programs. Math. Programming 88:425–450, 2000.
Preprint ZIB Report 97-30 available at URL http://opus.kobv.de/

zib/volltexte/1997/300/. Cited on page 33.

[10] R. Borndörfer & R. Weismantel. Discrete relaxations of com-
binatorial programs. Discrete Appl. Math. 112(1–3):11–26, 2001.

http://www.shaker.de/Online-Gesamtkatalog/Details.idc?ISBN=3-8265-4351-3
http://www.shaker.de/Online-Gesamtkatalog/Details.idc?ISBN=3-8265-4351-3
http://www.zib.de/bib/books/borndoerfer.thesis.ps
http://www.zib.de/bib/books/borndoerfer.thesis.ps
http://opus.kobv.de/zib/volltexte/1997/300/
http://opus.kobv.de/zib/volltexte/1997/300/

References 46

ZIB preprint SC 97-54 available at URL http://opus.kobv.de/zib/

volltexte/1997/324/. Cited on page 33.

[11] W. H. Cunningham, S. T. McCormick & M. Queyranne, (Eds.).
Integer Programming and Combinatorial Optimization, Proc. 5th Int.
IPCO Conf., 1996. Cited on page 47.

[12] M. Deza & M. Laurent. Geometry of Cuts and Metrics. Springer
Verlag, Berlin, 1997. Cited on page 35.

[13] R. Euler, M. Jünger & G. Reinelt. Generalizations of cliques,
odd cycles and anticycles and their relation to independence system
polyhedra. Math. Oper. Res. 12(3):451–462, August 1987. Cited on
page 33.

[14] C. E. Ferreira. On Combinatorial Optimization Problems Aris-
ing in Computer System Design. PhD thesis, Technische Univer-
sität Berlin, 1994. URL http://www.zib.de/bib/books/Ferreira.

disser.ps. Cited on page 36.

[15] C. E. Ferreira, A. Martin & R. Weismantel. Solving multiple
knapsack problems by cutting planes. SIAM J. Optim. 6:858–877, 1996.
Cited on page 36.

[16] A. Frank. Packing paths, circuits, and cuts – a survey. In Korte et al.
(1990) [25], chap. 2, pp. 47–100. Cited on pages 32, 35.

[17] M. Garey & D. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979. Cited on page 43.

[18] E. Gottlieb & M. Rao. The generalized assignment problem: Valid
inequalities and facets. Math. Programming 46:31–52, 1990. Cited on
page 36.

[19] R. Graham, M. Grötschel & L. Lovász, (Eds.). Handbook of
Combinatorics. Elsevier Science B.V., Amsterdam, 1995.

[20] M. Grötschel, L. Lovász & A. Schrijver. Geometric Algorithms
and Combinatorial Optimization, vol. 2 of Algorithms and Combina-
torics. Springer Verlag, Berlin, 1988. ISBN 3-540-13624-X, 0-387-13624-
X (U.S.). Cited on pages 32, 33, 43.

[21] M. Grötschel, A. Martin & R. Weismantel. Packing Steiner
trees: Polyhedral investigations. Math. Programming 72:101–123,
1996. ZIB preprint SC 92-08 available at http://opus.kobv.de/zib/
volltexte/1992/77/. Cited on page 35.

[22] M. Grötschel, A. Martin & R. Weismantel. Packing Steiner
trees: A cutting plane algorithm and computational results. Math.
Programming 72:125–145, 1996. ZIB preprint SC 92-09 available at
http://opus.kobv.de/zib/volltexte/1992/78/. Cited on page 35.

[23] M. Grötschel, A. Martin & R. Weismantel. Packing Steiner
trees: Further facets. European J. Combin. 17:39–52, 1996. ZIB

http://opus.kobv.de/zib/volltexte/1997/324/
http://opus.kobv.de/zib/volltexte/1997/324/
http://www.zib.de/bib/books/Ferreira.disser.ps
http://www.zib.de/bib/books/Ferreira.disser.ps
http://opus.kobv.de/zib/volltexte/1992/77/
http://opus.kobv.de/zib/volltexte/1992/77/
http://opus.kobv.de/zib/volltexte/1992/78/

References 47

preprint SC 93-01 available at http://opus.kobv.de/zib/volltexte/
1992/96/. Cited on page 35.

[24] M. Grötschel, A. Martin & R. Weismantel. Packing Steiner
trees: Separation algorithms. SIAM J. Discrete Math. 9:233–257,
1996. ZIB preprint SC 93-02 available at http://opus.kobv.de/zib/
volltexte/1992/97/. Cited on page 35.

[25] B. Korte, L. Lovász, H. Prömel & A. Schrijver, (Eds.). Paths,
Flows, and VLSI-Layout. Springer Verlag, Berlin, 1990. Cited on page
46.

[26] M. Laurent. A generalization of antiwebs to independence systems
and their canonical facets. Math. Programming 45:97–108, 1989. Cited
on page 33.

[27] L. Lovász & A. Schrijver. Cones of matrices and set-functions and
0-1 optimization. SIAM J. Optim. 1:166–190, 1991. Cited on pages 2,
33.

[28] S. Martello & P. Toth. Knapsack Problems. John Wiley & Sons
Ltd, Chichester, 1990. Cited on page 36.

[29] A. Martin. Packen von Steinerbäumen: Polyedrische Studien und
Anwendung. PhD thesis, Technische Universität Berlin, 1992. URL
http://www.zib.de/Publications/abstracts/TR-92-04/. Cited on
page 35.

[30] R. Müller. On the partial order polytope of a digraph. Math. Pro-
gramming 73(1):31–49, 1996. Cited on page 33.

[31] R. Müller & A. S. Schulz. The interval order polytope of a digraph.
In Balas & Clausen (1995) [5], pp. 50–64. Cited on page 33.

[32] R. Müller & A. S. Schulz. Transitive packing. In Cunningham,
McCormick & Queyranne (1996) [11], pp. 430–444. Cited on page 33.

[33] G. L. Nemhauser & L. E. Trotter, Jr. Properties of vertex packing
and independence system polyhedra. Math. Programming 6:48–61, 1973.
Cited on page 33.

[34] G. L. Nemhauser & L. A. Wolsey. Integer and Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons Ltd, New York, 1988. Cited on pages
32, 37, 38, 39.

[35] G. L. Nemhauser, A. H. G. Rinnooy Kan & M. J. Todd, (Eds.).
Optimization, vol. 1 of Handbooks in OR and Management Science.
Elsevier Science B.V., Amsterdam, 1989. Cited on page 45.

[36] M. W. Padberg. On the facial structure of set packing polyhedra.
Math. Programming 5:199–215, 1973. Cited on pages 33, 43.

[37] M. W. Padberg. A note on zero-one programming. Oper. Res. 23(4):
833–837, 1975. Cited on page 33.

http://opus.kobv.de/zib/volltexte/1992/96/
http://opus.kobv.de/zib/volltexte/1992/96/
http://opus.kobv.de/zib/volltexte/1992/97/
http://opus.kobv.de/zib/volltexte/1992/97/
http://www.zib.de/Publications/abstracts/TR-92-04/

References 48

[38] M. W. Padberg. On the complexity of set packing polyhedra. Ann.
Discrete Math. 1:421–434, 1977. Cited on page 33.

[39] M. W. Padberg. Covering, packing, and knapsack problems. Ann.
Discrete Math. 4:265–287, 1979. Cited on page 32.

[40] M. W. Padberg & T.-Y. Sung. An analytical comparison of differ-
ent formulations of the travelling salesman problem. Math. Program-
ming 52(2):315–357, 1991. Cited on page 33.

[41] A. S. Schulz. Polytopes and Scheduling. PhD thesis, Technische Uni-
versität Berlin, 1996. Cited on page 33.

[42] Y. Sekiguchi. A note on node packing polytopes on hypergraphs. Oper.
Res. Lett. 2(5):243–247, 1983. Cited on page 33.

[43] M. Sol. Column Generation Techniques for Pickup and Delivery Prob-
lems. PhD thesis, Technische Universiteit Eindhoven, 1994. Cited on
page 41.

[44] B. Toft. Colouring, stable sets and perfect graphs. In Graham,
Grötschel & Lovász (1995) [19], chap. 4, pp. 233–288. Cited on page
36.

[45] L. E. Trotter, Jr. A class of facet producing graphs for vertex
packing polyhedra. Discrete Math. 12:373–388, 1975. Cited on page 33.

Paper III

Decomposing Matrices into

Blocks

R. Borndörfer, C. E. Ferreira & A. Martin.
Decomposing matrices into blocks.
SIAM Journal on Optimization 9(1):236–269, 1998.

Abstract. In this paper we investigate whether matrices arising from linear
or integer programming problems can be decomposed into so-called bordered
block diagonal form. More precisely, given some matrix A, we try to assign as
many rows as possible to some number β of blocks of size κ such that no two
rows assigned to different blocks intersect in a common column. Bordered
block diagonal form is desirable because it can guide and speed up the
solution process for linear and integer programming problems. We show that
various matrices from the LP- and MIP-libraries Netlib and Miplib can
indeed be decomposed into this form by computing optimal decompositions
or decompositions with proven quality. These computations are done with a
branch-and-cut algorithm based on polyhedral investigations of the matrix
decomposition problem. In practice, however, one would use heuristics to
find a good decomposition. We present several heuristic ideas and test
their performance. Finally, we investigate the usefulness of optimal matrix
decompositions into bordered block diagonal form for integer programming
by using such decompositions to guide the branching process in a branch-
and-cut code for general mixed integer programs.

Mathematics Subject Classification (MSC 2000). 90C10, 65F50

Keywords. Block structure of a sparse matrix, matrix decomposition, in-
teger programming, polyhedral combinatorics, cutting planes

49

1 Introduction 50

b
b
b

b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b

b b
b b

b b
b b

b
b b
b b

b b
b b

b b
b b
b b

b b
b b
b b
b b

b b
b b
b b

b b
b b
b
b
b
b

b b
b

b

b
b b
b b
b b
b b
b b
b b
b b
b b

b b
b b
b b
b
b
b b
b b
b b
b b
b b
b b
b b
b b

b b
b b
b b
b
b
b b
b b
b b
b b
b b
b b
b b
b b

b b
b b
b b
b
b
b b
b b
b
b b

b b
b b
b b
b b
b b
b b
b b
b
b
b b

b b

Figure 1: Decomposing a Matrix into Bordered Block Diagonal Form.

1 Introduction

We consider in this paper the following matrix decomposition problem. Given
some matrix A, some number β of blocks (sets of rows), and some capacity κ
(maximum block-size); try to assign as many rows as possible to the blocks
such that (i) each row is assigned to at most one block, (ii) each block
contains at most κ rows, and (iii) no two rows in different blocks have a
common nonzero entry in a column. The set of rows that are not assigned
to any block is called the border.

An equivalent statement of the problem in matrix terminology is as follows:
Try to decompose the matrix into bordered block diagonal form with β blocks
of capacity at most κ. The decomposition is considered the better, the
smaller the number of rows in the border is; in the best case the border will
be empty and the matrix decomposes into block diagonal form. Figure 1
shows on its left side the structure of a 55×55 non-symmetric matrix, namely,
an optimal basis matrix of the Netlib-problem recipe. The right side of
Figure 1 shows an optimal decomposition of this matrix into four blocks of
capacity ⌈55/4⌉ = 14. To make the block structure of the decomposition
visible, we have not only permuted the rows such that rows assigned to the
same block appear consecutively, but also the columns. In this case, the
blocks turn out to be almost square of sizes 13 × 13, 13 × 13, 14 × 14, and
14×15, but in general this does not need to be the case. The border consists
of only one row that could not be assigned to any block.

The matrix decomposition problem fits into the general context of reorder-
ing matrices to special forms. Special forms are well studied in the literature
because they can be exploited by solution methods for linear equation sys-
tems, for example by LU- or Cholesky factorization, or by conjugate gradient
methods. The two main points of interest are that special forms allow (i)

1 Introduction 51

to control fill-in (bordered block diagonal form, in particular, restricts fill-in
to the blocks and the border) and (ii) independent processing of individual
blocks by parallel algorithms.

Methods to obtain special forms, including (bordered) block diagonal form,
are widely discussed in the literature of computational linear algebra, see,
for instance, Duff, Erisman & Reid (1986) [4], Kumar et al. (1994) [18],
or Gallivan et al. (1990) [9]. The matrices studied in this context mainly
arise from the discretization of partial differential equations. Some newer
publications deal with matrices that appear in interior point algorithms for
linear programs, see Gupta (1996) [14] and Rothberg & Hendrickson (1998)
[25].

The applications we have in mind are different. We are interested in ma-
trices arising from (mixed) integer programs (MIPs). Such matrices often
have potential for decomposition into bordered block diagonal form for two
reasons. First, such matrices are sparse and generally have a small number
of nonzero entries in each column. Second, bordered block diagonal form
comes up in a natural way in many real world MIPs. The problems are often
composed of small blocks to model decisions in a division of a company, in
a technical unit, or in a time period. These individual blocks are linked
by a couple of constraints that model possible interactions to yield an ap-
propriate model that covers the whole company, technical process, or time
horizon. Examples of this type are production planning problems like the
unit commitment problem in power generation, where the blocks correspond
to single unit subproblems and the border is given by load balance and re-
serve constraints, see Sheble & Fahd (1994) [27] for a literature synopsis and
Dentcheva et al. (1997) [3] for a recent application, multicommodity flow
problems that come up, for example, in vehicle scheduling, see Löbel (1998)
[20], classes of combinatorial programs like the Steiner tree packing prob-
lem, see Grötschel, Martin & Weismantel (1996) [13], or, recently, scenario
decompositions of stochastic mixed integer programs, see Carøe & Schultz
(1999) [1].

Bordered block diagonal form helps to accelerate the solution process of
integer programs in several ways. First, to solve the LP-relaxation of an in-
teger program; here bordered block diagonal form can speed up the required
linear algebra (both if a simplex type method or an interior point method is
used). Second, it can be used to improve the polyhedral description of the
set of feasible points of a MIP. For example, given a block decomposition
and taking one constraint from each block plus an according number from
the border results in the structure of a generalized assignment or multiple
knapsack problem (see Gottlieb & Rao (1990) [11] and Ferreira, Martin &
Weismantel (1996) [6]) whose facets are valid inequalities for the MIP under
consideration. Third, block decomposition can be used in a branch-and-

2 Integer Programming Formulation and Related Problems 52

bound or -cut algorithm to guide branching decisions: Decomposing the
transposed constraint matrix AT will identify the columns in the border as
linking columns that are interesting candidates for branching.

In this paper we develop a branch-and-cut algorithm for solving the matrix
decomposition problem. Of course the expected running time of such an
algorithm will neither permit its usage within a parallel LU-factorization
nor within a branch-and-cut algorithm for general MIPs. Our aim is rather
to have a tool at hand that in principle obtains an optimal bordered block
diagonal form. We can then evaluate whether this special matrix struc-
ture indeed helps in solving general integer programs, and we can evaluate
the success of decomposition heuristics that try to obtain (bordered) block
diagonal form and that could be used, for instance, within a parallel LU-
factorization framework.

The paper is organized as follows. In Section 2 we formulate the matrix
decomposition problem as a 0/1 linear program and discuss connections
to related combinatorial optimization problems, namely, node separation
problems in graphs, the set packing, and the set covering problem. Sec-
tion 3 is devoted to a polyhedral investigation of the matrix decomposition
problem and presents (new) valid and facet defining inequalities. In the
branch-and-cut Section 4 we present our matrix decomposition algorithm
including separation routines, primal heuristics, preprocessing, and other
aspects of the implementation. We use this code in Section 5 to decompose
optimal basis matrices of linear programs taken from the Netlib (available
by anonymous ftp from ftp://netlib2.cs.utk.edu), to decompose matri-
ces arising from general mixed integer programs from the Miplib (available
from URL http://www.caam.rice.edu:80/\simbixby/miplib/miplib.

html), and to solve some equipartition problems investigated by Nicoloso &
Nobili (1992) [21].

2 Integer Programming Formulation and Related

Problems

Consider an instance (A, β, κ) of the matrix decomposition problem where
A ∈ Rm×n is some real matrix, β ∈ N is the number of blocks and κ ∈ N
is the block capacity. We introduce for each row i = 1, . . . , m and block
b = 1, . . . , β a binary variable xb

i that has value 1 if row i is assigned to
block b and 0 otherwise. Then the matrix decomposition problem (A, β, κ)
can be formulated as the 0/1 linear program (IP) that is stated on the next
page.

Inequalities (i) guarantee that each row is assigned to at most one block.

ftp://netlib2.cs.utk.edu
http://www.caam.rice.edu:80/$sim $bixby/miplib/miplib.html
http://www.caam.rice.edu:80/$sim $bixby/miplib/miplib.html

2 Integer Programming Formulation and Related Problems 53

Constraints (ii) ensure that the number of rows assigned to a particular
block b does not exceed its capacity. Finally, (iii) expresses that two rows i
and j must not be assigned to different blocks if both have a nonzero entry
in some common column. These three sets of inequalities plus the bounds
(iv) and the integrality constraints (v) establish a one-to-one correspondence
between feasible solutions of (IP) and block decompositions of the matrix A
into β blocks of capacity κ. In the sequel we will also call a vector x ∈ Rm×β

a block decomposition if it is feasible for (IP). Note that formulation (IP)
as it stands is not polynomial, since the number of variables mβ is not
polynomial in the encoding length of β. However, we may assume without
loss of generality β ≤ m, because no more than m rows will be assigned.
We also assume that the block capacity is at least one (κ ≥ 1) and that we
have at least two blocks (β ≥ 2).

max
m∑

i=1

β∑

b=1

xb
i

(i)

β∑

b=1

xb
i ≤ 1, for i = 1, . . . , m;

(ii)

m∑

i=1

xb
i ≤ κ, for b = 1, . . . , β;

(iii) xb
i + xb′

j ≤ 1, for b, b′ = 1, . . . , β, b 6= b′ and

for i, j = 1, . . . , m, i 6= j such that
aik 6= 0 6= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ xb
i ≤ 1, for i = 1, . . . , m, b = 1, . . . , β;

(v) xb
i integer, for i = 1, . . . , m, b = 1, . . . , β.

(IP)

A first observation about (IP) is that different matrices A can give rise
to the same integer program or, in other words, different matrices can be
decomposed in exactly the same way. In fact, such matrices form equivalence
classes as can be seen by considering the (column) intersection graph G(A)
of an m × n-matrix A as introduced by Padberg (1973) [23]. G(A) has the
set {1, . . . , n} of column indices of A as its node set and there is an edge ij
between two columns i and j if they have a common nonzero entry in some
row. Applying this concept to the transposed matrix AT , we obtain the
row intersection graph G(AT) of A where two rows i and j are joined by an
edge ij if and only if they have nonzero entries in a common column. But
then the edges of G(AT) give rise to the inequalities (IP) (iii) and we have
that for fixed β and κ two matrices A and A′ have the same row intersection
graph if and only if the corresponding integer programs (IP) are equal.

2 Integer Programming Formulation and Related Problems 54

The matrix decomposition problem is related to several other combinatorial
optimization problems. First, the problem can be interpreted in terms of
the row intersection graph as a node separator problem. To see this, let
G(AT) = (V, E) and consider some block decomposition x. The set S := {i ∈
V :

∑β
b=1 xb

i = 0} of rows in the border is a node separator in G(AT) such
that the graph obtained by deleting all nodes in S and all its adjacent edges
decomposes into at most β parts, each of cardinality at most κ. Conversely,
each node separator in G(AT) with these properties gives rise to a block
decomposition for (A, β, κ). Various node separator problems have been
studied in the literature. Lengauer (1990) [19] gives a survey and discusses
applications in VLSI design, Duff, Erisman & Reid (1986) [4] and Gallivan
et al. (1990) [9] emphasize heuristic methods for use in computational linear
algebra. Lower bounds on the size of a node separator in a general graph
are rather rare. The only results we are aware of are due to Pothen, Simon
& Liou (1990) [24] and Helmberg et al. (1995) [15], who use Eigenvalue
methods to derive non-trivial lower bounds on the size of a node separator
for β = 2, if lower bounds on the size of the blocks are imposed.

A second connection exists to set packing, and this relationship is two-fold.
On the one hand, matrix decomposition is a generalization of set pack-
ing, because feasible solutions (stable sets) of some set packing problem
max{1T x : Ax ≤ 1, x ∈ {0, 1}n}, A ∈ {0, 1}m×n, correspond to solu-
tions of the matrix decomposition problem (AT , m, 1) of the same objective
value and vice versa. This shows that the matrix decomposition problem is
NP-hard. On the other hand, we obtain a set packing relaxation of the ma-
trix decomposition problem by deleting the block capacity constraints (ii)
from the formulation (IP). All inequalities that are valid for this relax-
ation are also valid for the matrix decomposition problem and we will use
some of them (namely clique- and cycle-inequalities) as cutting planes in our
branch-and-cut algorithm. Note, however, that the set packing relaxation
allows assignment of all rows to any single block and our computational
experiments seem to indicate that these cuts are rather weak.

A close connection exists also to set covering via complementing variables.
To see this we rewrite (IP), substituting each capacity constraint (ii) by(

m
κ+1

)
inequalities that sum over all subsets of cardinality κ + 1 of variables

{xb
1, . . . , x

b
m} for some block b and each constraint in (i) by

(
κ
2

)
inequalities

that sum over all pairs of variables in {x1
i , . . . , x

β
i }. Replacing all variables xb

i

3 Polyhedral Investigations 55

by 1 − yb
i , one obtains the following set covering problem:

min
m∑

i=1

β∑

b=1

yb
i

(i) yb
i + yb′

i ≥ 1, for b, b′ = 1, . . . , β, b 6= b′ and
for i = 1, . . . , m;

(ii)
∑

i∈I

yb
i ≥ 1, for b = 1, . . . , β and

for I ⊆ {1, . . . , m} with |I| = κ + 1;

(iii) yb
i + yb′

j ≥ 1, for b, b′ = 1, . . . , β, b 6= b′ and

for i, j = 1, . . . , m, i 6= j such that
aik 6= 0 6= ajk for some k ∈ {1, . . . , n};

(iv) 0 ≤ yb
i ≤ 1, for i = 1, . . . , m, b = 1, . . . , β;

(v) yb
i integer, for i = 1, . . . , m, b = 1, . . . , β.

(IPc)

This shows that the matrix decomposition problem is a (special) set cov-
ering problem. For the case of two blocks, this formulation has been used
by Nicoloso & Nobili (1992) [21] for the solution of the matrix equipartition
problem. The matrix equipartition problem is the matrix decomposition
problem for β = 2 and κ = ⌊m/2⌋, plus the additional equipartition con-
straint

m∑

i=1

x1
i =

m∑

i=1

x2
i , or, in complemented variables,

m∑

i=1

y1
i =

m∑

i=1

y2
i ,

that states that the two blocks of the decomposition must have equal size.

3 Polyhedral Investigations

Associated to the IP-formulation (IP) of the matrix decomposition problem
is the polytope

P (A, β, κ) := conv{x ∈ Rm×β : x satisfies (IP) (i) to (v)}, (1)

given by the convex hull of all block decompositions. We study in this
section the structure of P (A, β, κ) to derive classes of valid and facet defining
inequalities for later use as cutting planes. We start by determining its
dimension.

Propositiondd 3.1 (Dimension). P (A, β, κ) is full dimensional.

3 Polyhedral Investigations 56

Proof. The vector 0 and all unit vectors eb
i ∈ Rm×β are feasible, i. e., are in

P (A, β, κ), and affinely independent.

This means that the facets of P (A, β, κ) are uniquely determined up to a
scalar factor (see Schrijver (1986) [26]). Two further easy observations are
gathered in the following remark.

Remarkdd 3.2. (i) The non-negativity inequalities xb
i ≥ 0 are facet defining

for all i = 1, . . . , m and all b = 1, . . . , β.

(ii) All facet defining inequalities aT x ≤ α that are not non-negativity con-
straints satisfy a ≥ 0 and α > 0.

Remark 3.2 (i) is proven in the same way as Theorem 3.1 and Remark 3.2 (ii)
is a consequence of the down monotonicity of P (A, β, κ).

Facet-defining inequalities have another interesting property. Consider some
vector x ∈ Rm×β , some permutation σ of the blocks {1, . . . , β}, and define
the vector x̄ ∈ Rm×β by

x̄b
i := x

σ(b)
i ,

for i = 1, . . . , m, b = 1, . . . , β. We will use in the sequel the symbol σ(x) to
denote the vector x̄ that arises from x by applying the block permutation
σ. Then σ(x) = x̄ is a feasible block decomposition if and only if x is. This
simple observation has two consequences. First, it implies that aTx ≤ b is a
facet of P (A, β, κ) if and only if its block-wise permutation σ(a)Tx ≤ b is.
Facets arising from each other via block permutations can thus be viewed
as forming a single class that can be represented by a single member. Or, to
put it in a more negative way, each facet can and will be “blown up” by block
permutations to a whole set of combinatorially essentially identical condi-
tions. Second, the objective function of the matrix decomposition problem
is invariant under block permutation and thus the matrix decomposition
problem is dual degenerate (has multiple optima). Both dual degeneracy
and the large number of permutable facets cause difficulties in our branch-
and-cut algorithm and we will have to control the number of cuts generated
and to handle stalling of the objective value.

The next two subsections list the results of our polyhedral investigations in
the form of valid and facet defining inequalities. We distinguish between
inequalities aT x ≤ b that are invariant under block permutations or, equiv-
alently, have the same coefficients ab

i = ab′
i for all blocks b 6= b′ and row

indices i, and block-discernible inequalities that do not have this property
and distinguish different blocks. It will turn out that most of the block-
discernible inequalities will be inherited from the stable set relaxation of the
matrix decomposition problem, while the block-invariant constraints are re-
lated to an “aggregated” version of the problem. In both subsections we

3 Polyhedral Investigations 57

want to assume κ ≥ 2, because otherwise the matrix decomposition prob-
lem is a (special) set packing problem.

3.1 Block-Discernible Inequalities

We saw in Section 2 that we obtain a set packing relaxation of the matrix
decomposition problem by dropping the block capacity constraints (ii) from
the integer program (IP). The column intersection graph associated to the
matrix IP(i),(iii) formed by the left-hand sides of the constraints (IP) (i) and
(iii) has the set of possible row assignments {1, . . . , m} × {1, . . . , β} as its
node set. A (conflict) edge exists between two assignments (i, b) and (j, b′),
if rows i and j cannot be simultaneously assigned to the blocks b and b′, i. e.,
either if i = j and b 6= b′ or if i 6= j, b 6= b′, and rows i and j have a common
nonzero entry in some column of A. We want to call this graph the conflict
graph associated to the matrix decomposition problem (A, β, κ) and denote
it by Gc(A, β). In formulas: Gc(A, β) = G(IP(i),(iii)). This graph allows us
to interpret the inequality classes (i) and (iii) of (IP) as clique inequalities
of the set packing relaxation corresponding to the matrix decomposition
problem as also introduced by Padberg (1973) [23].

Theoremdd 3.3 (Clique). Let Gc(A, β) = (V, E) and Q ⊆ V . The in-
equality ∑

(i,b)∈Q

xb
i ≤ 1

is valid for P (A, β, κ) if and only if Q is a clique in Gc(A, β). It is facet
defining if and only if Q is a maximal clique in Gc(A, β).

Proof. The validity part is obvious. It remains to show that it is facet
defining if and only if Q is a maximal clique.

Suppose first that Q is not maximal but contained in a larger clique Q′.
But then

∑
(i,b)∈Q xb

i ≤ 1 is the sum of the inequality
∑

(i,b)∈Q′ xb
i ≤ 1 and

the non-negativity constraints xb
i ≥ 0 for (i, b) ∈ Q′ \Q and cannot be facet

defining.

Assume now that Q is maximal. We will construct a set of mβ affinely
independent block decompositions for which the inequality is tight. |Q| such
affinely independent vectors are the unit vectors eb

i with (i, b) ∈ Q. For each
other assignment (j, b′) 6∈ Q there exists some assignment (i, b) in Q that
is not in conflict with (j, b′), since Q is a maximal clique. Thus, the vector
eb′
j + eb

i is the incidence vector of a feasible block decomposition for which
the inequality is tight. (Note that we assumed κ ≥ 2 at the beginning of this
section for the case b = b′.) The resulting mβ − |Q| characteristic vectors

3 Polyhedral Investigations 58

obtained in this way plus the |Q| vectors constructed in the beginning are
affinely independent.

In the spirit of Theorem 3.3, (IP) (i) and (iii) are both clique inequalities
and do not represent two different types of inequalities. The separation
problem for clique inequalities is a maximum-weight clique problem and
thus NP-hard, see Garey & Johnson (1979) [10]. But some subclasses can
be separated efficiently. One such class that we use in our implementation
are the two-partition inequalities

∑

b∈B

xb
i +

∑

b′ 6∈B

xb′

j ≤ 1,

that are defined for all sets of blocks B ⊆ {1, . . . , β} and all pairs of non-
disjoint rows i, j. Polynomial separation of this class is by inspection: Given
i and j, we examine for each block b the variables xb

i and xb
j . If xb

i > xb
j , we

add b to the set B, otherwise to its complement. Note that for the case of
two blocks (β = 2), the two-partition inequalities are exactly the inequalities
(IP) (i) and (iii) and, moreover, these are already all clique inequalities. In
particular, separation of clique inequalities is polynomial for β = 2. In
general, maximal cliques in Gc(A, β) are of the form {(i1, b1), . . . , (iβ, bβ)},
where the blocks bk, k = 1, . . . , β are mutually different and the set of rows
{i1, . . . , iβ} forms a clique in G(AT). Thus all maximal cliques in Gc(A, β)
are of size β.

Another class inherited from the set packing relaxation are the cycle in-
equalities.

Theoremdd 3.4 (Odd Cycle). If C is an odd cycle in Gc(A, β), then the
cycle inequality ∑

(i,b)∈C

xb
i ≤ ⌊|C|/2⌋

is valid for P (A, β, κ).

Analogously to the set packing case, see again Padberg (1973) [23], the odd
cycle inequality is facet defining for its support if C is an odd hole (has
no chords) and |C|/2 ≤ κ. These conditions are, however, not necessary.
Cycle inequalities can be separated in polynomial time using the algorithm
of Lemma 9.1.11 in Grötschel, Lovász & Schrijver (1988) [12].

Along the same lines as for the clique and cycle inequalities, the matrix
decomposition polytope clearly also inherits all other packing inequalities.
But not only set packing, also set covering inequalities for (IPc) can be
applied (note that complementing variables preserves validity and dimension
of the induced face), see Nobili & Sassano (1989) [22]. We do, however, not
use any of them for our computations.

3 Polyhedral Investigations 59

We close this section investigating the block capacity constraints (IP) (ii)
which are not inherited from the set packing polytope or the set covering
polytope.

Theoremdd 3.5 (Block Capacity). The block capacity constraint

m∑

i=1

xb
i ≤ κ

is facet defining for P (A, β, κ) if and only if |γ(i)| ≤ m − κ holds for every
row i (where γ(i) denotes all nodes adjacent to i in G(AT)).

Proof. We first show that the inequality is facet defining if the above men-
tioned condition holds. To this purpose, let aT x ≤ α be a valid inequal-
ity that induces a facet such that {x ∈ P (A, β, κ)|∑m

i=1 xb
i = κ} ⊆ {x ∈

P (A, β, κ)|aT x = α}. We will show that the two inequalities are the same
up to a positive scalar multiplicative factor.

Define x by

xb′

i =

{
1, if 1 ≤ i ≤ κ, b′ = b;

0, else.

x is a feasible block decomposition that assigns the first κ rows to block b.
x satisfies the block capacity constraint with equality and thus aT x = α.
Now observe that, for all 1 ≤ i ≤ κ < j ≤ m, the vector x− eb

i + eb
j is also a

feasible assignment that is tight for the block capacity inequality. It follows
that ab

i = ab
j for all 1 ≤ i, j ≤ m.

Now consider assigning some row j to a block b′ 6= b. By the assumption
|γ(j)| ≤ m − κ, there is a set R(j) of κ rows not adjacent to j. But then∑

i∈R(j) eb
i and

∑
i∈R(j) eb

i + eb′
j are both feasible decompositions that satisfy

the block capacity constraint with equality and thus ab′
j = 0, completing the

first part of the proof.

It remains to prove the converse direction. If there is some row j with
|γ(j)| > m − κ, the inequality

∑m
i=1 xb

i +
∑

b′ 6=b xb′
j ≤ κ is valid. But then

the block capacity constraint can be obtained by summing up this inequality
with

∑
b′ 6=b xb′

j ≥ 0, and therefore it cannot be facet defining.

3.2 Block-Invariant Inequalities

We investigate in this section inequalities for the matrix decomposition poly-
tope that are invariant under block permutation. Consider for each block

3 Polyhedral Investigations 60

decomposition x the “aggregated” vector

z(x) :=

(
β∑

b=1

xb
1, . . . ,

β∑

b=1

xb
m

)
∈ Rm.

z(x) only records whether the matrix rows are assigned to some block or
not, but no longer to which block. From a polyhedral point of view, the
aggregated block decompositions give rise to an “aggregated” version of the
block decomposition polytope

Pz(A, β, κ) := conv{z ∈ Rm : there is x ∈ P (A, β, κ) with z = z(x)}.

The aggregated polytope is interesting because any valid inequality
∑m

i=1 aizi

≤ α for Pz(A, β, κ) can be “expanded” into an inequality
∑m

i=1 ai
∑β

b=1 xb
i ≤

α that is valid for P (A, β, κ). All inequalities in this subsection are of this
type. Obviously, the expansion process yields inequalities that are invariant
under block permutations, hence the name.

From a computational point of view, block-invariant inequalities are promis-
ing cutting planes, because the objective of the matrix decomposition prob-
lem can be written in terms of aggregated z-variables as 1T x = 1T z(x).
Thus, a complete description of Pz(A, β, κ) would already allow us to de-
termine the correct objective function value of the matrix decomposition
problem and z-cuts will help to raise the lower bound of an LP-relaxation.

The aggregated polytope Pz(A, β, κ) provides a model of the matrix de-
composition problem that rules out degeneracy due to block permutations.
While this is a very desirable property of the aggregated z-formulation, its
drawback is that it is already NP-complete to decide whether a given vector
z ∈ {0, 1}m is an aggregated block decomposition or not. (It can be shown
that this is a bin-packing problem.) Our choice to use z-cuts within the x-
model tries to circumvent this difficulty and combines the strengths of both
formulations. We remark that degeneracy problems of this type arise also in
block-indexed formulations of grouping problems in cellular manufacturing,
where the difficulty can be resolved by means of alternative formulations,
see Crama & Oosten (1996) [2].

We already know one example of an expanded aggregated constraint: Ex-
panding the inequality zi ≤ 1 for the aggregated block decomposition poly-
tope yields the block assignment constraint (IP) (i)

∑β
b=1 xb

i ≤ 1 that we
have analyzed in the previous subsection. More inequalities are derived from
the observation that adjacent rows (with respect to G(AT)) can only be as-
signed to the same block. A first example of this sort of inequalities are the
z-cover inequalities.

3 Polyhedral Investigations 61

Theoremdd 3.6 (z-Cover). Let G(AT) = (V, E) and let W ⊆ V be a set
of rows of cardinality κ + 1. Then, the z-cover inequality

∑

i∈W

β∑

b=1

xb
i ≤ κ

is valid for P (A, β, κ) if and only if (W, E(W)) is connected (where E(W)
denotes all edges with both endpoints in W). It is facet defining for P (A, β, κ)
if and only if for each row i 6∈ W the graph (W ∪ {i}, E(W ∪ {i})) has an
articulation point different from i.

Proof. The validity part is easy. Since |W | = κ + 1, not all rows can be
assigned to the same block. If some rows of W are assigned to different
blocks, there must be at least one row in W that is not assigned because
(W, E(W)) is connected. Conversely, if W is not connected one easily finds
a partition of W into two subsets that can be assigned to different blocks.

The proof that this inequality is facet defining if and only if for each row i 6∈
W the graph (W ∪{i}, E(W ∪{i})) has an articulation point different from
i is analogous to the proof of Theorem 3.5. The condition guarantees that
if row i is assigned to some block, the assignment can be extended in such
a way that κ rows from W can be assigned to at least two blocks. On the
other hand, if the condition is not satisfied for some j /∈ W , the inequality∑

i∈W∪{j}

∑β
b=1 xb

i ≤ κ is valid, and thus the z-cover inequality cannot be
facet defining.

In the set covering model, z-cover inequalities correspond to constraints of
the form

∑
i∈W

∑β
b=1 yb

i ≥ 1 that have been used by Nicoloso & Nobili
(1992) [21] for their computations. The separation problem is to find a tree
of size κ + 1 of maximum node weight. This problem has been studied by
Ehrgott (1992) [5] and was shown to be NP-hard using a reduction to the
node-weighted Steiner tree problem.

The z-cover inequalities are induced by trees, but it is possible to generalize
them for subgraphs of higher connectivity.

Theoremdd 3.7 (Generalized z-Cover). Let G(AT) = (V, E) and let
W ⊆ V be a set of rows of cardinality κ + k with k ≥ 1. Then, the (gener-
alized) z-cover inequality

∑

i∈W

β∑

b=1

xb
i ≤ κ

is valid for P (A, β, κ) if and only if (W, E(W)) is k-node connected. It is
facet defining for P (A, β, κ) if and only if for each row i 6∈ W there exists
some node cut N in (W ∪ {i}, E(W ∪ {i})) of cardinality k with i /∈ N .

3 Polyhedral Investigations 62

The proof of this generalization follows exactly the lines of the proof of
Theorem 3.6. In our branch-and-cut algorithm we restrict attention to the
cases k = 1 and k = 2.

Closely related to the z-cover inequality is the z-clique inequality. Here, we
consider some node set W that is not only k-node connected for some fixed
k, but induces a complete subgraph. In this case the condition for being
facet defining slightly changes.

Theoremdd 3.8 (z-Clique). If Q is a clique in G(AT), then the z-clique
inequality

∑

i∈Q

β∑

b=1

xb
i ≤ κ

is valid for P (A, β, κ). It is facet-defining if and only if |Q| ≥ κ + 1 and for
each row i 6∈ Q there exists a set of rows R(i) ⊆ Q, |R(i)| = κ, such that i
is not adjacent in G(AT) to any node in R(i).

Proof. The inequality is clearly valid. To show that it is facet defining given
the mentioned conditions, let aT x ≤ α define a facet such that

{x ∈ P (A, β, κ)|
∑

i∈Q

β∑

b=1

xb
i = κ} ⊆ {x ∈ P (A, β, κ)|aT x = α}.

We will show that the two inequalities are the same up to a positive scalar
multiplicative factor. To this purpose, consider any κ rows of Q. The
block decomposition obtained by assigning these rows to some block b is
feasible and tight for the z-clique inequality. Since |Q| ≥ κ + 1, we can
use these solutions to show that ab

i = ab′
j for all i, j ∈ Q and for all blocks

b, b′ ∈ {1, . . . , β}. Assuming that for each row i /∈ Q there exists a set of
nodes R(i) ⊆ Q, |R(i)| = κ, that are not adjacent to i, we observe that
for all b′ 6= b, the vectors

∑
j∈R(i) eb

j and
∑

j∈R(i) eb
j + eb′

i are valid block
decompositions that satisfy the z-clique inequality with equality. It follows
that ab′

i = 0 for all i 6∈ Q, for all b′ 6= b, and even for all blocks b′, since b
was arbitrary. This completes the first part of the proof.

If, on the other hand, Q has size less than or equal to κ, we obtain from
(IP) (i) that the left hand side of the inequality is at most |Q|. Thus, the
inequality is redundant and cannot define a facet. Suppose now the second
condition is not satisfied, i. e., there is some j /∈ Q such that j is incident to at
least |Q|−κ+1 nodes in Q. This implies that Q∪{j} is at least (|Q|−κ+1)-

node connected. Theorem 3.7 states that
∑

i∈Q∪{j}

∑β
b=1 xb

i ≤ κ is valid and
this implies that the z-clique inequality is redundant.

The z-clique separation problem is again a max-clique problem and thus
NP-hard. In our implementation we check easily detectable special cases

3 Polyhedral Investigations 63

like the following so-called big-edge inequalities

∑

i∈supp(A·j)

β∑

b=1

xb
i ≤ κ,

for all blocks b, where A·j denotes the j-th column of A and supp(A·j) its
nonzero row indices. These inequalities can be separated by inspection.

Another way to generalize the z-cover inequalities is by looking at node
induced subgraphs that consist of several components. This idea, that gives
rise to the class of bin-packing inequalities, came up in our computational
experiments. Starting point is again a set of rows W that induces a subgraph
of G(AT) = (V, E). Suppose (W, E(W)) consists of l connected components
of sizes (in terms of nodes) a1, . . . , al. We can then associate a bin-packing
problem with (W, E(W)), β, and κ in the following way: There are l items of
sizes a1, . . . , al, and β bins of capacity κ each. The problem is to put all the
items into the bins such that no bin holds items of a total size that exceeds
the capacity κ. If this is not possible, we can derive a valid inequality for
P (A, β, κ).

Theoremdd 3.9. Let G(AT) = (V, E) and W ⊆ V be some subset of rows.
If the bin packing problem associated to (W, E(W)), β, and κ has no solu-
tion, the bin-packing inequality

∑

i∈W

β∑

b=1

xb
i ≤ |W | − 1

is valid for P (A, β, κ).

Proof. Consider some block decomposition x. If at least one row in W is
not assigned to some block, the inequality is obviously satisfied. Otherwise
all rows that belong to the same (connected) component of (W, E(W)) must
be assigned to the same block. This yields a solution to the bin packing
problem associated to (W, E(W)), β, and κ, a contradiction.

We do not know any reasonable conditions that characterize when the bin
packing inequalities are facet defining. Bin-packing separation is NP-hard,
see Garey & Johnson (1979) [10].

Next we give another class of z-cycle inequalities that generalize the cycle
inequalities of the set packing polytope.

Theoremdd 3.10 (z-Cycle). Let G(AT) = (V, E) and C ⊆ V be a cycle
in G(AT) of cardinality at least κ + 1. Then the z-cycle inequality

∑

i∈C

β∑

b=1

xb
i ≤ |C| −

⌈ |C|
κ + 1

⌉

3 Polyhedral Investigations 64

is valid for P (A, β, κ).

The z-cycle inequality is valid because at least every (κ + 1)-st node cannot
be assigned to a block. One can also show that the inequality is facet defining
for its support under certain rather restrictive conditions, for example, if C
is an odd hole, |C| 6= 0 mod (κ + 1), and the right-hand side is less than
βκ. z-Cycle separation can be reduced to the TSP and is thus NP-hard.

Our next class of inequalities comes up in several instances in our test set.

Theoremdd 3.11 (Composition of Cliques (COQ)). Let G(AT) =
(V, E) and consider p mutually disjoint cliques Q1, . . . , Qp ⊆ V of size q and
q mutually disjoint cliques P1, . . . , Pq ⊆ V of size p such that |Pi ∩ Qj | = 1
for all i, j. Let W = ∪p

i=1Qi. Then, the following inequality is valid for
P (A, β, κ):

∑

i∈W

β∑

b=1

xb
i ≤ max

{r∈Nβ,s∈Nβ :
P

rb=p,
P

sb=q}

β∑

b=1

min{κ, rbsb} =: α(p, q, β, κ). (2)

Proof. Consider a block decomposition x and let

rb := |{j :
∑

i∈Qj
xb

i ≥ 1, j ∈ {1, . . . , p}}|,
sb := |{j :

∑
i∈Pj

xb
i ≥ 1, j ∈ {1, . . . , q}}|,

for b = 1, . . . , κ. Because Qj and Pj are all cliques, we have that
∑β

b=1 rb ≤ p

and
∑β

b=1 sb ≤ q. Since |Pi ∩ Qj | = 1 for all i, j it follows that
∑

i∈W xb
i ≤

rbsb. Thus,

∑

i∈W

β∑

b=1

xb
i =

β∑

b=1

∑

i∈W

xb
i

≤
β∑

b=1

min{κ, rbsb}

≤ max
{r∈Nβ,s∈Nβ :

P

rb≤p,
P

sb≤q}

β∑

b=1

min{κ, rbsb}

= max
{r∈Nβ,s∈Nβ :

P

rb=p,
P

sb=q}

β∑

b=1

min{κ, rbsb},

showing the statement.

The right hand side of (2) is quite complicated, and we do not even know
whether it can be computed in polynomial time. For β = 2 the right hand
side looks more tractable:

3 Polyhedral Investigations 65

∑

i∈W

β∑

b=1

xb
i ≤ max

r=0,...,p
s=0,...,q

(min{κ, rs} + min{κ, (p − r)(q − s)}) . (3)

But we do not know a closed formula in this case either. An interesting
special case is p = 2. Here the graph (W, E(W)) consists of two disjoint
cliques that are joint by a perfect matching. Suppose further q < κ < 2q.
Then the right hand side of (3) reads

max{0, max
s=0,...,q

(min{κ, s} + min{κ, q − s}), min{κ, 2q}}

= max{0, q, κ} = κ.

In this case (2) turns out to be even facet defining if we require in addition
that each node i /∈ W has at most 2q − κ neighbors in W , i, e., |γ(i)∩W | ≤
2q − κ.

The development of our heuristic separation routine for COQ inequalities
resulted in a slight generalization of this class. The support graphs of the
left-hand sides of these extended composition of clique inequalities are COQs
where some nodes have been deleted, the right-hand sides are left unchanged.

Theorem 3.12 (Extended Composition of Cliques (xCOQ)).
Let G(AT) = (V, E) and consider p mutually disjoint non-empty cliques
Q1, . . . , Qp ⊆ V of size at most q and q mutually disjoint non-empty cliques
P1, . . . , Pq ⊆ V of size at most p such that

(i) |Pi ∩ Qj | ≤ 1 for all i, j and

(ii)

q∑

i=1

p∑

j=1

|Pi ∩ Qj | =

q∑

i=1

|Pi| =

p∑

j=1

|Qj |,

i.e., every element in one of the sets Pi appears in exactly one of the sets
Qj and vice versa. Let W = ∪p

i=1Qi. Then, the following inequality is valid
for P (A, β, κ):

∑

i∈W

β∑

b=1

xb
i ≤ α(p, q, β, κ). (4)

Proof. The proof works by turning P1, . . . , Pq and Q1, . . . , Qp into a proper
COQ by adding some nodes that correspond to “artificial rows” and pro-
jecting the resulting inequality down to the original space of variables.

3 Polyhedral Investigations 66

Let

δ :=

q∑

i=1

p∑

j=1

(1 − |Pi ∩ Qj |)

be the number of nodes that “miss” to turn P1, . . . , Pq and Q1, . . . , Qp into
a COQ and add a row 1T of all ones to A for each of them to obtain a
matrix A such that

Ai· = Ai·, i = 1, . . . , m and Ai· = 1T , i = m + 1, . . . , m + δ.

Consider the matrix decomposition problem (A, β, κ). Its row intersection
graph G(AT) contains G(AT) as a subgraph and the additional artificial
nodes in G(AT) are incident to every node of G(AT) that corresponds to a
row that is not all zero (except itself).

The sets P1, . . . , Pq and Q1, . . . , Qp are again cliques in G(AT). Associating
each of the artificial nodes i = m + 1, . . . , m + δ to a different index pair ij
such that |Pi ∩ Qj | = 0 and adding this node to both Pi and Qj , we can
extend P1, . . . , Pq and Q1, . . . , Qp to a COQ P 1, . . . , P q and Q1, . . . , Qp in

G(AT) with W := ∪p
j=1Qj = W ∪ {m + 1, . . . , m + δ}. Then, the COQ

inequality

∑

i∈W

β∑

b=1

xb
i ≤ α(p, q, β, κ) (5)

is valid for P (A, β, κ) and, of course, also for

P (A, β, κ) ∩ {xb
i = 0 : i = m + 1, . . . , m + δ, b = 1, . . . , β}.

Since the artificial variables in this polytope attain only values of zero, this
remains true if one sets their coefficients in (5) also to zero. But as this
results in the desired extended COQ inequality (4) and

P (A, β, κ)∩{xb
i = 0 : i = m+1, . . . , m+δ, b = 1, . . . , β} = P (A, β, κ)×{0}δ×β,

the theorem follows by a projection on the space of the original variables.

The last star inequality that we present in this section is special in the sense
that it is the only one with non-0/1 coefficients. It was designed to deal
with rows with many neighbors.

Theoremdd 3.13 (Star). Let G(AT) = (V, E) and consider some row i ∈
V with |γ(i)| > κ. Then the star inequality

(|γ(i)| − κ + 1)

β∑

b=1

xb
i +

∑

j∈γ(i)

β∑

b=1

xb
j ≤ |γ(i)|

is valid for P (A, β, κ).

4 A Branch-And-Cut Algorithm 67

Proof. If i is assigned to some block b, then all rows in γ(i) can only be
assigned to b, but at most κ − 1 of them. The case where i is not assigned
is trivial.

The star inequality can be viewed as a lifting of the (redundant) inequality

∑

j∈γ(i)

β∑

b=1

xβ
j ≤ |γ(i)|

and we want to close this section with another simple lifting theorem for
block-invariant inequalities with 0/1 coefficients.

Theoremdd 3.14 (Strengthening). Let G(AT) = (V, E), W be a subset

of V , and
∑

i∈W

∑β
b=1 xb

i ≤ α be a valid inequality for P (A, β, κ). If for
some row j 6∈ W the condition

|W \ γ(j)| + κ ≤ α

holds, then
∑

i∈W∪{j}

∑β
b=1 xb

i ≤ α is also valid for P (A, β, κ).

Proof. If j is assigned to some block b, the rows in {j} ∪ γ(j) can only be
assigned to b, but at most κ of them.

4 A Branch-And-Cut Algorithm

The polyhedral investigations of the last section form the basis for the im-
plementation of a branch-and-cut algorithm for the solution of the matrix
decomposition problem. This section describes the four main ingredients of
this code: Separation and LP-management, heuristics, problem reduction,
and searchtree management.

4.1 Separation and LP-Management

We use all of the inequalities described in Section 3 as cutting planes in our
algorithm. It will turn out that some of them appear in large numbers. We
thus opted for the following separation strategy: We try to identify many
inequalities using fast heuristics, but add only selected ones to the LP. More
expensive separation methods are used depending on their success.

We classify our separation routines according to their basic algorithmic prin-
ciples: Inspection (enumeration), greedy heuristics, other heuristics, exact
polynomial methods, and “hybrid” methods (combinations of exact and
heuristic methods).

4 A Branch-And-Cut Algorithm 68

Input: z(x) ∈ Rm, G(AT)
Output: Node set T of a one- or two-connected subgraph of G(AT)
1: function z-Cover Separation

2: sort z(x) such that z(x)i1 ≥ z(x)i2 ≥ · · · ≥ z(x)im ;
3: for k ← 1 to m do
4: T ← {ik};
5: connectivity ← 2;
6: for j ← 1 to m do
7: if j = k or γ(ij) ∩ T = ∅ then continue end if
8: if |T | = κ + 1 and |γ(ij) ∩ T | = 1 then continue end if
9: if |T | ≥ 2 and |γ(ij) ∩ T | = 1 then connectivity ← 1 end if

10: T ← T ∪ {ij};
11: if |T | ≥ κ + connectivity then break end if
12: end for
13: end for
14: return T and connectivity;
15: end function

Algorithm 1: Separating z-Cover Inequalities With a Greedy Heuristic.

The most simple methods are used for big-edge, two-partition, and star
inequalities: These classes can be separated by simple inspection, the details
for two-partition inequalities were already described in Section 3.

Clique, z-clique, and z-cover inequalities are separated using greedy heuris-
tics. In the last two cases, these methods start by sorting the rows of A with
respect to increasing z-value, i.e., such that z(x)i1 ≥ z(x)i2 ≥ · · · ≥ z(x)im .
Then the greedy heuristic is called m times, once for each row ij . In each
call, ij is used to initialize a tree/clique with respect to G(AT), that is it-
eratively extended greedily in the order of the z-sorting of the rows until
zij becomes zero and the growing procedure stops. There is also a second
variant for z-cliques that is an adaptation of a similar routine by Hoffman
& Padberg (1993) [16]. Here we call the greedy heuristic once for each col-
umn of A and initialize the clique with the support of this column. Having
detected a violated clique inequality in one of these ways, we lift randomly
determined additional rows with zero z-value sequentially into the inequal-
ity. This is done by applying the strengthening procedure of Theorem 3.14
which in this case amounts to a further growth of the clique by randomly
determined rows of zero z-value. We tried to strengthen cover inequalities,
but the computational effort was not justified by the one or two coefficients
that were usually lifted. But, as was already mentioned in Section 3, we
(heuristically) keep track of the connectivity of the growing graph. If the
connectivity is 2 after the graph reached size κ + 1, we add another two-
connected node if possible. Figure 1 gives more detailed pseudocode for

4 A Branch-And-Cut Algorithm 69

z-cover separation. Separation of clique inequalities is done using exactly
the same routine as for z-cliques, but applied to Gc(A, β) with node weights
given by the x-variables.

z-Cycle inequalities are separated in the following heuristic way. We look at
some path P with end-nodes u and v, where initially u and v coincide. In
each iteration we extend the path at one of its end-nodes by a neighbor w
with maximal z(x)w-value. Let jw be a column of A that connects w to
the path P . Since jw forms a clique in G(AT) there are additional nodes
that can be potentially added to the path if the support of jw is greater
than two, i. e., | supp(A·jw)| > 2. We store these additional nodes in a buffer
which will be exploited later in the heuristic. Now we test whether the new
path P extended by w can be closed to a cycle C that satisfies |C| > κ
and |C| 6= 0 mod (κ + 1). This is done by looking for a column j of A that
contains both end-nodes of P (one of them w). supp(A·j) again forms a
clique, and the additional nodes in this clique together with the nodes in
the buffer give the flexibility to add further nodes to the cycle. This freedom
is exploited in our routine. We try the procedure for several starting nodes
u = v, whose number depends on the success of the heuristic.

Separation of the composition of clique inequalities is not easy: We do not
even know a way to compute the right-hand side α(p, q, β, κ) in polynomial
time! But there are problems in our test set, e.g., pipex (see Section 5.2),
where compositions of cliques occur and there seems to be no way to solve
this (small!) problem without them. Our heuristic was developed to capture
these cases. It lead to the development of the more general class of extended
COQ inequalities, which are easier to find. The idea is as follows.

Let us start with a composition of cliques Q1, . . . , Qp and P1, . . . , Pq as stated
in Theorem 3.11. Suppose that these cliques are contained in the columns
1, . . . , p, p+1, . . . , p+q of the matrix A, i.e., supp(A·i) ⊇ Qi, i = 1, . . . , p, and
supp(A·i) ⊇ Pi, i = p + 1, . . . , p + q. Consider a column/column-incidence
matrix S of A defined by

sij =

{
k, for k ∈ {l : ali 6= 0 6= alj} arbitrary, but fixed;

0, if AT
·iA·j = 0,

i.e., sij = k 6= 0 if and only if columns i and j intersect in some row k and
in case there is no unique k we pick an arbitrary, but fixed one. Suppose for
the moment that all entries in the submatrix S{1,...,p}×{p+1,...,p+q} of S are
mutually different, that is, there is no row index k that appears more than
once. Then the composition of cliques corresponds to the rectangle subma-
trix S{1,...,p}×{p+1,...,p+q} of S that is completely filled with nonzeros: The
rows that appear on the left-hand side of the COQ inequality (2) are exactly
those appearing in the matrix S{1,...,p}×{p+1,...,p+q}. In other words, the node

4 A Branch-And-Cut Algorithm 70

set W in (2) is W = {sij : i = 1, . . . , p, j = p + 1, . . . , p + q}. Thus, given

some vector x ∈ Rm×β , the left-hand side of (2) is
∑p

i=1

∑p+q
j=p+1

∑β
b=1 xb

sij

and a final calculation of the right-hand side allows to check for a possible
violation of the inequality.

Our heuristic tries to go the reverse direction: It identifies large filled rect-
angles in S and derives COQ and xCOQ inequalities from them. There are
three difficulties. First, a clique in a composition can not only be a subset
of a column of A, but any clique in G(AT). However, we have not incorpo-
rated this generality in our heuristic, because we do not know how to select a
promising set of cliques in G(AT). Second, columns in A that form a compo-
sition of cliques may not appear in the right order: The rectangle identifies
itself only after a suitable permutation of S. In this case, we have to reorder
the columns and rows of S. We obtain a filled rectangle submatrix SI×J of
S by starting with each of column j of S once, extend this 1 × | supp(A·j)|
rectangle submatrix by columns that fit best in a greedy way, sort its rows
lexicographically, and consider all maximal filled submatrices in the upper
left corner as potential COQ-rectangles. A third serious problem arises when
two columns of A intersect in more than one row. In this case the entries of
the matrix S are no longer uniquely determined and it can happen that the
entries of the rectangular submatrix SI×J under consideration are no longer
mutually different. Then SI×J corresponds no longer to a composition of
cliques and the inequality

∑
ij∈I×J

∑β
b=1 xb

sij
≤ α

(
|I|, |J |, β, κ

)
is in general

not valid. But one can set duplicate entries in S to zero until, for every
row k, there is only one representative sij = k left; denote the resulting
matrix by S′. Then the sets

Qi := {s′ij : s′ij 6= 0, j ∈ J}, i ∈ I and P j := {s′ij : s′ij 6= 0, i ∈ I}, j ∈ J

of non-zero entries in the rows and columns of S′ form an extended compo-
sition of cliques and the corresponding xCOQ inequality

∑

k∈im SI×J

β∑

b=1

xb
k ≤ α(|I|, |J |, β, κ)

is valid for P (A, β, κ), where im SI×J = {sij : ij ∈ I × J} denotes the set
of row indices that appear in the submatrix SI×J . The interesting feature
of separating extended COQ inequalities instead of COQs is that the gen-
eralization gives us the algorithmic freedom to handle multiple occurrences
of rows in filled rectangles of S and this is the key to a successful heuristic
separation of an otherwise rigid structure. The price for this, of course, is
a reduced support in the left-hand side. To pay this price only when nec-
essary, we heuristically determine a column/column-intersection matrix S
with a large variety of rows in imS. The right-hand side itself is computed

4 A Branch-And-Cut Algorithm 71

in amortized (pseudo-polynomial) time of O(βκn2) steps by a dynamic pro-
gram (for our tests β ≤ 4 and κ = O(n), and thus this effectively amounts
to O(n3)).

The reader might have noticed that several degrees of freedom in this sep-
aration routine can be used to search for rectangles with large z-value and
this is what we would like to find. However, the running time of the method
is too large to apply it after each LP and when we did, we did not find ad-
ditional cuts. We thus call the routine only once, determine some promising
COQs by combinatorial criteria, store them in memory, and separate them
by inspection.

To separate clique inequalities (for β > 2), we use an exact branch-and-bound
algorithm for the maximum weight clique problem. Although in principle
exponential, this algorithm works fast for the separation problems coming
up in our matrix decomposition instances because the maximum clique size
is bounded by β. We have also tried to separate z-cliques exactly, but
we never observed that additional cuts were found: In the small examples,
the greedy heuristic is good enough, while in the larger ones with high
capacities cliques of size κ don’t seem to exist. Another exact, but this
time polynomial, algorithm is used to separate cycle inequalities: We apply
the odd-cycle algorithm described in Lemma 9.1.11 in Grötschel, Lovász &
Schrijver (1988) [12].

Finally, a mixture of exact and heuristic ideas is used in a hybrid algorithm
to separate the bin-packing inequalities. We start by determining a node
set W that can result in a violated inequality. A necessary condition for this
is

∑

i∈W

z(x)i > |W | − 1 ⇐⇒ 1 >
∑

i∈W

(1 − z(x)i)

and it is reasonable to construct W by iteratively adding rows that have a z-
value close to one. We thus sort the nodes with respect to increasing z-value
and add them to W in this order as long as the condition stated above is
satisfied. This node set W induces a subgraph (W, E(W)) of G(AT) and we
determine the components of this subgraph. The resulting bin-packing prob-
lem (see page 63) is solved using an exact dynamic programming algorithm
(with a time bound).

In addition to these classical types of cutting planes we also use a number
of “tie-breaking” inequalities to cut off decompositions that are identical up
to block permutations or give rise to multiple optima for other reasons as
a means to counter dual degeneracy and stalling. These inequalities are in
general not valid for P (A, β, κ), but for at least one optimal solution. The

4 A Branch-And-Cut Algorithm 72

most simple kind of these cuts are the permutation inequalities

m∑

i=1

xb
i ≤

m∑

i=1

xb+1
i , b = 1, . . . , β − 1,

stating that blocks with higher indices are of larger size. To break further
ties, we supplement them with inequalities stipulating that in case of equal
sized blocks the row with the smallest index will be assigned to the block
with smaller index. These strengthened permutation inequalities read

xb+1
k +

m∑

i=1

xb
i −

m∑

i=1

xb+1
i ≤

k−1∑

i=0

xb
i , b = 1, . . . , β − 1, k = 2, . . . , m − 1.

If
∑m

i=1 xb
i−

∑m
i=1 xb+1

i < 0, the inequality is redundant, but in case of equal-
ity, the row with the smallest index in blocks b and b+1 must be in block b.
The case k = m is left out because it yields a redundant inequality. Both
permutation and strengthened permutation inequalities can be separated by
inspection.

Another idea that we use to eliminate multiple optima is based on the con-
cept of row preference. We say that row i is preferred to row j or, in symbols,
i ≺ j if

γ(i) ⊆ γ(j)

with respect to the row intersection graph G(AT). We may in this situation
not know whether or not row i or j can be assigned to a block in some
optimal solution, but we can say that for any decomposition x with z(x)j =
1, say xb

j = 1, either z(x)i = 1 or we can get a feasible decomposition

x′ = x− eb
j + eb

i with the same number of rows assigned. In this sense, row i
is more attractive than row j. If we break ties on row preference by indices
(i.e., i ≺ j ⇐⇒ γ(i) $ γ(j)∨ (γ(i) = γ(j) ∧ i < j)), row preferences induce
a partial order that we represent in a transitive and acyclic digraph

D(A) := (V, {(i, j) : i ≺ j}) .

Since the number of row preferences tends to be quadratic in the number
of rows, we thin out this digraph by removing all transitive (or implied)
preferences. The remaining row preferences are forced in our code by adding
the row preference inequalities

β∑

b=1

xb
i ≥

β∑

b=1

xb
j for (i, j) with i ≺ j.

These can sometimes be strengthened to

xb
i ≥ xb

j for all b = 1, . . . , β,

4 A Branch-And-Cut Algorithm 73

if we can be sure that rows i and j can not be assigned to different blocks
in any decomposition. This will be the case, for example, if i and j are
adjacent in G(AT) = (V, E) or if both i and j are adjacent to some third
row k preferable to both of them (i.e., i ≺ j, k ≺ i, k ≺ j, ik ∈ E and
jk ∈ E). Once D(A) is set up, row preference inequalities can be separated
by inspection.

Our last separation routine uses a cut pool that stores all inequalities found
by the hitherto explained algorithms: The pool separation routine just checks
all inequalities in the pool for possible violation.

The separation algorithms described in the previous paragraphs turned out
to be very successful: Not only block-discernible (permutable) inequalities
like two-partitions are found in large numbers, also block-invariant cuts like
z-covers occur in abundance. Controlling the growth of the LP-relaxation
is thus the main goal of our separation and LP-maintenance strategy. We
start with a minimal LP-relaxation containing (besides the bounds) only
the block assignment and block capacity constraints plus the β − 1 permu-
tation inequalities. The cuts that are separated by inspection, i.e., big-edge
inequalities, star inequalities, tie-breaking inequalities, and composition of
clique inequalities are placed in a cut pool; they will be found by pool sep-
aration. The separation algorithms are called dynamically throughout the
course of the branch-and-cut algorithm. After an LP is solved, we call the
pool separation routine, followed by two-partition inequality separation and
a couple of heuristics: The z-cover heuristic is called as it is, but applica-
tion of the more expensive z-clique and z-cycle algorithms is controlled by a
simple time- and success-evaluation. This control mechanism is motivated
by the observation that our test set fell into two groups of examples, where
one of these routines was either indispensable or essentially did not find a
single cut. We empirically try to adapt to these situations by calling the
separation routines only if their past success is proportional to the running
time, or more precisely, if after the first call

of successful calls + 1

of calls
>

time spent in routine

total time spent in separation
.

A call is counted as successful if a violated cut is found. If β > 2, there
can be clique inequalities that are not two-partition constraints and in this
case we next call the exact clique separation routine, that returns at most
one cut. The branch-and-bound algorithm used there turned out to be
fast enough to be called without any further considerations. Finally, we
separate bin-packing inequalities. To avoid excessive running times due to
the dynamic program, the routine is called with a time limit: The dynamic
program will be stopped if the time spent in bin-packing separation exceeds
the cumulated separation time of all other separation routines.

4 A Branch-And-Cut Algorithm 74

All violated cuts determined in this separation process are not added directly
to the LP-relaxation, but stored in a cut buffer first. This buffer is saved to
the pool, and then a couple of promising cuts are selected to strengthen the
LP-relaxation. Our criteria here have an eye on the amount of violation and
on the variety of the cuts. Since inequalities of one particular type tend to
have similar support, we restrict the number of cuts per type and prefer to
add inequalities of other types, even if they are not among the most violated.
To accomplish this we add the

of cuts in cut buffer

number of types of cuts

most violated cuts of each type to the LP-relaxation. We also delete cuts
from the LP-relaxation if they become non-binding by a slack of at least
10−3, but keep them in the cut pool for a possible later pool separation.

Another feature of our code that aims for small LPs is to locally setup the LP-
relaxation prior to computation at any node of the searchtree. This means
that when branching on some node v we store at each of its sons a description
of the last LP solved at v and of the optimal basis obtained. When we start
to process v’s sons, we set up this LP from scratch and load the associated
(dual feasible) basis. In this way, we continue the computation exactly at
the point where it stopped and the LP will be the result of a contiguous
process independent of the node selection strategy. We have compared this
approach to one where the start-LP at each newly selected node is just the
last LP in memory and this leads to larger LPs and larger running times.

While these strategies were sufficient to keep the size of the LP-relaxation
under control, explosive growth of the cut pool was a serious problem in
our computations until we implemented the following cut pool management.
We distinguish between disposable and indisposable cuts in the pool. Indis-
posable cuts are inequalities that are needed to set up the LP-relaxation at
some node in the searchtree yet to be processed and all big-edge, star, and
tie-breaking inequalities. All other cuts are disposable and can potentially
be deleted from the cut pool, possibly having to be recomputed later. In
order to control the pool size we restrict the number of disposable cuts in
the pool by eliminating cuts that have not been in any LP for a certain
number of iterations. This number depends on the size of the pool and the
ratio of disposable to indisposable cuts.

The LPs themselves are solved with the CPLEX 4.0 dual simplex algorithm
using steepest edge pricing, see the CPLEX [17] documentation.

4 A Branch-And-Cut Algorithm 75

4.2 Heuristics

Raising the lower bound using cutting planes is one important aspect in
a branch-and-cut algorithm, finding good feasible solutions early to enable
fathoming of branches of the searchtree is another and we have implemented
several primal heuristics for our matrix decomposition code. Since different
nodes in a branch-and-bound tree correspond to different fixings of variables
to zero or one, the heuristics should respect these fixings to increase the
probability of finding different solutions. Applied at the root node where (at
least initially) no variables are fixed, our methods can be seen as LP-based
or pure combinatorial heuristics for the matrix decomposition problem.

Our heuristics fall into three groups: “Primal” methods that iteratively
fix block assignments, “dual” methods that iteratively exclude assignments
until decisions become mandatory due to lack of alternatives, and an im-
provement method that is applied as an “afterburner” to enhance the quality
of the two groups of opening heuristics.

The primal methods consist of a greedy algorithm and a bin-packing heuristic,
both are LP-based. The greedy algorithm starts by ordering the xb

i variables;
with probability 1

2 a random ordering is chosen, otherwise a sorting according
to increasing x-value is used. The rows are assigned greedily to the blocks in
this order. This heuristic is similar in spirit to the popular “LP-plunging”
method, i.e., the iterative rounding of some fractional LP-value to an integer
followed by an LP-reoptimization, but much faster. We have also tried LP-
plunging, but for the matrix decomposition problem the results were not
better than with the simple greedy method, while the running time was much
larger. The bin-packing heuristic starts by determining a set of nodes W
that will be assigned to the blocks and used to set up a corresponding bin-
packing problem. In order to find a better decomposition than the currently
best known with, say, z⋆ rows assigned, W should be of cardinality at least
z⋆ + 1 and therefore we take the z⋆ + 1 rows with the largest z(x)-values
to be the members of W . The corresponding bin-packing problem is set up
and solved with the same dynamic program that we used for the separation
of the bin-packing inequalities; it is also called with a time limit, namely 10
times as much as all other primal heuristics (that are very fast) together.
Clearly, we also watch out for better solutions that might be detected in
bin-packing separation.

The dual methods also respect variable fixings, but are not LP-based. The
idea behind them is not to assign rows to blocks, but to iteratively eliminate
assignments of “bad” rows. Suppose that a decision was made to assign
certain rows (assigned rows) to certain blocks, to exclude other rows from
assignment (unassigned rows), while for the remaining rows a decision has
yet to be made (free rows). Removing the unassigned nodes from the row

4 A Branch-And-Cut Algorithm 76

intersection graph G(AT) leaves us with a number of connected components,
some of them larger than the maximum block capacity κ, some smaller. Both
variants of the dual method will break up the components that are larger
than the block capacity κ by unassigning free rows until no more such com-
ponents exist. At this point, a simple first-fit decreasing heuristic is called
to solve the corresponding bin-packing problem. The two variants differ in
the choice of the next bad row to remove. Variant I chooses the free row in
some component of size larger than κ with the largest degree with respect to
the row intersection graph G(AT), variant II excludes assignment of a free
row of some component with size larger than κ with the largest indegree
with respect to D(A), or, in other words, the least preferable row. We have
also tried to use a dynamic program to solve the bin-packing problems, but
it did not provide better results in our tests.

Our improvement heuristic is a variation of a local search technique pre-
sented by Fiduccia & Mattheyses (1982) [8]. Given some block decompo-
sition, it performs a sequence of local exchange steps each of the following
type. Some assigned row is chosen to be made unassigned opening up pos-
sibilities to assign its unassigned neighbors. These assignments are checked
and feasible assignments are executed. The details are as follows. The
heuristic performs a number of passes (10 in our implementation). At the
beginning of each pass, all rows are eligible for unassignment in the basic
exchange step. Each row may be selected only once for unassignment in
each pass and will then be “locked”. Candidates for becoming unassigned
are all currently assigned and unlocked rows. These candidates are rated ac-
cording to the number of possible new assignments (computed heuristically)
and we choose the one that is best with respect to this rating. As a special
annealing-like feature, the algorithm will also perform the exchange step if
it leads to a change of the current solution to the worse. If no exchange step
is possible because all assigned rows are already locked, the pass ends and
the next pass is started.

The strategy to call the heuristics is as follows. The primal methods are
called after each individual LP, whereas the dual heuristics are called only
once at each node in the branch-and-bound tree, because they behave in a
different way only due to changes in the variable fixings.

4.3 Problem Reduction

We use a couple of problem reduction techniques to eliminate redundant
data. First we apply an initial preprocessing to the matrix A before the
branch-and-cut algorithm is initiated. The purpose of this preprocessing
step is to eliminate columns from the matrix A without changing the row
intersection graph. We first perform a couple of straightforward tests to iden-

4 A Branch-And-Cut Algorithm 77

tify columns that are contained in other columns and can thus be deleted:
We remove empty columns, then unit columns, duplicate columns, and fi-
nally by enumeration columns that are contained in others.

These simple initial preprocessing steps are amazingly effective as we will
see in the section on computational results. In principle, the number of rows
can be reduced also. For example, empty rows could be eliminated and later
used to fill excess capacity in any block, duplicate rows or rows with just one
nonzero entry could be eliminated by increasing the capacity requirements
of one of its adjacent rows. These reductions, however, lead to changes in
the IP model and affect all separation routines discussed so far so that we
refrained from implementing them.

In addition to this initial preprocessing we do local fixings at the individual
nodes of the branch-and-bound searchtree after each call to the LP-solver.
Apart from reduced cost fixing and fixing by logical implication (i.e., if xb

i

is fixed to one, xb′
i will be fixed to zero for all blocks b′ 6= b), we try to

identify rows that cannot be assigned to any block given the current state
of fixings. To this purpose we look at all rows W that are currently fixed for
assignment to some block. We then check for each unassigned row i whether
the subgraph (W∪{i}, E(W∪{i})) of G(AT) = (V, E) contains a component
with more than κ rows. If so, row i can be fixed to be unassigned.

4.4 Searchtree Management

Despite our efforts to understand the polyhedral combinatorics of the matrix
decomposition problem, we do not have a strong grip on the corresponding
polytope and after an initial phase of rapid growth of the lower bound,
stalling occurs in the presence of significant duality gaps. We believe that —
up to a certain point— it is favorable in this situation to resort to branching
early, even if there is still slow progress in the cutting plane loop. In fact,
we apply a rather “aggressive” branching strategy, splitting the currently
processed node if the duality gap could not be reduced by at least 10% in
any 4 consecutive LPs. On the other hand, we pause a node (put it back
into the list of nodes yet to be processed) if the local lower bound exceeds
the global lower bound by at least 10%.

Branching itself is guided by the fractional LP-values. We first look for
a most fractional z(x)-value. If, e.g., z(x)i is closest to 0.5 (breaking ties
arbitrarily), we create β +1 new nodes corresponding to the variable fixings

x1
i = 1, x2

i = 1, . . . , xβ
i = 1, and

β∑

b=1

xb
i = 0.

5 Computational Results 78

In other words, we branch on the block assignment constraint corresponding
to row i. The advantage of this scheme is that it leads to only β + 1 new
nodes instead of 2β-nodes in an equivalent binary searchtree. If all z(x)-
values are integral, we identify a row with a most fractional x-variable and
perform the same branching step. We have also tried other branching rules
by taking, for instance, the degree of a row in G(AT) into account, but the
performance was inferior to the current scheme.

5 Computational Results

In this section we report on computational experiences with our branch-and-
cut algorithm for the solution of matrix decomposition problems arising in
linear and integer programming problems. Our aim is to find answers to
two complexes of questions. First, we would like to evaluate our branch-
and-cut approach: What are the limits in terms of the size of the matrices
that we can solve with our algorithm? What is the quality of the cuts, do
they provide a reasonable solution guarantee? Second, we want to discuss
our concept of decomposition into bordered block diagonal form: Do the
test instances have this structure or are most integer programming matrices
not decomposable in this way? Does knowledge of the decomposition help
solving them? And do our heuristics provide reasonable decompositions that
could be used within a parallel LU-factorization framework or an integer
programming code?

Our test set consists of matrices from real-world linear programs from the
Netlib and integer programming matrices from the Miplib. In addition, we
consider two sets of problems with “extreme” characteristics as benchmark
problems: Some small matrices arising from Steiner tree packing problems,
see Grötschel, Martin & Weismantel (1996) [13], and equipartition problems
introduced in Nicoloso & Nobili (1992) [21]. The Steiner tree problems are
known to be in bordered block diagonal form and we wanted to see whether
our code is able to discover this structure. The equipartition problems,
on the other hand, are randomly generated. Our complete test data is
available via anonymous ftp from ftp://ftp.zib.de at /pub/Packages/

mp-testdata/madlib and via webbrowser at URL ftp://ftp.zib.de/pub/

Packages/mp-testdata/madlib/index.html.

In the following subsections, we report the results of our computations on the
different sets of problems. Our algorithm is implemented in C and consists
of about 36,000 lines of code. The test runs were performed on a Sun Ultra
Sparc 1 Model 170E and we used a time limit of 1, 800 CPU seconds. The
format of the upcoming tables is as follows: Column 1 provides the name
of the problem, Columns 2 to 4 contain the number of rows, columns and

ftp://ftp.zib.de
/pub/Packages/mp-testdata/madlib
/pub/Packages/mp-testdata/madlib
ftp://ftp.zib.de/pub/Packages/mp-testdata/madlib/index.html
ftp://ftp.zib.de/pub/Packages/mp-testdata/madlib/index.html

5 Computational Results 79

nonzeros of the matrix to be decomposed. The two succeeding columns give
the number of columns and nonzeros after presolve. Comparing Column 3
with 5 and 4 with 6 shows the performance of our preprocessing. The
succeeding 5 columns give statistics about the number of cuts generated by
our code. There are, from left to right, the number of initial cuts (Init)
including block assignment, block capacity, big-edge, star, and tie-breaking
inequalities (but not composition of clique inequalities, although they are
also separated from the pool), the number of z-cover (Cov), the number of
two-partition (2part), the sum of the number of bin-packing, cycle, z-cycle,
clique, z-clique, and composition of clique inequalities (BCC), and finally the
number of violated inequalities separated from the pool (pool). The following
two columns (Columns 12 and 13) show the number of branch-and-bound
nodes (Nod) and the number of LPs (Iter) solved by the algorithm. The
second part of the tables starts again with the name of the problem. The
next eight columns give solution values. We do not report the number of
assigned rows, but the number of rows in the border, because it is easier
to see whether the matrix could be decomposed into block diagonal form
(in this case the value is zero) or close to this form (then the value is a
small positive integer). Lb gives the global lower bound provided by the
algorithm. It coincides with the value of the upper bound Ub (next column)
when the problem is solved to proven optimality. Skipping two columns for
a moment, the next four columns refer to the heuristics. G, D1, D2 and
B stand for the greedy, the dual (variant I and II), and the bin-packing
heuristic. The corresponding columns show the best solutions obtained by
these heuristics throughout the computations at the root node. If this value
coincides with the number of rows of the matrix, all rows are in the border
and the heuristic failed. The two (skipped) columns right after Ub show
which heuristic He found the best solution after No many branch-and-bound
nodes (1 means it was found in the root node, 0 means that preprocessing
solved the problem). The additional letter I indicates that the value was
obtained by a succeeding call to the improvement heuristic. BS means that
the bin-packing separation routine found the best solution, an asterisk ∗
shows that the LP solution provided an optimal block decomposition. The
remaining five columns show timings. The last of these columns Tot gives
the total running time measured in CPU seconds. The first four columns
show the percentage of the total time spent in cut-management (Cm), i.e.,
local setup, LP-, cut-buffer, and pool-management, the time to solve the
linear programs (LP), the time of the separation algorithms (Sep), and the
time for the heuristics (Heu).

5 Computational Results 80

5.1 The Netlib Problems

The first test set that we are going to consider consists of matrices that
arise from linear programming problems taken from the Netlib1. We inves-
tigated whether basis matrices corresponding to optimal solutions of these
linear programs can be decomposed into (bordered) block diagonal form.
These bases were taken from the dual simplex algorithm of CPLEX [17].
Analyzing the decomposibility of such matrices gives insight into the poten-
tial usefulness of parallel LU-factorization methods within a simplex-type
solver. In this context β reflects the number of processors that are available.
We have chosen β = 4, since this is somehow the first interesting case where
parallelization might pay. As a heuristic means for good load balancing we
aim at equal-sized blocks and have set the capacity to κ := #rows

4 rounded
up. We tested all instances with up to 1,000 rows.

Table 1 shows the results of these experiments. The problems up to 100 rows
are easy. The range of 100–200 rows is where the limits of our code become
visible and this is the most interesting “hot area” of our table: The problems
here are already difficult, but because of the combinatorial structure and not
because of sheer size. The results for the problems with more than 200 rows
are of limited significance, because these matrix decomposition problems
are large-scale and the algorithm solves too few LPs within the given time
limit. We can only solve a couple of readily decomposable large instances,
but it is worth noticing that a significant number of such instances exists:
The difficulty of matrix decomposition problems depends as much on the
structure of the matrix as on the number of rows, columns, or nonzeros.

Let us first investigate the “dual side” of the results. We observe that we
solve very few problems at the root node (only 9 out of 77), and that the
number of cuts is very large, in particular in the hot area of the table. The
reason for this is basically the symmetry of the problem, as can be seen from
the pool separation column (Pool) that counts, in particular, all violated
tie-breaking cuts. Unfortunately, we don’t see a way to get around this
phenomenon, but we believe that the symmetry mainly prevents us from
solving difficult instances of larger size. The quality of the cuts is in our
opinion reasonable, as can be seen from the size of the branch-and-bound
tree and the number of LPs solved. It is true, however, that the lower bound
improves fast at first while stalling occurs in later stages of the computation
although still large numbers of cuts are found and the problem is finished
by branch-and-bound. The same behaviour has been reported for similar
problems like the node capacitated graph partitioning problem discussed in
Ferreira et al. (1998) [7].

1Available by anonymous ftp from ftp://netlib2.cs.utk.edu/lp/data.

ftp://netlib2.cs.utk.edu/lp/data

5
C

o
m
p
u
t
a
t
io

n
a
l

R
e
s
u
lt

s
81

Original Presolved Cuts B&B Best Solutions Heuristics at Root Time
Name rows col nz col nz Init Cov 2part BCC Pool Nod Iter Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

seba 2 2 2 0 0 0 0 0 0 0 1 0 0 0 - 0 - - - - 0% 0% 0% 0% 0.0
afiro 20 20 34 10 24 106 12 6 5 2 1 2 2 2 B 1 3 3 3 2 0% 40% 10% 0% 0.1
fit1d 24 24 178 9 126 298 97 38 265 105 6 18 16 16 B 1 16 17 17 16 6% 50% 25% 6% 0.7
fit2d 25 25 264 11 147 379 549 458 1504 892 41 99 18 18 D1 1 20 18 18 25 12% 54% 22% 5% 5.5
sc50b 28 28 84 27 82 124 2304 1291 152 5452 56 182 11 11 IG 1 11 11 11 28 6% 71% 12% 4% 12.7
sc50a 29 29 88 24 77 137 1062 654 53 1487 26 79 8 8 ID1 1 8 8 8 29 3% 78% 11% 2% 6.8
kb2 39 39 213 16 164 328 38 21 2 8 1 3 14 14 IG 1 14 14 14 39 4% 69% 14% 2% 0.5
vtpbase 51 51 198 27 149 415 9130 4796 407 32630 561 1025 14 14 IG 1 14 17 17 15 7% 57% 20% 8% 94.6
bore3d 52 52 311 29 262 579 2241 1025 2333 2706 51 116 23 23 D1 9 24 24 24 52 7% 69% 17% 2% 24.0
adlittle 53 53 203 35 167 454 818 244 20 515 11 31 10 10 D1 1 10 10 10 53 6% 72% 15% 2% 5.0
blend 54 54 313 28 274 547 3357 1553 2757 6143 61 166 20 20 IG 2 21 25 25 21 6% 66% 20% 3% 35.9
recipe 55 55 100 24 69 317 0 14 3 2 1 3 1 1 IB 1 3 4 4 1 0% 51% 18% 10% 0.4
scagr7 58 58 242 34 210 439 770 331 718 468 16 30 21 21 B 4 25 25 25 58 6% 46% 32% 10% 5.2
sc105 59 59 220 48 203 318 6200 3415 151 19447 66 207 16 16 B 20 17 17 17 59 4% 82% 9% 2% 85.1
stocfor1 62 62 180 25 143 497 2395 801 55 2977 21 65 10 10 B 7 12 12 12 62 6% 68% 17% 4% 15.2
scsd1 77 77 215 70 207 500 4264 1570 60 6331 21 74 8 8 IB 5 10 10 10 77 3% 81% 10% 3% 53.1
beaconfd 90 90 618 48 576 1626 4618 1403 3231 6296 121 263 26 26 D1 21 28 28 28 90 4% 67% 21% 4% 115.7
share2b 93 93 482 37 340 825 7335 4636 212 14713 626 860 9 9 ID1 5 10 10 10 93 4% 77% 8% 6% 282.5
share1b 102 102 485 56 364 721 3769 2135 294 8204 806 1142 7 7 B 4 8 8 8 102 5% 65% 13% 9% 203.6
forplan 104 104 575 70 535 815 43011 16754 4783 145556 316 681 31 36 ID1 18 39 44 44 104 2% 85% 8% 3% 1801.1
scorpion 105 105 383 46 300 812 48144 12649 1178 113261 1206 2485 11 11 B 7 14 14 14 105 4% 67% 14% 9% 940.7
sc205 113 113 691 104 676 561 24727 15842 272 116813 136 299 28 39 IG 9 45 45 45 113 1% 92% 4% 1% 1806.6
brandy 113 113 874 83 774 1270 33012 13041 5037 107955 271 664 34 34 * 214 51 51 51 113 2% 82% 11% 2% 1200.7
lotfi 122 122 349 60 267 1026 85763 17243 1110 203255 1076 2217 19 19 B 279 23 23 23 122 4% 76% 12% 4% 1643.3
boeing2 122 122 435 70 383 1038 18823 5794 200 41101 71 237 19 19 B 33 31 32 32 122 2% 84% 7% 3% 411.9
tuff 137 137 820 84 748 1795 17387 4823 200 32293 116 306 26 26 B 43 28 35 35 137 2% 85% 7% 3% 635.3
grow7 140 140 1660 51 243 948 33529 12866 320 182151 206 424 10 18 IG 9 22 22 22 140 3% 80% 9% 6% 1801.2
scsd6 147 147 383 138 373 804 41055 12440 297 116468 111 331 10 22 IG 4 23 23 23 147 1% 87% 5% 4% 1805.1
e226 148 148 954 88 807 1469 33011 14063 272 112223 206 355 22 30 IG 15 44 44 44 148 1% 84% 7% 5% 1800.5
israel 163 163 1321 37 1014 2217 537 289 2115 237 11 25 98 98 IG 2 101 119 118 163 4% 32% 51% 10% 42.1
agg 164 164 669 52 551 1492 37378 12257 325 174665 341 539 19 24 IG 56 43 43 43 164 3% 81% 9% 5% 1802.3
capri 166 166 826 102 718 1625 9291 4015 396 9008 71 94 23 53 D1 7 59 64 64 166 0% 90% 4% 3% 1801.8
wood1p 171 171 2393 55 1340 1650 6253 2457 56 7758 46 94 28 28 B 29 32 32 32 171 2% 73% 15% 7% 277.6
bandm 180 180 1064 90 815 1690 11854 6042 405 31838 66 96 19 43 IG 11 58 58 58 180 1% 93% 4% 1% 1835.0
scrs8 181 181 887 110 675 1400 11399 5375 72 30637 56 85 17 43 IG 9 56 56 56 181 0% 92% 3% 2% 1802.1
ship04s 213 213 573 176 536 1530 1084 72 7 190 1 7 4 4 IB 1 8 8 8 4 5% 55% 31% 2% 10.8
scagr25 221 221 1627 91 1470 1831 14509 8239 6884 23224 121 261 62 69 B 53 81 81 81 221 1% 52% 21% 23% 1814.7
scfxm1 242 242 1064 154 922 2182 16607 3887 68 38232 31 80 10 30 IG 7 50 50 50 242 1% 87% 5% 5% 1803.7
stair 246 246 3402 216 3154 1552 7192 3058 33 1005 51 44 58 122 IG 3 123 133 133 246 0% 83% 10% 5% 1914.6
shell 252 252 493 235 476 1495 14086 1311 85 5878 46 101 4 4 B 17 8 8 8 252 3% 58% 16% 18% 187.8
standata 258 258 513 109 364 1733 0 0 0 0 1 1 1 1 D1 1 17 1 1 258 0% 52% 35% 3% 5.3
sctap1 269 269 640 77 373 1957 25028 4187 110 37924 61 143 9 19 D1 13 20 20 20 269 1% 86% 6% 5% 1801.2
agg2 280 280 1468 109 1275 2270 9856 4124 34 13961 31 45 13 78 IG 5 110 112 112 280 0% 89% 5% 3% 1810.8
agg3 282 282 1444 99 1162 2259 9572 4674 32 13575 26 43 12 79 IG 6 92 116 116 282 0% 91% 4% 2% 1808.6
ship08s 284 284 699 201 616 1909 7352 480 33 3403 11 35 4 4 B 3 10 10 10 284 3% 76% 14% 4% 144.0
boeing1 284 284 1384 174 1271 2670 13291 4198 48 22032 31 56 12 55 IG 2 56 56 56 284 1% 91% 3% 4% 1812.6

grow15 300 300 3680 102 489 2044 17134 5225 72 28665 21 77 7 20 ID1 1 20 20 20 300 1% 84% 5% 8% 1817.1
fffff800 306 306 1382 182 1237 3045 9590 3320 30 15509 36 51 12 52 IG 6 79 104 104 306 0% 89% 5% 3% 1820.2
etamacro 307 307 1005 215 907 1824 8431 3985 33 10512 16 36 6 83 IG 3 91 91 91 307 0% 93% 2% 2% 1832.6
ship04l 313 313 868 274 829 2321 4387 520 125 1918 356 491 5 5 B 14 8 8 8 313 1% 66% 3% 25% 1727.2
gfrdpnc 322 322 623 276 576 1569 13308 2328 53 4899 31 59 4 4 BS 7 8 8 8 322 2% 65% 9% 21% 398.4
ship12s 344 344 858 247 761 2313 1676 108 7 62 6 8 3 3 IB 2 10 10 10 344 4% 61% 24% 6% 35.4
finnis 350 350 831 178 653 2371 13570 3020 55 17997 26 61 7 27 B 4 31 31 31 350 1% 90% 4% 3% 1842.8
pilot4 352 352 3157 265 2988 3014 8563 4104 25 13824 16 29 6 106 IG 1 106 109 109 352 0% 87% 6% 4% 1881.6
standmps 360 360 836 217 691 2785 32633 4731 183 37695 71 210 7 10 D1 4 11 11 11 360 2% 79% 9% 7% 1802.0
degen2 382 382 2440 262 2230 2717 6922 1959 16 2396 26 25 12 114 ID1 1 114 114 114 382 0% 92% 3% 2% 1922.1
scsd8 397 397 1113 394 1109 1755 9128 4799 24 14671 6 25 4 63 IG 2 85 98 89 397 1% 90% 2% 5% 1912.1
grow22 440 440 5272 161 732 2984 10976 1880 26 10062 11 28 4 24 ID1 3 25 31 25 440 1% 83% 4% 11% 1808.9
bnl1 448 448 1656 307 1481 3788 6984 1623 16 6521 11 19 6 68 D1 1 68 68 68 448 0% 93% 2% 3% 2046.8
czprob 475 475 939 464 928 3640 1227 25 4 9 1 4 3 3 D1 1 3 3 3 475 4% 53% 35% 1% 42.0
scfxm2 485 485 2179 313 1906 4317 7582 1712 17 10240 6 18 5 65 IG 2 113 120 115 485 1% 80% 4% 13% 1849.6
perold 500 500 3277 424 3077 3448 5983 3669 13 6810 6 14 5 166 D1 1 166 166 166 500 0% 90% 3% 4% 2079.5
ship08l 520 520 1404 436 1320 3767 11855 703 76 4080 71 129 4 5 D1 9 12 12 12 520 1% 48% 7% 40% 1807.1
maros 545 545 2637 301 2323 4384 7750 2718 15 2539 11 18 8 103 D1 1 103 103 103 545 1% 85% 4% 8% 1832.8
ganges 576 576 3002 466 2892 4098 19490 2429 40 10251 16 42 6 15 IB 3 36 39 39 576 2% 65% 10% 21% 1805.4
pilotwe 613 613 2982 561 2833 3804 5489 4184 10 4238 6 11 3 181 IG 2 182 186 182 613 0% 83% 3% 11% 1911.8
nesm 622 622 1925 419 1461 3720 5929 3407 11 4785 6 12 3 151 D1 2 152 152 152 622 1% 86% 4% 7% 1803.8
fit1p 627 627 4992 1 627 5013 0 0 0 0 1 1 470 470 IG 1 470 470 470 627 0% 92% 5% 0% 726.4
25fv47 677 677 3750 442 3278 5699 4644 1315 7 482 6 9 4 190 IG 1 190 195 195 677 0% 90% 3% 5% 2102.4
ship12l 686 686 1883 589 1786 5026 3212 127 6 74 1 6 3 3 B 1 4 18 18 3 3% 57% 27% 8% 169.8
woodw 711 711 3044 528 2849 4517 3736 2395 6 399 11 9 5 184 IG 2 186 187 187 711 0% 89% 4% 5% 2069.4
scfxm3 728 728 3285 469 2876 6411 4969 1203 8 3541 6 9 3 104 D1 2 105 105 105 728 0% 90% 3% 4% 1924.6
pilotja 745 745 4738 548 4121 5708 4462 2129 7 670 6 8 3 226 ID1 1 226 226 226 745 0% 88% 4% 6% 1989.3
pilotnov 783 783 4428 498 3606 5479 3859 2466 6 1159 6 7 3 250 D1 1 250 250 250 783 0% 85% 3% 9% 1855.4
bnl2 940 940 3284 489 2509 6981 4930 880 7 634 6 8 3 199 D1 1 199 199 199 940 0% 81% 4% 11% 2051.2
sctap2 977 977 1491 161 642 5506 1256 0 0 156 6 6 1 1 D1 2 2 4 4 2 0% 8% 16% 73% 834.5
truss 1000 1000 3564 986 3540 4792 4999 4137 6 1810 6 7 3 286 ID1 2 288 288 288 1000 0% 70% 4% 23% 2347.0
P

22911 22911 108546 14614 82679 169450 867384 285672 37498 1909629 8022 15550 1455 4423 1026 4841 4987 4962 20893 1% 82% 6% 8% 85517.1

T
ab

le
1:

D
ecom

p
osin

g
L
in

ear
P

rogram
m

in
g

B
asis

M
atrices.

5 Computational Results 82

Investigating the “primal side”, we see that the greedy heuristic seems to
be most reliable. The two dual methods perform exactly the same and
yield solutions of the same quality as the greedy. Bin-packing is either very
good (a rather rare event) or a catastrophe, but complements the other
heuristics. If we look at the quality of the solutions found at the root
node as a measure of the method as a stand-alone decomposition heuristic,
the table shows pretty good results for the small problems. For the larger
instances the situation is a bit different. We detect larger gaps, see, for
instance, scfxm1 or ship12s. In fact, we have often observed in longer runs
on larger examples that the best solution could steadily be improved and the
optimal solution was found late. A reason might be that the heuristics are
closely linked to the LP-fixings and essentially always find the same solutions
until the branching process forces them strongly into another direction. We
believe (and for some we know) that many of the larger problems can be
decomposed much better than the Ub-column indicates and that there might
be potential to further improve stand-alone primal heuristics.

The answer to the final question whether LP basis matrices are decompos-
able into four blocks is ‘Yes’ and ‘No’. Some like recipe or standata are
(only one row is in the border), others are not, for example israel: 98 out of
163 are in the border. The results leave, however, the possibility that larger
LP-matrices, that are generally sparser than small ones, can be decomposed
better so that we can not give a final answer to this question.

5.2 The Miplib Problems

In this test series we examine whether matrices arising from integer programs
can be decomposed into (bordered) block diagonal form. There are two
applications here.

First, decomposing the original constraint matrix A of some general integer
program can be useful to tighten its LP-relaxations within a branch-and-cut
algorithm. The structure of the decomposed matrix is that of a multiple
knapsack or general assignment problem, and inequalities known for the
associated polytopes (see Gottlieb & Rao (1990) [11], Ferreira, Martin &
Weismantel (1996) [6]) are valid for the MIP under consideration. The first
interesting case in this context are two blocks and we set β := 2. We used
κ := (#rows)·1.05

2 rounded up as the block capacity, which allows a deviation
of 10% of the actual block sizes in the decomposition.

Table 2 shows the results that we obtained for matrices of mixed integer
programs taken from the Miplib2 and preprocessed with the presolver of
the general purpose MIP-solver SIP that is currently under development at

2Available at URL http://www.caam.rice.edu:80/\simbixby/miplib/miplib.html.

http://www.caam.rice.edu:80/$sim $bixby/miplib/miplib.html

5
C

o
m
p
u
t
a
t
io

n
a
l

R
e
s
u
lt

s
83

Original Presolved Cuts B&B Best Solutions Heuristics at Root Time
Name rows col nz col nz Init Cov 2part BCC Pool Nod Iter Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

mod008 6 319 1243 1 6 23 0 0 0 0 1 1 3 3 IG 1 3 3 3 6 0% 6% 6% 0% 0.1
stein9 13 9 45 9 45 50 115 64 1 23 16 34 7 7 IG 1 7 7 7 13 6% 34% 24% 6% 0.3
p0040 13 40 70 30 60 16 0 0 0 0 1 1 3 3 * 1 13 13 13 13 0% 0% 40% 0% 0.1
p0033 15 32 97 11 41 41 23 3 0 1 1 3 4 4 D1 1 4 4 4 15 0% 50% 16% 0% 0.1
gt1 15 46 92 46 92 19 262 87 0 61 13 33 6 6 D1 1 6 6 6 15 4% 47% 26% 4% 0.4
flugpl 16 16 40 6 21 46 16 0 1 0 1 2 1 1 ID2 1 3 3 1 16 0% 25% 0% 0% 0.0
bm23 20 27 478 1 20 79 0 0 0 0 1 1 10 10 IG 1 10 10 10 20 0% 22% 0% 11% 0.1
enigma 21 100 289 99 287 40 922 216 0 315 28 83 10 10 IG 1 10 10 10 21 7% 41% 28% 14% 2.0
air01 23 771 4215 18 125 88 0 0 0 0 1 1 3 3 IG 1 3 3 3 23 0% 7% 0% 0% 0.4
rgn 24 180 460 33 102 64 724 163 1 324 13 47 5 5 IG 1 5 5 5 24 12% 48% 18% 10% 1.2
pipex 25 48 192 48 192 46 421 180 0 201 13 33 9 9 IG 1 9 9 9 25 12% 42% 23% 7% 0.8
lseu 28 88 308 50 185 68 98 43 0 19 1 5 7 7 D1 1 7 7 7 28 8% 30% 43% 4% 0.2
gt2 28 173 346 173 346 39 1333 340 0 290 28 86 11 11 IG 1 11 11 11 28 8% 46% 28% 8% 2.8
sentoy 30 60 1800 1 30 119 0 0 0 0 1 1 15 15 IG 1 15 15 15 30 0% 18% 12% 0% 0.2
stein15 36 15 120 15 120 142 17654 13145 0 26682 5458 7595 18 18 IG 1 18 18 18 36 18% 27% 22% 16% 90.1
misc02 43 55 405 46 368 153 2455 1065 0 1612 34 110 15 15 IG 9 17 21 21 43 6% 59% 18% 11% 9.2
sample2 45 64 140 55 131 81 976 171 1 331 7 29 4 4 D1 1 4 4 4 45 6% 61% 21% 6% 2.0
air02 50 6774 61555 76 897 270 4 0 34 0 1 3 22 22 IG 1 22 24 24 50 0% 6% 18% 0% 6.0
misc01 54 79 729 66 678 218 4556 2762 0 4861 367 581 24 24 IG 17 25 26 26 54 7% 42% 29% 14% 31.4
mod013 62 96 192 48 144 254 1810 108 1 722 13 43 6 6 D1 1 6 6 6 62 6% 68% 17% 3% 5.1
mod014 74 86 172 43 129 246 148 0 1 9 1 3 2 2 D1 1 2 2 2 74 5% 32% 35% 8% 0.3
lp4l 85 1086 4677 791 3462 277 23233 16941 0 45877 1129 1779 35 35 IG 487 39 41 41 85 4% 13% 27% 52% 481.2
bell5 87 101 257 73 215 171 2418 473 1 800 13 38 4 4 ID1 4 6 7 7 87 5% 67% 15% 9% 10.6
p0291 92 103 373 63 279 365 2943 366 0 757 19 54 7 7 D1 1 7 7 7 92 7% 52% 21% 15% 10.7
misc03 96 154 2023 133 1934 360 50431 32949 1 85357 12745 15609 43 44 IG 9 46 46 46 96 5% 11% 39% 38% 1800.0
l152lav 97 1989 9922 695 3712 308 32271 23459 0 71535 1525 2276 36 36 IG 1102 43 43 43 97 3% 16% 24% 53% 754.5

khb05250 100 1299 2598 1275 2574 196 12634 1917 1 3421 73 227 25 25 IG 1 25 25 25 100 3% 25% 42% 25% 89.0
harp2 100 1373 2598 1225 2450 116 250 158 0 3 1 4 17 17 D1 1 17 17 17 100 0% 2% 94% 0% 20.4
bell4 101 114 293 84 248 191 7162 1041 1 2157 49 145 5 5 IB 4 11 11 11 101 6% 55% 17% 17% 31.7
bell3a 107 121 311 89 263 203 2718 492 1 802 10 32 4 4 B 6 13 13 13 107 5% 63% 16% 12% 14.5
bell3b 107 121 311 89 263 203 2718 492 1 802 10 32 4 4 B 6 13 13 13 107 5% 63% 15% 13% 14.6
p0201 113 195 1677 177 1527 200 9230 2390 1 5757 46 128 21 21 IG 24 30 30 30 113 3% 64% 12% 19% 125.4
stein27 118 27 378 27 378 353 280101 82635 3 382512 1753 3874 32 56 IG 1 56 56 56 118 12% 44% 34% 6% 1800.1
air03 124 10757 91028 656 5878 830 21108 9064 0 24479 130 377 49 49 IG 13 58 59 58 124 1% 57% 27% 12% 1146.7
p0808a 136 240 480 120 304 392 14298 1463 1 4711 49 175 8 8 D1 1 8 8 8 136 6% 62% 16% 13% 83.2
mod010 146 2655 11203 1973 8404 453 53084 33036 1 118368 727 1170 47 59 IG 28 61 66 66 146 2% 24% 25% 46% 1802.5
blend2 169 319 1279 88 1039 515 0 0 0 0 4 4 10 10 IG 1 10 10 10 169 2% 57% 22% 1% 1.7
noswot 182 127 732 50 455 745 84957 34285 2 533391 1006 1646 10 15 IG 10 37 42 42 182 10% 47% 33% 6% 1800.4

10teams 210 1600 9600 1600 9600 210 67719 25710 1 127827 130 418 43 90 D1 1 90 90 90 210 3% 58% 30% 6% 1804.0
misc07 224 254 8589 229 8474 894 10476 8516 0 13110 118 119 57 93 IG 11 101 107 107 224 0% 23% 22% 52% 1836.5
vpm1 234 378 749 203 574 906 18959 446 1 4060 34 117 7 7 IG 1 7 14 14 234 3% 80% 9% 5% 322.7
vpm2 234 378 917 203 574 906 18959 446 1 4060 34 117 7 7 IG 1 7 14 14 234 3% 79% 9% 6% 317.4
p0808aCUTS 246 240 839 230 828 612 15096 1731 1 3058 22 84 8 8 D1 1 8 8 8 246 4% 65% 12% 17% 231.7
p0548 257 477 1522 250 1009 523 94934 20509 1 94842 175 462 25 49 IG 35 68 68 68 257 5% 69% 12% 12% 1800.1
misc05 266 131 2873 129 2869 581 16094 4604 0 5545 43 80 28 116 IG 13 120 126 126 266 1% 89% 5% 3% 1835.0
modglob 289 420 966 356 902 865 75843 1685 1 29153 148 422 8 8 IG 18 12 12 12 289 3% 74% 11% 9% 1512.6
gams 291 556 2431 540 2400 1622 41190 11 0 6897 169 295 15 21 B 12 36 36 36 291 1% 84% 9% 3% 1801.1
fiber 297 1232 2644 418 1254 593 32222 7410 1 19253 31 123 9 22 ID1 3 38 38 38 297 2% 86% 4% 6% 1807.5

p0282 305 202 1428 168 841 609 56425 17488 1 52114 91 252 23 36 D1 1 36 36 36 305 3% 71% 9% 14% 1803.2
stein45 331 45 1034 45 1034 992 25305 11011 0 22779 28 88 11 154 IG 2 157 157 157 331 1% 89% 5% 2% 1820.3
qnet1 o 369 1454 4040 837 2474 699 34759 9401 1 19450 37 111 12 28 D1 1 28 28 28 369 2% 74% 6% 15% 1812.7

qnet1 407 1454 4405 924 2843 653 24614 8345 1 16223 22 69 8 35 D1 1 35 35 35 407 2% 77% 5% 14% 1801.5
air05 408 7195 50762 3104 23458 600 5677 1286 0 207 13 19 19 189 IG 1 189 194 194 408 0% 67% 20% 10% 1868.9
set1ch 477 697 1382 445 1130 1437 36069 2756 1 9871 25 89 7 12 D1 1 12 12 12 477 3% 72% 7% 16% 1804.4
fixnet3 478 878 1756 498 1374 1990 23068 145 1 959 34 83 12 13 D1 1 13 13 13 478 1% 88% 4% 4% 1809.4
fixnet4 478 878 1756 498 1374 1990 26165 192 1 1860 34 97 13 13 D1 1 13 13 13 478 1% 85% 5% 6% 1789.9
fast0507 484 63001 406865 4927 31419 659 9549 4335 0 2135 10 24 5 183 IG 3 217 217 217 484 1% 51% 15% 26% 1800.1
set1al 492 712 1412 460 1160 1452 27188 2041 1 5790 22 65 6 12 D1 1 12 12 12 492 2% 78% 5% 13% 1816.9
set1cl 492 712 1412 460 1160 1452 26700 2001 1 5711 22 64 6 12 D1 1 12 12 12 492 2% 77% 5% 14% 1805.3

gen 622 797 2064 360 1303 2076 15337 304 1 3914 13 30 5 19 ID1 1 19 19 19 622 1% 68% 5% 24% 1809.8
mod015 622 797 2064 360 1303 2076 14722 299 1 3398 13 28 5 19 ID1 1 19 19 19 622 1% 68% 4% 24% 1807.0
danoint 664 521 3232 521 3232 1016 13895 5307 1 4119 7 24 4 188 ID1 2 189 189 189 664 1% 77% 6% 14% 1861.4
misc06 696 1572 5126 949 3106 1298 15987 3428 1 4911 13 28 4 70 ID1 1 70 70 70 696 2% 62% 7% 27% 1835.3
air06 763 8572 67571 4092 34800 1145 7622 3531 1 732 4 12 3 354 IG 2 356 363 362 763 1% 43% 35% 18% 1934.3
air04 782 8904 70189 4154 35000 1052 6242 3243 1 434 4 10 3 355 IG 1 355 355 355 782 0% 34% 26% 37% 1913.6
adrud 795 998 15876 495 8479 6342 3955 287 0 209 25 32 10 32 D1 1 32 32 32 795 0% 77% 10% 10% 1835.6
P

14814 134914 876632 35938 221378 43230 1395844 405976 75 1778801 26610 39627 905 2729 1863 2931 2990 2986 14814 2% 63% 15% 17% 56337.8

T
ab

le
2:

D
ecom

p
osin

g
M

atrices
of

M
ix

ed
In

teger
P

rogram
s.

5 Computational Results 84

the Konrad-Zuse-Zentrum. We again considered all instances with up to
1,000 rows.

The picture here is a bit different from the one for the linear programming
problems. Since the number of blocks is β = 2 instead of β = 4, the IP-
formulation is much smaller: The number of variables is only one half, the
number of conflicting assignments for two adjacent rows is only 4 instead of
12. In addition, there is much less symmetry in the problem. Consequently,
the number of cuts does not increase to the same extent, the LPs are smaller
and easier to solve (the percentage of LP-time in column LP decreases). We
can solve instances up to 200 rows and many of the small ones within sec-
onds. Note that β = 2, on the other hand, leads to doubled block capacities.
This means that it becomes much more difficult to separate inequalities that
have this number as their right-hand side and have a large or combinatori-
ally restrictive support like z-clique, bin-packing, or composition of clique
inequalities, see column BCC.

On the primal side the results are similar to the Netlib instances, but the
heuristics seem to perform a little better for two blocks than for four.

How decomposable are the MIP-matrices? We see that not all, but many
of the larger problems can be brought into bordered block diagonal form
(the small ones can not). Of course, there are also exceptions like the air-
problems which were expected to be not decomposable. Anyway, there seems
to be potential for the multiple-knapsack approach and further research in
this direction, especially because there are only very few classes of cutting
planes known for general MIPs.

The second application of matrix decomposition to integer programming is
a new branching rule. Decomposing the transposed constraint matrix will
identify the variables in the border as linking variables that are interesting
candidates for branching. Since most MIP-codes create a binary searchtree,
we try to decompose these matrices into β := 2 blocks. As block capacity
we use κ := (#rows)·1.05

2 rounded up to obtain two subproblems of roughly
the same size. The test set consists of all problems with up to 1,000 rows
(1,000 columns in the original problem).

Table 3 shows the results of our computations. Surprisingly, the performance
of our algorithm is not only similar to the “primal” case, in fact it is even
better! We can solve almost all problems with up to 400 rows. One reason
for this is that MIPs tend to have sparse columns, but not necessarily sparse
rows. Dense columns in the transposed matrices (dense rows in the original
ones) leave less freedom for row assignments, there are fewer possibilities for
good decompositions, and the LP-relaxations are tighter than in the primal
case.

For the reason just mentioned we expected that the transposed problems

5
C

o
m
p
u
t
a
t
io

n
a
l

R
e
s
u
lt

s
85

Original Presolved Cuts B&B Best Solutions Heuristics at Root Time

Name rows col nz col nz Init Cov 2part BCC Pool Nod Iter Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

stein9 9 13 45 1 9 35 0 0 0 0 1 1 5 5 IG 1 5 5 5 9 0% 9% 0% 0% 0.1
stein15 15 36 120 1 15 59 0 0 0 0 1 1 8 8 IG 1 8 8 8 15 0% 18% 0% 0% 0.2
flugpl 16 16 40 11 30 36 16 2 1 0 1 2 1 1 IG 1 1 1 1 16 0% 8% 8% 0% 0.1
bm23 27 20 478 3 78 109 0 0 0 0 1 1 13 13 IG 1 13 13 13 27 0% 25% 5% 5% 0.2
stein27 27 118 378 1 27 107 0 0 0 0 1 1 13 13 IG 1 13 13 13 27 0% 23% 4% 0% 0.2
p0033 32 15 97 9 59 120 205 51 0 31 7 16 6 6 IG 1 6 6 6 32 9% 46% 16% 5% 0.5
p0040 40 13 70 13 70 100 47609 7530 10 27421 1522 3361 13 13 IG 1 13 14 14 40 18% 38% 27% 8% 90.5
stein45 45 331 1034 1 45 179 0 0 0 0 1 1 22 22 IG 1 22 22 22 45 2% 27% 8% 0% 0.4
gt1 46 15 92 15 92 46 119471 29195 15 71563 4924 8786 16 16 IG 20 18 22 22 46 20% 30% 33% 8% 283.8
pipex 48 25 192 19 96 48 142 76 16 0 4 7 20 20 IG 2 21 22 22 48 2% 22% 33% 8% 0.4
misc02 55 43 405 18 229 279 547 517 0 562 25 60 27 27 D1 1 27 27 27 55 7% 43% 27% 10% 3.8
sentoy 60 30 1800 1 60 239 0 0 0 0 1 1 29 29 IG 1 29 29 29 60 1% 33% 9% 1% 0.5
sample2 64 45 140 45 140 82 2223 638 1 1308 13 45 4 4 * 9 6 6 6 64 7% 63% 18% 6% 6.6
misc01 79 54 729 23 359 435 2138 1121 0 1229 28 79 38 38 IG 1 38 38 38 79 7% 44% 32% 10% 10.3
mod014 86 74 172 74 172 172 6137 697 1 1927 28 109 8 8 ID2 1 8 9 8 86 9% 52% 23% 11% 16.7
lseu 88 28 308 20 198 332 10336 3532 0 8335 76 216 26 26 * 71 36 42 39 88 7% 64% 15% 10% 65.4
mod013 96 62 192 62 192 192 448495 45097 11 171613 4711 8604 14 20 B 32 23 23 23 96 14% 25% 47% 9% 1800.2

enigma 100 21 289 12 199 375 3695 1802 0 1575 40 110 44 44 IG 12 46 48 48 100 6% 40% 37% 11% 19.4
bell5 101 87 257 87 257 185 5598 969 1 1645 40 108 5 5 IG 4 9 9 9 101 7% 56% 21% 12% 21.5
p0291 103 92 373 65 319 261 7980 2306 0 3581 61 170 21 21 IG 5 24 29 29 103 4% 70% 11% 12% 78.6
bell4 114 101 293 101 293 204 11829 2005 1 3979 109 277 6 6 IG 6 9 9 9 114 6% 58% 17% 15% 64.5
bell3a 121 107 311 107 311 217 4322 942 1 1294 10 46 5 5 ID1 1 5 5 5 121 5% 63% 17% 11% 23.8
bell3b 121 107 311 107 311 217 4322 942 1 1294 10 46 5 5 ID1 1 5 5 5 121 5% 64% 17% 10% 23.7
noswot 127 182 732 103 531 427 55038 4869 1 12790 778 1605 15 15 IG 2 19 19 19 127 6% 40% 21% 28% 337.5
misc05 131 266 2873 79 535 289 255523 30000 0 124752 2236 3462 35 49 IG 64 53 58 58 131 8% 38% 30% 19% 1800.0
misc03 154 96 2023 39 769 840 3666 4828 0 8008 328 565 73 73 IG 3 74 74 74 154 3% 28% 38% 19% 159.2
gt2 173 28 346 28 346 173 173371 81355 37 280323 1807 2468 57 67 IG 158 76 83 83 173 7% 56% 23% 10% 1800.2
rgn 180 24 460 24 460 730 38963 6126 1 22421 112 347 20 20 IG 1 20 78 42 180 5% 67% 14% 11% 474.6
p0201 195 113 1677 77 699 579 181201 53287 74 223647 625 1295 42 76 IG 192 86 93 93 195 8% 54% 26% 8% 1800.0

p0282 202 305 1428 189 1196 407 4311 1449 0 479 13 36 20 20 ID1 1 20 20 20 202 2% 74% 9% 13% 122.7
p0808a 240 136 480 136 480 480 106598 14308 1 70632 151 507 11 18 IG 12 32 36 32 240 5% 76% 12% 5% 1802.1
p0808aCUTS 240 246 839 191 729 674 107094 7435 1 58191 202 525 12 17 ID2 28 36 36 36 240 5% 69% 12% 11% 1800.7
misc07 254 224 8589 53 1367 1456 11803 14984 0 28234 757 1117 119 119 IG 1 119 121 121 254 2% 18% 40% 29% 939.8

blend2 319 169 1279 160 478 955 103558 8951 1 21986 226 680 38 38 D1 1 38 38 38 319 8% 33% 32% 22% 753.6
vpm1 378 234 749 234 749 784 37116 4150 1 14141 37 136 7 7 IG 8 51 61 61 378 3% 80% 7% 7% 1402.3
vpm2 378 234 917 66 581 1072 25484 2483 1 6355 19 87 7 7 IG 3 21 69 69 378 3% 76% 8% 11% 982.0

modglob 420 289 966 289 966 1014 42137 6770 1 19025 40 116 9 29 IG 12 39 56 39 420 3% 79% 7% 8% 1807.3
p0548 477 257 1522 153 823 1525 36798 3048 1 8883 46 96 29 49 IG 10 79 116 116 477 3% 48% 9% 39% 1803.7

danoint 521 664 3232 544 2336 649 21785 10004 1 12677 13 47 6 210 IG 4 219 238 219 521 2% 79% 8% 9% 1808.8
gams 556 291 2431 91 1096 4003 14962 2869 0 4200 19 35 47 170 IG 1 170 170 170 556 2% 65% 12% 19% 1800.8
set1ch 697 477 1382 477 1382 1657 20852 1581 1 2680 10 34 4 33 IG 4 42 91 91 697 2% 68% 6% 22% 1843.7
set1al 712 492 1412 492 1412 1672 16354 1713 1 2886 7 26 3 40 IG 2 64 101 101 712 2% 76% 5% 15% 1813.6
set1cl 712 492 1412 492 1412 1672 16354 1713 1 2886 7 26 3 40 IG 2 64 101 101 712 2% 76% 5% 15% 1800.2
air01 771 23 4215 22 4185 7186 0 0 0 0 4 2 184 367 IG 1 367 367 367 771 0% 95% 1% 1% 1893.0
gen 797 622 2064 298 1416 2113 16984 1847 1 2813 10 26 4 70 ID2 1 70 84 70 797 2% 70% 7% 19% 1821.7
mod015 797 622 2064 298 1416 2113 16984 1847 1 2813 10 26 4 70 ID2 1 70 84 70 797 2% 70% 7% 19% 1853.2
fixnet3 878 478 1756 478 1756 1638 13145 3715 1 1757 7 18 3 190 IG 1 190 221 209 878 2% 72% 6% 17% 1850.5
fixnet4 878 478 1756 478 1756 1638 13130 3611 1 2272 7 18 3 197 IG 2 209 221 209 878 2% 77% 6% 13% 1873.8
fixnet6 878 478 1756 478 1756 1638 10505 2989 1 901 7 15 3 186 IG 2 209 221 209 878 1% 80% 5% 12% 2087.3
adrud 998 795 15876 1 998 3991 0 0 0 0 1 1 475 475 IG 1 475 475 475 998 0% 75% 17% 0% 750.9
P

14556 10168 72362 6766 35191 45404 2018781 373354 188 1233109 19094 35364 1582 3007 693 3297 3737 3593 14556 4% 66% 13% 14% 41494.7

T
ab

le
3:

D
ecom

p
osin

g
T
ran

sp
osed

M
atrices

of
M

ix
ed

In
teger

P
rogram

s.

5 Computational Results 86

SIP without MAD SIP with MAD CPLEX

Name gap nodes time gap nodes time gap nodes time

bell3a 0.0% 33350 92.1 0.0% 55763 221.4 0.0% 19100 108.9
bell3b 0.0% 25909 308.4 0.0% 25706 301.4 0.0% 6537 70.8
bell4 1.5% 91240 1800.0 2.2% 96628 1800.0 0.0% 47001 710.5
bell5 0.1% 100000 806.4 0.1% 100000 824.0 0.1% 100000 586.9
noswot 27.9% 63474 1800.0 20.9% 90743 1800.0 7.5% 43038 1800.1

(a) Strong Branching.

SIP without MAD SIP with MAD CPLEX

Name gap nodes time gap nodes time gap nodes time

bell3a 96.6% 100000 236.0 67.9% 100000 288.2 0.0% 42446 54.9
bell3b - 100000 142.1 - 100000 120.3 3.8% 100000 120.6
bell4 - 100000 137.4 2.1% 100000 164.5 3.2% 100000 119.0
bell5 6.3% 100000 184.0 2.7% 100000 153.6 6.1% 100000 113.6
noswot - 100000 219.8 - 100000 195.2 10.3% 100000 228.1

(b) Maximum Infeasibility Branching.

Table 4: Comparing Integer Programming Branching Rules.

would be less decomposable than the originals and it came as a surprise to
us that the “dual” problems decompose nearly as well as the primal ones.
The transposed matrices have on average about 60 rows in the border in
comparison to only 40 for the originals. But the percentage of rows in the
border (i.e., the sum of the Ub column divided by the sum of the rows
column) is 18.4% (12.8%) in the primal and 20.6% (25.3%) in the dual
case (the values in parentheses count only instances that were solved to
optimality). Note, however, that the dual values are biased heavily by the
(not decomposable) adrud instance. An explanation may be that many of
these problems contain a few important global variables that migrate into
the border.

We used optimal decompositions of transposed MIP matrices to test our
idea to branch on variables in the border first. The computations were
performed using the above mentioned MIP-solver SIP. As our test set we
selected all problems that are not extremely easy (less than 10 CPU seconds
for SIP) and that decompose into bordered block diagonal form with a “rela-
tively small” border: mod014, bell3a, bell3b, bell4, bell5, noswot,

blend2, vpm1, vpm2, set1ch, set1al and set1cl. Unfortunately, and
contrary to what we had expected, it turned out that mod014, blend2,

vpm1, vpm2, set1ch, set1al and set1cl have only continuos variables
in the border that do not qualify for branching variables! All border vari-
ables in noswot are integer, in the bell-examples 1 (2) out of 5 (6). We
tried to extend the test set by decomposing only the integer part of all these

5 Computational Results 87

matrices but it failed, because the integer parts turned out to have block
diagonal form, i. e., no variables in the border.

For the remaining four bell* and the noswot example, we performed the fol-
lowing tests. The MIPs were solved with SIP using four different branching
strategies. Maximum infeasibility branching (i.e., branching on a variable
that is closest to 0.5) and strong branching (cf. Robert E. Bixby, personal
communication) are two standard branching strategies for solving mixed in-
teger programs. The other two branching rules result from extending these
two methods by our idea of branching on a variable that belongs to the bor-
der first. The limit of the computation was 1,800 CPU seconds or 100,000
branch-and-bound nodes, whatever came first.

Table 4 summarizes our results. The version without MAD (MAD stands
for the MAtrix Decomposition) uses the original SIP-code and the original
branching rules, the MAD-version branches on a variable from the border
first. For comparison, we also list the results that can be obtained using
CPLEX. The column labeled gap reports the duality gap on termination (-
means that no feasible solution was found).

The results are mixed. When strong branching is used CPLEX is overall best
and SIP with MAD is basically always worst (note that for example noswot
the value of the LP-relaxation already provides the value of the optimal
integer solution and so the main difficulty here is to find a good feasible
solution). If we branch on a most infeasible variable the situation changes a
bit in favour of SIP with MAD. In fact, there are two examples where this
strategy performs best in terms of the gap. Our limited tests can, of course,
not provide a definite evaluation of our idea to branch on border variables.
But we think that the results show that this idea might have the potential
to become a good branching strategy for certain mixed integer programming
problems.

5.3 The Steiner-Tree Packing Problems

We also tested some problem instances for which we know in advance that
they have bordered block diagonal from. The problems are integer pro-
gramming formulations for Steiner tree packing problems, a problem where
in some given graph edge sets (so-called Steiner trees), each spanning some
given subset of the node set, have to be simultaneously packed in the graph
under capacity restrictions on the edges, see Grötschel, Martin & Weisman-
tel (1996) [13]. Unfortunately, our branch-and-cut algorithm performs very
bad on these examples, although we extended the time limit to 10,800 CPU
seconds, see Table 5. One reason for that might be that the rows that are
supposed to be in the border have less nonzero entries than those that are

5 Computational Results 88

Original Presolved Cuts B&B

Name rows col nz col nz Init Cov 2part BCC Pool Nod Iter

g353 81 48 276 48 276 336 19768 6311 240 32467 121 385
g444 114 39 253 37 251 756 11324 4251 156 22828 56 195
d677 324 183 984 174 975 3533 13005 7370 56 54768 25 59
d688 383 230 1350 223 1341 4506 10719 6871 37 32015 19 40

P

902 500 2863 482 2843 9131 54816 24803 489 142078 221 679

Best Solutions Heuristics at Root Time

Name Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

g353 16 16 IG 4 23 23 23 81 5% 77% 11% 3% 180.7
g444 13 13 B 36 22 22 22 114 3% 80% 11% 3% 186.9
d677 7 79 IG 2 98 98 98 324 0% 97% 1% 0% 11168.4
d688 7 108 IG 3 134 140 134 383 0% 97% 1% 0% 10901.3

P

43 216 45 277 283 277 902 0% 97% 1% 0% 22437.2

Table 5: Decomposing Steiner-Tree Packing Problems.

expected to be in the blocks. The heuristics and the LP solutions, however,
tend to put the rows into the border that have the most nonzeros entries.
The “natural decompositions” result in borders of sizes 22, 24, 71, and 82
for problems g353, g444, d677, and d688, respectively.

5.4 The Equipartition Problems

Our last test set consists of equipartition problems introduced by Nicoloso
& Nobili (1992) [21]. These have been generated randomly prescribing a
certain matrix-density. We have modified our code to handle the additional
equipartition constraint. The results are given in Table 6: We can solve all
problems within 10 CPU seconds and, as was already known from Nicoloso
& Nobili (1992) [21], random matrices of this type do not decompose well.

Summary and Conclusions

We have shown in this paper that it is possible to decompose typical lin-
ear and integer programming matrices up to 200 and more rows to proven
optimality using a cutting plane approach based on polyhedral investiga-
tions of the matrix decomposition problem. It turned out that a substantial
number, but not all, LPs decompose well into four blocks, while even many
MIPs, as well as some of their transposes, can be brought into bordered
block diagonal form with two blocks. We think that these results show a
significant potential for methods that can exploit this structure to solve gen-
eral MIPs. Our decomposition heuristics work well for small instances, but
there is room for improvement for problems of large scale, in particular, if
more than two blocks are considered.

References 89

Original Presolved Cuts B&B

Name rows col nz col nz Init Cov 2part BCC Pool Nod Iter

m22 9 6 21 6 21 30 37 19 0 12 16 31
m25 9 6 23 5 22 44 6 20 0 18 13 24
m33 14 9 40 8 37 38 210 90 0 68 13 33
m34 14 9 41 9 41 53 181 111 0 69 22 53
m41 18 9 43 9 43 41 654 241 1 253 28 76
m44 18 9 55 8 51 89 333 122 0 133 25 56
m51 21 14 61 12 58 52 977 349 1 441 52 143
m54 21 14 90 12 83 93 424 211 0 278 34 77
m61 21 17 69 15 65 52 742 204 0 245 28 73
m64 21 17 108 15 100 106 417 285 0 376 40 89
m71 28 15 71 14 69 64 2353 713 0 1171 76 196
m74 28 15 128 14 122 135 823 575 0 714 88 171
m81 28 21 86 20 85 74 3169 979 0 1717 268 476
m84 28 21 177 19 167 172 475 392 617 347 49 116

P

278 182 1013 166 964 1043 10801 4311 619 5842 752 1614

Best Solutions Heuristics at Root Time

Name Lb Ub He No G D1 D2 B Cm LP Sep Heu Tot

m22 5 5 G 1 5 9 9 5 6% 46% 20% 6% 0.1
m25 7 7 G 2 9 9 9 9 16% 33% 8% 8% 0.1
m33 6 6 G 4 8 10 10 8 8% 40% 17% 20% 0.3
m34 8 8 G 1 8 10 10 8 23% 28% 21% 4% 0.5
m41 8 8 G 1 8 14 14 10 10% 57% 12% 6% 0.9
m44 10 10 G 1 10 10 10 10 11% 35% 35% 5% 0.6
m51 11 11 G 11 15 15 15 15 9% 53% 18% 8% 2.1
m54 13 13 G 6 15 15 15 15 8% 40% 23% 17% 1.3
m61 9 9 G 4 11 11 11 11 14% 49% 22% 4% 1.3
m64 15 15 G 5 17 17 17 17 10% 33% 23% 22% 1.6
m71 12 12 G 5 16 16 16 16 13% 54% 17% 7% 5.0
m74 20 20 G 1 20 22 22 20 8% 33% 14% 35% 4.2
m81 14 14 IG 3 16 16 16 16 12% 47% 18% 10% 7.7
m84 22 22 * 18 28 28 28 28 7% 28% 23% 35% 3.4

P

160 160 63 186 202 202 188 11% 43% 19% 16% 29.2

Table 6: Equipartitioning Matrices.

Acknowledgements

We are grateful to the Fundação Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior (CAPES) and the German Academic Exchange Ser-
vice (DAAD) for supporting this work. We enjoyed the cooperation a lot
and intend to continue. We want to thank Robert E. Bixby and CPLEX
Optimization, Inc., who made the newest β-versions of CPLEX and the CPLEX
Callable Library available to us, and Paolo Nobili for sending a collection of
his equipartition problems.

References

[1] C. C. Carøe & R. Schultz. Dual decomposition in stochastic integer
programming. Oper. Res. Lett. 24(1–2):37–45, 1999. ZIB preprint SC
96-46 available at http://opus.kobv.de/zib/volltexte/1996/257/.
Cited on page 51.

[2] Y. Crama & M. Oosten. Models for machine-part grouping in cel-
lular manufacturing. Internat. J. Prod. Res. 34(6):1693–1713, 1996.
Cited on page 60.

http://opus.kobv.de/zib/volltexte/1996/257/

References 90

[3] D. Dentcheva, R. Gollmer, A. Möller, W. Römisch &

R. Schultz. Solving the unit commitment problem in power generation
by primal and dual methods. In M. Bendsøe & M. Sørensen, (Eds.),
Proc. 9th Conf. Europ. Consortium for Math. in Industry (ECMI), pp.
332–339. Teubner Verlag, Stuttgart, 1997. Cited on page 51.

[4] I. Duff, A. Erisman & J. Reid. Direct Methods for Sparse Matrices.
Oxford Univ. Press, Oxford, 1986. Cited on pages 51, 54.

[5] M. Ehrgott. Optimierungsprobleme in Graphen unter Kardi-
nalitätsrestriktionen. Master’s thesis, Universität Kaiserslautern, 1992.
Cited on page 61.

[6] C. E. Ferreira, A. Martin & R. Weismantel. Solving multiple
knapsack problems by cutting planes. SIAM J. Optim. 6:858–877, 1996.
Cited on pages 51, 82.

[7] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel

& L. A. Wolsey. The node capacitated graph partitioning problem:
a computational study. Math. Programming 81:229–256, 1998. ZIB
preprint SC 94-17 available at http://opus.kobv.de/zib/volltexte/
1994/146/. Cited on page 80.

[8] C. Fiduccia & R. Mattheyses. A linear-time heuristic for improv-
ing network partitions. In DAC ’82: Proc. 19th Design Automation
Conference, pp. 175–181. IEEE Press, Piscataway, New Jersey, 1982.
ISBN 0-89791-020-6. Cited on page 76.

[9] K. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Pey-

ton, R. Plemmons, C. H. Romine, A. Sameh & R. G. Voigt.
Parallel Algorithms for Matrix Computations. SIAM, 1990. Cited on
pages 51, 54.

[10] M. Garey & D. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979. Cited on pages 58, 63.

[11] E. Gottlieb & M. Rao. The generalized assignment problem: Valid
inequalities and facets. Math. Programming 46:31–52, 1990. Cited on
pages 51, 82.

[12] M. Grötschel, L. Lovász & A. Schrijver. Geometric Algorithms
and Combinatorial Optimization, vol. 2 of Algorithms and Combina-
torics. Springer Verlag, Berlin, 1988. ISBN 3-540-13624-X, 0-387-13624-
X (U.S.). Cited on pages 58, 71.

[13] M. Grötschel, A. Martin & R. Weismantel. Packing Steiner
trees: A cutting plane algorithm and computational results. Math.
Programming 72:125–145, 1996. ZIB preprint SC 92-09 available at
http://opus.kobv.de/zib/volltexte/1992/78/. Cited on pages 51,
78, 87.

[14] A. Gupta. Fast and effective algorithms for graph partitioning and

http://opus.kobv.de/zib/volltexte/1994/146/
http://opus.kobv.de/zib/volltexte/1994/146/
http://opus.kobv.de/zib/volltexte/1992/78/

References 91

sparse matrix ordering. IBM J. Res. Develop. 41:171–183, 1996. Cited
on page 51.

[15] C. Helmberg, B. Mohar, S. Poljak & F. Rendl. A spectral
approach to bandwidth and separator problems in graphs. Linear and
Multilinear Algebra 39:73–90, 1995. Cited on page 54.

[16] K. L. Hoffman & M. W. Padberg. Solving airline crew-scheduling
problems by branch-and-cut. Management Sci. 39:657–682, 1993. Cited
on page 68.

[17] CPLEX. Using the CPLEX Callable Library. ILOG CPLEX Division,
889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA, 1997.
Information available at http://www.cplex.com. Cited on pages 74,
80.

[18] V. Kumar, A. Grama, A. Gupta & G. Karypis. Introduction to
Parallel Computing. The Benjamin/Cummings Publishing Company,
San Francisco, California, 1994. Cited on page 51.

[19] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
Teubner Verlag, Stuttgart, 1990. Cited on page 54.

[20] A. Löbel. Optimal Vehicle Scheduling in Public Transit. Berichte aus
der Mathematik. Shaker Verlag, Aachen, 1998. ISBN 978-3-8265-3504-
8. URL http://www.shaker.de/Online-Gesamtkatalog/Details.

asp?ISBN=978-3-8265-3504-8. PdD thesis, Technische Universität
Berlin, 1998. Available at http://www.zib.de/bib/books/Loebel.

disser.ps. Cited on page 51.

[21] S. Nicoloso & P. Nobili. A set covering formulation of the ma-
trix equipartition problem. In P. Kall, (Ed.), System Modelling and
Optimization, Proc. of the 15th IFIP Conf., Zürich, Sept. 1991, pp.
189–198. Springer Verlag, Berlin, 1992. Cited on pages 52, 55, 61, 78,
88.

[22] P. Nobili & A. Sassano. Facets and lifting procedures for the set
covering polytope. Math. Programming 45:111–137, 1989. Cited on
page 58.

[23] M. W. Padberg. On the facial structure of set packing polyhedra.
Math. Programming 5:199–215, 1973. Cited on pages 53, 57, 58.

[24] A. Pothen, H. D. Simon & K.-P. Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3):430–452,
1990. Cited on page 54.

[25] E. Rothberg & B. Hendrickson. Sparse matrix ordering methods
for interior point linear programming. INFORMS J. Comput. 10(1):
107–113, 1998. Cited on page 51.

[26] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons Ltd, Chichester, 1986. Cited on page 56.

[27] G. Sheble & G. Fahd. Unit commitment literature synopsis. IEEE
Trans. Power Systems 9:128–135, 1994. Cited on page 51.

http://www.cplex.com
http://www.shaker.de/Online-Gesamtkatalog/Details.asp ?ISBN=978-3-8265-3504-8
http://www.shaker.de/Online-Gesamtkatalog/Details.asp ?ISBN=978-3-8265-3504-8
http://www.zib.de/bib/books/Loebel.disser.ps
http://www.zib.de/bib/books/Loebel.disser.ps

Paper IV

A Bundle Method for Inte-

grated Multi-Depot Vehicle

and Duty Scheduling in Pub-

lic Transit

R. Borndörfer, A. Löbel & S. Weider.
A bundle method for integrated multi-depot vehicle and duty scheduling in

public transit.
In M. Hickman, P. Mirchandani & S. Voß, (Eds.), Computer-aided

Systems in Public Transport, vol. 600 of Lecture Notes in Economics
and Mathematical Systems, pp. 3–24. Springer-Verlag, 2008.

Abstract. This article proposes a Lagrangean relaxation approach to solve
integrated duty and vehicle scheduling problems arising in public trantrans-
portsport. The approach is based on the proximal bundle method for the
solution of concave decomposable functions, which is adapted for the ap-
proximate evaluation of the vehicle and duty scheduling components. The
primal and dual information generated by the bundle method is used to
guide a branch-and-bound type algorithm.

Computational results for large-scale real-world integrated vehicle and duty
scheduling problems with up to 1,500 timetabled trips are reported. Com-
pared with the results of a classical sequential approach and with reference
solutions, integrated scheduling offers remarkable potentials in savings and
drivers’ satisfaction.

Mathematics Subject Classification (MSC 2000). 90C06, 90B06

Keywords. Public transit, integrated vehicle and duty scheduling, proximal
bundle method

92

1 Introduction 93

1 Introduction

The process of operational planning in public transit is traditionally orga-
nized in successive steps of timetabling, vehicle scheduling, duty scheduling,
duty rostering, and crew assignment. These tasks are well investigated in
the optimization and operations research literature. An enormous progress
has been made in both the theoretical analysis of these problems and in the
computational ability to solve them. For an overview see the proceedings of
the last five CASPT conferences (Voß & Daduna (2001) [28], Wilson (1997)
[29], Daduna, Branco & Paixão (1995) [5], Desrochers & Rousseau (1992)
[7], and Daduna & Wren (1988) [4]).

It is well known that the integrated treatment of planning steps discloses
additional degrees of freedom that can lead to further efficiency gains. The
first and probably best known approach in this direction is the so-called
sensitivity analysis, a method on the interface between timetabling and ve-
hicle scheduling that uses slight shiftings of trips in the timetable to improve
the vehicle schedule. The method has been used with remarkable success
in HOT and HASTUS, see Daduna & Völker (1997) [3] and Hanisch (1990)
[17].

Vehicle and duty scheduling, the topic of this article, is another area where
integration is important. The need is largest in regional scenarios, which
often have few relief points for drivers, such that long vehicle rotations can
either not be covered with legal duties at all or only at very high cost.
In such scenarios the powerful optimization tools of sequential scheduling
are useless. Rather, the vehicle and the duty scheduling steps must be
synchronized to produce acceptable results, i.e., an integrated vehicle and
duty scheduling method is indispensable. Urban scenarios do, of course,
offer efficiency potentials as well.

The current planning systems provide only limited support for integrated
vehicle and duty scheduling. There are frameworks for manual integrated
scheduling that allow to work on vehicles and duties simultaneously, rule out
infeasibilities, make suggestions for concatenations, etc. Without integrated
optimization tools, however, the planner must still build vehicle schedules
by hand, anticipating the effects on duty scheduling by skill and experience.

The literature on integrated vehicle and duty scheduling is also comparably
scant. The first article on the integrated vehicle and duty scheduling problem
(ISP) that we are aware of was published by Ball, Bodin & Dial (1983) [1].
They describe an ISP at the Baltimore Metropolitan Transit Authority and
develop a mathematical model for it. However, they propose to solve this
model by decomposing it into its vehicle and duty scheduling parts, i.e., the
model is integrated, but the solution method is sequential.

1 Introduction 94

For the next two decades, the predominant approach to the ISP was to in-
clude duty scheduling considerations into a vehicle scheduling method or
vice versa. The first approach is, e.g., presented by Scott (1985) [26] and
Darby-Dowman, J. K. Jachnik & Mitra (1988) [6], who propose two-step
methods that first includes some duty scheduling constraints in a vehicle
scheduling procedure and afterwards solve the duty scheduling problem in
a second step. Examples of the opposite approach are the articles Tosini
& Vercellis (1988) [27], Falkner & Ryan (1992) [9], and Patrikalakis & Xe-
rocostas (1992) [25]. They concentrate on duty scheduling and take the
vehicle scheduling constraints and costs heuristically into account. A survey
of integrated approaches until 1997 can be found in Gaffi & Nonato (1997)
[15].

The complete integration of vehicle and crew scheduling was first investi-
gated in a series of publications by Freling and coauthors (Freling (1997)
[10]; Freling, Huisman & Wagelmans (2001) [11]; Freling, Wagelmans &
Paixao (2001) [12]; Freling, Huisman & Wagelmans (2003) [13]). They pro-
pose a combined vehicle and duty scheduling model and attack it by integer
programming methods. Computational results on several problems from the
Rotterdam public transit company RET with up to 300 timetabled trips,
and from Connexxion, the largest bus company in the Netherlands, with up
to 653 timetabled trips are reported. A branch-and-price approach to ISP
instances involving a single type of vehicles was also described by Friberg
& Haase (1997) [14] and tested on artificial data. Another approach to the
single-depot ISP is presented in Haase, Desaulniers & Desrosiers (2001) [16].
There a set partitioning model for the duty scheduling problem is used that
ensures that also a vehicle schedule can be build. Additional constraints are
introduced to count the number of vehicles. This model was tested on artifi-
cial data with up to 350 timetabled trips and up to 700 tasks on timetabled
trips. It was solved by a branch and price approach using CPLEX as LP-
solver.

We propose in this article an integrated vehicle and duty scheduling method
similar to that of Freling et al. Our main contribution is the use of bun-
dle techniques for the solution of the Lagrangean relaxations that come up
there. The advantages of the bundle method are its high quality bounds and
automatically generated primal information that can both be used to guide
a branch-and-bound type algorithm. We apply this method to real-world in-
stances from several German carriers with up to 1,500 timetabled trips. As
far as we know, these are the largest and most complex instances that have
been tackled in the literature using an integrated scheduling approach. Our
optimization module IS-OPT has been developed in a joint research project
with IVU Traffic Technologies AG (IVU), Mentz Datenverarbeitung GmbH
(mdv), and the Regensburger Verkehrsbetriebe (RVB). It is incorporated in
IVU’s commercial scheduling system MICROBUS 2 (now ivu.plan).

2 Notation 95

The article is organized as follows. Section 3 gives a formal description of the
ISP and states an integer programming model that provides the basis of our
approach. Section 4 describes our scheduling method. We discuss the La-
grangean relaxation that arises from a relaxation of the coupling constraints
for the vehicle and the duty scheduling parts of the model, the solution of
this relaxation by the proximal bundle method, in particular, the treatment
of inexact evaluations of the vehicle and duty scheduling component func-
tions, and the use of primal and dual information generated by the bundle
method to guide a branch-and-bound algorithm. Section 5 reports compu-
tational results for large-scale real-world data. In particular, we apply our
integrated scheduling method to mostly urban instances for the German city
of Regensburg with up to 1,500 timetabled trips.

2 Notation

We use the following notation to state linear and integer programs: Let A
be a set with a finite number of elements and X be an arbitrary set. Let
x ∈ XA be a vector with |A| elements, every element is in X. Let b : A 7→
{1, 2, . . . |A|} be a bijection. Then we denote by xa, a ∈ A the b(a)-th entry
of x. A sum over a subset of entries of x is denoted by x(B) :=

∑
a∈B xa, for

all B ⊂ A. A vector consisting only of a subset of entries B ⊂ A is denoted
by xB.

3 Integrated Vehicle and Duty Scheduling

The integrated vehicle and duty scheduling problem (ISP) contains a vehi-
cle and a duty scheduling part. We describe these individual parts first
and conclude with the integrated scheduling problem. The exposition as-
sumes that the reader is familiar with the terminology of vehicle and duty
scheduling; suitable references are Löbel (1998) [24] for vehicle scheduling
and Borndörfer, Grötschel & Löbel (2003) [2] for duty scheduling.

The vehicle scheduling part of the ISP is based on an acyclic directed multi-
graph G = (T ∪ {s, t},D). The nodes of G are the set T of timetabled trips
plus two additional artificial nodes s and t, which represent the beginning
and the end of a vehicle rotation, respectively; s is the source of G and t
the sink. The arcs D of G are called deadheads, the special deadheads that
emanate from the source s are the pull-out trips, those entering the sink t
are the pull-in trips. Associated with each deadhead a is a depot ga ∈ G
from some set G of depots (i.e., vehicle types), that indicates a valid vehicle
type, and a cost da ∈ Q. There may be parallel arcs in G with different de-

3 Integrated Vehicle and Duty Scheduling 96

pots and costs. We denote by Dg := {a ∈ D : ga = g} the set of deadheads
that can be covered by a vehicle of type g ∈ G, by δ+

g (v) := δ+(v) ∩ Dg the
outcut of node v, restricted to arcs in Dg, and by δ−g (v) := δ−(v) ∩ Dg the
incut of node v, restricted to arcs in Dg.

A vehicle rotation or block of type g ∈ G is an st-path in G that uses only
deadheads of type g, i.e., an st-path p such that p ⊆ Dg for some depot
g ∈ G. A vehicle schedule is a set of blocks such that each timetabled trip is
contained in one and only one block. The vehicle scheduling problem (VSP)
is to find a vehicle schedule of minimal cost. It can be stated as the following
integer program:

(VSP) min dTy
(i) y(δ+

g (v)) − y(δ−g (v)) = 0 ∀v ∈ T , g ∈ G
(ii) y(δ+(v)) = 1 ∀v ∈ T
(iii) y(δ−(v)) = 1 ∀v ∈ T
(iv) y ∈ {0, 1}D

The duty scheduling part of the ISP also involves an acyclic digraph D =
(R∪{s, t},L). The nodes of D consist of a set of tasks R plus two artificial
nodes s and t, which mark the beginning and the end of a part of work of
a duty; again s is the source of D and t the sink. A task r can correspond
either to a timetabled trip vr ∈ T or to a deadhead trip ar ∈ D; there
may also be additional tasks independent of the vehicle schedule that model
sign-on and sign-off times and similar activities of drivers.

Let RT and RD be the sets of tasks that correspond to a timetabled trip
and a deadhead trip, respectively. We assume that there is at least one task
associated with every timetabled trip and every deadhead trip; these tasks
correspond to units of driving work on such a trip. Several tasks for one
trip indicate that this trip is subdivided by relief opportunities to exchange
a driver into several units of driving work. The arcs L of D are called links;
they correspond to feasible concatenations of tasks in a potential duty. A
part of work of a duty is an st-path p in D that corresponds to the certain
legality rules and has a certain cost cp, again determined by certain rules.
A duty is a concatenation of one or more (usually one or two) compatible
parts of work.

Denote by S the set of all such duties, and by cp, p ∈ S, their costs. Let
further Sr := {p ∈ S : r ∈ p} be the set of all duties that contain some task
r ∈ R and let Dr ⊂ D be the set of deadheads that imply the use of task
r. Given a vehicle schedule y, a compatible duty schedule is a collection of
duties such that each task that corresponds to either a timetabled trip or
a deadhead trip from the vehicle schedule is contained in exactly one duty,
while the tasks corresponding to deadhead trips that are not contained in
the vehicle schedule are not contained in any duty. The duty scheduling

3 Integrated Vehicle and Duty Scheduling 97

problem associated with a vehicle schedule y is to find a compatible duty
schedule of minimum cost. The DSP can be stated as the following integer
program:

(DSPy) min cTx
(i) x(Sr) = 1 ∀r ∈ RT

(ii) x(Sr) = ya ∀(r, a) ∈ R×D with a ∈ Dr

(iii) x ∈ {0, 1}S

Such kind of models have in general to many variables to be solved directly.
Therefore column generation approaches are in use. The first publication, to
our knowledge, in which such an approach to the duty scheduling problem
is described is Desrochers & Soumis (1989) [8].

The integrated vehicle and duty scheduling problem is to simultaneously con-
struct a vehicle schedule and a compatible duty schedule of minimum overall
cost. Introducing suitable constraint matrices and vectors, the ISP reads:

(ISP) min dTy + cTx
(i) Ny = b
(ii) Ax = 1
(iii) My − Bx = 0
(iv) y ∈ {0, 1}D
(v) x ∈ {0, 1}S

In this model, the multiflow constraints (ISP) (i) correspond to the ve-
hicle scheduling constraints (VSP) (i)–(iii); they generate a feasible vehi-
cle schedule. The (timetabled) trip partitioning constraints (ISP) (ii) are
exactly the duty scheduling constraints (DSPy) (i); they make sure that
each timetabled trip is covered by exactly one duty. Finally, the cou-
pling constraints (ISP) (iii) correspond to the duty scheduling constraints
(DSPy) (ii)–(iii); they guarantee that the vehicle and duty schedules x and
y are synchronized on the deadhead trips, i.e., a deadhead trip is either as-
signed to both a vehicle and a duty or to none. The structure of the coupling
constraints can later be used to reduce the number of duties, deadheads, and
also coupling constraints if variables are fixed in a branch-and-bound like
algorithm.

We remark that a practical version includes several types of additional con-
straints such as depot capacities, and duty scheduling base constraints (e.g.
duty type capacities, average paid/working times), which we omit in this ar-
ticle. The inclusion of such constraints in our scheduling method is, however,
straightforward.

The integrated scheduling model (ISP) consists of a multicommodity flow
model for vehicle scheduling and a set partitioning model for duty schedul-
ing on timetabled trips. These two models are joined by a set of coupling

4 A Bundle Method 98

constraints for the deadhead trips, one for each task on a deadhead trip.
The model (ISP) is the same as that used by Freling and coauthors, see
Freling (1997) [10].

4 A Bundle Method

Our general solution strategy for the ISP is based on a Lagrangean relax-
ation of the coupling constraints (ISP) (iii). This decomposes the problem
into a vehicle scheduling subproblem, a duty scheduling subproblem, and
a Lagrangean master problem. All three of these problems are large scale,
but of quite different nature. Efficient methods are available to solve vehicle
scheduling problems of the sizes that come up in an integrated approach with
a very good quality or even to optimality. We use the method of Löbel (1998)
[24]. Duty scheduling is, in fact, the hardest part. We are not aware of meth-
ods that can produce high quality lower bounds for large-scale real-world
instances. However, duty scheduling problems can be tackled in a practi-
cally satisfactory way using column generation algorithms, see Borndörfer,
Grötschel & Löbel (2003) [2] for the algorithm we used to “solve” our duty
scheduling subproblems. In the Lagrangean master, multipliers for several
tens of thousands of coupling constraints have to be determined. Here, the
complexity of the vehicle and the duty scheduling subproblems demands a
method that converges quickly and that can be adapted to inexact evalua-
tion of the subproblems. The proximal bundle method by Kiwiel (1995) [22]
has these properties; it further produces primal information that can be used
in a superordinate branch-and-bound algorithm to guide the branching de-
cisions. Moreover, the large dimension of the Lagrangean multiplier space, a
potential computational obstacle, can be collapsed by a simple dualization.

This section discusses our Lagrangean relaxation/column generation ap-
proach to the ISP using the proximal bundle method. In a first phase,
the procedure aims at the computation of an “estimation” of a global lower
bound for the ISP and at the computation of a set of duties that is likely
to contain the major parts of a good duty schedule. This procedure consti-
tutes the core of our integrated vehicle and duty scheduling method. In a
second phase, the bundle core is called repeatedly in a branch-and-bound
type procedure to produce integer solutions.

4.1 Lagrangean Relaxation

Lagrangean relaxation is a tool to find lower bounds on a minimization
problem. A good introduction to it and an overview of applications and its
variants can be found in Lemaréchal (2001) [23].

4 A Bundle Method 99

We consider in this subsection a restriction (ISPI) of the ISP to some subset
of duties I ⊆ S that have been generated explicitly (in some way). This set
I may change (grow and shrink) from one iteration to another in our algo-
rithm, however for the next two sections we keep it constant, in Section 4.3
we will describe the dynamic case:

(ISPI) min dTy + cT
Ix

I

(i) Ny = d
(ii) AIx

I = 1
(iii) My − BIx

I = 0
(iv) y ∈ {0, 1}D
(v) xI ∈ {0, 1}I

A Lagrangean relaxation with respect to the coupling constraints (ISPI) (iii)
and a relaxation of the integrality constraints (iv) and (v) results in the
Lagrangean dual

(LI) max
λ

 min
Ny=d,

y∈[0,1]D

(dT− λTM)y + min
AIxI=1,
xI∈[0,1]I

(cT
I + λTBI)x

I

 .

Define functions and associated arguments by

fV : RRD → R, λ 7→ min(dT− λTM)y; Ny = d; y ∈ [0, 1]D

f I
D : RRD → R, λ 7→ min(cT+ λTBI)x

I ; AIx
I = 1; xI ∈ [0, 1]I

f I := fV + f I
D,

and

y(λ) := argmin y∈[0,1]D fV (λ); Ny = d

xI(λ) := argmin xI∈[0,1]I f I
D(λ); AIx

I = 1

breaking ties arbitrarily. With this notation, (LI) becomes

(LI) max
λ

f I(λ) = max
λ

[
fV (λ) + f I

D(λ)
]
.

The functions fV and f I
D are concave and piecewise linear. Their sum f I is

therefore a decomposable, concave, and piecewise linear function; f I is, in
particular, nonsmooth. This is precisely the setting for the proximal bundle
method.

4 A Bundle Method 100

4.2 The Proximal Bundle Method

The proximal bundle method (PBM) is a subgradient-type procedure for
concave functions. It can be adapted to handle decomposable, nonsmooth
functions in a particularly efficient way.

We recall the method in this section as far as we need for our exposition. An
in-depth treatment can be found in the articles Kiwiel (1990) [21]; Kiwiel
(1995) [22].

When applied to (LI), the PBM produces two sequences of iterates λi, µi ∈
RRD , i = 0, 1, The points µi are called stability centers; they converge
to a solution of (LI). The points λi are trial points; calculations at the trial
points result either in a shift of the stability center, or in some improved
approximation of f I .

More precisely, the PBM computes at each iterate λi linear approximations

f̄V (λ; λi) := fV (λi) + gV (λi)
T(λ − λi)

f̄ I
D(λ; λi) := f I

D(λi) + gI
D(λi)

T(λ − λi)

f̄ I(λ; λi) := f̄V (λ; λi) + f̄ I
D(λ; λi)

of the functions fV , f I
D, and f I by determining the function values fV (λi),

f I
D(λi) and the subgradients gV (λi) and gI

D(λ); by definition, these approx-
imations overestimate the functions fV and f I

D, i.e., f̄V (λ; λi) ≥ fV (λ) and
f̄ I

D(λ; λi) ≥ f I
D(λ) for all λ. Note that f̄V and f̄ I

D are polyhedral, such the
subgradients can be derived from the arguments y(λi) and xI(λi) associated
with the multiplier λi as

gV (λi) := − My(λi)

gI
D(λi) := BIx

I(λi)

gI(λi) := − My(λi) + BIx
I .

We call the sets of linearizations collected until iteration i bundles and de-
note them by JV,i and JD,i. For implementational issues an affine function
f̄ can be stored as a tuple of its function value at the origin and its gradient:
(f̄(0),∇f̄). The PBM uses the bundles to build piecewise linear approxima-
tions

f̂V,i(λ) := min
f̄V ∈JV,i

f̄V (λ)

f̂D,i(λ) := min
f̄D∈JD,i

f̄D(λ)

f̂i := f̂V,i + f̂D,i

4 A Bundle Method 101

Require: Starting point λ0 ∈ Rn, weights u0, m > 0, optimality tolerance
ǫ ≥ 0.

1: Initialization: i ← 0, JV,i ← {λi}, JD,i ← {λi}, and µi = λi.
2: Direction Finding: Compute λi+1, g̃V,i, g̃D,i by solving problem (QPi).
3: Function evaluation: Compute fV (λi+1), gV (λi+1), f I

D(λi+1), gI
D(λi+1).

4: Stopping Criterion: If f̂i(λi+1) − f I(µi) < ǫ(1 +
∣∣f I(µi)

∣∣) output µi,
terminate.

5: Bundle Update:
6: Select JV,i+1 ⊆ JV,i ∪ {f̄V (·, λi+1), f̃V,i},
7: select JD,i+1 ⊆ JD,i ∪ {f̄ I

D(·, λi+1), f̃D,i}.
8: Ascent Test: µi+1 ← f I(λi+1)−f I(µi) > m(f̂i(λi+1)−f I(µi))?λi+1 : µi.
9: Weight Update: Set ui+1.

10: i ← i + 1, goto step 2.

Algorithm 1: Generic Proximal Bundle Method (PBM).

of fV , f I
D, and f I . Adding a quadratic term to this model that penalizes

large deviations from the current stability center µi, the next trial point
λi+1 is calculated by solving the quadratic programming problem

(QPi) λi+1 := argmax λ f̂i(λ) − u
2 ‖µi − λ‖2 .

Here, u is a positive weight that can be adjusted to increase accuracy or
convergence speed. If the approximated function value f̂i(λi+1) at the new
iterate λi+1 is sufficiently close to the function value f I(µi), the PBM stops;
µi is the approximate solution. Otherwise a test is performed whether
the predicted increase f̂i(λi+1) − f I(µi) leads to sufficient real increase
f I(λi+1)−f I(µi); in this case, the model is judged accurate and the stability
center is moved to µi+1 := λi+1. The bundles are updated by adding the
information computed in the current iteration, and, possibly, by dropping
some old information. Then the next iteration starts, see Algorithm 1 for a
listing (the affine functions f̃V,i and f̃D,i will be defined and explained in a
second).

Besides function and subgradient calculations, the main work in the PBM is
the solution of the quadratic problem QPi. This problem can also be stated
as

(QPi) max vV + vD −u
2 ‖µi − λ‖2

(i) vV −f̄V (λ) ≤ 0 ∀f̄V ∈ JV,i

(ii) vD −f̄D(λ) ≤ 0 ∀f̄D ∈ JD,i.

A dualization and some transforming using the optimality criterion 0 ∈

4 A Bundle Method 102

∂f̂i(λ) + u(µi − λ) of (QPi) results in the equivalent formulation

(DQPi) max
∑

f̄V ∈JV,i

αV,f̄V
f̄V (µi) +

∑

f̄D∈JD,i

αD,f̄D
f̄D(µi)

− 1
2u

∥∥∥∥∥
∑

f̄V ∈JV,i

αV,f̄V
∇f̄V +

∑

f̄D∈JD,i

αD,f̄D
∇f̄D

∥∥∥∥∥

2

,

∑

f̄V ∈JV,i

αV,f̄V
= 1,

∑

f̄D∈JD,i

αD,f̄D
= 1,

αV , αD ≥ 0.

Here, αV ∈ [0, 1]JV,i and αD ∈ [0, 1]JD,i are the dual variables associated
with the constraints (QPi) (i) and (ii), respectively. Note that (DQPi) is
again a quadratic program, the dimension of which is equal to the size of
the bundles, while its codimension is only two. In our integrated scheduling
method, we solve (DQPi) using a specialized version of the spectral bundle
method of Helmberg (2000) [18], a variant of the proximal bundle method
that can take advantage of this special structure. Given a solution (αV , αD)
of DQPi, the vectors

g̃V,i :=
∑

f̄V ∈JV,i
αf̄V

∇f̄V

g̃D,i :=
∑

f̄D∈JD,i
αf̄D

∇f̄D

g̃i := g̃V,i + g̃D,i

are convex combinations of subgradients; they are called aggregated subgra-
dients of the functions fV , f I

D, and f I , respectively. It can be shown that
they are, actually, subgradients of the respective linear models of the func-
tions at the point λi+1 and, moreover, that this point can be calculated by
means of the formula

λi+1 = µi +
1

u

∑

f̄V ∈JV,i

αV,f̄V
∇f̄V +

∑

f̄D∈JD,i

αD,f̄D
∇f̄D

 .

The aggregated subgradients can be used to define linearizations of f̂V,i,

f̂D,i, and f̂i, at λi+1:

f̃V,i(λ) := f̂V,i(λi+1) + g̃T
V,i(λ − λi+1)

f̃D,i(λ) := f̂D,i(λi+1) + (g̃D,i)
T(λ − λi+1)

f̃i(λ) := f̂i(λi+1) + g̃T
i (λ − λi+1)

4 A Bundle Method 103

To calculate primal approximations we use aggregated arguments:

x̃i :=
∑

f̄D∈JD,i
αf̄D

x(f̄D)

ỹi :=
∑

f̄V ∈JV,i
αf̄V

y(f̄V)

With x(f̄D) or y(f̄V) is the argument associated with the affine function
f̄D or f̄V , respectively. The PBM (without stopping) is known to have the
following properties:

• The series (µi) converges to an optimal solution of LI , i.e., an optimal
dual solution of the LP-relaxation of (ISPI).

• The series (ỹi, x̃i) converges to an optimal primal solution of the LP-
relaxation of (ISPI).

• Convergence is preserved if, at every iteration i the bundles contain
at least two affine functions, namely, the last linearizations f̄ I

V (·; λi),
f̄ I

D(·; λi) and the linearization of the cutting plane model f̃D,i, f̃V,i, see
step 5 of Algorithm 1.

The bundle size controls the convergence speed of the PBM. If large bundles
are used, less iterations are needed, however, problem (QPI

i) becomes more
difficult. We limit the bundle size for both bundles JV,i and JDi

to 500.
That means for our instances practically no limit, since we usually perform
less than 500 iterations of the bundle method. We use such large bundles
because computation time to solve problem (DQPi) is in comparison to
the time needed for the column generation very short even for this size of
bundles.

4.3 Adaptations of the Bundle Method

Two obstacles prevent the straightforward application of the proximal bun-
dle method to the ISP. First, the component problem for duty scheduling
is NP-hard, even in its LP-relaxation; the vehicle scheduling LP is compu-
tationally at least not easy. We can therefore not expect that we can com-
pute the function values fV (λi) and f I

D(λi) and the associated subgradients
gV (λi) and gI

D(λi) exactly. The algorithms Löbel (1998) [24] and Borndörfer,
Grötschel & Löbel (2003) [2] that we use provide in general only approx-
imate solutions. Second, the column generation algorithm process that is
carried out for the duty scheduling problem must be synchronized with the
bundle method. That is the set I changes throughout the bundle algorithm.

The literature gives two versions of approximate versions of the bundle
method that can deal with inexact evaluations of the component functions.
Kiwiel (1995) [22] stated a version of the PBM that asymptotically produces

4 A Bundle Method 104

a solution, given that ǫ-linearizations of the function f to be minimized can
be found at every trial point µ ∈ Rm for all ǫ > 0, i.e., one can find an affine
function f̄ǫ(λ; µ) := fǫ(µ) + gǫ(µ)T(λ − µ) such that fǫ(µ) ≥ f(µ) − ǫ and
f(λ) ≥ f̄ǫ(λ; µ) for all λ ∈ Rm.

Hintermüller (2001) [19] gave another version which replaces exact subgra-
dients of f by ǫ-subgradients. In his method it is not necessary to know
or control the actual value of ǫ; his method produces solutions that are as
good as the supplied ǫ-subgradients. They converge, in particular, to the
optimum if the linear approximation converges to the original function.

We could use these approaches in principle in our setting, but at a high com-
putational cost and with only limited benefit. In fact, our vehicle scheduling
algorithm produces not only a primal solution, but also a lower bound and
an adequate subgradient from a certain single-depot relaxation of the vehi-
cle scheduling problem. However, the information that can be derived from
the subgradients associated with this single-depot relaxation was not very
helpful in our computational experiments. Concerning the duty scheduling
part, we are also able to compute a lower bound and adequate subgradi-
ents for the duty scheduling component function f I

D for any fixed column
set using exact LP-techniques. However, this is a lot of effort for a bound
that is not globally valid. We remark that one can, at least in principle,
also compute a lower bound for the entire duty scheduling function fD, see
Borndörfer, Grötschel & Löbel (2003) [2]. Such procedures are, however, ex-
tremely time consuming and do not yield high quality bounds for large-scale
problems. Therefore we use a different, much faster approach to approxi-
mate the component functions themselves by piecewise linear functions. We
show below how this can be done rigorously for the vehicle scheduling part;
in the duty scheduling part, the procedure is heuristic, and we simply update
our approximation whenever we notice an error.

Vehicle Scheduling Function fV . Denote by fL
V : RD 7→ R the approx-

imation to the value of the vehicle scheduling component function fV (λ)
as given by some vehicle scheduling algorithm, and by yL(λ) ∈ [0, 1]D the
associated argument. We have fL

V (λ) := (dT − λTM)yL(λ) ≥ fV (λ), but
fL

V is in general not concave. However, we can use fL
V to create a concave

approximation f̂L
V,i ≥ fV using a linearization at the current trial point λi+1

and the linearizations stored in the bundle, namely, by setting

gL
V,i+1 := −MyL(λi+1)

f̄L
V (λ; λi+1) := fL

V (λi+1) + gL
V,i+1

T
(λ − λi+1)

f̂L
V,i+1(λ) := min

f̄V ∈JV,i∪{f̄
L
V

(·;λi+1)}
f̄V (λ).

4 A Bundle Method 105

We use this approximation in the PBM Algorithm 1 by replacing fV by f̂L
V,i.

The bundle update (step 5) is implemented as

JV,i+1 ⊂
{

JV,i ∪
{
f̄L

V (·; λi+1), f̃V,i

}
, if fL

V (λi+1) < f̂L
V,i+1(λi+1),

JV,i, otherwise.
(1)

Since the function f̂L
V,i+1 depends on JV,i, we must also recalculate its value

f̂L
V,i+1(µi) at the stability center in the stopping criterion and the ascent test

(steps 4 and 6) of the PBM at each iteration.

Duty Scheduling Function fI

D
. The idea is similar as in the vehicle

scheduling case. Denote by Ii the duty set that is used in iteration i, by
fL,Ii

D : RD 7→ R a lower bound of the duty scheduling component function

f Ii

D (λ) and by xL,Ii(λi) the argument of fL,Ii

D computed again by the bundle

algorithm. Here we have fL,Ii

D (λ) ≤ f Ii

D (λ), and fL,Ii

D is in general not

concave. Further we know f Ii

D (λ) ≥ fD(λ). Thus, fL,Ii

D (λ) can be smaller or
larger than fD(λ), what we actually want to maximize.

Similar, but this time heuristically, we use fL,Ii

D and the current bundle to

create a concave approximation f̂L
D,i of fD, namely,

gL
D,i+1 := BIi

xL,Ii(λi+1)

f̄L,Ii

D (λ; λi+1) := fL,Ii

D (λi) + gL
D,i

T
(λ − λi+1)

f̂L
D,i+1(λ) := min

f̄D∈JD,i∪{f̄
L,Ii
D

(λ;λi+1)}

f̄D(λ).

Since each linearization is computed with respect to a subset of duties Ij , it

is in general not true that f̄
L,Ij

D ≥ f Ii

D if Ii 6= Ij . It can (and does) therefore
happen that we notice that the current iterate is cut off by some previously
computed linearization, i.e.,

fL,Ii

D (λi+1) > f̄
L,Ij

D (λi+1; λj)

for some j ≤ i. In this case, we have detected an error made in a previous
iteration and simply remove the faulty elements from the bundle and also
from the approximation. The duty scheduling bundle update in step 5 of
Algorithm 1 is implemented as

JD,i+i ⊂

{
f̄D ∈ JD,i : fL,Ii

D (λi+1) ≤ f̄D(λi+1)
}

∪
{
f̄L,Ii

D (·; λi+1), f̃V,i

}
, if fL,Ii

D (λi+1) < f̂L
D,i(λi+1),

JD,i, otherwise.

(2)

This approximation must also be recomputed at the stability center in every
iteration.

4 A Bundle Method 106

Require: Starting point λ0 ∈ Rn, duty set I0, weights u0, m > 0, optimality
tolerance ǫ ≥ 0.

1: Initialization: i ← 0, JV,i ← {λi}, JD,i ← {λi}, and µi = λi.
2: Direction Finding: Compute λi+1, g̃L

V,i, g̃L
D,i by solving problem (QPi).

3: Function evaluation: Compute fL
V (λi+1), gL

V (λi+1), Ii, fL,Ii

D (λi+1),

gL,Ii

D (λi+1).

4: Stopping Criterion: If f̂L
i (λi+1) − fL,Ii(µi) < ǫ(1 +

∣∣fL,Ii(µi)
∣∣) output

µi, terminate.
5: Bundle Update: Select JV,i+1, JD,i+1 as stated in 1, 2.

6: Ascent Test: µi+1 ← fL,Ii(λi+1) − fL,Ii(µi) > m(f̂L,Ii

i (λi+1) −
fL,Ii(µi)) ? λi+1 : µi.

7: Weight Update: Set ui+1.
8: i ← i + 1, goto step 2.

Algorithm 2: Inexact Proximal Bundle Method (PBM) with Column Gen-
eration.

Combined Function fI. The combined approximate functions are

fL,Ii := fL
V + fL,Ii

D

f̂L
i := f̂L

V,i + f̂L
D,i.

Column generation. This is the most time consuming part of our al-
gorithm, and we therefore enter this phase only if significant progress can
be expected. Details about the column generation itself can be found in
Borndörfer, Grötschel & Löbel (2003) [2]. Our strategy when to generate
new columns is basically to recompute the duty set when the stability cen-
ter changes; we call such an iteration a serious step, all other iterations are
called null steps.

The reasoning behind this strategy is as follows. The quadratic penalty term
in the quadratic program QPi ensures that the next trial value for the dual
multipliers λi+1 stays in the vicinity of the current stability center. When
the multipliers change only little, one has reason to believe that the number
and the potential effect of improving duties is also small. We therefore hope
that the current duty set Ii, which has been updated when the stability
center was set, does still provide a good representation of the duty space also
for the new multipliers λi+1. In practice, we reduce the number of column
generation phases even further by requiring a certain minimum increase ε
in the objective function at the new stability center; the larger ε, the less
column generation phases will occur.

Algorithm 2 gives a listing of our bundle algorithm using inexact evaluations

4 A Bundle Method 107

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100000 200000 300000
 0

 100000

 200000

 300000

 400000

 500000

#columns
#fixed deadheads

AB C D

VSP value
DSP valueISP value

residuum × 10

Figure 1: IS-OPT Runtime Chart.

of the component functions and column generation in the duty scheduling
component.

4.4 Backtracking Procedure

The inexact proximal bundle method that we have described in this sec-
tion is embedded in a backtracking procedure that aims at the generation
of integer solutions. This procedure makes use of the primal information
produced by the bundle method, namely, the sequence (ỹi, x̃i). As in an
LP-approach, fractional values can be interpreted as probabilities for the in-
clusion/exclusion of a deadhead trip or duty in an optimal integer solution.

Our computational experiments revealed that it is advantageous to fix the
deadhead trips first, until the vehicle scheduling part of the problem is de-
cided. The remaining duty scheduling problem can then be solved with
the duty scheduling module of the algorithm as described in Borndörfer,
Grötschel & Löbel (2003) [2]. Our strategy for fixing the deadhead variables
is to fix the deadheads in the order of largest y-values. Our algorithm also
examines the consequences of such fixings and, if the increase in the objec-
tive function is too large, also reverses decisions. The details on how many
variables to fix at a time, up to which threshold, etc. have been determined
experimentally; in general, the algorithm fixes more boldly in the beginning
and more carefully towards the end.

Figure 1 shows a typical runtime chart of our algorithm IS-OPT. The x-axis

4 A Bundle Method 108

measures time in seconds, the y-axis gives statistics in two different scales,
namely, for the right scale, the number of duties generated (#columns), the
number of deadheads fixed to one (#fixed deadheads), and the residuum
of the coupling constraints (more precisely: the norm is the square of the
Euclidean norm of g̃i), as well as, for the left scale, the vehicle, duty, and the
integrated scheduling objective values. Here the duty scheduling value is the
lower bound of the restricted DSP calculated by the PBM, and integrated
scheduling objective value is simply the sum of the VSP and the DSP value.

In the first phase of the algorithm until point A a starting set of columns
was generated with Lagrangean multipliers λ all at zero. In principle the
DSP objective value should be strictly decreasing here, while the number of
columns should grow. However, we calculated in this initial phase only rough
lower bounds for the restricted DSP, which may be more or less accurate.
Additionally we deleted columns with large reduced cost if the total number
of columns exceeded 450,000. Between points A and B, a series of null steps
was performed, which resulted in a decreased norm and an increased ISP-
value. Between points B and C, column generation phases alternated with
PBM-steps, until an aggregated subgradient of small norm and thus also a
“good” primal approximation of the LP-relaxation of ISP was calculated.
Since the column generation process did not find enough improving columns
at this point, we used the computed information to fix deadheads until (at
point D) the vehicle scheduling part of the problem was completely decided.
At that point, the duty scheduling component of the algorithm concluded
by computing a feasible duty scheduling.

Serious steps of the PBM are marked by peaks of the norm statistic. This
effect is due to the shift of the stability center in combination with the
possible inclusion of additional columns in Ii. In fact, the new stability
center may lie in a region where the model f̂L,Ii of the previous iteration i
is less accurate; also, new columns in Ii change the function fL,Ii , what also
worsens the model.

In our computational tests the algorithm rarely had to reverse a fixing de-
cision for a deadhead and backtrack. In all our instances, the ISP objective
value is very stable with respect to careful fixings of deadheads, see also
Figure 1. In fact, the gap between our estimated lower bound, i.e., the ob-
jective value prior to the first fixings, and the final objective value was never
larger than 5% and only 1-2% on the average. We do, however, not know the
size of the gap between the estimated lower bound and the real minimum
of (ISP); the mentioned behavior is therefore only a weak indicator for the
quality of the final solution found by IS-OPT.

5 Computational Results 109

5 Computational Results

In this section, we report the results of computational studies with our in-
tegrated vehicle and duty scheduling optimizer IS-OPT for several medium-
and large-scale real-world scenarios as well as for benchmark scenarios from
the literature. Our code IS-OPT is implemented in C and has been com-
piled using gcc version 3.3.3 with switches -O4. All computations were made
single-threaded on a Dell Precision 650 PC with 4 GB of main memory and
a dual Intel Xeon 3.0 GHz CPU running SuSE Linux 9.0. The computation
times in the following tables are in hours:minutes.

We compare our integrated scheduling method is with two sequential ap-
proaches. The first one, denoted by v+d , is a classical sequential vehicles-
first duties-second approach, i.e., v+d first solves the vehicle scheduling
part of the problem using our optimizer VS-OPT (see Löbel (1998) [24]),
fixes the deadheads chosen by the vehicle schedule, and solves the resulting
duty scheduling problem in a second step using our optimizer DS-OPT (see
Borndörfer, Grötschel & Löbel (2003) [2]). The second method d+v uses
kind of the contrary approach. A simplified integrated scheduling problem
is set up that identifies drivers and vehicles, i.e., vehicle changes outside of
the depot are forbidden. This “poor man’s integrated scheduling model” is
solved using the duty scheduling algorithm DS-OPT. The vehicle rotations
resulting from this duty schedule are concatenated into daily blocks using
the vehicle scheduling algorithm VS-OPT in a second step.

We calibrated the parameters of the bundle method, namely m and the
series (ui)i=1,2,..., such that about 20% of the iterations were serious steps.
We never needed more than 50 iterations of the bundle method before the
first fixing of variables.

5.1 RVB Instances

The Regensburger Verkehrsbetriebe GmbH (RVB) is a medium sized public
transportation company in Germany. We consider two instances that con-
tain the entire RVB operation for a Sunday and for a workday. The structure
of the RVB data is mostly urban with only four relief points. In fact, the
network of the RVB is mostly star-shaped with nearly all lines meeting in
a small area around the main railway station. Only there, at two stations
nearby, and at the also nearby garage the drivers can change buses and be-
gin or end duties. The RVB uses only one type of vehicles on Sundays, and
three types on workdays, i.e., the Sunday scenario is fleet homogenous, while
the workday scenario is a multi-depot problem. The vehicle types can only
be used on trips on certain sets of (non-disjoint) lines. The Sunday scenario

5 Computational Results 110

Sunday workday

vehicle types 1 3
timetabled trips 794 1414
tasks on tt 1248 3666
deadhead trips 47523 57646
duty types 3 4
break rules 4 4

Table 1: Statistics on the RVB Instances.

involves three different types of early, mid, and late duties, each with four
different types of break rules. In Germany, detailed legal regulations exist
about the number, the length, and the feasible positions of breaks in a duty.
These regulations may also differ from one company to the other by works
council agreements. We use in the RVB instances block breaks of 1 × 30,
2 × 20, and 3 × 15 minutes plus 1/6-quotient breaks. The most important
regulations valid for all these break rules are: There is no interval without
break with more than six hours working time. There is no interval with-
out break with more than four and a half hours driving time. Between two
breaks is at least half an hour working time. A duty fulfills the 1/6-quotient
break rule if every continuous segment of a duty contains at least a sixth
part break time, and every break must be at least eight minutes.

The workday scenario contains in addition a type of split duties, again with
the mentioned break rules per part of work. Table 1 reports further statistics
on the number of timetabled trips, tasks, and deadhead trips (also equal to
the number of Lagrangean multipliers). The Sunday scenario is medium-
sized, while the workday scenario is, as far as we known, the largest and
most complex instance that has been attacked with integrated scheduling
techniques.

Table 2 gives computational results for the Sunday scenario. The column
‘reference’ lists statistics for the solution that RVB planners had generated
by hand. The next four columns give the results of two sequential v+d -
optimizations and two integrated is-optimizations; we do not report results
for the method d+v , because we could not produce a feasible solution for
this scenario with this method. The objective function consists of a weighted
sum of the number of duties, the number of pieces of work, the paid time
of the duty schedule, and penalties for exceeding an average duty time. A
piece of work is an inclusion-maximal continuous segment of a duty where
a driver does not change the vehicle. Changes of vehicles should be avoided
because they may lead to operational problems in case of delays of vehicles.

In the optimization runs “v+d 2” and “is 2”, emphasis was placed on the
minimization of the number of duties, while runs “v+d 1” and “is 1” tried

5 Computational Results 111

reference v+d 1 v+d 2 is 1 is 2

time on vehicles 518:33 472:12 472:12 501:42 512:55
paid time 545:25 562:58 565:28 518:03 531:31
paid break time 112:36 131:40 85:41 74:17 64:27
number of duties(slacks) 82 83 74(1) 76 66
number of vehicles 36 32 32 32 35
average duty duration 6:39 6:48 7:38 6:40 8:03
computation time — 0:33 5:13 35:44 37:26

Table 2: Results for the RVB Sunday Scenario.

to reproduce the average duty time of the reference solution.

As expected the sequential methods reduce the number of vehicles and the
time on vehicle rotations since these are the primary optimization objec-
tives. Also they produce quite reasonable results in terms of duty schedul-
ing. “v+d 1” suffers from a slight increase in duties and paid time, “v+d 2”
yields substantial savings in duties; however the price for this reduction is a
raised average paid time. Also one task was not covered by duties in the so-
lution (remarked by the one in brackets). Even better are the results of the
integrated optimizations. “is 1” is perfect with respect to any statistic and
produces large savings. These stem from the use of short duties involving
less than 4:30 hours of driving time, which don’t need a break; this potential
improvement of the Sunday schedule is one of the most significant results
of this optimization project for the RVB. Even more interesting is solution
“is 2”. This solution trades three vehicles and an increased average for an-
other 10 duties; as longer duties must have breaks, the paid time (breaks
are paid here) increases as well. Solution “is 2” revived a discussion at the
RVB whether drivers prefer to have less, but longer duties on weekends or
whether they want to stay with more, but short duties.

Table 3 lists the results of the workday optimizations. Method d+v could
again not produce a feasible solution and is therefore omitted from the table.
The objective in this scenario is far from obvious; it is given as a complicated
mix of fixed and variable vehicle costs, fixed costs and paid time for duties,
and various penalties for several pieces of work, split duties, etc., that can
compensate each other such that one cannot really compare the solutions
by means of single statistics. Doing it nevertheless, we see that both op-
timization approaches clearly improve the reference solution substantially.
The outcome is close. In fact, v+d has less paid time than is; in the end,
however, is is better in terms of the composite objective function.

5 Computational Results 112

reference v+d is

time on vehicles 1037:18 960:29 1004:27
paid time 1103:48 1032:20 1040:11
granted break time 211:53 109:11 105:23
number of duties 140 137 137
number of vehicles 91 80 82
number of pieces of work 217 290 217
number of split duties 29 39 36
average duty duration 7:56 8:03 7:55
obj. value — 302.32 291.16
computation time — 8:02 125:55

Table 3: Results for the RVB Workday Scenario.

5.2 RKH Instances

The Regionalverkehrsbetrieb Kurhessen (RKH) is a regional carrier in the
middle of Germany. They provided data for the subnetworks of Marburg and
Fulda which is not (yet) in industrial use; some deadheads are missing, while
for some others travel times have only been estimated by means of distance
calculations. In our opinion the data still captures to a large degree the
structure of a regional carrier and we therefore deem it worthwhile to report
the results of the conceptual study that we did with it.

Figure 2 shows the spatial structure of the line network of Fulda, which is
one part of the RKH service area. The black arcs denote the timetabled
trips (drawn straight from the line’s start to the end), the gray arcs indicate
the potential deadhead trips. It can be seen that the trip network is hub-
and-spoke-like, connecting several cities and villages among themselves and
with the rural regions around them. While the deadhead network is almost
complete, there are only a few relief opportunities for drivers to leave or
enter a vehicle.

Table 4 gives further statistics on the RKH instances. They are similar
to the RVB Sunday scenario in terms of timetabled trips and tasks, but
contain much more deadhead trips. The scenarios involve three duty types,
two types of split duties that differ in the maximum duty length and one
type of continuous duties. Each duty type can have 1× 30, 2× 20, or 3× 15
minutes block breaks or 1/6-quotient breaks.

Table 5 reports the results of our optimizations. We do not report results
for the method v+d as we were not able to produce a feasible solution for
either scenario with this method. Method d+v yields useful results, but
it is not able to cover all tasks/trips of the Fulda-scenario with duties and
vehicles; in fact, d+v left 3 tasks and 6 timetabled trips uncovered (numbers

5 Computational Results 113

Figure 2: Scheduling Graph for Scenario Fulda.

in parentheses). These deficiencies are resolved in the is-solutions, which
also look better in terms of numbers of vehicles.

5.3 ECOPT Instances

Finally, we compare IS-OPT with the approach of Huisman et. al. on the ran-
domly generated benchmark data proposed in their article Huisman, Freling
& Wagelmans (2005) [20]. These data consist of two sets of instances involv-
ing two and four depots, respectively. Each set contains 10 instances of 80,

Marburg Fulda

depots 3 1
vehicle types 5 1
timetabled trips 634 413
tasks on TT 1022 705
deadhead trips 142,668 67,287

Table 4: RKH Scenarios Marburg and Fulda.

5 Computational Results 114

Marburg Fulda

d+v is d+v is

time on vehicles 772:02 642:41 365:41 387:37
paid time 620:27 606:30 390:08 374:53
granted break time 120:51 103:27 88:13 57:44
number of duties 73 70 41(3) 41
number of vehicles 62 50 45(6) 37
average duty duration 10:35 10:18 10:59 11:18
computation time 5:29 17:18 1:42 7:05

Table 5: Solutions for Scenarios Marburg and Fulda.

100, 160, 200, 320, and 400 trips, see again Huisman, Freling & Wagelmans
(2005) [20] for a detailed description. The duty scheduling rules associated
with these examples are relatively simple. Duties are allowed to have at
most one break, which must be outside of a vehicle, i.e., each break also
begins a new piece of work. The only other rule is that each piece of work
must be of certain minimum and maximum length. It is shown in Huisman,
Freling & Wagelmans (2005) [20] that in this situation one can solve the duty
generation subproblem in polynomial time, i.e., exact column generation is
applicable.

Tables 6 and 7 report average solution values for each of the 10 instances
of each problem class for the problem variant A; similar results for variant
B have been omitted. All computations were done with the same set of
parameters, which was optimized for speed. Row reference gives the sum
of the numbers of vehicles and duties as published in Huisman, Freling &
Wagelmans (2005) [20]; for the problems with 4 depots and 320 and 400
trips, no reference is given due to excessive computation time.

It can be seen that our algorithm IS-OPT performs worse than that in
Huisman, Freling & Wagelmans (2005) [20] for the small instances, but
produces better results with increasing problem size and complexity; it can
also solve the largest problem instances. We remark that IS-OPT can also
produce slightly better solutions for the small instances than those reported

trips 080 10 0 160 200 320 400

vehicles 9.4 11.2 15.0 18.6 27.0 33.3
duties 21.2 25.1 33.9 40.6 57.7 69.8
total 30.6 36.3 48.9 59.2 84.7 103.1
reference 29.8 35.6 48.3 59.1 86.8 106.1
time 00:05 00:08 00:17 00:31 01:58 03:19

Table 6: Results for ECOPT-Instances with 2 Depots Variant A.

6 Conclusions 115

trips 080 100 160 200 320 400

vehicles 9.2 11.2 15.0 18.5 26.7 33.1
duties 20.4 24.5 32.7 40.5 56.1 68.9
total 29.6 35.7 47.7 59.0 82.8 102.0
reference 29.6 36.2 49.5 60.4 — —
time 00:13 00:21 00:44 01:46 05:28 12:00

Table 7: Results for ECOPT-Instances with 4 Depots Variant A.

in Huisman, Freling & Wagelmans (2005) [20] by changing the optimality
parameter ǫ in Algorithm 2 and by raising the threshold for deadhead fixes.
This leads, of course, to longer computation times.

6 Conclusions

We have shown that it is possible to tackle large-scale, complex, real-world
integrated vehicle and duty scheduling problems using a novel “bundle” al-
gorithm for integrated vehicle and duty scheduling. The solutions produced
by such an integrated approach can be decidedly better in several respects
at once than the results of various types of sequential planning.

References

[1] M. O. Ball, L. Bodin & R. Dial. A matching based heuristic for
scheduling mass transit crews and vehicles. Transportation Sci. 17:
4–31, 1983. Cited on page 93.

[2] R. Borndörfer, M. Grötschel & A. Löbel. Duty scheduling in
public transit. In W. Jäger & H.-J. Krebs, (Eds.), MATHEMATICS
– Key Technology for the Future, pp. 653–674. Springer Verlag, Berlin,
2003. ISBN 3-540-44220-0. ZIB Report 01-02 available at http://opus.
kobv.de/zib/volltexte/2001/629/. Cited on pages 95, 98, 103, 104,
106, 107, 109.

[3] J. R. Daduna & M. Völker. Fahrzeugumlaufbildung im ÖPNV mit
unscharfen Abfahrtszeiten. Der Nahverkehr 11:39–43, 1997. Cited on
page 93.

[4] J. R. Daduna & A. Wren, (Eds.). Computer-Aided Transit Schedul-
ing, vol. 308 of Lecture Notes in Economics and Mathematical Systems,
1988. Springer Verlag, Berlin. ISBN 3-540-19441-X. Cited on pages 93,
116.

http://opus.kobv.de/zib/volltexte/2001/629/
http://opus.kobv.de/zib/volltexte/2001/629/

References 116

[5] J. R. Daduna, I. Branco & J. M. P. Paixão, (Eds.). Computer-
Aided Transit Scheduling, vol. 430 of Lecture Notes in Economics and
Mathematical Systems, 1995. Springer Verlag, Berlin. ISBN 3-540-
60193-7. Cited on page 93.

[6] K. Darby-Dowman, R. L. L. J. K. Jachnik & G. Mitra. Inte-
grated decision support systems for urban transport scheduling: Discus-
sion of implementation and experience. In Daduna & Wren (1988) [4],
pp. 226–239. ISBN 3-540-19441-X. Cited on page 94.

[7] M. Desrochers & J.-M. Rousseau, (Eds.). Computer-Aided Transit
Scheduling, vol. 386 of Lecture Notes in Economics and Mathematical
Systems, 1992. Springer Verlag, Berlin. ISBN 3-540-55634-6. Cited on
pages 93, 116.

[8] M. Desrochers & F. Soumis. A column generation approach to the
urban transit crew scheduling problem. Transportation Sci. 23(1):1–13,
1989. Cited on page 97.

[9] J. C. Falkner & D. M. Ryan. EXPRESS: Set partitioning for bus
crew scheduling in Christchurch. In Desrochers & Rousseau (1992) [7],
pp. 359–378. ISBN 3-540-55634-6. Cited on page 94.

[10] R. Freling. Models and Techniques for Integrating Vehicle and Crew
Scheduling. PhD thesis, Erasmus Universiteit Rotterdam, 1997. Cited
on pages 94, 98.

[11] R. Freling, D. Huisman & A. P. M. Wagelmans. Applying an
integral approach to vehicle and crew scheduling in practice. In Voß &
Daduna (2001) [28], pp. 73–90. ISBN 3-540-42243-9. Cited on page 94.

[12] R. Freling, A. P. M. Wagelmans & J. M. P. Paixao. Models and
algorithms for single-depot vehicle scheduling. Transportation Sci. 35:
165–180, 2001. Cited on page 94.

[13] R. Freling, D. Huisman & A. P. M. Wagelmans. Models and al-
gorithms for integration of vehicle and crew scheduling. J. Scheduling 6:
63–85, 2003. Cited on page 94.

[14] C. Friberg & K. Haase. An exact algorithm for the vehicle and
crew scheduling problem. In Wilson (1997) [29], pp. 63–80. ISBN 3-540-
65775-4. Cited on page 94.

[15] A. Gaffi & M. Nonato. An integrated approach to ex-urban crew
and vehicle scheduling. In Wilson (1997) [29], pp. 103–128. ISBN 3-
540-65775-4. Cited on page 94.

[16] K. Haase, G. Desaulniers & J. Desrosiers. Simultaneous vehicle
and crew scheduling in urban mass transit systems. Transportation
Sci. 35(3):286–303, August 2001. Cited on page 94.

[17] J. Hanisch. Die Regionalverkehr Köln GmbH und HASTUS. Web-
page, 1990. URL http://www.giro.ca/Deutsch/Publications/

publications.htm. Cited on page 93.

http://www.giro.ca/Deutsch/Publications/publications.htm
http://www.giro.ca/Deutsch/Publications/publications.htm

References 117

[18] C. Helmberg. Semidefinite programming for combinatorial optimiza-
tion. Habilitation thesis, Technische Universität Berlin, 2000. ZIB Re-
port 00-34 available at http://opus.kobv.de/zib/volltexte/2000/

603/. Cited on page 102.

[19] M. Hintermüller. A proximal bundle method based on approximate
subgradients. Comput. Optim. Appl. 20:245–266, 2001. Cited on page
104.

[20] D. Huisman, R. Freling & A. P. M. Wagelmans. Multiple-depot
integrated vehicle and crew scheduling. Transportation Sci. 39(4):491–
502, 2005. ISSN 1526-5447. Cited on pages 113, 114, 115.

[21] K. C. Kiwiel. Proximity control in bundle methods for convex nondif-
ferentiable minimization. Math. Programming 46:105–122, 1990. Cited
on page 100.

[22] K. C. Kiwiel. Approximation in proximal bundle methods and decom-
position of convex programs. J. Optim. Theory Appl. 84(3):529–548,
1995. Cited on pages 98, 100, 103.

[23] C. Lemaréchal. Lagrangian relaxation. In M. Jünger & D. Nad-

def, (Eds.), Computational Combinatorial Optimization, vol. 2241 of
Lecture Notes in Computer Science, pp. 112–156. Springer Verlag,
Berlin, 2001. ISBN 3-540-42877-1. Cited on page 98.

[24] A. Löbel. Optimal Vehicle Scheduling in Public Transit. Berichte aus
der Mathematik. Shaker Verlag, Aachen, 1998. ISBN 978-3-8265-3504-
8. URL http://www.shaker.de/Online-Gesamtkatalog/Details.

asp?ISBN=978-3-8265-3504-8. PdD thesis, Technische Universität
Berlin, 1998. Available at http://www.zib.de/bib/books/Loebel.

disser.ps. Cited on pages 95, 98, 103, 109.

[25] I. Patrikalakis & D. Xerocostas. A new decomposition scheme
of the urban public transport scheduling problem. In Desrochers &
Rousseau (1992) [7], pp. 407–425. ISBN 3-540-55634-6. Cited on page
94.

[26] D. Scott. A large scale linear programming approach to the public
transport scheduling and costing problem. In J.-M. Rousseau, (Ed.),
Computer Scheduling of Public Transport 2. Elsevier Science B.V., Am-
sterdam, 1985. Cited on page 94.

[27] E. Tosini & C. Vercellis. An interactive system for extra-urban
vehicle and crew scheduling problems. In Daduna & Wren (1988) [4],
pp. 41–53. ISBN 3-540-19441-X. Cited on page 94.

[28] S. Voß & J. R. Daduna, (Eds.). Computer-Aided Transit Schedul-
ing, vol. 505 of Lecture Notes in Economics and Mathematical Systems,
2001. Springer Verlag. ISBN 3-540-42243-9. Cited on pages 93, 116.

[29] N. Wilson, (Ed.). Computer-Aided Transit Scheduling, vol. 471 of
Lecture Notes in Economics and Mathematical Systems, 1997. Springer
Verlag, Berlin. ISBN 3-540-65775-4. Cited on pages 93, 116.

http://opus.kobv.de/zib/volltexte/2000/603/
http://opus.kobv.de/zib/volltexte/2000/603/
http://www.shaker.de/Online-Gesamtkatalog/Details.asp ?ISBN=978-3-8265-3504-8
http://www.shaker.de/Online-Gesamtkatalog/Details.asp ?ISBN=978-3-8265-3504-8
http://www.zib.de/bib/books/Loebel.disser.ps
http://www.zib.de/bib/books/Loebel.disser.ps

Paper V

Models for Railway Track Al-

location

R. Borndörfer & T. Schlechte.
Models for railway track allocation.
In C. Liebchen, R. K. Ahuja & J. A. Mesa, (Eds.), Proceeding of

the 7th Workshop on Algorithmic Approaches for Transportation Mod-
eling, Optimization, and Systems (ATMOS 2007), Dagstuhl, Germany,
2007. Internationales Begegbnungs- und Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl, Germany.

Abstract. The optimal track allocation problem (OPTRA) is to find, in a
given railway network, a conflict free set of train routes of maximum value.
We study two types of integer programming formulations for this prob-
lem: a standard formulation that models block conflicts in terms of packing
constraints, and a novel formulation of the ‘extended’ type that is based on
additional ‘configuration’ variables. The packing constraints in the standard
formulation stem from an interval graph and can therefore be separated in
polynomial time. It follows that the LP-relaxation of a strong version of this
model, including all clique inequalities from block conflicts, can be solved in
polynomial time. We prove that the LP-relaxation of the extended formu-
lation can also be solved in polynomial time, and that it produces the same
LP-bound. Albeit the two formulations are in this sense equivalent, the
extended formulation has advantages from a computational point of view.
It features a constant number of rows and is amenable to standard column
generation techniques. Results of an empirical model comparison on meso-
scopic data for the Hanover-Fulda-Kassel region of the German long distance
railway network involving up to 570 trains are reported.

Mathematics Subject Classification (MSC 2000). 90C06, 90B06

Keywords. Railways, track allocation, timetabling, path packing, configu-
ration model, column generation

118

1 Introduction 119

1 Introduction

Routing trains in a conflict-free way through a network of tracks is one of the
basic and at the same time most difficult questions in railway scheduling.
The need to coordinate the use of shared infrastructure and the complex
operation of this infrastructure using switches and signals impose a great
variety of technical constraints, that give rise to a complex problem in which
many factors have to be considered simultaneously.

Among the earliest optimization approaches to track allocation problems
are integer programming formulations that model train routes as paths in
appropriate networks. As early as 1956, Charnes & Miller (1956) [5] propose
a set covering formulation, in which ‘crew and engine packages’ are assigned
to circular routes in a railway network; the model is solved with what we
would call today a column generation procedure. Later, set packing versions
of this formulation, which can rule out block conflicts between train routes,
have been proposed and studied by a number of authors including Brännlund
et al. (1998) [2], Caprara et al. (2001) [3], Caprara, Fischetti & Toth
(2002) [4], and Borndörfer et al. (2006) [1]. The main difficulty with this
type of formulation is that it contains a very large number of constraints
which makes these models computationally hard, if not intractable, beyond
a certain size.

We propose in this article a novel formulation for train routing in an at-
tempt to resolve this difficulty. Our formulation is of the ‘extended’ type; it
rules out block conflicts using additional ‘configuration’ variables. It can be
shown that such a model is equivalent to a strong version of the standard
packing model (including all clique constraints from ‘block conflicts’) with
respect to both quality and computational complexity of the LP-bound.
From a practical point of view, the extended model has the advantage that
it is amenable to standard column generation techniques and therefore well
suited to solve large-scale problems.

The article is organized as follows. Section 2 gives a formal statement of
the optimal track allocation problem. For the sake of clarity of exposi-
tion, we concentrate here on a basic version that considers a very simple
type of ‘block conflicts’ between trains. We remark, however, that most our
results carry over to more general situations with ‘headway conflicts’ from
‘quadrangle-linear’ matrices, see Lukac (2004) [8] for details of such a model.
Packing IP-formulations for the track allocation problem are studied in Sec-
tion 3.1. We show that block conflicts arise from an interval graph, that
cliques from block conflicts can be separated in polynomial time, and that
the LP-relaxation of a packing model including all such clique constraints
can be solved in polynomial time. Section 3.2 introduces our extended for-
mulation. We show that the pricing problem for configuration variables can

2 The Optimal Track Allocation Problem 120

symbol description symbol description

S stations G = (S, J) infrastructure digraph
J tracks D = (V, A) train routing digraph
I trains Di = (V, Ai) individual routing digraph
w arc weights si, ti source, sink of train i

Table 1: Notation for the Optimal Track Allocation Problem (OPTRA).

be solved by computing a longest path in an appropriately defined acyclic di-
graph, and that the LP-relaxation of the extended model can also be solved
in polynomial time. Section 3.3 compares both models analytically; it turns
out that they produce the same LP-bound. The final Section 4 contains
a computational model comparison on data for the Hanover-Kassel-Fulda
part of the long distance network of the German railway company Deutsche
Bahn AG with up to 570 trains.

2 The Optimal Track Allocation Problem

The optimal track allocation problem, also known as the train routing prob-
lem or the train timetabling problem, can be formally described as follows.
We are given a set I of requests to route trains in a train routing digraph
D = (V, A); we allow that D contains multiple arcs between two nodes.
D is based on an infrastructure digraph G = (S, J), whose nodes and arcs
model stations and tracks, respectively. The train routing digraph is a time
expansion of the infrastructure digraph, i.e., the nodes of D model possible
departures and arrivals of trains at stations at certain points in time, the
arcs possible timetabled trips of specific trains. Formally, we associate with
each node v ∈ V a station s(v) ∈ S and a discrete time t(v) ∈ Z. An
arc uv ∈ A models a trip on track s(u)s(v) ∈ J for a train i(uv) ∈ I, which
departs at time t(u) and arrives at time t(v); we assume t(u) < t(v) for all
trips uv ∈ A such that D is acyclic. We associate with train i ∈ I the trips
Ai := {a ∈ A : i(a) = i} ⊆ A that this train can run and the individual train
routing digraph Di := (V, Ai) ⊆ D, which we assume to contain two special
(if need be artificially constructed) nodes si and ti, called source and sink ,
that represent the departure and the arrival of train i; we therefore assume
δ−i (si) = δ+

i (ti) = ∅ (where δ±i (W) := δ±(W) ∩ Ai, ∀W ⊆ V), and denote
Wi := V \ {si, ti}. A route for train i is an siti-path in Di. Denote the set
of all routes for train i by Pi, and the set of all possible routes by P (let P
be the disjoint union of the sets Pi, i.e., we distinguish identical routes for
different trains). Figure 1 illustrates this construction.

We say that an arc uv ∈ A occupies or blocks its associated track s(u)s(v) for
the time interval [t(u), t(v)−1], and that there is a block conflict between two

2 The Optimal Track Allocation Problem 121

Figure 1: Optimal Track Allocation Problem: Infrastructure Network (left),
and Train Routing Digraph (right); Individual Train Routing Digraphs Bear
Different Colors.

arcs u1v1 and u2v2 on the same track if their track occupation time intervals
overlap, i.e., if s(u1)s(v1) = s(u2)s(v2) and [t(u1), t(v1) − 1] ∩ [t(u2), t(v2) −
1] 6= ∅. There is a block conflict between two train routes if any of their
arcs have a block conflict. A timetable or schedule is a set X ⊆ P of
conflict-free routes, at most one for each train request, i.e., |X ∩ Pi| ≤ 1,
i ∈ I. Assigning weights wuv ∈ Z to the arcs uv ∈ A (modeling ‘profits’
for individual trips), the weight of route p ∈ P is wp :=

∑
a∈p wa, and

the weight of a schedule X ⊆ P is w(X) :=
∑

p∈X wp. The optimal track
allocation problem (OPTRA) is to find a schedule of maximum weight.

Caprara, Fischetti & Toth (2002) [4] have shown that the stable set problem
can be reduced to OPTRA, such that the problem is NP-hard. Indeed,
OPTRA can be seen as a problem to find a maximum weight packing (with
respect to block conflicts) of train routes in a time-expanded digraph. This
framework is fairly general, see the articles of Caprara et al. (2001) [3],
Caprara, Fischetti & Toth (2002) [4], and Borndörfer et al. (2006) [1] for
comprehensive discussions how such a model can be used to deal with various
kinds of technical constraints.

There is, however, one point where our exposition resorts to a genuine sim-
plification, namely, by considering only block conflicts arising from time
overlaps. Such a model obviously ignores important aspects such as dif-
ferent block occupation times for the head and the tail of a train, safety
margins to open and close a block after a train has left a track and before it
can enter, different driving times of trains (a fast train following a slow train
needs a larger safety margin than a slow train following a fast train) etc.
Such considerations can be expressed in terms of ‘headway matrices’ that

3 Integer Programming Models 122

specify a minimum time difference between every ordered pair of trains on
each track, see Lukac (2004) [8] for a discussion of such a model. One can
show that most of the results of the following sections carry over to more
general situations of this type. We do, however, not give the details here,
because they would result in a more technical and complicated discussion.

3 Integer Programming Models

3.1 Packing Models

The standard formulation for the track allocation problem models train
routes as a multi-commodity flow and rules out block conflicts using addi-
tional packing constraints. We need the following additional terminology.
Let B = {{a, b} ∈ 2A : a 6= b have a block conflict} be the set of all block
conflicts between any two arcs, H = (A, B) the associated (undirected)
(block) conflict graph, and C = C(H) be the set of all (inclusion) maximal
cliques in H; Figure 2 illustrates the construction of a block conflict graph
for a single track.

The packing model comes in two versions, one with 0/1 arc variables xa,
a ∈ A, for the use of trip a in a route, and the other with 0/1 path variables
xp, p ∈ P , for the use of route p. The resulting formulations, we call them
arc packing problem (APP) and path packing problem (PPP), read as follows:

(APP) max
∑

a∈A

waxa

(i)
∑

a∈δ+
i (v)

xa −
∑

a∈δ−i (v)

xa = 0 ∀i ∈ I, v ∈ Wi

(ii)
∑

a∈δ+
i (si)

xa ≤ 1 ∀i ∈ I

(iii)
∑

a∈c

xa ≤ 1 ∀c ∈ C

(iv) xa ≥ 0 ∀a ∈ A
(v) xa ∈ Z ∀a ∈ A

(PPP) max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1 ∀i ∈ I

(iii)
∑

p∩c 6=∅

xp ≤ 1 ∀c ∈ C

(iv) xp ≥ 0 ∀p ∈ P
(v) xp ∈ Z ∀p ∈ P.

Equalities (APP) (i) are flow conservation constraints; they route train i on
siti-paths; note that Di is acyclic such that no cycles can come up. Con-
straints (APP)/(PPP) (ii) ensure a train is routed at most once. The clique
inequalities (APP)/(PPP) (iii) rule out block conflicts. Finally, (APP)/
(PPP) (iv) and (v) are the nonnegativity and the integrality constraints.
Note that all constaints together imply that all variables are 0/1.

3 Integer Programming Models 123

Figure 2: Block Conflicts on a Single Track: Trips for a Slow (blue) and a
Fast (red) Train (left), a Conflict-Free Configuration of Four Trips on this
Track (middle), and the Block Conflict Graph Associated With the Track
(right).

The formulations (APP) and (PPP) are strong in the sense that they include
all clique constraints from block conflicts. The literature usually considers
models that replace (APP)/(PPP) (iii) by weaker constraints

(iii′) xa + xb ≤ 1 ∀ab ∈ B (iii′)
∑

p∩{a,b}6=∅

xp ≤ 1 ∀ab ∈ B

that rule out block conflicts on pairs of arcs; let us denote these variants by
(APP′) and (PPP′). Here are some basic properties of the packing models.
By definition:

Observationdd 3.1. The block conflict graph H = (A, B) that is associated
with an optimal track allocation problem is an interval graph.

The cliques in the conflict graph are collections of compact real intervals. By
Helly’s Theorem, see Helly (1923) [7], the intervals of each such clique c ∈ C
constain a common point t(c), and it is easy to see that we can assume t(c) ∈
t(V) = {t(v) : v ∈ V }. It follows that the block conflict graph H has O(V)
inclusion maximal cliques, which can be enumerated in polynomial time,
and that the packing formulations of the optimal track allocation problem

3 Integer Programming Models 124

formulation variables non-trivial constraints

APP O(A) O(A)
PPP O(P) O(V)

APP′ O(A) O(A2)
PPP′ O(P) O(A2)

Table 2: Sizes of Packing Formulations for the Track Allocation Problem.

have the sizes listed in Table 2; here, O(I × V) + O(I) + O(C) = O(A), and
we write O(A) = O(|A|) etc.

The LP-relaxation of (APP) can then be solved in polynomial time. To
obtain the same result for (PPP), consider a column generation approach.
Note that no two arcs in a route are in conflict, i.e., p ∩ c ≤ 1 for all routes
p ∈ P and all cliques c ∈ C. Introducing dual variables γi, i ∈ I, for the
constraints (PPP) (ii), and ηc, c ∈ C, for the constraints (PPP) (iii), the
pricing problem for a route p ∈ Pi, for some train i ∈ I, is

∃ p ∈ Pi : γi +
∑

p∩c 6=∅

ηc < wp ⇐⇒
∑

a∈p

(wa −
∑

c∋a

ηc) > γi.

This is a longest siti-path problem in the acyclic digraph Di = (V, Ai) w.r.t.
arc weights wa−

∑
a∈c ηc; this problem can be solved in polynomial time (in

fact, in linear time). By the polynomial equivalence of separation and opti-
mization, see Grötschel, Lovász & Schrijver (1988) [6], here applied to the
dual of (PPP), i.e., the polynomial equivalence of pricing and optimization,
we obtain the desired result.

Theoremdd 3.2. The LP-relaxations associated with the strong arc pack-
ing formulation APP and the strong path packing formulation PPP of the
optimal track allocation problem can be solved in polynomial time.

3.2 Extended Models

We propose in this section an alternative formulation for the optimal track
allocation problem that guarantees a conflict free routing by allowing only
feasible route combinations, and not by excluding conflicts. The formulation
is based on the concept of feasible arc configurations , i.e., sets of arcs on a
track without block conflicts. Formally, we define a configuration for some
track j = xy ∈ J as a set of arcs q ⊆ Aj := {uv ∈ A : s(u)s(v) = xy} such
that

|q ∩ c| ≤ 1 ∀c ∈ C.

Denote by Qj the set of all such configurations for track j, j ∈ J , and by
Q the set of all such configurations. The idea of the extended model is to

3 Integer Programming Models 125

introduce 0/1 variables yq for choosing a configuration on each track and to
force a conflict free routing of trains through these configurations by means
of inequalities

∑

p∋a

xp ≤
∑

q∋a

yq ∀a ∈ A.

Instead of directly writing down a corresponding model, however, we pro-
pose a version that will model configurations as paths in a certain acyclic
routing digraph. The advantages of such a formulation will become clear
in a minute. The construction extends the routing digraph D = (V, A)
to a larger digraph D = (V , A) by adding nodes and arcs as illustrated
in Figure 3. The details are as follows. Consider a track xy ∈ J and
the trips Axy = {uv ∈ A : s(u)s(v) = xy} on this track. Denote by
Lxy := {u : uv ∈ Axy} and Rxy := {v : uv ∈ Axy} the associated set
of departure and arrival nodes. Construct two new, artificial nodes sxy

and txy by setting s(sxy) = y, t(sxy) := min t(Rxy) − 1, and s(txy) = x,
t(txy) := max t(Rxy) + 1, i.e., sxy marks an event at station y before the
departure of the earliest trip on xy, and txy marks an event at station x
after the arrival of the latest trip on xy. Let Lxy := Lxy ∪ {txy} and
Rxy := Rxy ∪ {sxy}; note that all arcs in Axy go from Lxy to Rxy (actu-
ally from Lxy to Rxy). Now let Axy := {vu : t(v) ≤ t(u), v ∈ Rst, u ∈ Lst}
be a set of ‘return’ arcs that go in the opposite direction; they connect the
arrival of a trip on xy (or node sxy) with all possible follow-on trips (or node
txy) on that track. It is easy to see that the configuration routing digraph
Dxy := (Lxy∪Rxy, Axy∪Axy) is bipartite and acyclic, and that sxytxy-paths
a1, a1, . . . , ak−1, ak in Dxy and configurations a1, . . . , ak in Qst are in 1-1
correspondence. Let us formally denote this isomorphism by a mapping

·̄ : Qj → Qj , q 7→ q, j ∈ J,

where Qj denotes the set of all sjtj-paths in Dj ; however, we will henceforth

identify paths q ∈ Qj and configurations q ∈ Qj . Let us also denote by

Wj := Lj∪Rj the structural nodes of Dj , and by D := (V , A) := (V ∪{sj , tj :
j ∈ J}, A∪⋃

j∈J Aj) =
⋃

j∈J Dj the extended train routing digraph, i.e., the
routing digraph D extended by the artificial nodes and return arcs described
above, and δ±j (W) := δ±(W) ∩ Aj ∪ Aj , ∀W ⊆ V .

The extended model also comes in two versions, one using new 0/1 arc
variables ya, a ∈ A, for the use of arc a in a configuration-path, and the
other with 0/1 path variables yq, q ∈ Q, for the use of configuration-path
q ∈ Q. The resulting formulations, which we call arc configuration problem

3 Integer Programming Models 126

(ACP) and path configuration problem (PCP), read as follows:

(ACP) max
∑

a∈A

waxa

(i)
∑

a∈δ+
i (v)

xa −
∑

a∈δ−i (v)

xa = 0 ∀i ∈ I, v ∈ Wi

(ii)
∑

a∈δ+
i (si)

xa ≤ 1 ∀i ∈ I

(iii)
∑

a∈δ+
j (v)

ya −
∑

a∈δ−j (v)

ya = 0 ∀j ∈ J, v ∈ Wj

(iv)
∑

a∈δ+
j (sj)

ya ≤ 1 ∀j ∈ J

(v) xa − ya ≤ 0 ∀a ∈ A

(vi) xa ≥ 0 ∀a ∈ A
(vii) ya ≥ 0 ∀a ∈ A
(viii) xa ∈ Z ∀a ∈ A
(ix) ya ∈ Z ∀a ∈ A

(PCP) max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1 ∀i ∈ I

(iv)
∑

q∈Qj

yq ≤ 1 ∀j ∈ J

(v)
∑

p∋a

xp −
∑

q∋a

yq ≤ 0 ∀a ∈ A

(vi) xp ≥ 0 ∀p ∈ P
(vii) yq ≥ 0 ∀q ∈ Q
(viii) xp ∈ Z ∀p ∈ P
(ix) yq ∈ Z ∀q ∈ Q.

Equalities (ACP) (i) and (iii) are flow conservation constraints; they route
trains i on siti-paths and configurations j on sjtj-paths; note that both Di

and Dj are acyclic such that no cycles can come up. Constraints (ACP)/
(PCP) (ii) and (iv) ensure a train is routed at most once and that at
most one configuration can be chosen for each track. The coupling con-
straints (ACP)/(PCP) (v) synchronize routes and configurations. Finally,
(APP)/(PPP) (iv) and (v) are the nonnegativity and the integrality con-
straints. Note that, again, all variables are implicitly 0/1.

The extended models have the sizes listed in Table 3. Then the LP-relaxation
of (ACP) can be solved in polynomial time. For (PCP), consider the pricing
problems for routes and configurations. With dual variables γi, i ∈ I, πj ,
j ∈ J , and λa, a ∈ A, for constraints (PCP) (ii), (iv), and (v), respectively,
the pricing problem for a route p ∈ Pi for train i ∈ I is

∃ p ∈ Pi : γi +
∑

a∈p

λa < wp ⇐⇒
∑

a∈p

(wa − λa) > γi.

formulation variables non-trivial constraints

ACP O(A) O(A)
PCP O(P) + O(Q) O(I) + O(J)

Table 3: Sizes of Packing Formulations for the Track Allocation Problem.

3 Integer Programming Models 127

Figure 3: Configuration Routing Digraph for a Single Track: Train Rout-
ing Digraph (left), Configuration (half-left), Configuration Routing Digraph
(half-right), and the Corresponding Path (right).

This is the same as finding a longest siti-path in Di w.r.t. arc weights
wa − λa; as Di is acyclic, this problem can be solved in polynomial time.
The pricing problem for a configuration q ∈ Qj for track j ∈ J is

∃ q ∈ Qj : πj −
∑

a∈q

λa < 0 ⇐⇒
∑

a∈q

λa > πj .

Using arc weights λa, a ∈ Aj , and 0, a ∈ Aj , pricing configurations in Qj

is the same as finding longest sjtj-paths in the acyclic digraph Dj . This is
polynomial. We conclude:

Theoremdd 3.3. The LP-relaxations associated with the arc configuration
formulation ACP and the path configuration formulation PCP of the optimal
track allocation problem can be solved in polynomial time.

Let us quickly state in this pricing context a simple bound on the LP-

3 Integer Programming Models 128

value of the path configuration formulation PCP that is useful in practice
to overcome tailing-off effects in a column generation procedure. Namely,
computing the path lengths maxp∈Pi

∑
a∈p(wa − λa) and maxq∈Qj

∑
a∈q λa

yield the following LP-bound β = β(γ, π, λ).

Lemmadd 3.4. Let γ, π, λ ≥ 0 be dual variables1 for PCP and vLP(PCP)
the optimum objective value of the LP-relaxation of PCP. Define

ηi := max
p∈Pi

∑

a∈p

(wa − λa) − γi, ∀i ∈ I,

θj := max
q∈Qj

∑

a∈q

λa − πj , ∀j ∈ J,

β(γ, π, λ) :=
∑

i∈I

max{γi + ηi, 0} +
∑

j∈J

max{πj + θj , 0}.

Then

vLP(PCP) ≤ β(γ, π, λ).

Proof. • γi+ηi ≥
∑

a∈p

(wa−λa) =⇒ γi+ηi+
∑

a∈p

λa ≥ wp ∀i ∈ I, p ∈ Pi.

• πj + θj ≥
∑

a∈q

λa =⇒ πj + θj −
∑

a∈q

λa ≥ 0 ∀j ∈ J, q ∈ Qj .

• (max{γ+η, 0}, max{π+θ, 0}, λ) (the maximum taken component-wise)
is dual feasible for the LP-relaxation of PCP.

3.3 Model Comparison

We finally compare the two types of models that we have stated. Starting
points are the LP-relaxations of the configuration formulations and those of
the packing formulations. As the LP-relaxations of APP and PPP, and of
ACP and PCP are obviously equivalent via flow decomposition into paths,
it suffices to compare, say, APP and ACP.

Lemmadd 3.5. Let

PLP(APP) := {x ∈ RA : (APP) (i)–(iv)}
PLP(ACP) := {(x, y) ∈ RA×A : (ACP) (i)–(vii)}

πx : RA×A → RA, (x, y) 7→ x

1Note that these will be infeasible during a column generation.

4 Computational Results 129

be the polyhedra associated with the LP-relaxations of APP and ACP, re-
spectively, and a mapping that produces a projection onto the coordinates of
the train routing variables. Then

π(PLP(ACP)) = PLP(APP).

Proof. Let Cj := {c ∈ C : c ⊆ Aj}, j ∈ J , be the set of block conflict cliques
associated with track j. Consider the polyhedra

P := {x ∈ RA : (APP) (i), (ii), (vi)},
P j := {x ∈ RAj

+ :
∑

a∈c

xa ≤ 1 ∀c ∈ Cj}, j ∈ J,

Qj := {y ∈ RAj×Aj

+ :
∑

a∈δ+
j (v)

ya =
∑

a∈δ−j (v)

ya,∀v ∈ Wj ,
∑

a∈δ+
j (sj)

ya ≤ 1}, j ∈ J,

Rj := {x ∈ RAj

+ : ∃y ∈ Qj : x ≤ y}, j ∈ J.

P j is integer, because Cj is the family of all maximal cliques of an inter-
val graph, which is perfect; Qj is integer, because it is the path polytope
associated with an acyclic digraph; finally, Rj is integer, because it is the
anti-dominant of an integer polytope. Consider integer points, it is easy to
see that P j and Rj coincide, i.e., P j = Rj , j ∈ J . It follows

PLP(APP) = P ∩
⋂

j∈J

P j = P ∩
⋂

j∈J

Rj = π(PLP(ACP)).

This immediately implies our main Theorem.

Theoremdd 3.6. Denote by v(P) and vLP(P) the optimal value of problem
P and its LP-relaxation, respectively, P ∈ {APP,PPP,ACP,PCP}. Then:

• vLP(APP) = vLP(PPP) = vLP(ACP) = vLP(PCP).

• v(APP) = v(PPP) = v(ACP) = v(PCP).

4 Computational Results

We have implemented model generators for the static formulations APP′

and ACP, and a column generation algorithm for model PCP. This choice is
motivated as follows. APP′ is the dominant model in the literature, which
we want to benchmark. APP and ACP are equivalent models that improve
APP′, both arc-based. ACP is easy to implement. We didn’t implement
the strong packing model APP, and also not PPP, because these models are

4 Computational Results 130

not robust w.r.t. changes in the problem structure, namely, their simplicity
depends on the particular clique structure of interval graphs. If more com-
plex constraints are considered, these models can become hard to adapt. In
fact, the instances that we are going to consider involve headway matrices
that give rise to more numerous and more complex clique structures, such
that an implementation of suitably extended models APP and PPP would
have been much more difficult than an implementation of the basic versions
that we have considered in the theoretical part of this paper. On the other
hand, headway constraints are easy to implement in a configuration model,
because they specify possible follow-on trips on a track, which is precisely
what a configuration does. Formulation PCP is in this sense robust. It is
also well suited for column generation to deal with large instances.

In our experiments, we consider the Hanover-Kassel-Fulda area of the Ger-
man long-distance railway network. All our instances are based on the meso-
scopic infrastructure network that is illustrated in Figure 1. It includes data
for 37 stations, 120 tracks and 6 different train types (ICE, IC, RE, RB, S,
ICG). Because of various possible turnover and driving times for each train
type, this produces an infrastructure digraph with 146 nodes, 1480 arcs, and
4320 headway constraints.

Based on the 2002 timetable of Deutsche Bahn AG, we constructed three
scenarios that we denote by 146, 285, and 570. The name of the instance
gives the number of train requests, which consist of long distance trains
(IC, ICE), synchronized regional and suburban passenger trains (S, RE,
RB), and freight trains (ICG). The main objective is to maximize the total
number of trains in the schedule; on a secondary level, we slightly penalize
deviations from certain desired departure and arrival times. Flexibility to
reroute trains is controlled by departure and arrival time windows of length
at most τ , where τ is a parameter. Increasing τ from 0 to 30 minutes in
steps of 2 minutes increases flexibility, but also produces larger train routing
digraphs and IPs. After some preprocessing (eliminating arcs and nodes
which cannot be part of a feasible train route), the resulting 48 instances
have the sizes listed in Table 4.

These 48 instances were solved as follows. The root LP-relaxations of the
static models APP′ and ACP were solved with the dual simplex method of
CPLEX 10.0. Then, CPLEXMIP was called for a maximum of at most 1h of
running time or 10.000 nodes2. Model PCP is solved by column generation,
with a limit of at most 100 iterations. The reduced master-LPs were solved
with the barrier or the dual simplex method of CPLEX 10.0, depending
on the column generation progress. Then, a heuristic integer solution is

2That means that we do not always report optimal integer solutions; however, we
remark that all instances of scenario 146, of scenario 285 up to τ = 24, and of scenario
570 up to τ = 4 can be solved to proven optimality by running CPLEX long enough.

4 Computational Results 131

146 285 570

τ #nodes #arcs #nodes #arcs #nodes #arcs

0 2877 3297 362 422 1284 1412
2 4953 6414 1501 1846 5858 6894
4 7428 10131 3262 4284 10912 13334
6 9766 13673 5243 7140 19484 25220
8 12143 17300 8070 11289 28038 37128

10 15617 22476 11126 15840 38380 51944
12 19574 28632 15226 22014 50768 70160
14 24142 35886 19970 29325 65056 91648
16 28877 43673 26201 38985 80376 115212
18 33694 51799 32599 49137 97954 142780
20 38953 60707 39854 60920 116886 173516
22 44072 69636 47486 73473 138512 209040
24 50287 80556 56502 88475 161590 247072
26 56156 91019 65579 103979 186458 289266
28 62035 101581 75820 121840 212722 334878
30 69813 115838 87883 143374 241224 383914

Table 4: Test Scenarios.

constructed, namely, by simply computing an optimal integer solution to
the last reduced master-LP, again using CPLEXMIP. All computations were
made single threaded on a Dell Precision 650 PC with 2GB of main memory

2 6 10 14 18 22 26 30
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

4

flexibility τ

o
b

je
ct

iv
e

va
lu

e

v
LP

(APP’)

v
IP

(APP’)

v
LP

(ACP)

v
IP

(ACP)

v
LP

(PCP)

v
IP

(PCP)

(a) Solving Scenario 146.

2 6 10 14 18 22 26 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

flexibility τ

o
b

je
ct

iv
e

va
lu

e

v
LP

(APP’)

v
IP

(APP’)

v
LP

(ACP)

v
IP

(ACP)

v
LP

(PCP)

v
IP

(PCP)

(b) Solving Scenario 285.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

flexibility τ

o
b

je
ct

iv
e

va
lu

e

v
LP

(APP’)

v
IP

(APP’)

v
LP

(ACP)

v
IP

(ACP)

v
LP

(PCP)

v
IP

(PCP)

β(RPLP)

(c) Solving Scenario 570.

5 10 15 20 25 30 35 40 45 50
0.85

0.9

0.95

1

1.05

1.1

1.15
x 10

5

column generation iterations

o
b

je
ct

iv
e

va
lu

e

β(γ, π, λ)
v(RPLP)

(d) Generating Columns for Model PCP.

Figure 4: Solving Models APP′, ACP, and PCP.

4 Computational Results 132

τ #rows #cols vLP vIP tP tIP

0 1441 1412 56264.17 53676.00 290.27 0.10
2 8760 6894 152778.29 134190.00 400.88 19.97
4 19369 13334 210479.74 184636.00 658.59 42.14
6 44272 25220 254676.53 221725.00 401.15 103.54
8 81313 37128 284689.94 255870.00 538.52 213.84

10 143917 51944 306437.88 267569.00 1210.23 415.15
12 252530 70160 324781.31 - 1761.22 1360.30
14 413828 91648 - - - -
16 637237 115212 - - - -
18 965427 142780 - - - -
20 1436049 173516 - - - -
22 2094272 209040 - - - -
24 2895176 247072 - - - -
26 3999163 289266 - - - -
28 5422512 334878 - - - -
30 7048470 383914 - - - -

Table 5: Solving Model APP′ for Scenario 570.

τ #rows #cols vLP vIP tP tIP

0 2332 3875 53968.00 53676.00 216.51 0.21
2 11106 19926 136944.50 134311.00 540.97 6.44
4 21772 39967 189997.08 186467.00 622.68 22.60
6 41498 79234 240622.38 234535.00 1495.82 931.92
8 60390 120957 270900.38 260063.00 2170.88 1401.25

10 83398 170277 295798.29 277073.00 4203.54 3488.38
12 111270 231613 313179.33 296917.00 4760.91 3819.11
14 143270 303302 333515.08 314348.00 4361.18 3943.13
16 177622 377312 - - - -
18 215888 461844 - - - -
20 257378 549535 - - - -
22 304326 649176 - - - -
24 354762 754888 - - - -
26 409556 869796 - - - -
28 467950 985555 - - - -
30 529518 1107237 - - - -

Table 6: Solving Model ACP for Scenario 570.

and a dual Intel Xeon 3.8 GHz CPU running SUSE Linux 10.1.

Figures 4(a), 4(b), and 4(c) summarize our results on the three scenarios
146, 285, and 570, increasing the flexibility from 0 to 30 minutes per train
in steps of 2 minutes. It turns out that, in fact, model APP′ produces a
noticeably weaker LP-bound (upper bound) than the bounds from the other
two models, which are more or less identical. This shows that it is possible
to solve the LP-relaxation of model PCP by column generation almost to
proven optimality. Figure 4(d) provides a closer look at the master-LP
associated with model PCP. Indeed, the upper bound β(γ, π, λ) and the
value v(RPLP) of the reduced master-LP converge in the column generation
process.

With increasing flexibility the models become larger, and at some point
the LPs could not be solved any more, because we ran out of memory; the

References 133

τ #rows #cols β v(RPLP) gap tP #CGiter

in %

0 1248 11715 54727.00 53767.00 1.78 468.11 51
2 3314 66012 137376.07 135729.48 1.21 5883.12 100
4 6160 166133 197333.08 188757.73 4.54 13687.55 100
6 11300 238837 248480.85 239768.92 3.63 28258.23 82
8 16414 272565 276867.11 270234.28 2.45 43199.62 82

10 22846 168492 299070.52 295415.44 1.24 73891.21 100
12 30770 214259 314654.48 312960.40 0.54 183123.49 100
14 40696 355918 335061.01 332970.27 0.63 336374.07 57
16 51562 346564 345445.44 343802.93 0.48 198590.48 100
18 63998 266214 366323.70 351502.63 4.22 463379.15 46
20 78478 - - - - -
22 94994 - - - - -
24 112816 - - - - -
26 132826 - - - - -
28 154706 - - - - -
30 177914 - - - - -

Table 7: Solving Model PCP for Scenario 570.

vertical bars in Figures 4(a), 4(b), and 4(c) indicate the largest scenarios
that could be solved. O(A2) constraints kill model APP′ early. Model ACP
reaches somewhat farther. However, the dynamic model PCP is the one
that is able to solve the largest scenarios. It is, in our opinion, also the
model that offers the biggest potential for further algorithmic improvements
to deal with even larger instances; we are currently working in this direction.

The best integral solutions for our instances were always provided by model
ACP. This is no surprise, because this model outperforms APP′ in terms of
the LP-bound, while the simple IP heuristic that we have applied to PCP is
obviously improvable. Tables 5 and 6 list the details for the largest scenario
570 for models APP′ and ACP. In addition to the size of the respective
LPs we report the LP and IP values, the overall time tP, and the time
tIP spent on finding integral solutions, both in seconds. The dashes in the
tables indicate the inability to compute a solution due to an out of memory
error. Table 7 gives similar results for model PCP. Here, the LP sizes refer
to the final restricted master-LP, and instead of LP and IP values, we list
the lower and upper LP-bounds v(RPLP); instead of IP time, we give the
number #CGiter of column generation iterations. Again, the dashes in the
tables report out of memory errors. Altogether, Tables 5, 6, and 7 give an
impression of the current performance and the limits of our implementations.

References

[1] R. Borndörfer, M. Grötschel, S. Lukac, K. Mitusch,

T. Schlechte, S. Schultz & A. Tanner. An auctioning approach
to railway slot allocation. J. Competition and Regulation in Network

References 134

Industries 1(2):163–196, 2006. ZIB Report 05-45 available at http://

opus.kobv.de/zib/volltexte/2005/878/. Cited on pages 119, 121.

[2] U. Brännlund, P. Lindberg, A. Nou & J.-E. Nilsson. Railway
timetabling using Langangian relaxation. Transportation Sci. 32(4):358–
369, 1998. Cited on page 119.

[3] A. Caprara, M. Fischetti, P. L. Guida, M. Monaci, G. Sacco

& P. Toth. Solution of real-world train timetabling problems. In Proc.
34rd Hawaii International Conference on System Sciences, vol. 3. IEEE
Computer Society Press, 2001. Cited on pages 119, 121.

[4] A. Caprara, M. Fischetti & P. Toth. Modeling and solving the
train timetabling problem. Oper. Res. 50(5):851–861, 2002. Cited on
pages 119, 121.

[5] A. Charnes & M. Miller. A model for the optimal programming
of railway freight train movements. Management Sci. 3(1):74–92, 1956.
Cited on page 119.

[6] M. Grötschel, L. Lovász & A. Schrijver. Geometric Algorithms
and Combinatorial Optimization, vol. 2 of Algorithms and Combina-
torics. Springer Verlag, Berlin, 1988. ISBN 3-540-13624-X, 0-387-13624-
X (U.S.). Cited on page 124.

[7] E. Helly. Über Mengen von konvexen Körpern mit gemeinschaftlichen
Punkten. Jahresber. Deutsch. Math.-Verein. 32:175–176, 1923. Cited on
page 123.

[8] S. G. Lukac. Holes, antiholes and maximal cliques in a railway
model for a single track. ZIB Report 04-18, Zuse Institute Berlin,
2004. URL http://opus.kobv.de/zib/volltexte/2004/794/. Cited
on pages 119, 122.

http://opus.kobv.de/zib/volltexte/2005/878/
http://opus.kobv.de/zib/volltexte/2005/878/
http://opus.kobv.de/zib/volltexte/2004/794/

Paper VI

A Column Generation Ap-

proach to Line Planning in

Public Transport

R. Borndörfer, M. Grötschel & M. E. Pfetsch.
A column-generation approach to line planning in public transport.
Transportation Science 41(1):123–132, 2007.

Abstract. The line planning problem is one of the fundamental problems
in strategic planning of public and rail transport. It consists in finding lines
and corresponding frequencies in a transport network such that a given
travel demand can be satisfied. There are (at least) two objectives: the
transport company wishes to minimize operating costs, the passengers want
to minimize traveling times. We propose a new multicommodity flow model
for line planning. Its main features, in comparison to existing models, are
that the passenger paths can be freely routed and that the lines are generated
dynamically. We discuss properties of this model, investigate its complexity,
and present a column generation algorithm for its solution. Computational
results with data for the city of Potsdam, Germany, are reported.

Mathematics Subject Classification (MSC 2000). 90C06, 90B06

Keywords. Public transit, line planning, column generation, longest path
problem

1 Introduction

The strategic planning process in public and rail transport is usually divided
into consecutive steps of network design, line planning , and timetabling .

135

1 Introduction 136

Each of these steps can be supported by operations research methods, see
for instance the survey articles of Odoni, Rousseau & Wilson (1994) [21] and
of Bussieck, Kreuzer & Zimmermann (1997) [6].

This article is about the line planning problem (LPP) in public transport.
The problem is to design line routes and their frequencies in a street or
track network such that a transportation volume, given by a so-called origin-
destination matrix (OD-matrix), can be routed. The frequency of a line is
supposed to indicate a basic timetable period and controls the lines’ trans-
portation capacity. There are two competing objectives: on the one hand
to minimize the operating costs of lines and on the other hand to minimize
user discomfort. User discomfort is usually measured by the total passenger
traveling time or the number of transfers during the ride, or both.

The recent literature on the LPP mainly deals with railway networks. One
common assumption is the so-called system split , which fixes the travel-
ing paths of the passengers before the lines are known. A second common
assumption is that an optimal line plan can be chosen from a (small) pre-
computed set of lines. Third, maximization of direct travelers (that travel
without transfers) is often considered as the objective. In such an approach,
transfer waiting times do not play a role.

This article proposes a new, extended multicommodity flow model for the
LPP. The model minimizes a combination of total passenger traveling time
and operating costs. It generates line routes dynamically, handles frequen-
cies by means of continuous frequency variables, and allows passengers to
change their routes according to the computed line system; in particular,
we do not assume a system split. These properties aim at line planning sce-
narios in public transport, where we see less justification for a system split
and fewer restrictions in line design than one seems to have in railway line
planning. The goal of this article is to show that such a model is tractable
and can be used to optimize the line plan of a medium sized town.

The paper is organized as follows. Section 2 surveys the literature on the
LPP. Section 3 introduces and discusses our model. Section 4 presents a
column generation solution approach. We show that the pricing problem
for the passenger variables is a shortest path problem, while the pricing
problem for the lines turns out to be an NP-hard longest path problem.
However, if only lines of logarithmic length with respect to the number of
nodes are considered, the pricing problem can be solved in polynomial time.
In Section 5, computational results on a practical problem for the city of
Potsdam, Germany, are reported. We end with conclusions in Section 6.

2 Related Work 137

2 Related Work

This section provides a short overview of the literature for the line plan-
ning problem. Additional information can be found in the survey article of
Ceder & Israeli (1992) [8], which covers the literature up to the beginning
of the 1990ies; see also Odoni, Rousseau & Wilson (1994) [21] and Bussieck,
Kreuzer & Zimmermann (1997) [6].

The first approaches to the line planning problem had the idea to assemble
lines from short pieces in an iterative (and often interactive) process. An
early example is the so-called skeleton method described by Silman, Barzily
& Passy (1974) [26], that chooses the endpoints of a route and several in-
termediate nodes which are then joined by shortest paths with respect to
length or traveling time; for a variation see Dubois, Bel & Llibre (1979) [14].
In a similar way, Sonntag (1979) [27] and Pape, Reinecke & Reinecke (1995)
[22] constructed lines by adjoining small pieces of streets/tracks in order to
maximize the number of direct travelers.

Successive approaches precompute some set of lines in a first phase and
choose a line plan from this set in a second phase; all articles discussed in
the remainder of this section use this idea. For example, Ceder & Wilson
(1986) [9] described an enumeration method to generate lines whose length
is within a certain factor from the length of the shortest path, while Mandl
(1980) [20] proposed a local search strategy to optimize over such a set.
Ceder & Israeli (1992) [8]; Israeli & Ceder (1995) [19] introduced a quadratic
set covering approach.

An important line of developments is based on the concept of the so-called
system split . Its starting point is a classification of the links of a transporta-
tion system into levels of different speed, as common in railway systems.
Assuming that travelers are likely to change to fast levels as early and leave
them as late as possible, the passengers are distributed onto several paths
in the system, using Kirchhoff-like rules at the transit points, before any
lines are known. This fixes the passenger flow on each individual link in the
network. The system split was promoted by Bouma & Oltrogge (1994) [3],
who used it to develop a branch-and-bound based software system for the
planning and analysis of the line system of the Dutch railway network.

Recently, advanced integer programming techniques have been applied to
the line planning problem. Bussieck, Kreuzer & Zimmermann (1997) [5]
(see also Bussieck (1997) [4]) and Claessens, van Dijk & Zwaneveld (1998)
[10] both propose cut-and-branch approaches to select lines from a previ-
ously generated set of potential lines and report computations on real world
railway data. Both articles deal with homogeneous transport systems, which
can be assumed after a system-split is performed as a preprocessing step.

3 Line Planning Model 138

Bussieck, Lindner & Lübbecke (2004) [7] extend this work by incorporat-
ing nonlinear components into the model. Goossens, van Hoesel & Kroon
(2002) [17]; Goossens, van Hoesel & Kroon (2004) [18] show that practi-
cal railway problems can be solved within reasonable time and quality by
a branch-and-cut approach, even for the simultaneous optimization of sev-
eral transportation systems. Schöbel & Scholl (2005) [24]; Scholl (2005) [25]
study a Dantzig-Wolfe decomposition approach to route passengers through
an expanded line-network in order to minimize the number of transfers or
the transfer time.

3 Line Planning Model

We typeset vectors in bold face, scalars in normal face. If v ∈ RJ is a
real valued vector and I a subset of J , we denote by v(I) the sum over all
components of v indexed by I, i.e., v(I) :=

∑
i∈I vi.

For the line planning problem (LPP) we are given a number M of trans-
portation modes (bus, tram, subway, etc.), an undirected multigraph G =
(V, E) = (V, E1∪̇ . . . ∪̇EM) representing a multi-modal transportation net-
work, terminal sets T1, . . . ,TM ⊆ V of nodes for each mode where lines can
start and end, line operating costs c1 ∈ QE1

+ , . . . , cM ∈ QEM
+ on the edges,

fixed costs C1, . . . , CM ∈ Q+ for the set-up of a line for each mode, vehicle
capacities κ1, . . . , κM ∈ Q+ for each mode, and edge capacities Λ ∈ QE

+.
Denote by Gi = (V, Ei) the subgraph of G corresponding to mode i. See
Figure 1 for an example network.

A line of mode i is a path in Gi connecting two (different) terminals of Ti.
Note that paths are always simple, i.e., the repetition of nodes is not allowed;
it is possible to consider additional constraints on the formation of lines such
as a maximum length etc. Let cℓ :=

∑
e∈ℓ ci

e be the operating cost of line ℓ
of mode i, Cℓ := Ci be its fixed cost, and κℓ := κi be its vehicle capacity.
Let L be the set of all feasible lines. Furthermore, Le :=

⋃{ℓ ∈ L : e ∈ ℓ}
is the set of lines that use edge e ∈ E.

The problem formulation further involves a (not necessarily symmetric)
origin-destination matrix (OD-matrix) (dst) ∈ QV ×V

+ of travel demands,
i.e., dst is the number of passengers that want to travel from node s to
node t. Let D := {(s, t) ∈ V × V : dst > 0} be the set of all OD-pairs.

Finally, we derive a directed passenger route graph (V, A) from G = (V, E)
by replacing each edge e ∈ E with two antiparallel arcs a(e) and a(e);
conversely, let e(a) ∈ E be the undirected edge corresponding to a ∈ A.
For simplicity of notation, we denote this digraph also by G = (V, A). We
are given traveling times τa ∈ Q+ for every arc a ∈ A. For an OD-pair

3 Line Planning Model 139

Figure 1: Multi-Modal Transportation Network in Potsdam. Black: Tram,
Lightgray: Bus, Darkgray: Ferry, Large Nodes: Terminals, Small Nodes:
Stations, Grey: Rivers and Lakes.

(s, t) ∈ D, an (s, t)-passenger path is a directed path in (V, A) from s to t.
Let Pst be the set of all (s, t)-passenger paths, P :=

⋃{p ∈ Pst : (s, t) ∈ D}
the set of all passenger paths, and Pa :=

⋃{p ∈ P : a ∈ p} the set of all
passenger paths that use arc a. The traveling time of a passenger path p is
defined as τp :=

∑
a∈p τa.

With this notation, the line planning problem can be modeled using three
kinds of variables:

yp ∈ R+ the flow of passengers traveling from s to t on path p ∈ Pst,
fℓ ∈ R+ the frequency of line ℓ ∈ L,
xℓ ∈ {0, 1} a decision variable for using line ℓ ∈ L.

(LPP) min τTy + CTx + cTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ Λe ∀ e ∈ E (iii)
f ≤ Fx (iv)
xℓ ∈ {0, 1} ∀ ℓ ∈ L (v)
fℓ ≥ 0 ∀ ℓ ∈ L (vi)
yp ≥ 0 ∀ p ∈ P. (vii)

3 Line Planning Model 140

G multi-modal transport network Gi subnetwork for mode i
Ti terminals for mode i ci line operating costs for mode i
cℓ operating costs for line ℓ Ci line fixed costs for mode i
κi vehicle capacity for mode i κℓ vehicle capacity for line ℓ
L set of all lines Le lines using edge e
D set of OD-pairs dst travel demand between s and t
τa traveling time on arc a τp traveling time on path p
P set of all passenger paths Pst paths between s and t
yp passenger flow on path p xℓ whether line ℓ is used
fℓ frequency of line ℓ Λe frequency bounds for edge e

Table 1: Notation and Terminology.

The passenger flow constraints (i) and the nonnegativity constraints (vii)
model a multicommodity flow problem for the passenger flow, where the
commodities correspond to the OD-pairs (s, t) ∈ D. This part guarantees
that the demand is routed. The capacity constraints (ii) link the passenger
paths with the line paths to ensure sufficient transportation capacity on each
arc. The frequency constraints (iii) bound the total frequency of lines using
an edge. Inequalities (iv) link the frequencies with the decision variables for
the use of lines; they guarantee that the frequency of a line is 0 whenever
it is not used. Here, F is an upper bound on the frequency of a line; for
technical reasons, we assume that F ≥ Λe for all e ∈ E, see Section 4 for
more information.

Let us discuss some properties of the model before we investigate its algo-
rithmic tractability.

Objectives: The objective of the model has two competing parts, namely,
to minimize total passenger traveling time τTy and to minimize costs CTx+
cTf . Here, CTx is the fixed cost for setting up lines and cTf is the variable
cost for operating these lines at frequencies f . The model allows to adjust
the relative importance of one part over the other by an appropriate scaling
of the respective objective coefficients. Including fixed costs allows to con-
sider objectives such as minimizing the number of lines; note that LPP is a
linear program (LP) if all fixed costs are zero.

OD-Matrices: Each entry in an OD-matrix gives the number of passengers
that want to travel from one point in the network to another point within
a fixed time horizon. It is well known that such data have certain defi-
ciencies. For instance, OD-matrices depend on the geometric discretization
used, they are highly aggregated, they give only a snapshot type of view, it
is often questionable how well the entries represent the real situation, and
they should only be used when the transportation demand can be assumed
to be fixed. However, OD-matrices are at present the industry standard

3 Line Planning Model 141

for estimating transportation demand. It is already quite an art and rather
costly to assemble this data and there is currently no alternative in sight.

Time horizon: The LPP implicitly contains a time horizon via the OD-
matrix. Usually, OD-data are aggregated over one day, but it is similarly
appropriate to consider, for instance, peak traffic in rush hours. In fact,
the asymmetry of demands in rush hours was one of the reasons why we
consider directed passenger paths.

Passenger Routes: Since the traveling times τ are nonnegative, we can
assume passenger routes to be (simple) paths.

Our model does not fix passenger paths according to a system split, but
allows to freely route passengers according to the computed lines. This is
targeted at local public transport systems, where, in our opinion, people
determine their traveling paths according to the line system and not only
according to the network topology. Except for the work of Schöbel & Scholl
(2005) [24]; Scholl (2005) [25], which has been done independently of ours,
such routings have not been considered in the context of line planning before.

Our model computes a set of passenger paths that minimize the total trav-
eling times τTy in the sense of a system optimum. However, in our case,
with a linear objective function and linear capacities, it can be shown that
the resulting system optimum is also a user equilibrium, namely, the so-
called Beckmann user equilibrium, see Correa, Schulz & Stier Moses (2004)
[11]. We do not address the question why passengers should choose this
equilibrium out of several possible equilibria that can arise in routing with
capacities.

The routing in our model allows for passengers paths of arbitrary travel
times, which may force some passengers to long detours. We remark that
this problem could be handled by introducing appropriate bounds on the
travel times of paths. This would, however, turn the pricing problem for the
passenger paths into an NP-hard resource constrained shortest path prob-
lem; see Section 4.1. Note also that such an approach would measure travel
times with respect to shortest paths in the underlying network (indepen-
dent of any line system). Ideally, however, one would like to compare to the
shortest paths using only arcs covered by the computed line system.

Line Routes: The literature generally takes line routes as (simple) bidi-
rected paths, and we do the same in this article. In fact, a restriction forcing
some sort of simplicity is necessary in order to prevent repetitions around
cycles. As a slight generalization of the concept of simplicity, one could
investigate the case where one assumes that every line route is bounded in
length or “almost” simple, i.e., no node is repeated within a given interval.

3 Line Planning Model 142

It is easy to incorporate additional constraints on the formation of individual
lines and constraints on sets of lines, e.g., that the length of a line should
not deviate too much from a shortest path between its endpoints or bounds
on the number of lines using an edge. Such constraints are important in
practice. In this article we consider bounds on the number of edges in a
line. Let us give two arguments why this case is practically relevant.

The first argument is based on an idea of a transportation network as a
planar graph, probably of high connectivity. Suppose this network occupies
a square, in which n nodes are evenly distributed. A typical line starts in
the outer regions of the network, passes through the center, and ends in
another outer region; we would expect such a line to be of length O(

√
n).

Real networks, however, are not only (more or less) planar, but often resem-
ble trees. But in a balanced and preprocessed tree, where each node degree
is at least 3, the length of a path between any two nodes is only O(log n).

Transfers: Transfers between lines are currently ignored in our model,
because constraints (iii) only control the total capacity on edges and not the
assignment of passengers to lines. The problem are not transfers between
different modes, which can be handled by linking the mode networks Gi

with appropriate transfer edges, weighted by estimated transfer times. A
similar trick could in principle be used for transfers between lines of the
same mode, using an appropriate expansion of the graph. However, this
greatly increases the complexity of the model, and it introduces degeneracy;
it is unclear whether such a model remains tractable for practical data.

Frequencies: Frequencies indicate the (approximate) number of times ve-
hicles need to be employed in order to serve the demand over the time
horizon. In a real world line plan, frequencies often have to produce a
regular timetable and hence are not allowed to take arbitrary fractional val-
ues. Our model, however, treats frequencies as continuous values. This is a
simplification. We have introduced fixed costs in order to reduce the num-
ber of lines and decrease the likelihood of low frequencies. In addition, we
could have forced our model to accept only a finite number of frequencies by
enumerating lines with fixed frequencies in a similar way as Claessens, van
Dijk & Zwaneveld (1998) [10] and Goossens, van Hoesel & Kroon (2002)
[17]; Goossens, van Hoesel & Kroon (2004) [18]; but the resulting model
would be much harder to solve. However, as the frequencies are mainly
used to adjust line capacities, we do (at present) not care so much about
“nice” frequencies and view the fractional values as approximations or clues
to “sensible” values.

4 Column Generation 143

4 Column Generation

The LP relaxation of (LPP) can be simplified by eliminating the x-variables.
In fact, since (LPP) minimizes over nonnegative costs, one can assume
w.l.o.g. that inequalities (iv) are satisfied with equality, i.e., there is an
optimal LP solution such that Fxℓ = fℓ ⇔ xℓ = fℓ/F for all lines ℓ. Sub-
stituting for x, we observe that the inequalities fℓ ≤ F remaining after the
elimination are dominated by inequalities (iii) and hence can be omitted
(recall that we assumed F ≥ Λe). Setting γℓ = Cℓ/F + cℓ, we arrive at the
following equivalent, but simpler, linear program:

(LP) min τTy + γTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

ℓ:e(a)∈ℓ

κℓfℓ ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ Λe ∀ e ∈ E (iii)
fℓ ≥ 0 ∀ ℓ ∈ L (iv)
yp ≥ 0 ∀ p ∈ P. (v)

Note that (LP) contains only a polynomial number of inequalities (apart
from the nonnegativity constraints (iv) and (v)).

We aim at solving (LP) with a column generation approach (see Barnhart
et al. (1998) [2] for an introduction) and therefore investigate the corre-
sponding pricing problems. These pricing problems are studied in terms of
the dual of (LP). Denote the variables of the dual as follows: π = (πst) ∈ RD

(flow constraints (i)), µ = (µa) ∈ RA (capacity constraints (ii)), and η ∈ RE

(frequency constraints (iii)). The dual of (LP) is:

max dTπ − ΛTη

πst − µ(p) ≤ τp ∀ p ∈ Pst, (s, t) ∈ D
κℓ µ(ℓ) − η(ℓ) ≤ γℓ ∀ ℓ ∈ L

µ, η ≥ 0,

where

µ(ℓ) =
∑

e∈ℓ

(
µa(e) + µa(e)

)
.

It will turn out that the pricing problem for the line variables fℓ is a longest
path problem; the pricing problem for the passenger variables yp, however,
is a shortest path problem.

4 Column Generation 144

4.1 Pricing of the Passenger Variables

The reduced cost τp for variable yp with p ∈ Pst, (s, t) ∈ D, is

τp = τp − πst + µ(p) = τp − πst +
∑

a∈p

µa = −πst +
∑

a∈p

(µa + τa).

The pricing problem for the y-variables is to find a path p such that τp < 0 or
to conclude that no such path exists. This can easily be done in polynomial
time as follows. For all (s, t) ∈ D, we search for a shortest (s, t)-path p with
respect to the nonnegative weights (µa+τa) on the arcs; we can, for instance,
use Dijkstra’s algorithm. If the length of this path p is less than πst, then yp

is a candidate variable to be added to the LP, otherwise we proved that no
such path exists (for the pair (s, t)). Note that each passenger path can
assumed to be simple: just remove cycles of length 0 – or trust Dijkstra’s
algorithm, which produces only simple paths.

4.2 Pricing of the Line Variables

The pricing problem for line variables fℓ is more complicated. The reduced
cost γℓ for a variable fℓ is

γℓ = γℓ − κℓ µ(ℓ) + η(ℓ) = γℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)
.

The corresponding pricing problem consists in finding a (simple) path ℓ of
mode i such that

0 > γℓ = γℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)

= Cℓ/F + cℓ −
∑

e∈ℓ

(
κℓ (µa(e) + µa(e)) − ηe

)

= Ci/F +
∑

e∈ℓ ci
e −

∑
e∈ℓ

(
κi (µa(e) + µa(e)) − ηe

)

= Ci/F +
∑

e∈ℓ

(
ci
e − κi (µa(e) + µa(e)) + ηe

)

⇔ ∑
e∈ℓ(κi (µa(e) + µa(e)) − ηe − ci

e) > Ci/F.

This problem turns out to be a maximum weighted path problem, since the
weights (κi (µa(e) + µa(e)) − ηe − ci

e) are not restricted in sign. Hence, the
pricing problem for the line variables is NP-hard Garey & Johnson (1979)
[16]. This shows that solving the LP relaxation (LP) is NP-hard as well. In
fact, we can prove the stronger result that the line planning problem itself is
NP-hard, even with fixed costs 0, independent of the model (Proposition 4.1
implies that (LP) is NP-hard, because (LPP) is equivalent to (LP) for fixed
costs 0).

Propositiondd 4.1. The line planning problem LPP is NP-hard, even with
fixed costs 0.

4 Column Generation 145

Proof. We reduce the Hamiltonian path problem, which is strongly NP-
complete Garey & Johnson (1979) [16], to the LPP with fixed costs 0. Let
(H, s, t) be an instance of the Hamiltonian path problem, i.e., H = (V, E)
is a graph and s and t are two distinct nodes of H.

u v

u1 v1

u2 v2

u3 v3

Figure 2: The Node Splitting Gadget in the Proof of Proposition 4.1

For the reduction, we are going to derive an appropriate instance of LPP.
The underlying network is formed by a graph H ′ = (V ′, E′), which arises
from H by splitting each node v into three copies v1, v2, and v3. For each
node v ∈ V , we add edges {v1, v2} and {v2, v3} to E′ and for each edge {u, v}
the edges {u1, v3} and {u3, v1}, see Figure 2. Our instance of LPP contains
just a single mode with only two terminals s1 and t3 such that every line
must start at s1 and end at t3. The demands are dv1v2 = 1 (v ∈ V) and 0
otherwise, and the capacity of every line is 1. For every e ∈ E, we set Λe

to some high value (e.g., to |V |). The cost of all edges is set to 0, except
for the edges incident to s1, for which the costs are set to 1. The traveling
times are set to 0 everywhere. It follows that the value of a solution to LPP
is the sum of the frequencies of all lines.

Assume that p = (s, v1, . . . , vk, t) (for v1, . . . , vk ∈ V) is an (s, t)-Hamil-
tonian path in H. Then p′ = (s1, s2, s3, v

1
1, v

1
2, v

1
3, . . . , v

k
1 , vk

2 , vk
3 , t1, t2, t3) is

an (s1, t3)-Hamiltonian path in H ′, which gives rise to an optimal solution
of LPP. Namely, we can take p′ as the route of a single line with frequency 1
and route the demands dv1v2 = 1 for every v ∈ V on this line directly from v1

to v2. As the frequency of p′ is 1, the objective value of this solution is also 1.
On the other hand, every solution to LPP must have value at least one, as
every line has to pass an edge incident to s1 and the sum of the frequencies of
lines visiting an arbitrary edge of type {v1, v2}, for v ∈ V , is at least 1. This
proves that LPP has a solution of value 1, if (H, s, t) contains a Hamiltonian
path.

For the converse, assume that there exists a solution to LPP of value 1, for
which we ignore lines with frequency 0. We know that every edge {v1, v2}
(v ∈ V) is covered by at least one line of the solution. If every line contains
all edges {v1, v2} (v ∈ V), each such line gives rise to a Hamiltonian path
(since the line paths are simple) and we are done. Otherwise, there must
be an edge e = {v1, v2} (v ∈ V) which is not covered by all of the lines.

4 Column Generation 146

Since the lines have to provide enough capacity, the sum of the frequencies
of the lines covering e is at least 1. However, the edges incident to s1 are
covered by the lines covering edge e plus at least one more line of nonzero
frequency. Hence, the total sum of all frequencies is larger than one, which
is a contradiction to the assumption that the solution has value 1.

This shows that there exists an (s, t)-Hamiltonian path in H if and only if
an optimal solution of LPP with respect to H ′ has value 1.

4.3 Pricing of Length Restricted Lines

Let us now consider the pricing problem for line planning problems with
bounds on the lengths of the lines, i.e., the number of edges of a line. Con-
sider for this purpose the graph G = (V, E) (for simplicity of notation with
only one mode) with arbitrary edge weights we ∈ Q for all e ∈ E, and a
source node s and a sink node t. We let n = |V | and m = |E|. In this
setting the line pricing problem is to find a maximum weight path from s
to t with respect to w. We first show that this problem is NP-hard for the
case where the length of a line is bounded by O(

√
n).

Propositiondd 4.2. It is NP-hard to compute a maximum weight path
from s to t of length at most k, if k ∈ O

(
n1/N

)
for any fixed N ∈ N \ {0}.

Proof. Let (H, s, t) be an instance of the Hamiltonian path problem, where
H is a graph with n nodes. We add (nN − n) isolated nodes to H in order
to obtain a graph H ′ with nN nodes; note that nN is polynomial in n for
fixed N . Let the weights on the edges be 1. If we would be able to find a
maximum weight path from s to t with at most k = (nN)1/N = n edges, we
could solve the Hamiltonian path problem for H in polynomial time.

We now provide a result which shows that the maximum weighted path
problem can be solved in polynomial time in the case when the lengths of
the paths are at most O(log n). Our method is a direct generalization of
work by Alon, Yuster & Zwick (1995) [1] on the unweighted case; it works
both for directed and undirected graphs.

Alon et al. consider the problem to find simple paths of fixed length k−1 in
a graph. Their basic idea is to randomly color the nodes of the graph with k
colors and only allow paths that use distinct colors for each node; such paths
are called colorful with respect to the coloring and are necessarily simple.
Choosing a coloring c : V → {1, . . . , k} uniformly at random, every path
using at most k− 1 edges has a chance of at least k!/kk > e−k to be colorful
with respect to c. If we repeat this process α · ek times with α > 0, the
probability that a given path p with at most k − 1 edges is never colorful is

4 Column Generation 147

less than

(
1 − e−k

)α·ek

< e−α.

Hence, the probability that p is colorful at least once is at least 1 − e−α.
The search for such colorful paths can be performed using dynamic pro-
gramming, which leads to an algorithm running in m · 2O(k) expected time.
This algorithm is then derandomized.

These arguments yield the following result for the weighted undirected case,
which is easily seen to be valid for directed graphs as well.

Propositiondd 4.3. Let G = (V, E) be a graph with m edges, k be a fixed
number, and c : V → {1, . . . , k} be a coloring of the nodes of G. Let s be a
node in G and (we) be edge weights. Then a colorful maximum weight path
with respect to w using at most k − 1 edges from s to every other node can
be found in time O

(
m · k · 2k

)
, if such paths exist.

Proof. We find the maximum weight of such paths by dynamic program-
ming. Let v ∈ V , i ∈ {1, . . . , k}, and C ⊆ {1, . . . , k} with |C| ≤ i. Define
w(v, C, i) to be the weight of the maximum weight colorful path with respect
to w from s to v using at most i−1 edges and using the colors in C. Hence,
for each iteration i we store the set of colors of all maximum weight colorful
paths from s to v using at most i − 1 edges. Note that we do not store
the set of paths, only their colors. Hence, at each node we store at most 2i

entries. The entries of the table are initialized with minus infinity and we
set w(s, {c(s)}, 1) = 0.

At iteration i ≥ 1, let (u, C, i) be an entry in the dynamic programming
table. If for some edge e = {u, v} ∈ E we have c(v) /∈ C, let C ′ = C ∪{c(v)}
and set

w(v, C ′, i + 1) = max
{
w(u, C, i) + we, w(v, C ′, i + 1), w(v, C ′, i)

}
.

The term w(v, C ′, i + 1) accounts for the cases where we already found a
path to v (using at most i edges) with higher weight, whereas w(v, C ′, i)
makes sure that paths using at most i − 1 edges to v are accounted for.
After iteration i = k, we take the maximum of all entries corresponding to
each node v, which is the wanted result. The number of updating steps is
bounded by

k∑

i=0

i · 2i · m = m ·
(
2 + 2k+1(k − 1)

)
= O

(
m · k · 2k

)
.

The sum on the left side of this equation arises as follows. In iteration i, m
edges are considered; each edge {u, v} starts at node u, to which at most 2i

4 Column Generation 148

labels w(u, C, i) are associated, one for each possible set C; for each such set,
checking whether c(v) ∈ C takes time O(i). The summation formula itself
can be proved by induction, see also Petkovsek, Wilf & Zeilberger (1996)
[23], Exc. 5.7.1, p. 95. The algorithm can be easily modified to actually
find the maximum weight paths.

We can use Proposition 4.3 to produce an algorithm which finds a maximum
weight path in α ek O

(
mk2k

)
= αO

(
m · 2O(k)

)
time with high probability.

Then a derandomization can be performed by a clever enumeration of col-
orings such that each path with at most k − 1 edges is colorful with respect
to at least one such coloring. Alon et al. combine several techniques to show
that 2O(k) · log n colorings suffice. Applying this result we obtain:

Theoremdd 4.4. Let G = (V, E) be a graph with n nodes and m edges
and k be a fixed number. Let s be a node in G and (we) be edge weights.
Then a maximum weight path with respect to w using at most k − 1 edges
from s to every other node can be found in time O

(
m · 2O(k) · log n

)
, if such

paths exist.

If k ∈ O(log n), this yields a polynomial time algorithm. Hence, by the
discussion above, we get the following result.

Corollarydd 4.5. The LP relaxation of (LPP) can be solved in polynomial
time, if the lengths of the lines are most k, with k ∈ O(log n).

4.4 Algorithm

We used the results of the previous subsections to implement a column gen-
eration algorithm for the solution of the model (LPP) with length restricted
lines. As an overall objective function, we used the weighted sum

λ (CTx + cTf) + (1 − λ) τTy,

where λ ∈ [0, 1] is a parameter weighing the two parts.

The algorithm solves the LP relaxation in a first phase and constructs a
feasible line plan using a greedy type heuristic in a second phase.

To solve the LP relaxation, our algorithm iteratively prices out passenger
and line path variables until no improving variables are found. We solve
the master LP with the barrier algorithm and, towards the end of the pro-
cess, with the primal simplex algorithm of CPLEX 9.1. We check for new
passenger path variables for all OD-pairs using Dijkstra’s algorithm, see Sec-
tion 4.1, until no more improving passenger paths are found. If we don’t find
an improving passenger path, we price out line variables for all line modes
and all feasible terminal pairs. We have implemented two different methods

5 Computational Results 149

for the pricing of (simple) line paths, namely, we either use an enumeration
or the randomized coloring algorithm of Section 4.3 (we do not derandom-
ize the algorithm). If an improving passenger or line path has been found,
another iteration is started; otherwise, the LP is solved.

In the second phase, our algorithm tries to construct a good integer solution
from a line pool consisting of the lines having nonzero frequencies in the
optimal LP solution. The heuristic is motivated by the observation that
the solution of the LP relaxation of a line planning problem often contains
lines with very low frequencies. We try to remove these lines by a sim-
ple greedy method based on a strong branching selection criterion. In the
beginning the x-variables of all lines in the pool are set to 1. In each it-
eration, we tentatively remove a line (set its x-variable to 0), compute the
objective λ cTf + (1 − λ) τTy of the LP obtained by fixing the line vari-
ables as described, pricing passenger variables as needed, and add the fixed
costs CTx of all lines that are fixed to 1. After probing candidate lines with
the smallest f -values in this way, we permanently delete the line whose re-
moval resulted in the smallest objective. We repeat this elimination as long
as the remaining set of lines is still feasible, i.e., all demands can be routed,
and the objective function decreases.

5 Computational Results

In this section we report on computational experience with line planning
problems for the city of Potsdam, Germany. The experiments originate
from a joint project with the two local public transport companies ViP
Verkehrsgesellschaft GmbH and Havelbus Verkehrsgesellschaft mbH, the city
of Potsdam, and the software company IVU Traffic Technologies AG.

Potsdam is a medium sized town near Berlin; it has about 150,000 inhabi-
tants. Its public transportation system uses city buses and trams (operated
by ViP) and regional buses (operated by Havelbus). Additionally, there
are regional trains connecting Potsdam to its surroundings (operated by
Deutsche Bahn AG) and a city railroad (operated by S-Bahn Berlin) which
provides connections to Berlin. As regional trains and the city railroad are
not operated by ViP and Havelbus, the associated lines routes are assumed
to be fixed.

5.1 Data

Our data consists of a multi-modal traffic network of Potsdam and an as-
sociated OD-matrix, which had been used by IVU in a consulting project
for planning the Potsdam network (Nahverkehrsplan). The data represents

5 Computational Results 150

the line system of Potsdam of 1998. It has 27 bus lines and 4 tram lines.
Including line variants, the total number of lines was 80. The network has
951 nodes, including 111 OD-nodes, and 1321 edges. The maximum length
of a line is 47 edges.

The network was preprocessed as follows. We removed isolated nodes. Then
we iteratively removed “leaves” in the graph, i.e., nodes which have only one
neighbor, and iteratively contracted nodes with two neighbors. The prepro-
cessed graph has 410 nodes, 106 of which were OD-nodes, and 891 edges.
We remark that although such preprocessing steps are conceptually easy,
the data handling can be quite intricate in practice; for instance, our data
included information on possible turnings of a line at road/rail crossings,
which must be updated in the course of the preprocessing.

The OD-matrix was also modified. Nodes with zero traffic were removed.
The original time horizon was one day, but we wanted to construct a line plan
for the peak hour. We therefore scaled the matrix to 40% in an (admittedly
rough) attempt to simulate afternoon traffic (3 p.m. to 6 p.m.). Note that the
resulting matrix is still quite symmetric (the maximum difference between
each of the two directions was 25) whereas a real afternoon OD-matrix would
not be symmetric. The scaled OD-matrix had 4685 nonzeros and the total
scaled travel demand was 42796.

All traveling times are measured in seconds and we always restricted the
maximum length of a line to 55 edges. Since no data was available on line
costs, we decided on Cℓ = 10000 (fixed costs) for each line ℓ and ci

e = 100
(operating costs) for each edge e and mode i. Hence, we do not distinguish
between costs of different modes (an unrealistic assumption in practice).

5.2 Experiments

Table 2 reports the results of several computational experiments with the
data and implementation that we have described. All experiments were
performed on a 3.4 GHz Pentium 4 machine running Linux. In the table,
the total traveling time is τTy and total line cost is γTf , the scaled values are
(1−λ) τTy and λ γTf , respectively; all four values refer to the LP relaxation
(LP). The LP objective value is λ γTf + (1 − λ) τTy, the integer objective
value refers to λ (CTx + cTf) + (1 − λ) τTy. The last line in each block of
results gives the number of active (i.e., nonzero) line and passenger variables,
and the number of passenger transfers (first number) that were needed as
well as the number of transfering passengers (second number). Note that we
can compute transfers from passenger routes as an afterthought, although
our optimization model is currently insensitive to them.

Let us point out explicitly that we do not claim that our results are already

5 Computational Results 151

Optimized LP solution – enumeration:
total traveling time: 108,360,036.33 [scaled: 238,392.08]
total line cost: 233,776.86 [scaled: 233,262.55]
LP objective value: 471,654.63
active line/pass. var.: 60/4879 transfers: 8777/64607

Optimized LP solution – randomized coloring – 5 trials:
total traveling time: 108,396,741.75 [scaled: 238,472.83]
total line cost: 239,099.73 [scaled: 238,573.71]
LP objective value: 477,046.54
active line/pass. var.: 61/4880 transfers: 9143/66546

Optimized LP solution – randomized coloring – 15 trials:
total traveling time: 108,491,234.25 [scaled: 238,680.72]
total line cost: 237,422.50 [scaled: 236,900.17]
LP objective value: 475,580.88
active line/pass. var.: 62/4885 transfers: 9387/68049

Optimized integer solution – greedy heuristic:
total traveling time: 112,581,291.50 [scaled: 247,678.84]
total line cost: 287,060.90 [scaled: 286,429.37]
integer objective value: 818,491.68
active line/pass. var.: 30/4767 transfers: 8638/60539

Reference LP solution:
total traveling time: 105,269,846.00 [scaled: 231,593.66]
total line cost: 501,376.24 [scaled: 500,273.21]
LP objective value: 731,866.87
active line/pass. var.: 61/4857 transfers: 8618/63310

Reference integer solution – greedy heuristic:
total traveling time: 106,952,869.00 [scaled: 235,296.31]
total line cost: 562,964.54 [scaled: 561,726.02]
integer objective value: 1,213,221.49
active line/pass. var.: 44/4814 transfers: 9509/70525

Table 2: Experimental Line Planning Results for λ = 0.9978.

practically significant; we only want to show that there is a potential to
apply our methods to practical data. For example, our costs are not realistic.
Therefore the frequencies that we compute cannot be compared to the ones
used in practice. To allow some adaptation to our cost model, we let the
frequencies of all lines be variable, in particular, the frequencies of the city
railroad and regional train lines.

In our first experiment, we solved the LP relaxation (LP) of the Potsdam
problem, pricing lines either by enumeration or by the randomized coloring
method of Section 4.3, see top of Table 2. We set λ = 0.9978, which roughly
balances the two parts of the objective function. The resulting LP had 5761
rows. Using enumeration, we obtained an optimal solution after 451 seconds
and 283 iterations (i.e., solutions of the master LP), of which 15 were used

5 Computational Results 152

to price lines. The pricing problems needed a total time of 183 seconds of
which most was used for the pricing of line paths. Hence, more than half of
the time is spent for solving the master LPs.

We repeated this experiment using the randomized coloring algorithm with
5 and 15 trials for line pricing. With 5 trials, we needed 397 master LPs
and 394 seconds in total; line pricing used only 99 seconds. One can see,
however, that the objective is about 1% higher than for the enumeration
variant. Using 15 trials resulted in 269 master LPs and 473 seconds in
total. Line pricing now uses 265 seconds and the difference in the objective
function relative to the enumeration variant is reduced to 0.8%. Hence, one
can achieve a good approximation of the optimal value using randomized
line pricing, although approaching the optimum solution comes at the cost
of larger computation times.

We also investigated the passenger routing of our LP solution for the enumer-
ation variant in more detail. To connect the 4685 OD-pairs only 4879 paths
are needed, i.e., most OD-pairs are connected by a unique path. The total
traveling time is 108,360,036.33 seconds, see Table 2. For comparison, when
we ignore capacities and route all passengers between every OD-pair on the
fastest path in the final line system, the total traveling time is 95,391,460
seconds. This is a relative difference of 12%. This seems to be an acceptable
deviation.

In our second experiment, we computed two integer solutions for (LPP)
associated with the parameter λ = 0.9978, as above. The first solution
is obtained by rounding all nonzero x-variables in the solution of the LP
relaxation, computed with the enumeration variant, to 1. The (integer)
objective of this rounded solution is 1,058,079.69, which leads to a gap of 55%
compared to the LP relaxation value of 471,654.63. The second solution is
obtained by the greedy algorithm described in Section 4.4, starting from the
same LP solution (only lines for city buses, trams, and regional buses were
removed). It has 30 lines (17 bus lines and 2 tram lines), down from 60 in the
first solution, see Table 2; it took 1368 seconds to compute. The final (scaled)
operating costs are 286,429.37, while the final fixed costs are λ · 300, 000 =
299, 340. The integer objective of 818,491.68 has a gap of 42% with respect to
the LP relaxation value of 471,654.63. Note that the results heavily depend
on the cost structure: decreasing the fixed costs automatically reduces the
gap. In our context, with high fixed costs, emphasis is put on reducing the
number of lines (recall that the costs were artificial). The result obtained
seems to be quite good, given that the original line system contained 27 bus
lines and 4 tram lines; it seems unlikely that one can reduce the number much
further. Furthermore, the lower bound of the LP relaxations is typically very
weak for such fixed cost problems. Still, more research is needed to provide
better lower bounds and primal solutions.

5 Computational Results 153

1.2e+08

1.15e+08

1.1e+08

1.05e+08

1e+08

0.95e+08

0.9e+08
0 1.0

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

line cost
traveling time

Figure 3: Total Traveling Time (solid, left axis) and Total Line Cost (dashed,
right axis) in Dependence on λ (x-axis in logscale).

We compare the LP and integer solutions to “reference solutions” shown in
the lower part of Table 2. The reference LP solution is obtained by fixing
the paths of the original lines of Potsdam and then solving the resulting LP
relaxation without generating new lines, but allowing the frequencies of the
lines to change. The reference integer solution is obtained by applying the
greedy heuristic to the reference LP solution. The results show that allowing
the generation of new line paths reduces line costs in both cases to roughly
50% and the total objective to roughly 2/3 of the original values, while the
total traveling time increases by a few percent. Hence, in these experiments
the greedy algorithm has not changed the relative improvement obtained
from optimizing lines.

Our third experiment investigates the influence of the parameter λ on the
solution. We computed the solutions to the LP relaxation for 21 different
values of λi, taking λi = 1 −

(
1 − i/20

)4
, for i = 0, . . . , 20. This collects

increasingly more samples near λ = 1, a region where the total traveling
time and the total line cost are about equal.

The results are plotted in Figure 3. This figure shows the total traveling
time and the total line cost depending on λ. The extreme cases are as
expected: For λ = 0, the line costs do not contribute to the objective and are
therefore high, while the total traveling time is low. For λ = 1, only the total
line cost contributes to the objective and is therefore minimized as much as
possible at the cost of increasing the total traveling time. With increasing λ,
the total line cost monotonically decreases, while the total traveling time
increases. Note that each computed pair of total traveling time and line
cost constitutes a Pareto optimal point, i.e., is not dominated by any other
attainable combination. Conversely, any Pareto optimal solution of the LP

6 Conclusions 154

relaxation can be obtained as the solution for some λ ∈ [0, 1], see, e.g.,
Ehrgott (2005) [15].

6 Conclusions

We proposed a new model for line planning in public transport that allows
to generate lines dynamically and to freely route passengers according to
the computed lines. The model allows to deal with manifold requirements
from practice. We showed that line planning problems for a medium sized
town can be solved within reasonable quality with integer programming
techniques. Our computational results indicate significant optimization po-
tentials. Our results on the polynomial time solvability of the LP relaxation
for the case of logarithmic line lengths raises our hope that the model is
suited to deal with larger problems as well.

Acknowledgment. We thank Volker Kaibel for pointing out Proposition 4.2.

References

[1] N. Alon, R. Yuster & U. Zwick. Color-coding. J. Assoc. Comput.
Mach. 42(4):844–856, 1995. Cited on page 146.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savels-

bergh & P. H. Vance. Branch-and-price: Column generation for
solving huge integer programs. Oper. Res. 46(3):316–329, 1998. Cited
on page 143.

[3] A. Bouma & C. Oltrogge. Linienplanung und Simulation für
öffentliche Verkehrswege in Praxis und Theorie. Eisenbahntechnische
Rundschau 43(6):369–378, 1994. Cited on page 137.

[4] M. R. Bussieck. Optimal Lines in Public Rail Transport. PhD thesis,
Technische Universität Braunschweig, 1997. Cited on page 137.

[5] M. R. Bussieck, P. Kreuzer & U. T. Zimmermann. Optimal lines
for railway systems. European J. Oper. Res. 96(1):54–63, 1997. Cited
on page 137.

[6] M. R. Bussieck, P. Kreuzer & U. T. Zimmermann. Discrete
optimization in public rail transport. Math. Programming 1–3(79B):
415–444, 1997. Cited on pages 136, 137.

[7] M. R. Bussieck, T. Lindner & M. E. Lübbecke. A fast algorithm
for near optimal line plans. Math. Methods Oper. Res. 59(2):205–220,
2004. Cited on page 138.

References 155

[8] A. Ceder & Y. Israeli. Scheduling considerations in designing transit
routes at the network level. In Desrochers & Rousseau (1992) [13], pp.
113–136. ISBN 3-540-55634-6. Cited on page 137.

[9] A. Ceder & N. H. M. Wilson. Bus network design. Transportation
Res. Part B 20(4):331–344, 1986. Cited on page 137.

[10] M. T. Claessens, N. M. van Dijk & P. J. Zwaneveld. Cost
optimal allocation of rail passanger lines. European J. Oper. Res. 110
(3):474–489, 1998. Cited on pages 137, 142.

[11] J. R. Correa, A. S. Schulz & N. E. Stier Moses. Selfish routing
in capacitated networks. Math. Oper. Res. 29:961–976, 2004. Cited on
page 141.

[12] J. R. Daduna, I. Branco & J. M. P. Paixão, (Eds.). Computer-
Aided Transit Scheduling, vol. 430 of Lecture Notes in Economics and
Mathematical Systems, 1995. Springer Verlag, Berlin. ISBN 3-540-
60193-7. Cited on page 155.

[13] M. Desrochers & J.-M. Rousseau, (Eds.). Computer-Aided Transit
Scheduling, vol. 386 of Lecture Notes in Economics and Mathematical
Systems, 1992. Springer Verlag, Berlin. ISBN 3-540-55634-6. Cited on
page 154.

[14] D. Dubois, G. Bel & M. Llibre. A set of methods in transportation
network synthesis and analysis. J. Oper. Res. Soc. 30(9):797–808, 1979.
Cited on page 137.

[15] M. Ehrgott. Multicriteria Optimization. Springer Verlag, Berlin,
Berlin, 2nd edition, 2005. Cited on page 154.

[16] M. Garey & D. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979. Cited on pages 144, 145.

[17] J.-W. H. M. Goossens, S. van Hoesel & L. G. Kroon. On solving
multi-type line planning problems. METEOR Research Memorandum
RM/02/009, Universiteit Maastricht, 2002. Cited on pages 138, 142.

[18] J.-W. H. M. Goossens, S. van Hoesel & L. G. Kroon. A branch-
and-cut approach for solving railway line-planning problems. Trans-
portation Sci. 38(3):379–393, 2004. Cited on pages 138, 142.

[19] Y. Israeli & A. Ceder. Transit route design using scheduling and
multiobjective programming techniques. In Daduna, Branco & Paixão
(1995) [12], pp. 56–75. ISBN 3-540-60193-7. Cited on page 137.

[20] C. E. Mandl. Evaluation and optimization of urban public transporta-
tion networks. European J. Oper. Res. 5:396–404, 1980. Cited on page
137.

[21] A. R. Odoni, J.-M. Rousseau & N. H. M. Wilson. Models in urban
and air transportation. In S. M. Pollock et al., (Ed.), Handbooks
in Operations Research and Management Science, vol. 6, chap. 5, pp.

References 156

107–150. Elsevier Science B.V., Amsterdam, 1994. Cited on pages 136,
137.

[22] U. Pape, Y.-S. Reinecke & E. Reinecke. Line network planning.
In Daduna, Branco & Paixão (1995) [12], pp. 1–7. ISBN 3-540-60193-7.
Cited on page 137.

[23] M. Petkovsek, H. S. Wilf & D. Zeilberger. A = B. A. K. Peters,
Wellesley, Massachusetts, 1996. Cited on page 148.

[24] A. Schöbel & S. Scholl. Line planning with minimal traveling time.
In L. G. Kroon & R. H. Möhring, (Eds.), 5th Workshop on Algorith-
mic Methods and Models for Optimization of Railways. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005. Cited on pages 138, 141.

[25] S. Scholl. Customer-Oriented Line Planning. PhD thesis, Universität
Göttingen, 2005. Cited on pages 138, 141.

[26] L. A. Silman, Z. Barzily & U. Passy. Planning the route system
for urban buses. Comput. Oper. Res. 1:201–211, 1974. Cited on page
137.

[27] H. Sonntag. Ein heuristisches Verfahren zum Entwurf nachfrageori-
entierter Linienführung im öffentlichen Personennahverkehr. Z. Oper.
Res. 23:B15–B31, 1979. Cited on page 137.

Index

Symbols

{0, 1
2}-Chvátal-Gomory cut . 6, 15, 20

separation . 6

1 all ones vector . 3

2-chord in a cycle . 3

2-chorded cycle in a digraph . 17

2-chorded cycle inequality

for the clique partitioning problem. 17

separation . 7, 19

A(G) edge-node incidence matrix of a graph G . 3, 35

C set of cliques . 120

Dn complete digraph on n nodes . 7

G

conflict graph. 9

intersection graph . 39

G(A) (column) intersection graph of a matrix A . 51

G(AT) (row) intersection graph of a matrix A . 51

Gc(A, β) conflict graph for a matrix decomposition problem. 55

H block conflict graph. 120

JD,i bundle (iteration i) . 98

JV,i bundle (iteration i) . 98

Kn complete graph on n nodes . 16

P set of train routes . 118

P (A, β, κ) matrix decomposition polytope . 53

Pz(A, β, κ) aggregated block decomposition polytope 58

Q set of configurations . 122

PASP acyclic subdigraph polytope. 8

PCPP combinatorial packing polytope . 33

P I
IPi individual polytope . 33

PISP independence system polytope . 5

PLOP linear ordering polytope . 8

P=
I extended set packing polytope . 39

PI stable set polytope . see set packing polytope

PI(G) stable set polytope. see set packing polytopê

P SSP anti-dominant of a set packing polytope . 3

PTPP transitive packing polytope . 6

P I
XPP extended set packing polytope . 39

β LP-bound . 126

ǫ-subgradient . 102

f̂D,i approximate duty scheduling function (iteration i) 98

157

Index 158

f̂V,i approximate vehicle scheduling function (iteration i) 98

f̂i approximate combined function (iteration i) . 98

κ vehicle capacity . 137

P passenger paths . 137

supp(x) support of a vector x . 3

RD tasks that correspond to deadhead trips . 94

RT tasks that correspond to timetabled trips . 94

τ traveling time . 137

x̃i primal approximation (iteration i) . 101

ỹi dual approximation (iteration i) . 101

f I combined function . 97, 104

f I
D duty scheduling function . 97, 103

fV vehicle scheduling function . 97, 102

gI combined subgradient. 98

gI
D duty scheduling subgradient . 98

gV vehicle scheduling subgradient . 98

k-multicut problem . 16

x(S) sum of components of vector x indexed by set S 93

xS subvector of x indexed by set S . 93

(ACP) arc configuration problem . 124

(APP′) weak arc packing problem . 121

(APP) arc packing problem. 121

(ASP) acyclic subdigraph problem . 8

(BIP-2-COL) bipartite 2-coloring problem . 36

(CPP) clique partitioning problem . 16

(CPP) combinatorial packing problem . 33

(DQPi) dual quadratic problem . 100

(DSP) duty scheduling problem. 94

(GAP) generalized assignment problem . 34

(IPi) individual problem . 33

(ISPI) restricted integrated vehicle and duty scheduling problem 97

(ISP) integrated vehicle and duty scheduling problem 95

(ISP) independence system problem . 5

(k-COL) k-coloring problem . 35

(LOP) linear ordering problem. 8

(LPP) line planning problem . 138

(MCFP) multicommodity flow problem with unit capacities 34

(MKP) multiple knapsack problem . 34

(MPP) matroid packing problem . 37

(PPP′) weak path packing problem . 121

(PPP) path packing problem . 121

(PST) Steiner tree packing problem. 34

(QPi) quadratic problem . 99

Index 159

(SPP) set packing problem . 39

(SSP) stable set problem. 1, see set packing problem, 31

(TPP) transitive packing problem. 6

(VSP) vehicle scheduling problem. 94

(XPP) Dantzig-Wolfe formulation. 39

(PCP) path configuration problem. 124

(k-MCP) k-multicut problem . 16

D deadhead trips . 93

S duties . 94

d+v duties-first vehicles-second method. 107

is integrated vehicle and duty scheduling method . 107

L links . 94

R tasks . 94

v+d vehicles-first duties-second method. 107

A

acyclic arc set . 7

acyclic subdigraph polytope . 8

acyclic subdigraph problem . 7

fence inequality . 5, 8

Möbius ladder inequality . 8

set packing relaxation . 10

aggregated subgradient . 100

antidominant of the set packing polytope . 3

arc configuration problem . 123

coupling constraint . 124

flow conservation constraint . 124

pricing problem . 125

arc packing problem . 121

clique inequality. 121

flow conservation constraint . 121

arrival . 118

B

basis matrix . 77

big-edge inequality

for the matrix decomposition problem . 61

separation . 61, 66

bin-packing heuristic

for the matrix decomposition problem . 73

bin-packing inequality

for the matrix decomposition problem . 61

separation . 61, 69

bipartite 2-coloring problem . 36

Index 160

natural integrality . 36
block . 93

in a matrix decomposition problem . 48
block capacity constraint

for the matrix decomposition problem . 57
block conflict . 118
block conflict graph . see conflict graph
block decomposition . x, 51
block discernible inequality

for the matrix decomposition problem . 54
block invariant inequality

for the matrix decomposition problem . 54
blocking a track . 118
border

in a matrix decomposition problem . 48
bordered block diagonal form . 48
branch-and-bound . 49
branch-and-cut . 49
bundle . 98

C
capacity constraint . 138
Cholesky factorization . 48
chord in a cycle . 3
circuit of an independence system. 5
clique . 120
clique in a graph. 3
clique inequality

for the arc packing problem . 121
for the matrix decomposition problem . 55
for the path packing problem . 121
for the set packing problem . 4, 41
separation. 4, 66, 69

clique partition in a graph . 16
clique partitioning problem . 16

2-chorded cycle inequality . 17
inequality from an odd cycle of lower triangles . 19
lower triangle inequality . 16
set packing relaxation . 18
upper triangle inequality . 16

closed diwalk in a digraph . 3
closed walk in a graph . 3
colorful path . 144
coloring problem. 35

Index 161

column generation . 104, 141, 146
combinatorial k-packing problem see combinatorial packing problem
combinatorial packing polytope . 33
combinatorial packing problem . ix, 33

Dantzig-Wolfe formulation . 39
individual polytope . 33
individual problem . 33
packing . 33
packing constraint . 33

compatible duty schedule . see duty schedule
composition of clique inequality

for the matrix decomposition problem . 62
separation . 67

configuration . 122
configuration routing digraph . 123
conflict graph . 17, 20, 120

for the acyclic subdigraph problem . 9
for the clique partitioning problem. 17
for the matrix decomposition problem . 55
for the set packing problem. 20

convexity constraint
of a Dantzig-Wolfe formulation . 39

COQ composition of cliques . 62
coupling constraint . 95, 124
CPLEX LP/MIP solver . 128, 146
CS-OPT scheduling system . x
cycle in a graph . 3
cycle of cycles in a graph . 26
cycle of cycles inequality

for the set packing problem. 26
separation . 28

D
Dantzig-Wolfe formulation

convexity constraint . 39
of a combinatorial packing problem . x, 39
packing constraint . 39

deadhead trip . 93
demand digraph . 33
departure . 118
depot. 93
Deutsche Bahn AG . 128
dicycle in a digraph. 3
dipath in a digraph . 3

Index 162

direct travelers . 134
diwalk in a digraph . 3
DS-OPT scheduling system . x
duty. 94
duty schedule. 94
duty scheduling problem . x, 94

E
ECOPT integrated vehicle and duty scheduling instances 111
edge capacity . 136
edge-node incidence matrix of a graph. 3, 35
expansion of an inequality . 11
extended composition of clique inequality

for the matrix decomposition problem . 63
extended set packing polytope . 39
extended set system . 5
extended train routing digraph . 123

F
face cycle of a generalized odd wheel . 23
fence

in a digraph . 8
pale . 8
picket . 8

fence clique . 9
fence inequality

for the acyclic subdigraph problem . 5, 8
separation . 14

fill-in . 49
flow conservation constraint. 121, 124
flow constraint. 95
frequency. 140
frequency constraint . 138

G
generalized z-cover inequality

for the matrix decomposition problem . 59
generalized anticycle inequality

for the independence system problem . 5
generalized antiweb inequality

for the independence system problem . 5
generalized assignment problem . x, 34
generalized clique inequality

for the independence system problem . 5
generalized cycle inequality

Index 163

for the independence system problem . 5

generalized odd wheel

face cycle. 23

hub . 23

in a graph . 23

rim path . 23

spoke. 23

greedy heuristic

for the matrix decomposition problem . 73

H

HaKaFu Hannover-Kassel-Fulda network . 128

Hamiltonian path problem. 142

Havelbus Verkehrsgesellschaft mbH . 147

Helly’s theorem. 121

hole in a graph . 3

hub

of a generalized odd wheel . 23

of an odd wheel . 21

I

improvement heuristic

for the matrix decomposition problem . 74

independence system . 5

circuit . 5

independent set. 5

independence system polytope . 5, 15

independence system problem. 5

generalized anticycle inequality . 5

generalized antiweb inequality . 5

generalized clique inequality . 5

generalized cycle inequality . 5

independent set of an independence system . 5

individual polytope. see combinatorial packing problem

individual problem . see combinatorial packing problem

individual train routing digraph . 118

inequality from an odd cycle of lower triangles

for the clique partitioning problem. 19

separation . 19

inequality from odd cycles of nodes, edges, and coedges

for the set packing problem. 21

separation . 22

infrastructure digraph . 118

integral optimization problem. 33

Index 164

integrated vehicle and duty scheduling problem xi, 93, 95

block . 93

column generation. 104

commercial systems

ivu.plan . 92

MICROBUS II . 92

coupling constraint . 95

deadhead trip . 93

depot . 93

duty . 94

duty schedule . 94

duty scheduling problem. 94

flow constraint . 95

Lagrangean relaxation . 96

link . 94

part of work . 94

proximal bundle method . 96, 97

pull-in trip . 93

pull-out trip . 93

task . 94

timetabled trip . 93

trip partitioning constraint . 95

vehicle rotation. 93

vehicle scheduling problem . 93

intersection graph. 39, 51

interval graph . 121

IS-OPT integrated vehicle and duty scheduling system 105, 111

IVU Traffic Technologies AG . 147

ivu.plan scheduling system . x, xi, 92

K

k-coloring problem . 35

k-fence . see fence

k-fence inequality. see fence inequality

L

Lagrangean relaxation . 95, 96

lift-and-project . 40

line planning problem . xiii, 133, 138

capacity constraint . 138

column generation . 141, 146

direct travelers . 134

edge capacity. 136

frequency . 140

Index 165

frequency constraint . 138
line route . 139
mode. 136
objective . 138
origin-destination matrix . 134, 137, 138
passenger flow constraint . 138
passenger path . 137
passenger route . 139
passenger route graph . 137
pricing problem

line paths . 142
passenger paths . 142

system optimum . 139
system split . 134, 135
terminal. 136
time horizon . 139
transfer . 140
traveling time . 137
user equilibrium . 139
vehicle capacity . 136

line route. 139
linear ordering polytope . 8
linear ordering problem . 8
link . 94
lower triangle inequality

for the clique partitioning problem. 16
LU factorization . 48
LU weakening . 7

M
Möbius cycle in a digraph. 9
Möbius ladder in a digraph . 8
Möbius ladder inequality

for the acyclic subdigraph problem . 8
separation . ix, 7, 12, 14

matrix decomposition polytope . 53
matrix decomposition problem . x, 48, 51

big-edge inequality . 61
bin-packing heuristic . 73
bin-packing inequality . 61
block . 48
block capacity constraint . 57
block decomposition . 51
block discernible inequality . 54

Index 166

block invariant inequality . 54
border. 48
bordered block diagonal form . 48
composition of clique inequality . 62
conflict graph . 55
extended composition of clique inequality . 63
generalized z-cover inequality . 59
greedy heuristic . 73
improvement heuristic . 74
odd cycle inequality . 56
permutation inequality . 69
preprocessing . 74
row preference. 70
row preference inequality . 70
set packing relaxation . x
star inequality . 64
strengthened permutation inequality . 70
tie-breaking inequality . 69
two-partition inequality . 56
z-clique inequality . 60
z-cover inequality . 58
z-cycle inequality . 61

matrix equipartition problem . 50, 53
matroid intersection problem . 37
matroid packing problem . 37

natural integrality . 37
max cut problem . 16
MICROBUS II scheduling system. 92
Miplib IP library. 76, 80
mode . 136
multicommodity flow problem . 49, 95, 120, 138
multicommodity flow problem with unit capacities . 34
multicut in a graph . 16
multiflow in a digraph . 34
multiple knapsack problem . x, 34, 49

N
naturally integral optimization problem. ix, 33

bipartite 2-coloring problem . 36
matroid packing problem . 37

Netlib LP library . 76, 77
NetLine scheduling system . xi
network design problem . 133
node packing problem. see set packing problem

Index 167

node separator problem . x, 51

null step. 104

O

objective . 138

OD-matrix . see origin-destination matrix

odd cycle inequality

for the matrix decomposition problem . 56

for the set packing problem . 4

separation . 4

odd cycle of diwalk inequality

for the acyclic subdigraph problem . 12

separation . 13

odd wheel

hub . 21

in a graph . 21

rim. 21

spoke. 21

odd wheel inequality

for the set packing problem. 21

separation . 7

operational planning . 91

OPTRA (optimal) track allocation problem. 119

origin-destination matrix. 134, 137, 138

orthonormal representation

of a graph . 4

orthonormal representation constraint

for the set packing problem . 4

separation . 4

P

packing. 33

packing constraint

for the combinatorial packing problem . 33

of a Dantzig-Wolfe formulation . 39

packing problem . viii

pale in a fence . 8

parallel branch-and-bound algorithm. x

parallel Cholesky factorization . x

parallel LU factorization . x

part of work . 94

passenger flow constraint . 138

passenger path . 137

passenger route. 139

Index 168

passenger route graph . 137
path configuration problem . 124

coupling constraint . 124
pricing problem . 125

path in a graph . 3
path packing problem . 121

clique inequality. 121
PBM proximal bundle method . 97
perfect graph . 41
perfect matrix . 43
permutation inequality

for the matrix decomposition problem . 69
separation . 70

picket in a fence . 8
pool separation . 71
Potsdam. 136, 147
preprocessing

for the matrix decomposition problem . 74
pricing problem . 125
proximal bundle method . xi, 96, 97

aggregated subgradient . 100
bundle . 98
dual quadratic problem. 100
null step . 104
quadratic problem . 99
serious step . 104
spectral bundle method . 100
stability center . 98
subgradient . 98

public transit
operational planning. 91
strategic planning . xii, 133

pull-in trip . 93
pull-out trip . 93

R
rank function of a matroid . 37
rank relaxation

conflict graph . 20
of the set packing problem. 20

Regensburger Verkehrsbetriebe GmbH . 107
Regionalverkehrsbetrieb Kurhessen . 110
request . 118
rim of an odd wheel . 21

Index 169

rim path of a generalized odd wheel . 23
RKH Regionalverkehrsbetrieb Kurhessen . 110
route . 118
row preference . 70
row preference inequality

for the matrix decomposition problem . 70
separation . 70

RVB Regensburger Verkehrsbetriebe GmbH . 107

S
scenario decomposition of stochastic programs . 49
schedule . 119
sensitivity analysis . 91
separation

from a pool of inequalities . 71
of 2-chorded cycle inequalities . 7, 19
of {0, 1

2}-Chvátal-Gomory cuts. 6
of big-edge inequalities . 61, 66
of bin-packing inequalities . 61, 69
of clique inequalities. 4, 66, 69
of composition of clique inequalities . 67
of cycle of cycles inequalities. 28
of fence inequalities. 14
of inequalities from odd cycles of lower triangles 19
of inequalities from odd cycles of nodes, edges, and coedges 22
of Möbius ladder inequalities . ix, 7, 12, 14
of odd cycle inequalitites . 4
of odd cycle of diwalk inequalities . 13
of odd wheel inequalities . 7, 21
of orthonormal representation constraints . 4
of permutation inequalities . 70
of row preference inequalities . 70
of star inequalities . 66
of two-partition inequalities . 56, 66
of weak generalized (k, 2)-cycle inequalities . 6
of weak odd closed walk inequalities . 6
of wheel inequalities of type I . 25
of wheel inequalities of type II . 25
of z-clique inequalities . 60, 66
of z-cover inequalities . 66
of z-cycle inequalities . 62, 67

serious step. 104
set covering problem. viii, x, 52
set packing . 1

Index 170

set packing polytope. ix, 3
antidominant . 3

set packing problem. viii–x, 1, 3, 31, 39
clique inequality . 4
cycle of cycles inequality. 26
inequality from an odd cycle of nodes, edges, and coedges. 21
odd cycle inequality . 4
odd wheel inequality . 21
orthonormal representation constraint . 4
set packing relaxation . 20
wheel inequality of type I . 23
wheel inequality of type II . 23

set packing relaxation . ix
of the acyclic subdigraph problem . 10
of the clique partitiong problem . 18
of the matrix decomposition problem . x, 52
rank relaxation . 20

set partitioning problem. viii, 95
sink . 118
SIP MIP solver . 84
source . 118
spectral bundle method. 100
spoke

of a generalized odd wheel . 23
of an odd wheel . 21

stability center . 98
stable set in a graph . 1
stable set polytope . see set packing polytope
stable set problem see set packing problem, see set packing problem
star inequality

for the matrix decomposition problem . 64
separation . 66

station . 118
Steiner tree packing problem . 34, 49
strategic planning . xii, 133

line planning problem . 133
network design problem . 133
timetabling problem. 133

strengthened permutation inequality
for the matrix decomposition problem . 70

subgradient. 98
supply digraph . 33
support of a vector . 3
system optimum. 139

Index 171

system split . 134, 135

T
task . 94
teminal . 136
terminal node in a graph . 34
tie-breaking inequality

for the matrix decomposition problem . 69
time horizon. 139
timetabled trip . 93
timetabling problem . 133
totally unimodular matrix . 36
tournament in a digraph . 8
track . 118
track allocation problem . xii, 117–119

arrival. 118
block conflict . 118
blocking a track . 118
configuration . 122
configuration routing digraph. 123
departure . 118
extended train routing digraph . 123
HaKaFu network . 128
individual train routing digraph . 118
infrastructure digraph . 118
request . 118
route . 118
schedule . 119
sink . 118
source . 118
station . 118
track . 118
train . 118
train routing digraph . 118
trip . 118

train . 118
train routing digraph . 118
train routing problem. see track allocation problem
train timetabling problem see tack allocation problem118
transfer . 140
transitive element. 5
transitive packing . 5, 19
transitive packing polytope. 6, 15
transitive packing problem . 5

Index 172

weak generalized (k, 2)-cycle inequalities . 6
weak odd closed walk inequalities . 6

traveling time . 137
trip . 118
trip partitioning constraint . 95
two-partition inequalities

for the matrix decomposition problem . 56
two-partition inequality

separation . 56, 66

U
uniform matroid . 37
unit commitment problem . 49
upper triangle inequality

for the clique partitioning problem. 16
user equilibrium . 139

V
vehicle capacity . 136
vehicle rotation . 93
vehicle scheduling problem . x, 49, 93
ViP Verkehr in Potsdam GmbH . 147
VS-OPT vehicle scheduling optimizer . x

W
walk in a graph . 3
weak generalized (k, 2)-cycle inequality

for the transitive packing problem . 6
separation . 6

weak odd closed walk inequality
for the transitive packing problem . 6
separation . 6

wheel inequality of type I
for the set packing problem. 23
separation . 25

wheel inequality of type II
for the set packing problem. 23
separation . 25

X
xCOQ extended composition of cliques . 63

Z
z-clique inequality

for the matrix decomposition problem . 60

Index 173

separation . 60, 66
z-cover inequality

for the matrix decomposition problem . 58
separation . 66

z-cycle inequality
for the matrix decomposition problem . 61
separation . 62, 67

Curriculum Vitae

c© 2008 Kay Herschelmann

Ralf Borndörfer

born on August 20, 1967, in Münster

married, two children, German

1973–1977 Elementary School in Oerlinghausen

1977–1986 Hans-Ehrenberg-Gymnasium in Bielefeld-Sennestadt

1986–1987 Military Service at the Armored Brigade 21 in Augustdorf

1987–1991 Studies of Mathematics with Economics at the University of
Augsburg

Dec. 1991 Master’s Degree in Mathematics with Economics at the Uni-
versity of Augsburg, Supervisor: Prof. Dr. Martin Grötschel

1992–1997 Teaching Assistant at the Technical University of Berlin

Apr. 1997 Scientific Assistant at the Zuse Institute Berlin

Mar. 1998 Ph.D. in Natural Sciences at the Technical University of Berlin,
Supervisor: Prof. Dr. Dr. h.c. mult. Martin Grötschel

Jul. 2000 Foundation of Löbel & Borndörfer GbR

Mar. 2004 Extension to Löbel, Borndörfer & Weider GbR

Jan. 2007 Deputy Head of Department Optimization at the Zuse Institute
Berlin

Berlin, 21.08.2009

174

	Titlepage
	Table of Contents
	List of Figures
	List of Tables
	List of Publications
	Introduction
	I Set Packing Relaxations of Some Integer Programs
	1 Introduction
	2 Terminology
	3 The Acyclic Subdigraph and the Linear Ordering Problem
	4 The Clique Partitioning Problem
	5 The Set Packing Problem

	II Combinatorial Packing Problems
	1 Introduction
	2 Combinatorial Packing
	3 Dantzig-Wolfe Set Packing Formulations

	III Decomposing Matrices into Blocks
	1 Introduction
	2 Integer Programming Formulation and Related Problems
	3 Polyhedral Investigations
	4 A Branch-And-Cut Algorithm
	5 Computational Results

	IV A Bundle Method for Integrated Multi-Depot Vehicle and Duty Scheduling in Public Transit
	1 Introduction
	2 Notation
	3 Integrated Vehicle and Duty Scheduling
	4 A Bundle Method
	5 Computational Results
	6 Conclusions

	V Models for Railway Track Allocation
	1 Introduction
	2 The Optimal Track Allocation Problem
	3 Integer Programming Models
	4 Computational Results

	VI A Column Generation Approach to Line Planning in Public Transport
	1 Introduction
	2 Related Work
	3 Line Planning Model
	4 Column Generation
	5 Computational Results
	6 Conclusions

	Index
	Curriculum Vitae

