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SYMMETRY ANALYSIS AND EXACT SOLUTIONS OF SEMILINEAR

HEAT FLOW IN MULTI-DIMENSIONS

STEPHEN C. ANCO, S. ALI, AND THOMAS WOLF

Abstract. A symmetry group method is used to obtain exact solutions for a semilinear
radial heat equation in n > 1 dimensions with a general power nonlinearity. The method
involves an ansatz technique to solve an equivalent first-order PDE system of similarity
variables given by group foliations of this heat equation, using its admitted group of
scaling symmetries. This technique yields explicit similarity solutions as well as other
explicit solutions of a more general (non-similarity) form having interesting analytical
behavior connected with blow up and dispersion. In contrast, standard similarity reduc-
tion of this heat equation gives a semilinear ODE that cannot be explicitly solved by
familiar integration techniques such as point symmetry reduction or integrating factors.

1. Introduction

In the study of nonlinear partial differential equations (PDEs), similarity solutions are
important for the understanding of asymptotic behaviour and attractors, critical dynam-
ics, and blow-up behaviour. Such solutions are characterized by a scaling homogeneous
form arising from invariance of a PDE under a point symmetry group of scaling trans-
formations that act on the independent and dependent variables in the PDE [1, 2].

For scaling invariant PDEs that have only two independent variables, similarity solu-
tions satisfy an ordinary differential equation (ODE) formulated in terms of the invariants
of the scaling transformations. However, this ODE can often be very difficult to solve
explicitly, and as a consequence, special ansatzes or ad hoc techniques may be necessary
in order to obtain any solutions in an explicit form. The same difficulties occur more
generally in trying to find explicit group-invariant solutions to nonlinear PDEs with other
types of point symmetry groups.

An interesting example is the semilinear radial heat equation

ut = urr + (n − 1)r−1ur + k|u|qu, k = ±1 (1)

for u(t, r), which has the scaling symmetry group

t → λ2t, r → λr, u → λ−2/qu, (2)

where r denotes the radial coordinate in n > 1 dimensions. This equation describes
radial heat flow with a nonlinear heat source/sink term depending on a power q 6= 0. The
coefficient k of this term determines the stability of solutions to the initial-value problem.
In particular, for k = −1 all smooth solutions u(t, r) asymptotically approach a similarity
form u = t−1/qU(r/

√
t) exhibiting global dispersive behaviour u → 0 as t → ∞ for all

r ≥ 0, while for k = 1 some solutions u(t, r) exhibit a blow-up behaviour u → ∞ given
by a similarity form u = (T − t)−1/qU(r/

√
T − t) as t → T < ∞ [3, 4]. In both cases, U

satisfies a nonlinear ODE

U ′′ + ((n − 1)ξ−1 − 1
2
kξ)U ′ − 1

2
qkU + kU |U |q = 0 (3)
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with

ξ =

{

r/
√

t, k = −1

r/
√

T − t, k = 1
(4)

which arises from the scaling invariance (2). This ODE cannot be explicitly solved by
standard integration techniques [2] such as symmetry reduction or integrating factors
when n 6= 1 and q 6= 0. (More specifically, ODE (3) has no point symmetries X =
η(ξ, U)∂/∂U + ζ(ξ, U)∂/∂ξ and no quadratic first integrals Ψ = A(ξ, U) + B(ξ, U)U ′ +
C(ξ, U)U ′2, as established by solving the standard determining equations [1, 2] for X
and Ψ.) As a result, few exact solutions U(ξ) other than the explicit constant solution
U = (q/2)1/q are apparently known to-date.

In this paper we will obtain explicit exact solutions for the heat equation (1) by applying
an alternative similarity method developed in previous work [5] on finding exact solutions
to a semilinear radial wave equation with a power nonlinearity. The method uses the
group foliation equations [6] associated with a given point symmetry of a nonlinear PDE.
These equations consist of an equivalent first-order PDE system whose independent and
dependent variables are respectively given by the invariants and differential invariants of
the point symmetry transformation. In the case of a PDE with power nonlinearities, the
form of the resulting group-foliation system allows explicit solutions to be found by a
systematic separation technique in terms of the group-invariant variables. Each solution
of the system geometrically corresponds to an explicit one-parameter family of exact
solutions of the original nonlinear PDE, such that the family is closed under the given
symmetry group acting in the solution space of the PDE.

In Sec. 2, we set up the group foliation system given by the scaling symmetry (2) for
the heat equation (1) and explain the separation technique that we use to find explicit so-
lutions of this system. The resulting exact solutions of the heat equation are summarized
in Sec. 3. These solutions include explicit similarity solutions as well as other solutions
whose form is not scaling homogeneous, and we discuss their analytical features of inter-
est pertaining to blow-up and dispersion. Finally, we make some concluding remarks in
Sec. 4.

Related work using a similar method applied to nonlinear diffusion equations appears
in Ref. [7]. Group foliation equations were first used successfully in Refs. [8, 9, 10] for
obtaining exact solutions to nonlinear PDEs by a different method that is applicable
when the group of point symmetries of a given PDE is infinite-dimensional, compared to
the example of a finite-dimensional symmetry group considered both in Ref. [5] and in
the present work.

2. Symmetries and group foliation

For the purpose of symmetry analysis and finding exact solutions, it is easier to work
with a slightly modified form of the heat equation (1):

ut = urr + (n − 1)r−1ur + kuq+1, k = const., q 6= 0. (5)

In n > 1 dimensions, this heat equation (5) admits only two point symmetries:

time translation Xtrans. = ∂/∂t for all q, (6)

scaling Xscal. = 2t∂/∂t + r∂/∂r − (2/q)u∂/∂u for all q 6= 0, (7)

where X. is the infinitesimal generator of a one-parameter group of point transforma-
tions acting on (t, r, u). There are no special powers or dimensions for which any extra
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point symmetries exist for equation (5), as found by a direct analysis of the symmetry
determining equations.

To proceed with setting up the group foliation equations using the scaling point sym-
metry, we first write down the invariants and differential invariants determined by the
generator (7). The simplest invariants in terms of t, r, u are given by

x = t/r2, v = u/rp, (8)

satisfying Xscal.x = Xscal.v = 0 with

p = −2/q. (9)

A convenient choice of differential invariants satisfying X
(1)
scal.G = X

(1)
scal.H = 0 for

G(t, r, ut) and H(t, r, ur) consists of

G = r2−put, H = r1−pur, (10)

where X
(1)
scal. = Xscal.− (2+2/q)ut∂/∂ut− (1+2/q)ur∂/∂ur is the first-order prolongation

of the generator (7). Here x and v are mutually independent, while G and H are related
by equality of mixed r, t derivatives on ut and ur, which gives

Dr(r
p−2G) = Dt(r

p−1H) (11)

where Dr, Dt denote total derivatives with respect to r, t. Furthermore, v,G,H are related
through the heat equation (5) by

rp−2G − Dr(r
p−1H) = rp−2((n − 1)H + kvq+1). (12)

Now we put G = G(x, v), H = H(x, v) into equations (11) and (12) and use equation (8)
combined with the chain rule to arrive at a first-order PDE system

(p − 2)G − pvGv − 2xGx − Hx + HGv − GHv = 0, (13)

G − (p + n − 2)H + pvHv + 2xHx − HHv = kvq+1, (14)

with independent variables x, v, and dependent variables G,H. These PDEs are called
the scaling-group resolving system for the heat equation (5).

The respective solution spaces of equation (5) and system (13)–(14) are related by
a group-invariant mapping that is defined through the invariants (8) and differential
invariants (10). In particular, the map (G,H) → u is given by integration of a consistent
pair of parametric first-order ODEs

ut = rp−2G(t/r2, u/rp), ur = rp−1H(t/r2, u/rp) (15)

whose general solution will involve a single arbitrary constant. The inverse map u →
(G,H) can be derived in the same way as shown in Ref. [5] for the wave equation, which
gives the following correspondence result.

Lemma 1. Solutions (G(x, v), H(x, v)) of the scaling-group resolving system (13)–(14)
are in one-to-one correspondence with one-parameter families of solutions u(t, r, c) of the
heat equation (5) satisfying the scaling-invariance property

λ−pu(λ2t, λr, c) = u(t, r, c̃(λ, c)) (16)

where c̃(1, c) = c in terms of an arbitrary constant c.

This correspondence leads to an explicit characterization of similarity solutions of the
heat equation (5) in terms of a condition on solutions of the scaling-group resolving
system (13)–(14). Consider any one-parameter family of solutions

u(t, r) = rpv, v = V (x, c), (17)
3



having a scaling-homogeneous form, where

4x2V ′′ − (1 + (2p + n − 4)2x)V ′ + p(p + n − 2)V + kV q+1 = 0 (18)

is the ODE given by reduction of PDE (5). ¿From relation (10) we have

G(x, V (x, c)) = V ′(x, c), H(x, V (x, c)) = pV (x, c) − 2xV ′(x, c). (19)

Next we eliminate c in terms of x and v by using the implicit function theorem on
V (x, c)− v = 0 to express c = C(x, v). Substitution of this expression into equation (19)
yields

H + 2xG = pv (20)

where G = V ′(x,C(x, v)), H = pv − 2xV ′(x,C(x, v)) are some functions of x, v. The
relation (20) is easily verified to satisfy PDE (13). In addition, PDE (14) simplifies to

−4x2(Gx + GGv) + (1 + (2p + n − 4)2x)G = p(p + n − 2)v + kvq+1. (21)

We then see that the characteristic ODEs for solving this first-order PDE are precisely

dv/dx = G, −4x2dG/dx + (1 + (2p + n − 4)2x)G = p(p + n − 2)v + kvq+1, (22)

which are satisfied due to equations (18) and (19). Hence, we have established the
following result.

Lemma 2. There is a one-to-one correspondence between one-parameter families of sim-
ilarity solutions (17) of heat equation (5) and solutions of the scaling-group resolving
system (13)–(14) that satisfy the similarity relation (20).

We now note that, under the mapping (15), static solutions u(r) of the heat equation
correspond to solutions of the scaling-group resolving system with G = 0. Consequently,
hereafter we will be interested only in solutions such that G 6= 0, corresponding to
dynamical solutions of the heat equation.

To find explicit solutions of the PDE system (13)–(14) for G(x, v), H(x, v), we will
exploit its following general features. First, the power nonlinearity kuq+1 in the heat
equation appears only as an inhomogeneous term kvq+1 in the PDE (14). Second, in
both PDEs (13) and (14) the linear terms that involve v derivatives have the scaling
homogeneous form vGv and vHv with respect to v. Third, the nonlinear terms in the
homogeneous PDE (13) have the skew-symmetric form HGv − GHv, while HHv is the
only nonlinear term appearing in the non-homogeneous PDE (14). These features suggest
that this PDE system can be expected to have solutions given by the separable power
form

G = g1(x)va + g2(x)v, H = h1(x)va + h2(x)v, a 6= 1. (23)

For such an ansatz, we readily see that the linear derivative terms Gx, Hx, vGv, vHv

in each PDE (13) and (14) will contain the same powers v, va that appear in both G
and H, and moreover the nonlinear term HGv − GHv in the homogeneous PDE (13)
will produce only the power va due to the identities va(v)v − v(va)v = (a − 1)va and
v(v)v − v(v)v = va(va)v − va(va)v = 0. Similarly we see that the nonlinear term HHv in
the non-homogeneous PDE (14) will only yield the powers v, va, v2a−1. Since we have
a 6= 1 and q 6= 0, the inhomogeneous term kvq+1 must therefore balance one of the powers
v2a−1 or va.

In the case when we balance q + 1 = a, the terms containing va = vq+1 and v2a−1 in
PDE (14) immediately yield

h1 = 0, g1 = k. (24)
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Then the terms containing va in PDE (13) reduce to

h2 = 0 (25)

which leads to a simplification of the remaining terms in both PDEs, yielding

xg′
2 = g2 = 0. (26)

Thus, for this case, the ansatz (23) gives a one-term solution for G with H = 0.
In the other case, balancing 2a − 1 = q + 1, we get

a = 1 +
q

2
. (27)

The terms containing v, va, v2a−1 = vq+1 in the PDEs (13) and (14) then yield

h′
1 + 2xg′

1 + (1 − q

2
h2)g1 +

q

2
h1g2 = 0 (28a)

h′
2 + 2xg′

2 + 2g2 = 0 (28b)

2xh′
1 − (n − 1 +

q + 4

2
h2)h1 + g1 = 0 (28c)

2xh′
2 − h2

2 − (n − 2)h2 + g2 = 0 (28d)

(1 +
q

2
)h1

2 + k = 0. (28e)

Through equations (28e), (28c) and (28d), we obtain

h1 = ±
√

−2k

q + 2
(29)

g1 = ±
√

−2k

q + 2
(n − 1 +

q + 4

2
h2) (30)

g2 = −2xh′
2 + (n − 2 + h2)h2 (31)

and thereby we find that equations (28a) and (28b) reduce to an overdetermined system
of nonlinear ODEs

4x2h′
2 − 2xh2

2 − (1 + 2(n − 2)x)h2 = c = const. (32a)

4xh′
2 −

q(2 + q)

4
h2

2 + 2h2 + n − 1 = 0 (32b)

where c is an arbitrary integration constant. The ODE system (32) can be solved by
a systematic integrability analysis, which we have carried out using computer algebra
(discussed in more detail in Sec. 2.1). The results of the analysis give three two-term
solutions with G 6= 0.
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Proposition 1. For n 6= 1, ansatz (23) yields altogether four solutions of the scaling-
group resolving system (13)–(14) with G 6= 0:

G = kvq+1, H = 0, q 6= −1 (33)

G = ±(4 − n)

√

−k(n − 2)

n − 3
v(n−3)/(n−2), H =

1

4 − n
G + (2 − n)v, (34)

q =
2

2 − n
6= −1, n 6= 2, 3, 4

G =
3v

3x + 1
± 3

√
k

2v
, H =

2

3
G − v

2
, q = −4, n = 5/2 (35)

G =
3v

(

1 ±
√
−2kv

)

3x + 1
, H =

1

6
(3x + 1)G − 3x − 1

3x + 1
v, q = 2, n = 5/2 (36)

None of these solutions satisfy the similarity relation (20).

Motivated by the success of the ansatz (23), we now consider a more general three-term
ansatz

G = g1(x)va + g2(x)vb + g3(x)v, H = h1(x)va + h2(x)vb + h3(x)v (37)

where

a 6= b, a 6= 1, b 6= 1. (38)

This ansatz leads to a more complicated analysis compared to the previous two-term
ansatz. Specifically, the homogeneous PDE (13) now contains the power va+b−1 in ad-
dition to v, va, vb, while the non-homogeneous PDE (14) contains the further powers
v2a−1, v2b−1, vq+1. We determine the exponents in these powers by a systematic examina-
tion of all possible balances.

Firstly, since q 6= 0 in PDE (14), vq+1 must balance one of va, v2a−1, va+b−1. (Note, by
the symmetry a ↔ b in the ansatz (37), the other possibilities vb, v2b−1 for balancing vq+1

are redundant.) Secondly, v2a−1 can balance only vq+1 or vb due to conditions (38), and
otherwise if v2a−1 is unbalanced then its coefficient ah1

2 must vanish. Likewise v2b−1 can
balance only vq+1 or va, and otherwise its coefficient bh2

2 must vanish. In a similar way,
either va+b−1 balances vq+1 or v, and otherwise if va+b−1 is unbalanced then its coefficient
(a + b)h1h2 vanishes. Finally, in PDE (13), va+b−1 can balance only v, and otherwise the
factor g1h2 − g2h1 must vanish in the coefficient of va+b−1.

Several cases arise from examining all of these different possibilities. After eliminating
all trivial cases that lead to h2 = g2 = 0 (whereby the ansatz (37) just reduces to
the previously considered two-term case (23)), we find the following non-trivial cases to
consider:

q = a = 2, b = 0; (39)

q = −3/2, a = 0, b = −1/2; (40)

q = −2/3, a = −b = −1/3. (41)

6



For case (39), the PDEs (13) and (14) yield

h′
1 + 2xg′

1 + (1 − h3)g1 + h1g3 = 0 (42a)

2xh′
1 − (n − 1 + 3h3)h1 + g1 = 0 (42b)

h′
3 + 2xg′

3 + 2g2h1 − 2g1h2 + 2g3 = 0 (42c)

2xh′
3 − h3

2 − 2h1h2 + (2 − n)h3 + g3 = 0 (42d)

h′
2 + 2xg′

2 + (3 + h3)g2 − g3h2 = 0 (42e)

2xh′
2 − h2h3 + (3 − n)h2 + g2 = 0 (42f)

2h1
2 + k = 0. (42g)

¿From equations (42g), (42f), (42d), (42b), we have

h1 = ±
√

−k

2
(43)

g2 = −2xh′
2 + (n − 3 + h3)h2 (44)

g3 = −2xh′
3 + (n − 2 + h3)h3 ±

√
−2kh2 (45)

g1 = ±
√

−k

2
(n − 1 + 3h3) (46)

and then equation (42a) gives

h2 = ± 1√
−2k

(4xh′
3 − 2h3

2 + 2h3 + n − 1) (47)

The remaining equations (42c) and (42e) become, respectively,

4x2h′′
3 − (12xh3 + 2(n − 6)x + 1)h′

3 + 4h3
3 − 6h3

2 + 2(3 − 2n)h3 = 0 (48a)

4x3h′′′
3 − x(4xh3 + 2(n − 13)x + 1)h′′

3 + (6xh3
2 + (2(n − 12)x + 1)h3 + 9(4 − n)x − 3/2)h′

3

− 12x2h′
3
2 − 1

2
(2h3

2 − 2h3 + 1 − n)(h3
2 − 2h3 + 5 − 2n) = 0 (48b)

which is an overdetermined system of two nonlinear ODEs for h3(x). We solve this system
(48) by an integrability analysis using computer algebra. This yields one solution with
G = 0, plus two solutions with G 6= 0 which are summarized in Proposition 2.

In a similar way, each of the cases (40) and (41) leads to an overdetermined system
of four nonlinear ODEs for h2(x), h3(x). For both cases the results of an integrability
analysis yield only solutions with G = 0.

Thus we have the following result.

Proposition 2. For n 6= 1, ansatz (37) yields two additional solutions of the scaling-
group resolving system (13)–(14) with G 6= 0:

G = ±3

4

√
−2k

(

v ± 1√
−2k

)2

, H =
2

3
G + v ± 2√

−2k
, q = 2, n = 5/2 (49)

G = ±15

4

√
−2k

(

v ∓ 1√
−2k

)2

, H =
2

15
G + v ∓ 2√

−2k
, q = 2, n = 5/2 (50)

Neither of these solutions satisfies the similarity relation (20).
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2.1. Computational remarks.

The integrability analysis of the previous ODE systems is non-trivial due to the degree
of nonlinearity of the ODEs and the algebraic complexity of the coefficients in addition
to the appearance of parameters in each system.

For the first ODE system (32), the integrability analysis consists of the following main
steps. We eliminate h′

2 to get a single algebraic equation, which is quadratic in h2. By
differentiating this equation and using it to eliminate h′

2 from either of the original ODEs
in the system, we obtain a second algebraic equation, which is cubic in h2. The coefficients
in each algebraic equation are expressions in terms of the independent variable x and the
parameters q, n. We next use cross-multiplication repeatedly to eliminate the highest-
degree monomial terms in both of the algebraic equations until one equation no longer
contains h2 while the other equation is linear in h2. At each algebraic elimination step, we
must note that a case distinction will arise if the coefficient of a highest-degree monomial
vanishes for some values of q or n. For each case, once the final algebraic equations have
been obtained, we solve the equation without h2 by splitting it with respect to x, which
will yield conditions on the parameters q, n, and we then solve the linear equation for h2

subject to these conditions (if any).
The integrability analysis for the second ODE system (48) is the same except that we

must first use differentiation combined with cross-multiplication to eliminate h′′′
3 and h′′

3,
thus reducing the differential order of the system down to first-order, where the coefficients
are expressions in terms of the independent variable x and the single parameter n. We
may then proceed as before by using algebraic elimination to reduce this system to a
linear equation that can be solved for h3 and an equation that does not contain h3 and
thereby determines n.

A similar integrability analysis applies to the two other ODE systems, each of which re-
quires solving four ODEs that contain two dependent variables h2, h3 and their derivatives
up to second order, in addition to the independent variable x and the single parameter
n.

Because of the complexity of the algebraic expressions and the number of case dis-
tinctions that arise in these analyses, it is very difficult for an automatic computer al-
gebra program to fully classify and find all solutions. (For example, the Maple program
RiffSimp running on a workstation for several days was unable to complete the full
computation for any of the second, third, and fourth systems.)

To overcome these difficulties, we have used the interactive package Crack [11] which
has a wide repertoire of techniques available, including eliminations, substitutions, inte-
grations, length-shortening of equations, and factorizations, among others. Using Crack,
the complete solution of the integrability analysis was obtained in about 50 interactive
steps taking 2 seconds in total for the system (32), and about 400 interactive steps taking
7 minutes in total for the system (48), while less than 100 steps taking under 1 minute
in total were needed for each of the other two systems [12].

3. Exact solutions

To obtain explicit solutions u(t, r) of the heat equation (5) from solutions
(G(x, v), H(x, v)) of its scaling-group resolving system (13)–(14), we integrate the corre-
sponding pair of parametric first-order ODEs (10). The integration yields a one-parameter
solution family u(t, r, c) which is closed under the action of the group of scaling transfor-
mations (2).
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Theorem 1. The semilinear heat equation (5) has the following exact solutions arising
from the explicit solutions of its scaling-group resolving system found in Propositions 1
and 2:

u = (−kq(t + c))−1/q, q 6= 0 (51)

u =

(

±
√

−k

(n − 2)(n − 3)

(

r

2
− (n − 4)(t + c)

r

)

)n−2

, q =
2

2 − n
6= −1, n 6= 2, 3, 4

(52)

u =

(

±
√

k
(

1 + c(3t + r2)
)

(

3t

r
+ r

))1/2

, q = −4, n = 5/2 (53)

u = ± 5(3t + r2)

(r(15t + r2) + c
√

r)
√
−2k

, q = 2, n = 5/2 (54)

u = ± 3(t + c − r2)

r(3(t + c) + r2)
√
−2k

, q = 2, n = 5/2 (55)

u = ± 5(3(t + c) + r2)

r(15(t + c) + r2)
√
−2k

, q = 2, n = 5/2 (56)

where c is an arbitrary constant.

Modulo time-translations t → t − c, solutions (51), (52), (55), (56) are similarity
solutions since their form with parameter c = 0 is preserved under scaling transfor-
mations (2) on r, t, u. In contrast, the parameter c in solutions (53) and (54) cannot
be removed by time-translations, and consequently the form of these solutions is not
scaling-homogeneous since c gets scaled under the transformations (2) on r, t, u. Thus,
with respect to the action of the full group of point symmetries generated by time-
translations and scalings for the heat equation (5), the solutions (53) and (54) for c 6= 0
yield two-dimensional orbits of non-similarity solutions given by

u =

(

±
√

k
(

1 + c(3(t + c̃) + r2)
)

(

3(t + c̃)

r
+ r

))1/2

, q = −4, n = 5/2 (57)

u = ± 5(3(t + c̃) + r2)

(r(15(t + c̃) + r2) + c
√

r)
√
−2k

, q = 2, n = 5/2 (58)

whereas the solutions (51), (52), (55), (56) represent one-dimensional time-translation
orbits of similarity solutions

u = (−kq)−1/qr−2/q(t/r2)−1/q, q 6= 0 (59)

u =

(

(n − 2)(n − 3)

−4k

)1−n/2

rn−2
(

±(1 − 2(n − 4)t/r2)
)n−2

, q =
2

2 − n
6= −1, n 6= 2, 3, 4

(60)

u = ±(−2k)−1/2r−1 3(t/r2 − 1)

3t/r2 + 1
, q = 2, n = 5/2 (61)

u = ±(−2k)−1/2r−1 5(3t/r2 + 1)

15t/r2 + 1
, q = 2, n = 5/2. (62)

Note that solution (56) is a special case of solution (58) given by c = 0. We remark that
solution (58) previously has been obtained in work [13] on nonlinear diffusion equations
through use of Bluman and Cole’s nonclassical method.
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Among all these solutions, the ones (51) and (52) that exist for integer values of n
describe radial heat flow in R

n. In section Sec. 3.1 we will discuss their analytical features
related to blow-up and dispersion for n 6= 1. The remaining solutions (55), (56), (57), (58)
that exist only for a non-integer value n = 5/2 have a different interpretation describing
heat flow in the plane R

2 with a point-source of radial heat flux at the origin, as we will
show later in section Sec. 3.2. We will also discuss this interpretation for the solution
(52) in the case of non-integer values of n.

Before proceeding, we observe that the heat equation (5) for all values of n can be
written in the form of a gradient flow

ut = −δE/δu (63)

using the “energy” integral

E =

∫ ∞

0

(

1

2
u2

r − kf(u)

)

rn−1dr (64)

with

f(u) =







1

q + 2
uq+2, q 6= −2,

ln |u|, q = −2.
(65)

Here δ/δu denotes the usual variational derivative (i.e. Euler operator) with respect to
u. This integral (64) obeys the equation

dE

dt
= − lim

r→0
(rn−1urut) −

∫ ∞

0

u2
t r

n−1dr (66)

for any solution u(t, r) with sufficient asymptotic decay for large r. If the “energy flux”
lim
r→0

(rn−1urut) of a solution u(t, r) is non-negative then equation (66) shows that E is a

decreasing function of t. As a result, for solutions u(t, r) that also are non-negative, both
terms in E will be non-negative if k < 0 and q 6= −2, so then E decreases to zero as
t → ∞. In this case u(t, r) will have dispersive behaviour such that u → 0 and ur → 0
for all r ≥ 0 as t → ∞. If instead k > 0 or q = −2, then the two terms in E will have
opposite signs, in which case E may decrease without bound, allowing u(t, r) to have
blow-up behaviour such that u → ∞ or ur → ∞ as t → T for some T < ∞.

3.1. Behavior of solutions for n = 2, 3, etc.

Similarity solution (51) is spatially homogeneous and has no restriction on the sign
of k. It thus represents the general solution of the ODE ut = kuq+1 with an arbitrary
nonlinearity power q + 1 6= 1. For q > 0 the behaviour of u is determined by the sign of
k. In the case k < 0, u = (|k|q)−1/q/(t + c)1/q → 0 is dispersive as t → ∞, whereas in the
case k > 0, u = (kq)−1/q/(T − t)1/q → ∞ has a blow-up for t → T with 0 < T = −c < ∞.

In contrast, similarity solution (52) is restricted to the special nonlinearity power q+1 =
(n − 4)(n − 2) ≥ 1/3 and requires k < 0 and n ≥ 5. In this solution, for all t > 0, u is
singular at r = 0 and is unbounded as r → ∞. Interestingly, u vanishes on the space-time
parabola given by t + c = r2/(2n− 8) ≥ 0. As a consequence we can modify the solution
to have better analytical behaviour by using this parabola (with parameter c = 0) as a
cutoff such that

u(t, r) =

{

0, r ≥ α
√

t

βr2−n (t − (r/α)2)
n−2

, 0 ≤ r ≤ α
√

t
(67)
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(see figure 1) with

α =
√

2(n − 4), β =

(

(n − 2)(n − 3)

|k|(n − 4)2

)1−n/2

. (68)

Figure 1. Space-time graph for solution (67).

At all space-time points away from r = 0, this modified similarity solution (67) is
continuous and has continuous partial derivatives of order n − 3 ≥ 2, so thus it satisfies
the heat equation (5) in the classical sense (i.e. u is at least C1 in t and C2 in r)
on the spatial domain r > 0. At r = 0, u remains singular for all t > 0, but since
rn−1u = βrtn−2 + O(r2) is non-singular as r → 0, u is n-dimensionally integrable on the
whole spatial domain r ≥ 0 (see figure 2).

A physical interpretation of similarity solution (67) can be seen by considering the
radial heat flux equation

dH

dt
= S + F (69)

satisfied by the radial heat integral

H =

∫ ∞

0

urn−1dr (70)

which is a measure of the total amount of heat in u(t, r), where

F = lim
r→0

(−rn−1ur) (71)

defines the outward radial heat flux at the origin, and

S = k

∫ ∞

0

uq+1rn−1dr (72)

11



Figure 2. Graph of solution (67) with n = 6 (q + 1 = 1/2).

gives the net amount of heating or cooling produced by the nonlinear source/sink term
in the heat equation (5). For the solution (67) these quantities are given by

∫ α
√

t

0

β
(

t − (r/α)2
)n−2

rdr =
n − 4

n − 1
βtn−1 = H > 0, (73)

lim
r→0

(

−(2 − n)β
(

t − (r/α)2
)n−2

+ O(r)
)

= (n − 2)βtn−2 = F > 0, (74)

∫ α
√

t

0

β(n−4)/(n−2)
(

t − (r/α)2
)n−4

r3dr = −2βtn−2 = S < 0. (75)

Hence u has a positive amount of heat (73) that increases with t due to an increasing,
positive radial outward heat flux at r = 0. Since n ≥ 5, this flux (74) is greater than
the net cooling (75) caused by the nonlinear sink term. Therefore this similarity solution
(67) physically describes the dispersion of heat produced by an outward radial heat flux
at the origin in R

n, with some heat absorbed by a nonlinear heat sink proportional to
u(n−4)/(n−2) at all points in R

n. The dispersion has the behaviour of a radial temperature
front at r = α

√
t that moves outward with speed dr/dt = α/(2

√
t) for all t > 0.

Interestingly, for long times, u increases without bound in t at any spatial point r > 0
inside the temperature front. This non-dispersive temporal behaviour is related to u
having an infinite “energy” (64), i.e. E = +∞, so that the flux equation (66) is not well
defined, allowing u → ∞ as t → ∞ despite the “energy” integral being formally positive
due to k < 0.

3.2. Behavior of solutions for n 6= 2, 3, etc.

The heat equation (5) can be written in a different form

ut = urr + (1 − ν)r−1ur + kuq+1, ν = const., k = const. (76)
12



in terms of a parameter ν = 2−n which applies to non-integer values of n. This equation
(76) describes radial heat flow in R

2 with an extra source/sink term given by νur/r [14].
To interpret this term physically, we consider the 2-dimensional radial heat integral

H =

∫ ∞

0

urdr (77)

satisfying the radial flux equation

dH

dt
= S + F + ν lim

r→0
u (78)

where
F = lim

r→0
(−rur) (79)

defines the outward radial heat flux at the origin, and

S = k

∫ ∞

0

uq+1rdr (80)

gives the net amount of heating or cooling caused by the nonlinear source/sink term in
the heat equation (76). The flux equation (78) shows that, for the respective cases ν > 0
or ν < 0, the term −νur/r has the interpretation of a heating or cooling point-source at
the origin in R

2. Thus, solutions u(t, r) will physically describe radial heat flow arising
from a point source in a thin layer, with heat also produced or absorbed at all points in
the layer due to a nonlinear source/sink term kuq+1.

Note that the 2-dimensional heat equation (76) retains the form of a gradient flow (63)
with n = 2 − ν.

Consider similarity solution (52) with n = 2 − ν:

u(t, r) = βrν
(

±(α(t + c) + r2)
)−ν

, q = −2/ν, ν 6= 0,−1,−2 (81)

where
α = 2(ν + 2), β = (−4ν(ν + 1)/k)ν/2, (82)

which requires k > 0 if 0 > ν > −1 and k < 0 if ν < −1 or ν > 0. The behaviour of this
solution depends essentially on the separate signs of α and ν.

For α < 0, (81) can be modified similarly to (67) by putting a cutoff on u at the
space-time parabola where u = 0. Then

u(t, r) =

{

0, r ≥
√

t/|α|
βrν (|α|t − r2)

−ν
, 0 ≤ r ≤

√

t/|α| (83)

gives a classical solution of the heat equation (76) on the spatial domain r > 0 (i.e. u
belongs to C1(R+) in t and C2(R+) in r), with ν < −2 and k < 0. However, at r = 0, u is
singular such that, for all t > 0, H = +∞ and F + ν lim

r→0
u = 2(ν/γ)t−ν−1 lim

r→0
rν+1 = +∞

since ν + 1 < −1. The modified similarity solution (83) therefore has the physical
interpretation of heat dispersion produced by an infinite net outward radial heat flux at
the origin in R

2, with a radial temperature front located at r =
√

t/|α| for t > 0.
For α > 0, (81) is smooth and positive on the spatial domain r > 0. It thus gives a

C∞(R × R
+/{0}) solution of the heat equation (76) with the asymptotic behaviour

u(t, r) = βrν(αt + r2)−ν =

{

rν(βα−νt−ν + O(r)), r → 0

r−ν(β + O(1/r)), r → ∞ (84)

(with c = 0) where ν > −2. In the least interesting case when 0 > ν > −2, u is
unbounded for large r, whereby it has an infinite amount of heat H = +∞ and “energy”
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E = +∞. In contrast, when ν > 0, u decays to 0 for large r and vanishes at r = 0 for
t > 0. As a result, in this case the “energy” of u for t > 0 is given by

E =
1

23ν/23
ν(ν2 + 2ν + 6)(ν + 2)(1−ν)/2 Γ(1 + ν/2)Γ(3ν/2)

Γ(2 + 2ν)
βt−(1+3ν)/2 (85)

which is finite and positive due to k < 0 for ν > 0. In particular, E decreases to 0 as
t → ∞ in accordance with the flux equation (66). Moreover, provided ν > 2, u has a
finite amount of heat

H =
4
√

π

23ν/23
(ν + 2)(1−ν)/2(ν − 2)−1 Γ(1 + ν/2)

Γ((1 + ν)/2)
βt1−ν/2 (86)

which decreases to 0 as t → ∞. For t > 0 the corresponding heat flux quantities in this
case are given by

S = −ν − 2

2
H/t < 0, (87)

F = 0, ν lim
r→0

u = 0. (88)

Therefore, in the most physically interesting case ν > 2, the similarity solution (84)
describes an initial monopole-like circular heat distribution in R

2 (see figure 3) producing

Figure 3. Graph of solution (84) with ν = 3.

a smooth positive dispersive radial heat flow with some heat absorbed by a nonlinear
heat sink proportional to u1−2/ν at all points in R

2. In particular, this solution has no
point-source or heat flux at the origin for all times t > 0.

Similarity solutions (55) and (56) have q + 1 = 3, ν = −1/2, and k < 0. In both
solutions, for all t, u is singular at r = 0 and has slow radial decay such that u = O(1/r)
for large r. Consequently, the amount of heat in u is H = ±∞. In particular, at t = 0,
u is given by a 1/r heat distribution for r ≥ 0, while for t → ∞ at any spatial point

14



r > 0, u = r−1(±(1/
√
−2k) + O(1/t)) approaches a constant multiple of the same 1/r

heat distribution. This non-dispersive temporal behaviour occurs because u has “energy”
E = +∞, which does not decrease with t.

Non-similarity solution (54) also has q + 1 = 3, ν = −1/2, and k < 0. Compared with
the previous similarity solutions (55) and (56), it exhibits the same long-time behaviour
u = r−1(±(1/

√
−2k) + O(1/t)) as t → ∞ at any spatial point r > 0. It also exhibits

the same radial decay u = O(1/r) as r → ∞ for all t, whereby H = ±∞ and E =
+∞. However, near r = 0, (54) is less singular than (55) and (56), such that u =
r−1/2(±(15/c

√
−2k)t + O(r)). As a consequence the heat flux quantities for (54) have

the properties F + ν limr→0 u = 0 and 0 < −S < ∞. Moreover, at t = 0, (54) reduces to
the heat distribution u = ±(5/

√
−2k)(r + c/r3/2)−1 which is C1 for r ≥ 0 if c > 0 and

which vanishes at both r = 0 and r = ∞ (see figure 4). This non-similarity solution (54)

Figure 4. Graph of solution (54).

therefore has the physical interpretation of an initial circularly peaked heat distribution
which vanishes both at the origin and spatial infinity in R

2, producing a radial heat flow
that is singular at the origin and has a 1/r decay for large radius, with a finite amount
of heat absorbed by a nonlinear heat sink proportional to u3 at all points in R

2. The
singularity in the heat distribution u at the origin corresponds to an infinite cooling
point-source plus an infinite outward heat flux, whose net contribution to the heat flow
for all times t > 0 is zero.

Finally, non-similarity solution (57) has q + 1 = −3, ν = −1/2, and k > 0. In this
solution, for all t, u is unbounded as r → ∞ and has a cusp at the space-time parabolas
t + c̃ = −r2/3 and t + c̃ = −(r2 + 1/c)/3 where ur blows up and u vanishes. We can
modify the solution by putting a cutoff on u at both parabolas so that

u(t, r) =

{

0, t − β ≤ −r2/3 or t − α ≥ −r2/3

r−1/2
√

γ(3(α − t) − r2)(3(t − β) + r2), t − β ≥ −r2/3 and t − α ≤ −r2/3

(89)
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(see figure 5) where

γ =

√
k

3(α − β)
(90)

and α = −c̃ > β = −(c̃+1/3c) > 0 with c > 0. Then the modified solution (89) is C∞ in r
and t at all space-time points other than r = 0, α−t = r2/3 and β−t = r2/3. Near r = 0,

for β < t < α, u = r−1/2
(

3
√

γ(α − t)(t − β) + O(r)
)

is singular (see figure 6), while near

the inner and outer cusps, u = (
√

3(α − t)−r)1/2
(

√

6γ(α − β) + O(
√

3(α − t) − r)
)

for

t < α and u = (r−
√

3(β − t))1/2
(

√

6γ(α − β) + O(r −
√

3(β − t))
)

for t < β each have

square-root behaviour in r (see figure 7). ¿From these properties, (89) can be checked to
satisfy the heat equation (76) in a weak sense (i.e. u is only C0 in t and r) on the spatial
domain r ≥ 0. In particular, u has a finite, non-negative amount of heat

H =



























































0, t > α

√
γ

∫

√
3(α−t)

0

(3(α − t) − r2)1/2(3(t − β) + r2)1/2r1/2dr

=
π

16
k1/4(3(α − β))3/2(3(α − t))−1/4

2F 1(1/4, 3/2; 3; (α − β)/(α − t)), β < t < α

√
γ

∫

√
3(α−t)

√
3(β−t)

(3(α − t) − r2)1/2(3(t − β) + r2)1/2r1/2dr

=
2

5

√

2

π
Γ(3/4)2k1/4(3(α − t))5/4

2F 1(−1/2, 3/2; 9/4; (α − t)/(α − β)), t < β

(91)

so thus u is in L1(R+) for all t ≥ 0. The corresponding heat flux equation is given by

dH

dt
=



































































0, t > α

F − lim
r→0

u/2 − Fouter + S

= −3π

8
k1/4(3(α − β))1/2(3(α − t))−1/4

(

2F 1(1/4, 1/2; 2; (α − β)/(α − t))

−2F 1(1/4, 3/2; 2; (α − β)/(α − t))
)

, β < t < α

−Finner + Fouter + S

= −3

5

√

2

π
Γ(3/4)2k1/4(3(α − t))1/4

(5

2
2F 1(−1/2, 3/2; 5/4; (α − t)/(α − β))

− α − t

α − β
2F 1(1/2, 3/2; 9/4; (α − t)/(α − β))

)

, t < β

(92)
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where

F − lim
r→0

u/2 = lim
r→0

(rur − u/2) = 0, (93)

Finner = lim
r→

√
3(β−t)

rur = +∞, (94)

Fouter = lim
r→

√
3(α−t)

rur = −∞, (95)

S =



















kγ−3/2

∫

√
3(α−t)

0

(3(α − t) − r2)−3/2(3(t − β) + r2)−3/2r−1/2dr, β < t < α

kγ−3/2

∫

√
3(α−t)

√
3(β−t)

(3(α − t) − r2)−3/2(3(t − β) + r2)−3/2r−1/2dr, t < β.

(96)

Here the quantities Finner and Fouter are defined to be inward/outward heat fluxes arising
from the inner and outer cusps, respectively. These fluxes act as cooling sources that
cancel the singular contributions coming from the endpoints in the nonlinear heating
source S in the flux equation (92). Their net effect gives a finite cooling rate, dH/dt < 0.
Hence H decreases from its initial value H(0) 6= 0 at t = 0 to H(α) = 0 at t = α.

Figure 5. Space-time graph of solution (89).
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Figure 6. Graph of solution (89) with β = 5, α = 20.
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Figure 7. Graph of solution (89) with β = 5.

As a result, non-similarity solution (57) physically describes an initial ring-shaped heat

distribution in R
2 with radial temperature fronts at r =

√

3(β − t) and r =
√

3(α − t)
where 0 < β < α. These fronts behave as heat flux sinks and move radially toward
the origin at speeds dr/dt = −

√

3/(β − t) and dr/dt = −
√

3/(α − t). At time t = β
the inner front reaches the origin and produces an infinite cooling point-source plus a
compensating infinite outward heat flux that both persist until time t = α when the
outer front reaches the origin. For all times 0 ≤ t ≤ α, the heat absorbed at the
temperature fronts exceeds the heat produced by the nonlinear source term u−3 at all
points in R

2 inside the fronts, whereby the total amount of heat decreases to zero in a
finite time t = α, with the heat distribution being given by u = 0 at all points r ≥ 0 for
times t ≥ α.

4. Concluding remarks

As main results in this paper, analytically interesting exact solutions have been ob-
tained for a multi-dimensional semilinear heat equation (1) via a separation technique
applied to the group foliation equations associated with the group of scaling symmetries
(2) admitted by this equation. The solutions consist of explicit similarity solutions as
well as other explicit solutions of a more general (non-similarity) form.

In general our method provides a highly effective alternative to standard similarity
reduction for finding exact solutions to nonlinear PDEs with a group of scaling symme-
tries. Firstly, this method is an algorithmic refinement of the basic approach developed
for the semilinear wave equation in [5], which leads to systematic reductions of the group
foliation equations into overdetermined systems of ODEs that can be derived and solved
by means of computer algebra. In particular, these ODE systems are tractable to solve
using the computer algebra package Crack [11].
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Secondly, the method is able to yield exact similarity solutions in an explicit form,
whereas standard similarity reduction only gives an ODE that still has to be solved
to find solutions explicitly and in general this step can be quite difficult. Indeed, the
resulting similarity ODE (3) for the semilinear heat equation (1) cannot be solved by
standard integration techniques such as symmetry reduction or integrating factors.

Thirdly, because the group foliation equations contain all solutions of the given nonlin-
ear PDE, our method can yield non-similarity solutions that are also not invariant under
any other (non-scaling) point symmetries admitted by the nonlinear PDE.

We can apply the same method more generally to nonlinear PDEs without scaling
symmetries by utilizing the group foliation equations associated with any admitted one-
dimensional group of point symmetries of the given nonlinear PDE and by adapting the
separation technique to the specific form of the non-derivative terms that appear in the
given group foliation equations. The algorithmic aspects of these steps will be the same
as in the similarity case we have presented in this paper, since every one-dimensional
group of point symmetries can be equivalently expressed as a group of scalings under an
appropriate change of independent and dependent variables (i.e. by an invertible point
transformation).

For future work, we plan to present a full comparison between the present group fo-
liation method and standard symmetry reduction as applied to many typical linear and
nonlinear PDEs of interest, e.g. linear heat and wave equations; semilinear diffusion and
telegraph equations; integrable semilinear evolution equations such as the Korteweg de
Vries and Boussinesq equations.
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