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Zusammenfassung in deutscher Sprache

Die Zugumlaufplanung ist ein fundamentales Problem im Schienenpersonen-
verkehr. Thre Aufgabe ist die Zuordnung von Fahrzeugen zu Fahrten eines wo-
chentlichen Fahrplans. Dabei ist die sogenannte Gleichférmigkeit zu bertick-
sichtigen. Diese Aufgabe kann als Hyperzuordnungsproblem formuliert wer-
den. Bei Hyperzuordnungen handelt es sich um eine neuartige Verallgemeine-
rung von Zuordnungen.

Zuordnungen sind wie folgt definiert. Sei k € N. Gegeben ist eine Menge
Avon Paaren ({i}, {j}), i,j € {1,...,k} und Kosten fiir jedes dieser Paare. Eine
Zuordnung ist eine Teilmenge von A, sodass 1, ..., k jeweils genau ein Mal im
ersten und zweiten Element eines Paars der Teilmenge vorkommen.

Wir verallgemeinern dieses Konzept wie folgt. Den Ausgangspunkt bilden

Paare von Teilmengen von {1,...,k} mit moglicherweise mehr als einem Ele-
ment. Dann ist A eine Menge von Paaren ({i,...,i,}, {j1,---,Jn}), m,n € N.
Wieder kann man Teilmengen von A betrachten, sodass 1, ..., k jeweils genau

ein Mal im ersten und zweiten Element eines Paars der Teilmenge vorkommen.
So eine Teilmenge nennen wir Hyperzuordnung.

In der Anwendung, in unserem Fall die ICE/IC-Zugumlaufplanung, entspre-
chen die Paare aufeinanderfolgenden Zugfahrten, die Teilmengen Verkehrsta-
gen, an denen die Fahrten giiltig sind. Die vorliegende Arbeit entwickelt eine
mathematische Theorie der Hyperzuordnungen zur Berechnung gleichférmiger
Zugumlaufe.

Die Arbeit untersucht dazu Hyperzuordnungen im Allgemeinen und fiir spe-
zielle Problemklassen, die durch die praktische Anwendung motiviert sind. Wir
zeigen, dass das Hyperzuordnungsproblem — das Finden einer Hyperzuordnung
mit minimalen Kosten — 4% -schwer ist und dass eine direkte Formulierung
als ganzzahliges lineares Programm (ILP) zu groRen Abstinden zwischen dem
ganzzahligen Optimum und dem Optimum der LP-Relaxierung fiihrt. Wir stel-
len deshalb eine alternative Formulierung als ganzzahliges lineares Programm
in Form einer sogenannten Extended Formulation vor, die den Abstand zwi-
schen LP- und ILP-Optimalwert beweisbar verkleinert und u. a. alle Cliquenun-
gleichungen impliziert. Diese Formulierung lasst sich mit Hilfe eines Spalten-
erzeugungsverfahrens 16sen. Wir untersuchen das zugehorige Pricing-Problem
und entwickeln fiir die aus Anwendungssicht relevanten Fille schnelle Algo-
rithmen.
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Preface

Vehicle rotation planning for long distance passenger railways is a fundamental
problem in rail transport. It deals with the allocation of vehicles to trips in a
cyclic weekly schedule. Its result is an assignment of each trip to a follow-on
trip which will be serviced by the same vehicle.

Since April 2009, vehicle rotation planning for IC and ICE trains is inves-
tigated in a project at the Zuse Institute Berlin in cooperation with DB Fer-
nverkehr AG. I work in this project as a student assistant. Especially I am
concerned with the so-called regularity in vehicle rotation planning, which is
an important quality criterion: The more the operation of vehicles on different
weekdays resembles each other, the easier is personnel planning and adjust-
ment of the plan if unforeseen events occur.

To take regularity into account, vehicle rotation planning can be modeled
as a hyperassignment problem (HAP), which asks for the minimum cost hyper-
assignment. We propose hyperassignments as a novel concept in combinatorial
optimization. We study hyperassignments in general and for special classes of
hypergraphs that are motivated by our ICE/IC application. This thesis focuses
on theory which helps to solve the practical application.

Hyperassignments are generalizations of assignments. Suppose k € N. The
input of the assignment problem is a set A of pairs ({i}, {j}), i,j € {1,...,k},
and costs for each of these pairs. An assignment is a subset of A such that
1,...,k appear exactly once in the first element and exactly once in the second
element of a pair in the subset. The assignment problem, which consists of
finding an assignment with minimum cost, is an important and well-known
problem in combinatorial optimization and can be solved in polynomial time.

We can generalize A to be a set of pairs of subsets of {1, ..., k} with possibly
more than one element. Then, A is a set of pairs ({i1,...,in}> {1>--->Jn})s
m,n € N. Again, we can look at subsets of A such that 1,...,k appear exactly

once in the first element and exactly once in the second element of a pair in the
subset. We call such a subset a hyperassignment.
It turns out that HAP is A2 -hard for the practically relevant cases and that
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the canonical integer linear programming (ILP) formulation results in large in-
tegrality gaps. The main contribution of this thesis is an extended ILP formula-
tion, which provably reduces the integrality gap and implies important classes
of inequalities, e. g., all clique inequalities. The extended formulation can be
solved by column generation. We propose fast algorithms for the pricing sub-
problem.

We assume that the reader is familiar with the standard terminology and method-
ology of graph theory, complexity theory and linear and integer linear program-
ming as presented, for example, in [[GLS88]] and [I[Chv83]], the lecture notes
[[Gro09]] and [|Gr610] in German.

This thesis is structured as follows.

Chapter 1] introduces the terminology needed in this thesis. We introduce
directed hypergraphs and discuss some practical problems which have been
previously modeled using these. We also identify special classes of directed
hypergraphs, which arise in ICE/IC vehicle rotation planning, and some asso-
ciated concepts.

HAP and its application to ICE/IC vehicle rotation planning is explained
in chapter [2| Also all integer linear programs used throughout this thesis are
introduced there.

Chapter [3]is about the complexity of HAP. We prove that HAP is 4% -hard,
even if one imposes several restrictions, which hold for applications to vehicle
rotation planning. We also show that HAP has many connections to the A% -
hard set partitioning problem, that the integrality gap in the canonical integer
linear programming formulation can be arbitrarily large, and that determinants
of basis matrices in this formulation can be arbitrarily large.

Chapter [4] starts with computational results using the canonical ILP They
imply that finding maximal cliques in the so called conflict graph is very impor-
tant. In this chapter and the next we deal only with partitioned hypergraphs.
These are directed hypergraphs of a special type. All directed hypergraphs aris-
ing from vehicle rotation planning are partitioned. We show that cliques can
appear only in special subgraphs of the conflict graph and analyze these sub-
graphs. We then introduce a different extended ILP formulation of HAP which
implies all clique inequalities and also separates other fractional solutions of
the LP relaxation of the canonical formulation. This extended formulation has
a large but still polynomial number of variables and can be solved by column
generation.

We proceed in chapter [5|with algorithms for pricing the variables in the ex-
tended formulation. We present two different ideas, that lead to fast algorithms



for practically important situations.
In the last chapter we summarize our theoretical results and give practical
conclusions.

Before ending this preface I would like to thank all those people without whom
this thesis would not have been possible. In particular, this is Prof. Dr. Dr. h.c.
mult. Martin Grétschel, whose very interesting lectures sparked my interest
in combinatorial optimization and who gave me the possibility to develop this
thesis at Zuse Institute Berlin. I am grateful to Dr. habil. Ralf Borndorfer for
his many ideas and his support. Further, I would like to thank Markus Reuther,
especially for his comments on the practical application.
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Chapter 1

Hypergraph Terminology

Summary of this chapter We begin with basic notions about directed hyper-
graphs. We present some applications from the literature to demonstrate their
potential to model practical problems. Afterwards, we introduce special classes of
directed hypergraphs, which arise in vehicle rotation planning, and concepts about
these types of hypergraphs. These classes have not been considered before. In the
end, we define some further terms needed in the following.

1.1 Basic Directed Hypergraph Terminology

Definition 1.1.1 (directed hypergraph, directed graph). A directed hypergraph
D is a pair (V,A) consisting of a vertex set V and a set A C 2V x 2" of hyperarcs
(T,,H,) such that T,,H, # 0. We call T, the tail of the hyperarc a € A and H,
the head of a.

A hyperarc a is called an arc if |H,| = |T,| = 1.

A directed hypergraph is a directed graph if all its hyperarcs are arcs. In this
case, we also write arcs ({v}, {w}) simply as (v, w).

Contrary to usual assumptions, we do not require that the tail and the head
of a hyperarc have to be disjoint. Many constructions would be more compli-
cated but results would not change. Hyperarcs whose tail and head are not
disjoint can be transformed by adding vertices. Moreover, such hyperarcs may
occur in the directed hypergraph from our practical application.

Definition 1.1.2 (outgoing and ingoing hyperarcs). Let D = (V,A) be a directed
hypergraph. For W C V, B C A we define

S (W) :={aeB:T,NnW #0}
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to be the outgoing and
SP(W):={a€B:H,NW # 0}

to be the ingoing hyperarcs of W.
For 63" ({v}) and 5;‘({\/}) we simply write 65 (v) and 5g(v), respectively.
If no set B is given in the index of §°" or 6™, B is assumed to be the full
hyperarc set of the hypergraph in question.

A way of representing directed hypergraphs is illustrated in figure
To describe applications of directed hypergraphs we need the following

Definition 1.1.3 (cost function). Given a set S, a cost function is a function
cg:S—R.
For T C S we define

cs(T):= ch(s).

seT

1.2 Applications of Directed Hypergraphs

Directed hypergraphs can be used to model relations between sets of objects.
In this section, we give a very short overview of different application fields. For
detailed explanations see the referenced literature.

In traffic assignment problems, directed hypergraphs can be used to model
situations where users must take into account that a desirable path may be-
come unavailable ([MN98]]). Hyperarcs represent sets of alternatives to travel
from or to a given vertex and the values of the cost function on the hyperarcs
represent probabilities of their availability.

Different applications for directed hypergraphs can be found in the field of
production and manufacturing systems ([[GS98]]). Linear production systems
can be modeled as directed hypergraphs where the vertices represent goods
and their outgoing and ingoing hyperarcs represent certain activities, for which
the goods are part of the input or output, respectively. In assembly problems,
hyperarcs can describe which items can be constructed from which item combi-
nations. Creating a directed hypergraph with cutting patterns as its vertex set
can help in cutting stock problems.

Directed hypergraphs were used to model metadata about resources in the
World Wide Web in the Resource Description Framework ([MSO07]],[WLWO08]]),
which employs triples of a subject, a predicate and an object. In the directed hy-
pergraph model, the tail of each hyperarc consists of a subject and a predicate,
and the head is an object.
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In data mining, directed hypergraphs are used for local pruning of associa-
tion rules ([[CDP04]).

Also, directed hypergraphs were used for the verification of rule-based ex-
pert systems ([RSC97]]), where the vertices are used to represent compound
clauses.

Further applications include relational databases ([[ADS84]), formal lan-
guages ([GS98]) and the modeling of biological pathways ([KNO'03]]).

1.3 Special Classes of Directed Hypergraphs

Since the concept of directed hypergraphs is very general, it is unlikely to find
good solution methods or specific theory for problems on these. Therefore, it
can be helpful to try to find a special structure of directed hypergraphs resulting
from applications and to investigate the problem for this type of hypergraphs.

For directed hypergraphs which result from vehicle rotation planning we
found two special characteristics. Here we introduce two classes of directed
hypergraphs, which reflect these characteristics. Particularly the idea of par-
titioned hypergraphs leads to an extended formulation with interesting and
practically useful properties.

For partitioned hypergraphs we employ that regularity conditions in ICE/IC
vehicle rotation planning can always be described using trips such that there
is no subset of more than two trips which differ pairwise by more than the
weekday on which they begin.

Definition 1.3.1 (partitioned hypergraph, configuration). Let d € N be some
constant number. A directed hypergraph D = (V,A) is called partitioned hyper-
graph, if there exists w € N and parts P;,P,,...,P, €V with P; # 0, |P;| < d
forallie{1,...,w} such that

1. V:P1UP2U...UPW and

2. for every a € A there exist t(a),h(a) € {1,...,w} such that T, C Py,
H, € Py

In this case, d is called the maximum part size and for every i € {1,...,w}

we define the set of all outgoing and ingoing configurations of part P; to be

<gl_out={ch;Hame=(Z)Va,beCwitha;éb,UTa=Pi}

aeC
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and

aeC

(giin:{CgA:TaﬂTb:@Va’bECWitha#b, UHa:Pi}1

respectively.
Finally, we write ¢ for Ulwzl %id‘r for dir € {out, in}.

For every part the tail of every of its outgoing and the head of every of its
ingoing hyperarcs is a subset of the part.

See figures[1.1]and [1.2] for a visualization of a partitioned hypergraph. The
latter also shows configurations.

For the second class, the graph based hypergraphs, we use that vehicle
rotation planning without regularity conditions can be described on a directed
graph. Regularity, which can be described by hyperarcs, as we will see later,
can be formulated using sets of arcs of the directed graph.

Graph based hypergraphs have a strong connection to directed graphs. The
hyperassignment problem can be efficiently solved on directed graphs since
it is just an assignment problem in this case. We can try to use this when
investigating HAP on graph based hypergraphs.

Definition 1.3.2 (graph based hypergraph). Let D = (V,A) be a directed hy-
pergraph define
B:={a€A:aisan arc}.

D is called graph based hypergraph if for each hyperarc a € A there exists
a set B(a) € B of arcs with pairwise disjoint tails and pairwise disjoint heads

such that
T,= | T
beB(a)
and
H,= |- H,.
beB(a)

In this case, we call the directed graph (V, B) the base graph of D.

The directed hypergraph in figure[1.1]is not graph based whereas figure
shows a graph based hypergraph.
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Figure 1.1: Directed hypergraph D = (V,A) with vertices V = {v;,..., v} and
hyperarcs indicated by the connections with arrows pointing into the direction
of the head vertices of the hyperarc. v; has two outgoing hyperarcs ({v;}, {v4})
and a = ({v1, v, v4}, {vg, %o}), and one ingoing hyperarc ({vg},{v;}). For d >
4, D is partitioned. A possible selection of parts is indicated by the gray boxes.
Because of hyperarcs a and ({vy,vs}, {v;}), D is not partitioned for d < 3. The
thicker hyperarcs form a hyperassignment in D.

1.4 Further Notions

We introduce the notion of hyperassignments. They are the object of our study.
The idea is to generalize assignments, which are formed by pairs of one element
sets, to pairs of sets which can also contain more than more element. A formal
definition is as follows.

Definition 1.4.1 (circulation, hyperassignment). Let D = (V,A) be a directed
hypergraph. Z C A is called circulation in D if for every v € V

65V = 165

forallveV.
A circulation H € A in D called hyperassignment if for each v € V

165 (M= 1.
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Figure 1.2: D = (V,A) with V = {vy,...vg}, A = {a;,...a¢} is a graph based
hypergraph. For d = 4, it is also partitioned with the parts P; = {v;,v,}, Py =
{vs,V4,Vs,v7} and P; = {vs,vg}. P; has two ingoing configurations, {a;,a,}
and {as}. {a;,ag} is not an ingoing configuration of P;, because the tails of a;
and ag intersect. The set of outgoing configurations of P, is empty, because vq
has no outgoing hyperarcs.

A hyperassignment assigns to each vertex some set of following vertices
given by the head of its unique outgoing hyperarc. The same set is assigned
to all the other vertices in the tail of this hyperarc. By the definition of a
hyperassignment, each vertex also has a unique ingoing hyperarc. This implies
that each vertex has exactly one predecessor set.

Usually, assignments are considered on two sets with equal cardinality. In
our case both sets are taken to be the vertex set of the hypergraph, which is no
loss of generality.

In figure an example of a hyperassignment in some directed hypergraph
is given. In figure the vertices of the directed hypergraph are doubled such
that this hyperassignment can be viewed as assigning elements from one set to
elements from another set.

For graph based hypergraphs, the hyperassignment can be broken down to
an assignment as follows: Assign to each vertex the vertex in the head of the
arc with this vertex in its tail in the set of arcs forming its outgoing hyperarc.

Definition 1.4.2 (undirected hypergraph, undirected graph). A pair U = (N, E)
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Figure 1.3: After doubling the vertices of the directed hypergraph from fig-
ure the hyperassignment shown there can be viewed as assigning elements
from one set to elements from another set.

of a finite node set N and a hyperedge set E C 2N of nonempty subsets of N is
called undirected hypergraph. If |e| = 2 for all e € E, the undirected hypergraph
is called undirected graph with edge set E.

Definition 1.4.3 (partitioning). A partitioning of an undirected hypergraph
U = (N, E) is a subset K of E such that each element of N occurs in exactly one
member of K.

An example of an undirected hypergraph is U = (N, E) with N = {1,...,4}
and E = {{1,2},{1,3}, {1,2,4}, {2}, {3,4}}.

{{1,2},{3,4}} C E is a partitioning of U. {{1,3},{2}} C E is not a parti-
tioning of U because 4 € N does not appear in any subset. {{1,2,4},{3,4}} CE
is not a partitioning of U because 4 is contained in two sets.

Definition 1.4.4 (complement, subgraph, induced subgraph). The complement
of an undirected graph U = (N, E) is the undirected graph with node set N and
an edge set consisting of all the two element subsets of N without those in E.

An undirected graph (O, F) is called a subgraph of U if O C N, F C E.
Further, the subgraph is an induced subgraph if F is maximal for O.

Definition 1.4.5 (conflict graph). Let D = (V,A) be a directed hypergraph. The
conflict graph of D is an undirected graph with one node for each a € A and
such that an edge {a, b} connects a,b € A if and only if there exists a vertex
veVsuchthatve T,NT, orve H, NH,.

Two hyperarcs a, b € A which are connected by an edge in the conflict graph
can never both appear in a hyperassignment in D.
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Definition 1.4.6 (clique). Let U = (N, E) be an undirected graph. A clique in
U is a set Q € N of nodes of U such that for every two nodes m,n € Q there is
an edge {m,n} € E connecting them. A clique in U is called maximal clique if
there is no clique in U containing this clique and other nodes.

Figure[1.4]shows a conflict graph.
Definition 1.4.7 (clique graph). An induced subgraph of the conflict graph of
a partitioned hypergraph D = (V,A) is called outgoing (ingoing) clique graph of
D, if there is a fixed part such that the vertex set of the subgraph consists of all
hyperarcs all whose tails (heads) are subsets of the part.

Definition 1.4.8 (hole, antihole). A hole of size s > 5 is an undirected graph
U= (N,E) with N = {ngy,n;,...,n,_;} and

E= {{ni,n(iH) modst :1€10,1,...,5 — 1}}.

An antihole of size s > 5 is the complement of a hole of size s.
A hole or antihole is called odd if s is odd.

Definition 1.4.9 (perfect graph). An undirected graph is called perfect if it does
not contain an odd hole or antihole as an induced subgraph.

This is not the usual definition of a perfect graph, but the strong perfect
graph theorem (see [[CRST06]) implies that it is equivalent to the usual defini-
tion. The definition stated here is better applicable for our purpose.

Figure 1.4: The conflict graph of the directed hypergraph from figure
a,,as, a4, dr,ag form a clique in the conflict graph, they are all outgoing hyper-
arcs of v,4. ag,ag, ag also form a clique, but there is no vertex in the hypergraph
such that they all would be contained in its set of out- or ingoing hyperarcs.



Chapter 2

HAP—The Hyperassignment
Problem

Summary of this chapter First of all, we introduce the hyperassignment prob-
lem (HAP) and prove the correctness of a canonical ILP formulation. We show
how HAP can be seen as a minimum cost flow problem. Then, we present vehi-
cle rotation planning as our practical application for HAP. Afterwards, we state
SPP, the set partitioning problem, which will be shown to have many connections
to HAP. In the end, we give an overview of further ILPs for HAP, which will be
discussed later on.

2.1 Introduction of HAP

The main problem investigated in this thesis is the hyperassignment problem
in directed hypergraphs.
Problem 2.1.1 (HAP).

Input: A pair (D, c,) consisting of a directed hypergraph D = (V,A) and a
cost function ¢4 : A — R.

Output: A minimum cost hyperassignment in D w.r.t. ¢y, i.e., a hyper-
assignment H* in D such that

ca(H*) = min{c, (H) : H is a hyperassignment in D},

or the information that no hyperassignment in D exists if this is the case.

We will be concerned with different ILP formulations for HAP. Here we
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give a canonical formulation and prove its correctness.

minimize Z cala)x, (HAP)
xX€ERA oA
subject to Z X, — Z x,=0 VvevVv D
aes™(v) aedo(v)
Z x,=1 VveVv (i)
aesout(v)
x>0 (iii)
xe7” (iv)

Definition 2.1.2. Let

Pip(HAP) := {x e R* : (HAP) (-}
be the polyhedron associated with the LP relaxation of (HAP).

The variable x, for a € A indicates whether the hyperarc a is contained
in the hyperassignment. a is in the hyperassignment if and only if x, = 1.
Otherwise x, is equal to 0.

The idea of the formulation is the following. We state the requirement that
a solution of HAP is a hyperassignment as a so-called flow conservation con-
straint (), which ensures that the solution is a circulation, and M,
which means that every vertex has exactly one outgoing hyperarc in the hyper-
assignment.

Lemma 2.1.3. Given a directed hypergraph D = (V,A) and a cost function c, :
A — R, there is a bijection between the feasible solutions of and hyperas-
signments in D. The optimum value of is equal to the cost of the minimum
cost hyperassignment in D w.r. t. ¢, if it exists and to oo otherwise.

Proof. First of all, for every hyperassignment H in D x = (x,)ses With

1 ifaeH
xa = .
0 otherwise

is a feasible solution of (HAP).

On the other hand, constraints ([@—-(iv) imply that every feasible so-
lution x of lies in {0,1}*. Let H := {a € A: x, = 1}. Then H is a hyper-
assignment in D. Indeed, the so called flow conservation constraint



CHAPTER 2. HAP—THE HYPERASSIGNMENT PROBLEM 11

corresponds to the requirement that for every vertex there is the same number
of outgoing hyperarcs as ingoing hyperarcs, i.e., H is a circulation.
guarantees that the circulation is a hyperassignment.

The values of the minimized functions in and the one used in HAP
are preserved under the bijection. Finally, and HAP use the same cost
function under this bijection. O

Although we will not deal much with the multi-commodity version of HAP,
we state it here for completeness.

Problem 2.1.4 (HAP,,_0).

.....

(V,A) and cost functions cy; :A— R fori € {1,...,k} for k commodities.
Output: A family (H]);eq1,_x; of k pairwise disjoint circulations such that
their union is a hyperassignment in D, minimizing

k

ZCA,i (Hi),

i=1
or the information that no such family exists if this is the case.

This is the usual multi-commodity generalization of flow problems applied
to HAP.

2.2 HAP as a Minimum Cost Flow on Directed Hyper-
graphs
The well-known minimum cost flow problem on directed graphs can be gen-
eralized to directed hypergraphs. Instances of HAP can be formulated as in-
stances of this problem.
For a directed hypergraph D = (V,A) construct a new directed hypergraph
D’ = (V’/,A') with
Vi={s,t}u(v x{0,1}),
A ={a racA U {{s}{(v,0D),{(v, D}, {tD:veV}

by doubling the vertices and transforming each hyperarc a € A of D to a corre-
sponding hyperarc a’ = (T,/, H,/) with

Ty ={(v,0):veT,}

and
Hy={(v,1):veH.}
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of D’. Then, for every hyperassignment H in D the set of the corresponding
hyperarcs in A’ for the hyperarcs in H together with all out- and ingoing hyper-
arcs of D’ of s and t, respectively, corresponds to an integral flow of |V| units
from s to t in D’ with capacity equal to one on all hyperarcs, and vice versa.

To solve the minimum cost flow problem on directed hypergraphs, a hy-
pergraph network simplex algorithm was introduced in [CGS92[]. In contrast
to the problem on graphs, for integral input optimal integral solutions do not
have to exist. The generalization of the network simplex algorithm can produce
non-integral solutions. Special cases where the set of feasible solutions is inte-
gral can be found in [JMRW92], but these usually do not apply to the instances
gotten from HAP. However, the restriction that the heads of the hyperarcs may
consist only of one element usually imposed on directed hypergraphs when
speaking about flow problems is not a limitation—other hyperarcs can be split
into two by adding a vertex.

2.3 HAP in Vehicle Rotation Planning

HAP arises in vehicle rotation planning for long distance passenger railways,
which is a fundamental problem in rail transport. A regularity requirement in
this application is the motivation to study HAP in this thesis and the reason
why we will concentrate on the partitioned case. We first describe the vehicle
rotation planning problem in general, and discuss regularity second.

Suppose a weekly repeating schedule with all trips that a railway company
wants to provide is given. A trip is characterized by its departure weekday,
departure time, departure location, arrival location and its duration.

Every trip has to be serviced by a vehicle. Between arrival and departure
there may be several stops but the vehicle must not change during the trip.

After servicing a trip, the vehicle does a deadhead trip, possibly having a
distance of zero, from the arrival location of the trip to the departure location
of the next trip it services. This deadhead trip has some duration. Afterwards,
when the weekday and departure time of the next trip arrives, the vehicle ser-
vices this trip.

A vehicle rotation plan is an assignment of each trip to another trip. This
assignment tells every vehicle which trip it has to service next after servicing
a trip. Since the schedule is periodic, the sequence of trips for every vehicle is
periodic, too. The period is a positive integral multiple of a week.

The cost of a pair of trips in the assignment depends on the duration and
distance of a deadhead trip and the break between the trip before and after the
deadhead. The last criterion is relevant, because the longer the breaks are the
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more vehicles the railway company needs to service all trips.

The aim is to find an assignment with minimum cost. Thus, vehicle rotation
planning as explained so far can be formulated as an assignment problem in a
directed graph. The vertices of the graph are the trips and there is an arc from
every trip to every trip.

An additional criterion which determines the quality of a vehicle rotation
plan is the regularity: The more the operation of vehicles on different weekdays
resembles each other, the easier is, e. g., personnel planning and adjustment of
the plan if unforeseen events occur.

Let us group all trips which differ only be the departure weekday. Such a
set is called a train. It is characterized by the departure time, the departure
location, the arrival location, the duration of the trips it consists of, and a
validity. The validity is the set of all weekdays on which the trips of the train
start.

Given an assignment, we can count for each train the number of unequal
deadheads in the trips assigned to the trips of the train. Two deadheads are
unequal if the trains the next trips belong to are different or the breaks have
a different length. Otherwise they are equal. The less the number of unequal
deadheads in the vehicle rotation plan, the higher the regularity.

Since regularity simplifies the operation of vehicles, a high regularity is
desirable. To take this criterion into account in vehicle rotation planning, we
can model it as a hyperassignment problem. Therefore, we add hyperarcs. All
trips in the tail and all trips in the head of a hyperarc belong to the same train,
respectively. Further, for every hyperarc there is a set of arcs such that the
disjoint union of their tails is the tail or the hyperarc, the disjoint union of their
heads is the head of the hyperarc and the deadhead trips represented by these
arcs are all equal. The cost of the hyperarc is less than the sum of the costs of
the arcs. The difference is the bonus for regularity.

The resulting hypergraph is graph based and partitioned. Its parts are the
trains. The maximum part size is the number of weekdays, i. e., seven.

If different types of vehicles with possibly different deadhead trip costs are
involved and we have given a set of possible vehicle types for every trip, the
problem translates into a HAP,_..

Requirements such as maintenance of trains after a given kilometer limit
will not be considered in this thesis.
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2.4 The Set Partitioning Problem

The set partitioning problem in undirected hypergraphs (SPP) has many con-
nections to the hyperassignment problem (HAP), as we will see in the next
chapter.
Problem 2.4.1 (SPP).

Input: A pair (U,cg) consisting of an undirected hypergraph U = (N, E)
and a cost function cg : E — R.

Output: A minimum cost partitioning of U w.r.t. ¢, i. e., a partitioning K*
of U such that

cg(K*) = min{c; (K) : K is a partitioning of U},

or the information that no partitioning exists if this is the case.

The following is an ILP formulation for the set partitioning problem. We
will prove its correctness in the next lemma.

minimize Z cp(e)x, (SPP)
x€RE b
subject to Z x,=1 VneN 6]
ecE:nce
x>0 (i)
x ezt (iii)

The variable x, for e € E indicates whether the set e is contained in the
partitioning. e is in the partitioning if and only if x, = 1. Otherwise x, is equal
to 0.

By the definition of a partitioning every n € N is contained in exactly one
set in the partitioning. This requirement is described by (.

Lemma 2.4.2. Given an undirected hypergraph U = (N, E) and a cost function
cg : E — R, there is a bijection between the feasible solutions of and par-
titionings of U. The optimum value of is equal to the cost of the minimum
cost partitioning of U w. . t. cg if it exists and to oo otherwise.

Proof. Similar to the proof of Lemma the constraints imply that x €
{0,1}F, we want a set e € E to be contained in a partitioning if and only if
x, = 1 in the corresponding solution to (SPP), corresponds to the
requirement that every element of X is contained in exactly one set of a cover,
and the minimized functions are preserved under the bijection. O
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For an investigation of SPP see [Bor98]. Here we only want to remark that
SPP is 42 -hard.

2.5 Overview of Further ILP Formulations of HAP

This section gathers further ILPs for HAP, which we will consider later.
The first ILP works for arbitrary directed hypergraphs. It formulates HAP
in terms of SPP. We will proof its correctness in the next chapter.

minimize Y ca(a)x, (HAP_SP)
X€ERA =i
subject to Z x, =1 VveVdire {out,in} 6))]
aesdir(y)
x=0 (i)
x ez’ (iii)

The variables have the same meaning as in (HAP). The idea of this formula-
tion is to state that feasible solutions have to be hyperassignments by requiring
that every vertex of the directed hypergraph has exactly one outgoing and one
ingoing hyperarc in the hyperassignment.

For the following two ILPs, we assume that D is partitioned. We will discuss
them in chapter

The next ILP can be stated for dir € {out,in}.

minimize Y ca(@)x, (HAP_pdin)
xeRA’ydire]R‘ﬁdlr A
subject to Z ygir =X, VaeA 6}
cegdirgeC
Z x, =1 Vv € V,rid € {out, in} (ii)
aesmd(y)
x,y>0 (iif)
x 7’ (@iv)
ydir c Z‘Kdir (V)

Definition 2.5.1. Let
Pp(HAP Py := {(x, yd) e R* x R*"" : (HAP P™) () (i)}
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be the polyhedron associated with the LP relaxation of (HAP P“"). Further, let

dir dir ;
P RAXRET S RA, (o, y i) o x
pdir

dir 3 i
(RAX R S RA, (x, y U e (xg)aesinp)

T p,

be mappings that produce projections onto the coordinates of all the hyperarc
variables and the hyperarc variables for the outgoing or ingoing hyperarcs of
one part P;, respectively.

This is an extension of the formulation (HAP_SP). Additionally to the vari-
ables and inequalities from there are variables yd for C € ¢4 for
every out- or ingoing configuration.

The idea of this formulation is to additionally include that every hyper-
assignment can be uniquely partitioned into out- or ingoing configurations. As
we will see in chapter[4} this makes the set of feasible solutions of the LP relax-
ation smaller.

C € 697 is a subset of the hyperassignment, which means that all hyperarcs

a € C are in the hyperassignment, if and only if ygir = 1. Otherwise ygir is equal

to 0. This is ensured by (HAP P ().

The next ILP is very similar to (HAP_P“). It includes that hyperassignment
can be uniquely partitioned both into out- and ingoing configurations whereas
the last ILP used only out- or ingoing configurations.

minimize _ Z cala)x, (HAP_P)
XGRA’youteR%’om ’yineR%’m A
subject to Z ygir =X, VYa € A, dir € {out,in} 6}
cegdiraec
Z x,=1 Vv e V,dir € {out,in}  (ii)
aesdir(y)
X,y y™ >0 (iif)
xe7’? (iv)
yiir e A Vdir € {out,in} (V)

Definition 2.5.2. Let
Pp(HAP P):= {(x, y°U, yi") e R x R¥™ x R%" : (HAP P) @}
be the polyhedron associated with the LP relaxation of (HAP P). Further, let

P. A gout ¢in A out _,in
T o RYXRY xR —=RY (x,y°",y") —x
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be a mapping that produces a projection onto the coordinates of all the hyper-
arc variables.

The last ILP works only for graph based hypergraphs where the B(a) for
a € A\ B are pairwise disjoint. It will be discussed in section

In addition to the x-variables, which have the same meaning as before, we
add variables z; for b € B. z, = 1 for b € B means that either b or the hyperarc
a € Awith b € B(a) is in the hyperassignment. We describe HAP on the graph
base using the z-variables and use coupling constraints between the x- and
g-variables.

minimize Z cala)x, (HAP_GB)
X€RA zeRE =i -
subject to Z Zp — Z 2, =0 VveVv 6))
besin(v) besy™(v)
D> =1 Vvev (i)
bes(v)
> 7> B x, VaeA\B (i)
beB(a)

Xp =2p — Z Xq VbeB (iv)

a€A\B:beB(a)

z2>0 4%
x 7’ (vi)
ze 7P (vii)

Definition 2.5.3. Let
Pp(HAP GB):= {(x,z) e R* x RE : M-}
be the polyhedron associated with the LP relaxation of (HAP_GB). Further, let
TESB RAXRESRY, (x,2)— x

be mapping that produces a projection onto the coordinates of all the hyperarc
variables.



Chapter 3

Complexity of HAP

Summary of this chapter We begin with looking for indications for the com-
plexity of HAP: A reformulation as SPP, which does not have obvious particular
properties, large basis matrix determinants, and an arbitrarily large integrality
gap in (HAP). Then, we prove that HAP is A/%-hard, even if we impose several
restrictions. We use a transformation from SPP and the 3-matching problem to
HAP.

3.1 HAP in Terms of SPP

We can formulate the hyperassignment problem as a set partitioning problem.
This is shown in the next lemma.

The only restriction which holds for the resulting undirected hypergraph
is that its nodes can be partitioned into two sets such that every hyperedge
contains at least one node from each set. Since SPP is A2 -hard and the
restriction does not seem to be strong, this suggests that HAP is also A/ %-
hard. We will proof this in section (3.4

Lemma 3.1.1. Given a directed hypergraph D = (V,A) and a cost function c, :
A — R, define

N :=V x {0,1},
e(a):={(»,0):veT,}u{(v,1):veH,} foraecA,
E:={e(a):a €A},
cg(e(a)) := cyla).

Then there is a bijection between exact circulations H in D and partitionings K of

18
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U = (N, E) such that
ca(H) = cg(K)
if K is the image of H under the bijection.
(HAP SP) is a correct ILP formulation of HAP and the set of feasible solutions
of its LP relaxation is the same as for (HAP).

Proof. We will prove this using the ILPs. For the undirected hypergraph U
defined above, (SPP) reads

minimize Z ce(x,)x,

x€RE b
subject to Z xx=1 VneVx{0,1} @
ecE:nece
x=0 (i)
x € ZF (iii)

If we now split (i) into the equations for n € V x {0} and n € V x {1} observing
that

feecE:(v,0)€eel ={e(a)€E:veT,}={e(a) €E:ves®™(a)}
and

fecE:(v,1)€e}={e(a)eE:veH,}={e(a)€E:vesa)}
we get

Xe(a) = 1 VYVvey,
e(a)€E:ves°(a)

Z Xe(a) = 1 VveV. ” 7
e(a)eE:ves(a)

=

Now, using the bijective correspondence b : R* — R, (x)sea = (Xe(a))aca, We
can see that for the defined undirected hypergraph (HAP) and (SPP) consist
of exactly the same equations and inequalities after substituting (HAP) in

([HAP) (i) for eachv € V.
This partitioning formulation of HAP is the one given in (HAP SP). O

Remark 3.1.2. The previous lemma suggests that we may interpret HAP as
optimizing over the intersection of the two set partitioning problems given by
for dir=in and dir=out.

If all hyperarcs of D are arcs, the formulation also implies that in this case
HAP is a minimum cost bipartite perfect matching problem. In this case, the set
of feasible solutions of the LP relaxation of is an integral polytope.
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The transformation is also possible for the multi-commodity version of HAP.
There we use

N:=V x{0,...,k},
e(a,i):={(v,0):veT}u{(v,i):veH}U{(v,j):veT,,j#i}

foraeAandie€{l,...,k},

E:={e(a,i):a€Aic{l,...,k}},
cge(a,i)) :=cyi(a).

For k = 1 we get the transformation from above.

3.2 Determinants of Basis Matrices

The determinant of submatrices of coefficient matrices is an indicator for the
complexity of ILPs. For example, if the coefficient matrix is totally unimodular,
the LP relaxation is integral. In general, by Cramer’s rule, the denominator of
the variable values in a basic solution of a LP is (if the numerator and denomi-
nator are relatively prime) at most the determinant of the basis matrix.

For the LP relaxation of the formulation of HAP, the denominator,
and therefore also the determinant of basis matrices, can be arbitrarily large.
This is even the case if one allows only hyperarcs with head and tail cardinality
at most two. Am example of this is as follows.

Let s be a positive integer and consider the following directed hypergraph
D = (V,A) with 2s + 1 vertices and 3s hyperarcs with tail and head cardinality
at most two. We want V = {u,v;,w;,: i €{0,...,s —1}} and A=A; UA, with

Ay ={({vi,wi}, {vi,wi}) 11 €10,...,s — 1}},
Ay = { (v}, W) moassu}) s (wid {ud), (fud, (v}) si€{0,...,s — 13}

The only feasible solution of the LP relaxation of (HAP) is x, = 252;1 for all

a€A; and x, = le for all a € A,. Thus the determinant of the basis matrix is
at least 2s.
An upper bound on the modulus of the determinant is

[Tl
acA

if the hypergraph D = (V,A) can be extended to a graph based hypergraph
by adding arcs (this is also true for the hypergraph of the example). This is




CHAPTER 3. COMPLEXITY OF HAP 21

the case if head and tail cardinalities are equal for each hyperarc. Since every
column of the basis matrix can be represented as the sum of columns for the
corresponding arcs and basis matrices of for directed graphs are totally
unimodular, i.e., have determinant with modulus O or 1, we can apply the
multilinearity of the determinant until we get only such matrices and obtain
the bound.

3.3 Integrality Gap

The gap between the optimum solution of the LP relaxation of (HAP) and the
minimum cost hyperassignment can be arbitrarily large. An example is given

in figure

3.4 HAP Is /% -hard

HAP is 4% -hard, as will be shown now. Our first proof uses a transformation
from the decision problem version of SPP to HAP and works even if we only
allow directed hypergraphs as HAP input with tail and head cardinality at most
three for all hyperarcs.

Theorem 3.4.1. Given a directed hypergraph D = (V,A) satisfying |T,| = |H,| <
3 for all a € A and a cost function c4 : A — R, HAP with input (D, c,) is /P -
hard.

Proof. The problem to decide whether a partitioning of an undirected hyper-
graph U = (N,E) with [N| = 3s,s € N and |e|] = 3 for all e € E exists is
N -complete (see [|[GJ79], page 53).

Construct the directed hypergraph D = (V,A) with V = N and A = {(e,e) :
e € E}. This can be done in polynomial time and the resulting hypergraph
satisfies |T,| = |H,| < 3 for all a € A. Choose ¢4 : A = R,c4 = 0. Then
HAP with input (D, c,) returns a hyperassignment with cost 0 if and only if a
partitioning of U exists. O

The theorem leaves the case |T,| = |H,| = 2 open (for |T,| = |H,| =1 see
Remark [3.1.2)). For |T,| = |H,| = 2 we get an 42 -hard problem, but here we
need a slightly more complicated transformation.

Theorem 3.4.2. Given a directed hypergraph D = (V,A) satisfying |T,| = |H,| <
2 for all a € A and a cost function c4 : A — R, HAP with input (D, c,) is /?-
hard.
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(a) A (graph based, for d > 2 partitioned) di- (b) The optimum solution of the LP relax-

rected hypergraph. The thicker hyperarcs have ation of (HAP). Solid hyperarcs have the

cost g > 0, the others have cost 0. value 1, dashed hyperarcs the value 0.5.
The optimum value is 0.

(903

(c) Circulation in the hypergraph. It has (d) The other circulation in the hypergraph. It
cost g. also has cost g.

Figure 3.1: Example of an instance of HAP with only two circulations and
arbitrary large integrality gap g for (HAP).
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Proof. The 3-dimensional matching problem, which given an undirected hyper-
graph U = (N UOURE), IN|=|0| =P|,
leNN|=]enO|=|enP|=1 Ve€E

asks whether a partitioning of U exists, is /% -complete (see [GJ79], page 46).
Construct the directed hypergraph D = (V,A) with

V=Nuou{{p}x{0,1}:peP}
and
A=A UA,,
A, ={((enN)U(en0),{(eNR0),(eNR1)}) e €E},

Ay = {({(emp,o)},emN),({(enp,l)},emo) :eeE}.

This can be done in polynomial time and the resulting hypergraph satisfies
|T,| = |H,| <2 for all a € A. Choose ¢, : A— R,cy = 0. Then HAP with input
(D, cy) returns a hyperassignment with cost 0 if and only if a partitioning of U
exists. The chosen hyperarcs from A; correspond to the e € E in the partitioning
of U. O

3.5 HAP for Partitioned Hypergraphs

The resulting directed hypergraphs in the transformations from above are not
partitioned. We will prove next that HAP for partitioned hypergraphs is also
NP -hard.

Theorem 3.5.1. Given a partitioned hypergraph D = (V,A) satisfying |T,| =
|Hy,| <3 foralla € A d <3 and a cost function c, : A — R, HAP with input
(D, cy) is /P -hard.

Proof. Again, we use a transformation from the 3-dimensional matching prob-
lem on the undirected hypergraph U = (N WO UPE), |N| =|0| = |P|,

leNN|=]enO|=|enP|=1 Ve€E.
Construct the directed hypergraph D = (V,A) with

V=(Ex{N,0,P}))U(NUOUP)
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and

A= {(emN,{(e,N)}) :eeE}
U{(en0,{(e,00) rec E}u{(enP{(e,P)}) :e € E}
U{({(e,N)},eﬂN):eeE}
U{({(e,0)},en0) e E} u{(i(e,P)},enP) ;e E}
U{ (1(e.N), (¢,0), (e, PI}, {(e,N), (,0), (¢, P}) s e € E}.

This can be done in polynomial time. For d = 3, D is partitioned. The parts are
{(e,N),(e,0),(e,P)} for e € E and all the one element subsets of NUOQUP. All
hyperarcs a € A satisfy |T,| = |H,| < 3.

Now, we prove that there exists a hyperassignment in D if and only if there
exists a partitioning of U. This proves the theorem. Just define ¢, : A — R,c4 =
0. Then HAP with input (D, c,) returns a hyperassignment with cost 0 if and
only if a partitioning of U exists.

Indeed, assume that K is a partitioning of U. Then

H= {(e NN, {(e,N)}) :eeK}
u{(en0,ie,00) reek}u{(enBile,P)}) e ek}
u{(ite, M}, enN) s e ek}
u{({(e,O)},mo) :eeK}u{({(e,p)},emp) :eeK}
U{(1(e,N), (¢,0), (e, PIL, {(e,N), (¢, 0), (e, P)}) : e € E\ K }.

is a hyperassignment in D. K being a partitioning guarantees that |67 (v)| =
|657(v)| =1 for v € NUOUP. For the other vertices the requirement is satisfied
automatically for every subset K of E by the construction.

On the other hand, if H is a hyperassignment in D, by construction for every
e € E holds either

({(e,N),(e,0),(e,P)}, {(e,N),(e,0),(e,P)}) €H
or
(enN,{(e,N)}),(en0,{(e,0)}),(enB{(e,P)}) €eH

because {(e,N),(e,0),(e,P)} has no other ingoing hyperarcs. Define K such
that e € E is in K in the second case and e is not in K otherwise. Since H
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is a hyperassignment and there are no other ingoing hyperarcs for N UO U P
than those from the second case, we get for each node of U exactly one e € E
containing it. Thus, K is a partitioning of U.

O

For the case where the input is a partitioned hypergraphs and d = 2 the
complexity remains open. For partitioned hypergraphs with d = 1, again all
hyperarcs are arcs and HAP is solvable in polynomial time.

3.6 HAP for Graph Based Hypergraphs

The directed hypergraphs constructed in the proofs of Theorems
and are not graph based. But because all hyperarcs have equal tail and
head cardinalities one can add arcs to the hypergraphs such that they become
graph based and assign costs > 0 to the arcs. Then the proofs are still correct
and therefore the results also hold for graph based hypergraphs.

Still, one can try to reduce HAP for graph based hypergraphs to the prob-
lem for the base graph which has an integral LP relaxation and then add the
hyperarcs which are not arcs in an ILP formulation.

In (HAP_ GB)), we give an example of how this can be done.

and describe HAP for the base graph in the
way it is done in by using the z-variables. z, = 1 for b € B means that
either b or the hyperarc a € A with b € B(a) is in the hyperassignment. Thus,
the values for arcs in the variable vector z have a different meaning than in x.
zp = 1 for b € B does not necessarily mean that b is in the hyperassignment.
The meaning of the x-variables is the same as in (HAP).

The connection between the x- and z-variables could be made by a con-

straint like
2Zp = Z Xa,
acA:beB(a)
but after substituting this in (HAP_GB) (i) and (HAP_GB) (il), we would get
exactly the constraints from (HAP).

A different possibility is given by (HAP_GB] and (HAP_GB) (iv). It can
be applied only if the heads and tails of the hyperarcs B(a) for a € A\ B are

pairwise disjoint. (HAP GB) says, when a hyperarc can be chosen, namely,
if all the z-values for the arcs for this hyperarc from the graph base are chosen.

(HAP GB) calculates from this the values of the arcs. The sum in this
inequality sums up at most one element.
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However, the following lemma shows that this formulation does not lead to
a good LP relaxation.

Lemma 3.6.1. Let D = (V,A) be a graph based hypergraph, such that the heads
and tails of the hyperarcs B(a) for a € A\ B are pairwise disjoint, and let ¢, : A —
R be a cost function. Then ngB(PLp(HAP_GB)) C P;p(HAP), i. e. the projection of
the set of feasible solutions of the LP relaxation of to x is a subset of
the set of feasible solutions of the LP relaxation of (HAP). There exist hypergraphs
where it is a proper subset.

Proof. For the first statement calculate the value of z in by us-
ing from a feasible solution of (HAP). These values satisfy
and (i), because after substitution of the z; they are
and (. is implied by the nonnegativity con-

straints for x,,a € A\ B in (HAP), because after substitution of z, from

(HAP GB) this constraint is just x, > 0.
For an example where the sets are not equal, see figure O

If we add the constraint x; > 0 for b € B to (HAP_GB)), the sets become
equal again.

Figure 3.2: Graph based hypergraph D = (V,A), V = {vi,...v3}, A =
{ar,...as}. 2o, = 24, = 24, = 1, 24, = 0, X4, = Xq, = 0.5, x, = —0.5,
Xq, = Xq, = 1 is a feasible solution of the LP relaxation of (HAP_GB) but its
projection to x is infeasible for (HAP).



Chapter 4

Configuration ILP and its
Advantages

Summary of this chapter To begin with, we present computational results for
HAP using instances arising from our application setting. They suggest that the
elimination of fractional solutions of the LP relaxation which violate so
called clique inequalities is very important. To address this issue we propose a
different ILP for HAP in partitioned hypergraphs using configurations whose LP
relaxation automatically prohibits such solutions. In the end, we show that the
novel formulation separates more than only cliques.

4.1 Computational Results using (HAP)

Trying to solve practical instances of HAP using the ILP showed that
the separation of clique inequalities, which state that the sum of the variables
corresponding to a clique in the conflict graph (see next section for an explana-
tion) is less than or equal to one, is very important. The computational results
(see figure show that the gap between the LP solution and the ILP solution
is very small if one adds enough clique inequalities, although it can be large
without them. The LP bound improved by adding cliques by up to 20% and
the LP-IP gap reduced in many cases to a value of less than 1 %.

The instances are taken from a project with DB Fernverkehr AG, which deals
with long distance passenger railway transport. These instances describe cyclic
weekly schedules of the ICE 1 trains which operate in Germany.

27
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Table 4.1: Computational results with real-world vehicle rotation planning
problems using and CPLEX 12.1.0. The LP-IP gap is given by 1 — %,
where L is the optimum value of the LP relaxation and I is the best integral
solution found by CPLEX or Gurobi 3.0.0. The root gap is 1 — 1;_1’ where R is
the optimum value of the LP relaxation before branching but after applying the
cuts described in the last two columns. The root improvement is % -1

. = g
= = 5 .
sz -
S E 5 = o & g
g E 5 o0 & E g 9
° 5 s 5 g 5 S 3
* % & — 2 e 3 3
534 52056 140081 11.16% 6.81% 4.90% 160 14
620 80477 236020 8.72% 0.00% 9.54% 120 2
812 102375 216566 0.38% 0.18% 0.20% 24 16
1128 267542 732134 459% 0.26% 4.55% 263 0
1310 363513 1006024 7.85% 0.22% 8.28 % 378 2
1496 469932 1369224 18.70% 1.86% 20.71% 809 0
1696 618348 1787078 517% 0.16% 5.28% 925 0
1746 649525 1859898 7.52% 4.88% 2.86% 563 0
1798 647650 1822718 13.60% 0.95% 14.65% 537 0
1798 647650 1822718 13.35% 0.62% 14.69% 604 0
2006 855153 2491372 5.76% 0.68% 5.39% 1025 0
2260 1079535 3138752 9.89% 2.03% 8.73% 954 0
2502 1290750 3680124 7.06% 0.76% 6.79% 801 0
2620 1432355 4187296 9.05% 1.15% 8.68% 1068 0
2624 1439453 4087042 14.17% 5.23% 10.41% 951 0
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4.2 Analysis of Cliques in the Conflict Graph

If Q is a clique in the conflict graph of a directed hypergraph D, then

Zxaﬁl

aeqQ

is a valid inequality for every (integral) feasible solution of (HAP), because no
two hyperarcs, which are both contained in a clique, can be simultaneously in
a hyperassignment in D. Such an inequality is called clique inequality and can
be used to separate fractional feasible solutions of the LP relaxation of (HAP),
which violate this inequality.

Let us call the only hyperarc which is no arc in the hypergraph from fig-
ure a; and the two outgoing arcs of its tail a, and a;. Then the clique
inequality

Xq, +Xg, +Xq, =1

does not hold for the fractional solution in figure There,
Xg, + Xq, + Xq, =0.5+0.5+0.5=15.

If we add this inequality to we cannot get this solution as an optimum
any more.

The aim is to find maximal cliques, because for cliques which are not maxi-
mal, the clique inequalities are usually no facets of the polytope defined by the
set of feasible solutions of the LP relaxation.

We begin this section with a lemma for partitioned hypergraphs which
states that it is enough to look for cliques in clique graphs. Every clique in
the conflict graph of a partitioned hypergraph is a clique in a clique graph of
the partitioned hypergraph. Since clique graphs, which are induced subgraphs
of the conflict graph, are smaller than the whole conflict graph this makes it
easier to find cliques.

Then we proceed with an analysis of clique graphs. We want to study
whether there is a possibility to easily find maximal cliques. Since a maxi-
mal clique in a perfect graph can be found in polynomial time ([[GLS88])), it is
interesting to find out in which cases clique graphs are perfect. For this purpose
we investigate the holes and antiholes of clique graphs. We concentrate on the
situation where d < 7 because this is the important case for vehicle rotation
planning.

Lemma 4.2.1. Let D = (V,A) be a partitioned hypergraph. Then, every clique in
the conflict graph G of D is a subset of the nodes of some clique graph of D.
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Proof. Let Q be a clique in G containing some hyperarc a. Thus, every other
hyperarc b in Q must have t(b) = h(a) or h(b) = h(a) Assume that Q contains
some hyperarc b, with h(b,) # h(a) and some hyperarc b, with t(by) # t(a).
Now, b, and by, cannot be connected by an edge in G since t(b,) = t(a) # t(by)
and h(b,) # h(a) = h(by,), which contradicts the assumption that Q is a clique.
Hence, the tails or heads of all the hyperarcs in Q lie in one part and therefore
are all nodes of one clique graph. O

Lemma 4.2.2. Let D = (V,A) be a partitioned hypergraph and let G be an out-
going (ingoing) clique graph of D. Then, for each of the at most |A| hyperarcs a
with |T,| = 1 (|H,| = 1), a maximal clique in G containing a can be found in
polynomial time.

Proof. W.1. 0.g. we will consider only an outgoing clique graph in the proof.

A maximal clique in G containing a can only contain hyperarcs of two types.
The first type are hyperarcs from S := {b € A: T, C T}, which form a clique.
The others are hyperarcs ¢ with H.NH, # 0. There are at most 2¢~! possibilities
for their heads and at most 2¢ possibilities for their tails (the parts from which
to which they go are fixed) for the second type. Thus, the number of such
hyperarcs is constant for constant d. For each possible subset of these hyperarcs
(there is also a constant number of subsets) check whether it is a clique. If
this the case, add all hyperarcs from S which are connected to all of these
hyperarcs. The result is a clique. The clique with maximum cardinality from all
such cliques is then a maximal clique.. O

In what follows, we will use that in perfect graphs a maximal clique can
be found in polynomial time (see [[GLS88]). Complements of perfect graphs
are perfect by definition. Bipartite graphs are perfect, because all its holes and
antiholes have an even size.

Lemma 4.2.3. Let D = (V,A) be a partitioned hypergraph and let G be an out-
going (ingoing) clique graph of D. Then for each of the at most |A| hyperarcs a
with |T,| = 2 (|H,| = 2), a maximal clique in G containing a can be found in
polynomial time.

Proof. We can proceed as in the previous proof with the only difference that
now the subsets of hyperarcs of the second type with all the hyperarcs from S
which are connected to all of them induce the complement of a bipartite graph
instead of a clique. However, complements of bipartite graphs are perfect and
we can find the maximal cliques there in polynomial time. O
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Lemma 4.2.4. Let D = (V,A) be a partitioned hypergraph and let G be an out-
going (ingoing) clique graph of D for a part of size at most 6 such that all its
outgoing (ingoing) hyperarcs in G have tail (head) cardinality at least 3. Then G
is perfect.

Proof. W.1.0.g. consider an outgoing clique graph. Every hyperarc with tail
cardinality at least 4 will be contained in every maximal clique since it will
have at least one tail vertex in common with any other hyperarc in G. For
each hyperarc with tail cardinality 3 there is only one possibility for a tail of a
hyperarc (exactly the vertices that do not appear in the tail of this hyperarc)
that is not connected to this hyperarc in G. Therefore, the complement of G is
bipartite. O

Lemma 4.2.5. Let D = (V,A) be a partitioned hypergraph and let G be an out-
going (ingoing) clique graph of D for a part of size 7 such that the tails of all
hyperarcs in G have tail (head) cardinality at least 3. Then G does not contain
odd holes and antiholes of size 5.

Proof. Assume that we have an outgoing clique graph and that the hyperarcs
ai,...,a;,l = 5 induce a hole in G. Since no three of them can be pairwise
connected by an edge, every vertex in the considered part for the clique graph
may be shared by only two of them. But then

Z T, |<2-7=14<15<3-1< Z IT, |,
i€{1,...,1} i€{1,...,l}

which is a contradiction.

For the antihole, chose one hyperarc a;. There must be two hyperarcs a,, a;
in the antihole not connected to a;. Thus, three of the vertices from the part
are contained in T, , and the remaining four vertices must be either covered
by T,, and T,,, or T,, = T,, and one vertex remains. Now, we need two more
hyperarcs ay4,as for the antihole such that a4 and a5 are not connected and
they are not connected to both a, and a;. But this is impossible since we have
at most five vertices in the part which are not contained in the tails of both a,
and a; and we need at least 3+ 3 = 6 > 5 vertices. O

Remark 4.2.6. Antiholes of size 7 or larger are possible in this setting. An
example is given in figure 4.1

Lemma 4.2.7. Let D = (V,A) be a partitioned hypergraph and let G be an outgo-
ing (ingoing) clique graph of D for a part of size 7 such that its outgoing (ingoing)
hyperarcs have tail (head) cardinality at least 3. Then G does not contain anti-
holes of size 7 which contain a hyperarc with tail (head) cardinality 4.
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Figure 4.1: Let P = {v;,...,v,} be a part of some partitioned hypergraph and
let ay,...,a; be the outgoing hyperarcs of P with pairwise disjoint heads and
Tal = {V1:v2av3}: Taz = {VS)vé) V7}, Ta3 = {Vz,VS,V4}, Ta4 = {vlavé) V7}, Ta5 =
{v3, V4, Vs, T, = {v1, v, v7}, Ty, = {v4, V5, Ve}. Then, the outgoing clique graph
of P is an antihole of size 7. The vertex names on the edges give one reason for
the edge.

Proof. Again, we regard an outgoing clique graph, and a hyperarc a; with tail
cardinality 4. For an antihole of size 7 there must be two hyperarcs a,, az in the
antihole not connected to a;. The two hyperarcs must have equal tail sets since
there are only three vertices left which are not covered by the tail of a;. If a4
and as are other hyperarcs which cannot be connected to a, or as, respectively,
they have to overlap in at least two vertices in the tail. But then the last two
hyperarcs in the antihole have to overlap, since each of them can be connected
to only one of the hyperarcs a4 and a5 in the conflict graph and there are only

five vertices left which they can use. But this is not allowed. O
Remark 4.2.8. Antiholes of size 9 or larger are possible. Let P = {vq,...,Vo}
be a part of some partitioned hypergraph and let ay,...,a9 be the outgoing

hyperarcs of P with apart from H,, and H,,, H,, and H, pairwise disjoint
heads and

Ta1 = {Vl’ V2,73, V4},
Ta2 = {VS: V6, V7},
Ta3 = {VZ, VS; V4},

Ty, = {vi,vs,v7},
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To, = 1{v2, V4, v6},
Toe = 1{v1,v3,v7,
T, = {v4, Vs, 6},
Ty, = {vi,va,v3},

Ty, = {vs, 6, v7}-
Then, the outgoing clique graph of P is an antihole of size 9.

Lemma 4.2.9. Let D = (V,A) be a partitioned hypergraph and let G be an outgo-
ing (ingoing) clique graph of D for a part of size at most 7 such that its outgoing
(ingoing) hyperarcs have tail (head) cardinality at least 3. Then every hyperarc
in G with tail (head) cardinality 5 is contained in every maximal clique.

Proof. There are at most seven vertices in the part and thus tails of a hyperarc
with cardinality at least 5 will intersect the tails of every hyperarc with tail
cardinality 3 or higher. O

We can summarize the previous lemmas as

Theorem 4.2.10. Let D = (V,A) be a partitioned hypergraph for d < 7. Then
one of the following holds.

1. A maximal clique in the conflict graph of D can be found in polynomial
time.

2. There is an odd antihole of size at least 9 in an outgoing (ingoing) clique
graph of D which consists only of hyperarcs with tail (head) cardinality at
least 3, one of which has size 4.

3. There is an odd antihole of size at least 7 in an outgoing (ingoing) clique
graph of D which consists only of hyperarcs with tail (head) cardinality 3.

4.3 Correctness of Configuration Formulations

We will now proof that (HAP_P®") and the stronger (HAP P) is also a correct

formulation for HAP. In the next section we will show that its LP relaxations
are smaller than the one of (HAP) or the equivalent (HAP SP).

The main idea is
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Lemma 4.3.1. Let D = (V,A) be a partitioned hypergraph and dir € {out,in}.
Then, for every hyperassignment H of D, there exists a set 6’ C €%" of configu-
rations such that foralla € A|{C € ¢’ :a € C} =|Hn{a}|, i.e., C'is a set of
configurations whose disjoint union is exactly H.

Proof. By the definition of a hyperassignment, ¢’ := {C/ : i € {1,...,w}} with
C/ = 51‘31“ (P;) is a subset of H and the required condition holds by construction.
O]

This easily implies

Theorem 4.3.2. Given a directed hypergraph D = (V,A) and a cost function
s : A— R, there are bijections between the feasible solutions of (HAP P%") and
(HAP_P), and hyperassignments of D. The optimum values of (HAP_P"Y) and
(HAP P) are equal to the cost of the minimum cost hyperassignment in D w.r. t.
cu if it exists and to oo otherwise.

Proof. Since the projection nzdlr(x, vy or 7P (x, y°U, yI") of every feasible so-
lution (x, y4") or (x, y°", y™) of (HAP Pa‘r; or (HAP P), respectively, to its
x-values is a feasible solution of (HAP_SP) and the objective functions are the
same, the previous lemma implies that (HAP_P%") and are a correct
formulations for HAP: For C € 6’ set y3' = 1 if C € ¢’ and y 3" = 0 otherwise

and use the same x-values as in (HAP SP). O

Remark 4.3.3. The set of feasible solutions of (HAP P) is the intersection of the
feasible solutions of (HAPP°“Y) and (HAPP™).
The sets of feasible solutions of the LP relaxations of (HAP P°“) and

(HAP_P™) can be different. Figure shows an example where (HAP_P°“)
separates a fractional solution which cannot be separated by (HAP P').

4.4 The Configuration Formulation Implies all Clique
Inequalities
We will proof now that all clique inequalities are implied by (HAP_P), which

is implied by the slightly more precise next theorem in connection with Re-

mark

Theorem 4.4.1. Let D = (V,A) be a partitioned hypergraph and Q C A a clique
in the outgoing or ingoing conflict graph of D. Then,

Zxa§1
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Figure 4.2: D = (V,A), V = {v;,...vs}, A= {a;,...a;} is a partitioned hyper-
graph with parts {v;}, {5}, {v3,v4}, {vs}. The LP relaxation of (HAP_P™") for
this directed hypergraph has the feasible solution with value 0.5 an all hyper-
arcs. (HAP P°™) and (HAP P) do not have it, because {v3,v,} does not have
any outgoing partitions containing ag or ag and therefore these two hyperarcs
cannot have a positive value in a feasible solution of the LP relaxation of a
formulation with outgoing configurations.

is a valid inequality for every feasible solution of the LP relaxation of
or (HAP_P™), respectively.

Proof. By Lemma Q € §9(p;) for some part P; and the chosen direction.
First of all, observe that |Q N C| < 1 for every C € ¢4, because the tails
and heads of two hyperarcs from C € 6" are disjoint, but never both the tails
and heads of two hyperarcs from Q are disjoint.
Now, let v be some vertex in P;. Then, by

1= Z Xa>

aesdir(y)

which is the sum of the right hand sides of (HAP P)() for a € §9°(v), and
considering the left hand sides we get

= >, 8% el yd

cegdir
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and, since every a € §9*(v) is contained in P; and exactly one such a is con-
tained in every C € %id‘r, we get

— Z ygir

o= <gidir

and the observation from above implies

— Z Z yélir + Z ygir

a€Q cegir:aeC Cewdr:c;nQ=0

DINDIS

asQ Ce%ﬁ“:aec
by (HAP P) and, finally, applying (HAP P) (i) again

~Tx.

aeQ

O

4.5 Other Properties of the LP Relaxation of the Config-
uration Formulation

First of all, the set of feasible solutions of the configuration formulation (HAP P)
is not integral. For an example see figure 4.3

Moreover, the example shows that also the projections of set P;p(HAP_P)
of feasible solutions of the LP relaxation of to the variables for all
outgoing or ingoing hyperarcs of one part are not always integral. However,
there are cases when they are integral.

Theorem 4.5.1. Let D = (V,A) be a partitioned hypergraph and let P; be some
part such that for every configuration C € ‘6‘1.‘1” there is a (possibly non-integral)

solution of the LP relaxation of (HAP_P")) where y. = 1. Then,

7P (Pp(HAP_PirY)

xPi

is integral.
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Figure 4.3: D = (V,A), V = {v,...vs}, A = {ay,...ao} is a partitioned hy-

pergraph with parts {v;}, {v,}, {v3,v4}, {vs}. The LP relaxation of (HAP P)
(and also the LP relaxation of (HAP)) has only one feasible solution for this

directed hypergraph. It has value 0.5 an all hyperarcs: Because of v3 and vy,
Xq, = Xq, = Xq = Xq,- Then, because of v; and vy, x4, = Xq, = Xq, = Xg,-
Finally, because of vs, we get the value 0.5 on all hyperarcs, and it is possible
to find a set configurations such that the variables of these configurations have
value 0.5 and the solution is feasible for the LP relaxation of (HAP_P).

Proof. Let (x,y%") bea feasible solution of the LP relaxation of (HAP P4, For
C € 697, define x(C) € RV P by

© 1 ifaecC
X = .
a4 0 otherwise

Then, by (HAP P")

(Xadaesinpy = 2 Yer-x(C). 4.1)
CE(gidir

Now, if for every C € %idir there is a feasible solution (x’, y’ diry & P p(HAP_pdin)

of the LP relaxation of (HAP P")) with y’glr =1,i.e., y’gl,r =0 for C' # C and

(x!)yesdipy = x(C), then by (4.1) npil,r(x, y4ir) for (x, y4ir) € P p(HAP PY") is
a’asd"(p;) xPi LP _
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dir

. . . . . . dir . .
a linear combination of integral projections ﬂ:zpi (x’, y"™") of feasible solutions

of (HAP PY) to {x, : a € §%(P,)} and thus nzi,i:(PLp(HAP_Pdir)) is integral.
O

Still, the configuration formulation implies much more than the clique in-
equalities. It implies all valid inequalities one can know from looking at the
outgoing or all the ingoing hyperarcs of one part.

Theorem 4.5.2. Let D = (V,A) be a partitioned hypergraph, let P; be some part
and let
(dir,rid) € {(out,in), (in, out)}.

Then, ni il: (P.p(HAP_P)) is a subset of the convex hull X of

fxe 78 (P) . Z x,=1 VvePr,

aesdr(y)

> x,<1 VveV\P}

aes"(v)Np;

Proof. The proof works similarly to the proof of the last theorem. im-
plies that every point in ni‘:(PLP(HAP_Pdir) is the linear combination of points
x(C) € X, since x(C) has only integral coordinates O or 1 and satisfies by the
definition of a configuration the equalities and inequalities defining X. O

The last theorem implies Theorem which we stated separately be-
cause of its importance for the practical application.

Figure shows an example of a fractional solution of the LP relaxation of
(HAP) which cannot be separated by a clique inequality but cannot appear as
a solution of the LP relaxation of (HAP_P).

i a—————

Figure 4.4: For d > 5 partitioned hypergraph with five vertices, all in one part,
and five hyperarcs. The fractional solution where all hyperarcs have value 0.5
is feasible for the LP relaxation of (HAP), but not feasible for the LP relaxation
of although it cannot be separated by a clique inequality.




Chapter 5

Solving the Configuration LP

Summary of this chapter Firstly, we formulate the pricing subproblem for
(HAP_P), which one has to solve to find the nonbasic configuration variable with
the least reduced cost for some basic solution. We propose two algorithms to solve
it. One of them solves at first a shortest path problem to find a structure, a so-
called relaxed configuration, which in general is not necessarily a configuration,
but already is a configuration for special instances arising from vehicle rotation
planning problems. If relaxed configurations are not enough, the algorithm has to
be applied many times. The other algorithm we propose can only be applied to a
special case and employs minimum cost flow techniques in a directed graph.

5.1 Pricing Subproblem

The number or configurations and thus also the number of variables in the
configuration ILP can be (although it is at most 2w|A|?—for each of
the two directions and each part at most d hyperarcs from A can be selected—
and thus polynomial for constant d) very high. Therefore, a possibility to solve
the linear programming relaxation of the configuration ILP without really enu-
merating all configurations is useful. We want to find a fast algorithm which,
given a basic feasible solution of (HAP_P), finds the nonbasic variable with the
least reduced cost. This can be used when solving the LP relaxation of
with a column generation algorithm.

Let (x, y°", y'") be some basic feasible solution of the linear programming

relaxation of (HAP_P) and let

Te RAx{out,in} x RVx{out,in}
be the corresponding solution of the dual problem, such that 7, 4;) is the dual

39
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variable for constraint for a and dir and 7, 4;;) is the dual variable
for constraint for v and dir.

The coefficient of y3', C € ¢°" U %™ in the objective function of
is 0. y‘ciir has always coefficient 1 in the constraints for a € C and
dir, where it only appears. Thus, the reduced cost of y., C € 64" is given by

- Z T (a,dir)-

aeC

Therefore, the task to find the outgoing or ingoing configuration variable
ygir, C € ¢, dir € {out,in} with the least reduced cost means to select the
following: a set of hyperarcs with pairwise disjoint tails and heads such that
the disjoint union of their tails or heads is a part, which has the minimum cost
w. . t. the cost function c¢j(a) := (g our) OF ¢4(a) := T(4 in), respectively.

We will do this for each of the two directions separately and select the
configuration variable with the least reduced cost from these two solutions
afterwards. For an easier notation, we will assume that we are looking for
outgoing configurations. Of course, it works in the same way for the other
direction.

5.2 Algorithm using Shortest Paths

5.2.1 Shortest Path Formulation for a Relaxation

To begin with, we will consider a relaxed situation by omitting the requirement
that the heads of the hyperarcs in a configuration have to be pairwise disjoint.
So, what we are searching for now is a subset of the hyperarcs such that the
disjoint union of their tails is

1 d;
Pi:{v-,...,vi }

1

forsomei € {1,...,w}. Let us call such set of hyperarcs a relaxed configuration.
This can be done by solving a shortest path problem in the directed graph
G = (X,J). The set of vertices of this graph is

X={@ 0 uniel, why <02 v uts o,

It describes, besides a source s and sink t, the set of all possible hyperarc tail
unions {{vl.l} UY:Y C{v?,. ..,vlfii}} , which can arise if we successively add
a hyperarc which contains the not already covered vertex with the least up-
per index from the part which we want to cover in its tail to get to a relaxed
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configuration. The first coordinate is the index of the part we are building suc-
cessively and the second coordinate is the set of upper vertex indices of those
vertices which are already covered by hyperarc tails. Since in the beginning of
this procedure one always has to select the hyperarc which covers some vl.l, this
vertex is always inside this set. It holds that

w
IX| = szi‘l +2<29y 42,
i=1

The arcs of G are

T=1(G 05 vihe) rie 1, whu

{(s,G, 1)) rie{l,..., whaes™P), v eT,}ul JJ(@
acA

where
J(@)={((i,J1), (i,J2)) 1 a € % (P),J, = J; U T, vE € T, },

with k = min{k € {1,...,d;} : vl.k : vl?‘ ¢ J,}. Firstly, we have the w arcs from
vertices in G for complete relaxed configurations to t. They could be omitted,
if we just identify these vertices with t, but this would make the notation more
complicated.

Each of the other arcs can be associated with some hyperarc a € A of the
partitioned hypergraph D. They describe from which vertex to which vertex
in G we can get if we add the associated hyperarcs using the procedure from
above.

This structure implies that G does not contain any directed cycles and the
set of corresponding hyperarcs a € A for arcs in an s-t-path in G corresponds
to a relaxed configuration. If we use cg(a) as the weight for the arcs which are
associated to hyperarc a, we get the cost w.r. t. ¢, of the relaxed configuration
as the cost of the path. The problem to find the relaxed configuration with the
cost w.r.t. ¢, then translates into a shortest path problem in G, which can be
solved in O(|X] - |J|) using for example the Bellman-Ford algorithm.

We already have calculated |X|. For |J|, this is more complicated, since the
number of arcs associated to a, depends on its tail cardinality and the upper
index of the first vertex in its tail. A worst case value for |J| is |X|-|A| (for each
hyperarc a € A we can have at most one element in |J| starting in some vertex
from |X|). For the expected value see the next section.
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5.2.2 Expected Complexity

Fori € {1,...,w}, let us assume that each of the 2% —1 possible tails of outgoing
hyperarcs of P; appears with the same probability and calculate the expected
number E; of associated arcs in G for such a hyperarc.

How many different tails can there be if the tail cardinality |T,| and the
vertex with the minimum upper index k, of vertices in the tail are fixed? We
can choose the remaining |T,| — 1 vertices in the tail from d; — k, vertices in the
part with higher upper index than k,, so there are (IdTl_Ifal) possibilities.

And how many associated arcs are there for such a hyperarc? If k, =1, it is
just one—we can chose the hyperarc in our procedure only as the first hyperarc
to add. Otherwise J; has to contain all the k, — 1 vertices with upper index
less than k,, and for each of the other but the T, vertices which are in the
hyperarc tail, we can decide whether we want it to be in J; or not. So, we have
2di=(ka=D=ITal as50ciated arcs.

There are 2%~ different tails which contain v
k,=1.

Thus, we get

1

+, this is the case where

1 [ d dikatl o
B = 9l 4 ( i a)zdi—(ka—l)—m
' 2di_1\ ,;zzmzzl |T,|—1
d; di—k,
__ 1 (zdi—1+ D (di_ka) g~k =D~(41)
24 -1 \ k,=2 j=0 J
[ 4 di—k,
= 1 2di=1 (di _ ka)z(di_ka)_j .17
2% -1 \ ke=2 j=0 J
1 ( -1 : d;—k
= 24~ + 34 a
2% -1 kZ:z
1 ( di-1 od (1) 1
= 2d- 1 2% + 3% 5 — g -1
‘T \ k,=0
1 di+1
_ 1 (2di—1 4 3d 1- (5) .
— od 2
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1 3 NG 4
= odi=1 4y gdi | Z. 12 -
2di _1q ( + 2 3 3
1 1 1
= 2di=1 4 gdi. [ 2 _ Z .34
24 —1 ( * (6 3

= ! 2di—1 1 3di—1 _ 1
24 —1 2 3

€0 (1.5df)

For d; = 7, which is the highest possible value in the vehicle rotation planning
application, we get E; ~ 3.37. Then, the expected running time of the Bellman-
Ford algorithm is in O(3.37 - 64 - |A| - w).

5.2.3 Solving the Pricing Subproblem

There are types of partitioned hypergraphs where relaxed configurations are
automatically configurations. This is, for example, the case for the directed
hypergraph from vehicle rotation planning, if we allow a trip only as the next
trip of a vehicle if it starts less than 24 hours after the end of the current trip.
Then, no two outgoing hyperarcs of one part with disjoint tails have a vertex in
their heads in common, since the arrival time of two trips in one train differs
by some positive number of full days. Often it is enough to do vehicle rotation
planning with this restriction, because in most cases only such hyperarcs appear
in an optimum solution.

If we do not have such a situation and want to get configurations and not
possibly relaxed configurations (the same formulation with relaxed configura-
tions does not imply the clique inequalities), we can modify the method from
above.

Since this is the important case for vehicle rotation planning, we describe
it for hypergraphs for which the heads and tails of all hyperarcs have the same
cardinality. For each of the |V|- (V| =1)-...-([V| —d + 1) € O(JV|%) possi-
ble d-tuples L of pairwise different vertices of the hypergraph, we apply the
procedure from above with the requirement that the head of a hyperarc which
covers vertices vl.ll, e, vl.lr with its tail is {L;,..., L }.

Thus, we can solve the pricing subproblem by applying the method from
above O(|V|?) times (with less hyperarcs than before) and selecting the solu-
tion with the least cost in O([V|?- 2971 . w - 1.5 ]4]) = O(|V|?-w - |A]) for
constant d if the head and tail cardinalities of the hyperarcs are equal. This is
for d = 7 a very high exponent.
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5.3 Algorithm for a Special Case using Minimum Cost
Flows

We will present a different algorithm now. It works only if the hyperarcs satisfy
a special condition. The condition will be explained later.

Let P; be a part and let C € 6°" be some outgoing configuration of P;.
Define T(C) := {T, : a € C} to be the set of all tails of the hyperarcs in the
configuration. Possible values of T(C) are exactly all sets of disjoint subsets of
P; whose union is P;. There are Bjp| < B; such sets where B, is the n-th Bell
number ([[Sta00]). The first Bell numbers are ([|[Slo10])

By=1,
B, =1,
B, =2,
B; =5,
B, =15,
Bs =52,
Bg = 203,
B, =877.

We want to solve the pricing subproblem for each possible T(C) separately
now. Given some T = T(C), we will show that the pricing subproblem can be
formulated as a minimum cost flow problem on at most |V|+ d + 2 vertices
with at most |6°"(P;)| arcs, a flow value of at most d and capacities all equal
to one. |T| is at most d.

Basically, we will group the vertices such that each outgoing hyperarc of P;
becomes an arc and the hyperflow problem, which is a possible formulation of
the pricing subproblem, becomes a flow. The hyperarcs used for the underlying
hyperflow problem will be the ones whose tails are elements of T. Let us call
this set of hyperarcs Ar.

We now explain when the algorithm is applicable. This is the case if it is
possible to introduce an equivalence relation ~ on Ay such that H, N Hy, # 0
implies a ~ b and a ~ b implies T, N Ty, # 0 or H, N Hy, # 0.

Let V; be the set of the equivalence classes under this relation. |Vi| is at
most |V|. Now, for every hyperarc in a € A; there is exactly one element in T
equal to T, and exactly one element V(a) in V; which contains hyperarcs that
have nonempty head intersection with a. Two hyperarcs from A; can be used
simultaneously in a configuration if and only if their corresponding elements in
T and V; are both different.
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Therefore, a configuration C with the minimum reduced costs for a given
P; and T = T(C) is the set of all hyperarcs a such that

(TaJVT(a)) € EAT = {(TaDVT(a)) -a EAT} CTx VT

has value one in a optimal solution to the minimum cost flow problem in the
directed graph

(TUVTU{s,t},EAT U{(s,v):veTtu{nt):v GVT})

with all arc capacities equal to one, costs c,(a) for e, and all other arc costs
zero sending |T| units of flow from s to t.

Thus, if the hypergraph satisfies the condition from above, we can solve
the pricing subproblem by solving at most w - B; minimum cost flow problems
on O(|V| + d) vertices each and at most By - |A| arcs altogether and selecting
the configuration with the least reduced cost from all these. If the condition is
satisfied only for some parts, we can use this algorithm for these parts and the
one from the previous section for the others.



Chapter 6

Summary

Summary of this chapter We sum up the theoretical results of this thesis and
give practical conclusions.

6.1 Theoretical Results

We introduced a novel concept of hyperassignments in directed hypergraphs
that is motivated by regularity requirements in vehicle rotation planning. Such
vehicle rotation planning problems can be modeled as hyperassignment prob-
lems (HAP).

We studied the complexity of HAP. We began with transformations from
HAP to SPP and vice versa. We proved that HAP is A2 -hard, even with
several restrictions like graph based hypergraphs with equal head and tail car-
dinality at most two, and partitioned hypergraphs with equal head and tail
cardinality at most three. We also showed that the determinants of the basis
matrices and the integrality gap in the canonical ILP formulation of HAP can
become arbitrarily large.

Furthermore, we were concerned with cliques in the conflict graphs associ-
ated with partitioned hypergraphs. We gave a characterization of the subgraphs
of the conflict graph, which contain all maximal cliques. We then introduced
a novel extended ILP formulation of HAP, proved its correctness, and showed
that all clique inequalities hold for the feasible solutions of its LP relaxation.

Finally, we proposed efficient algorithms to solve the pricing subproblem
for the extended formulation without resorting to an enumeration of the large
number of variables there.
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6.2 Practical Conclusions

Tests with real data implied that adding all clique inequalities to the canonical
ILP formulation of HAP leads to very small gaps between the optimum value
of the ILP and the LB while they can be large otherwise. Our novel extended
formulation using configurations implies all the clique inequalities and also
other cuts which separate fractional solutions of the LP relaxation of our first
formulation.

At least for the practically relevant case where we allow the break between
subsequent trips of a vehicle to be at most one day long, we can deal well
with the large number of variables in the configuration formulation. We gave
a pricing algorithm for this case which consists of solving two shortest path
problems on 64w + 2 vertices.
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