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Abstract

Given a set N of items and a capacity b ∈ IN, and let Nj be the set of items with
weight j, 1 ≤ j ≤ b. The 0/1 knapsack polytope is the convex hull of all 0/1
vectors that satisfy the inequality

b∑
j=1

∑
i∈Nj

jxi ≤ b.

In this paper we first present a complete linear description of the 0/1 knapsack
polytope for two special cases: (a) Nj = ∅ for all 1 < j ≤ � b

2
� and (b) Nj = ∅ for

all 1 < j ≤ � b
3
� and Nj = ∅ for all j ≥ � b

2
�+ 1. It turns out that the inequalities

that are needed for the complete description of these special polytopes are derived
by means of some “reduction principle”. This principle is then generalized to yield
valid and in many cases facet defining inequalities for the general 0/1 knapsack
polytope. The separation problem for this class of inequalities can be solved in
pseudo polynomial time via dynamic programming techniques.

Keywords: complete description, facets, knapsack polytope, knapsack problem,
pseudo polynomial time, separation

� Introduction and Notation

Since the early seventies, many researchers have investigated the polyhedral struc-
ture of the 0/1 knapsack problem. In particular, two reasons have nourished this
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development: one is the increasing number of interesting applications that –
at least as a subproblem – involve the single knapsack problem; the other is
the discovery of beautiful concepts and results associated with minimal covers,
(1, k)-configurations or the lifting and complementing of variables.

Most of the polyhedral studies presented so far involve two basic and general
objects: minimal covers (see for instance, [B75], [HJP75], [W75]) and (1, k)-
configurations (cf. [P80]). Let N be a subset of items, let b denote the knapsack
capacity and suppose, every item i ∈ N has a weight W (i) > 0. A set S ⊆ N is a
cover if

∑
i∈SW (i) > b holds. The cover isminimal, if in addition

∑
i∈S\{s}W (i) ≤

b for all s ∈ S. Let N ′ ⊆ N be some nonempty subset of items and let z ∈ N \N ′.
The set N ′ ∪ {z} is called a (1, k)-configuration, if

∑
i∈N ′W (i) ≤ b;

K ∪ {z} is a minimal cover for all K ⊂ N ′ with |K| = k.

When it was shown that (simultaneous) lifting (see [P75], [Z74]) and comple-
menting (see [W75]) of minimal cover inequalities yields all the facets of the 0/1
knapsack polytope (cf. [BZ78], [BZ84]), a theoretical machinery became available
to attack knapsack problems from a polyhedral point of view.

In fact, since [CJP83] several papers have been written that are based on this
polyhedral theory for the 0/1 knapsack problem and are meant to turn the theory
into an algorithmic tool for the solution of practical problems (see for instance
[RW87], [FMW93]). Moreover, the last decade has brought a wide range of
interesting applications such as production planing problems ([RW87]), airline
scheduling problems ([HP93]), vehicle routing problems (see for instance [Po93]),
certain clustering and graph partitioning problems ([FMSWW94]) or subprob-
lems that arise within the design of electronic circuits or the design of mainframe
computers ([We92], [FGKKMW93], [F93]), in which the 0/1 knapsack problem is
involved as a crucial subproblem. In particular, the polyhedral structure of the
single knapsack problem is either inherited by the polytope associated with the
more complex problem or there is a (non-trivial) way how to transform knapsack
inequalities associated with a subproblem to inequalities for the original problem.

Computational experiments by several researchers have revealed that inequali-
ties based on minimal covers and (1, k)-configurations in combination with lifting
and complementing are often not sufficient for obtaining satisfactory bounds for
the optimum value of a knapsack problem. One possible explanation is that, in
general, minimal covers and (1, k)-configurations are proper subsets of the given
set of items. Hence, the corresponding minimal cover- or (1, k)-configuration in-
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equality is facet defining only for the polytope associated with this subset. In
order to obtain a facet of the original polytope we need to determine coefficients
for the variables that correspond to items not in this subset (lifting, complement-
ing). However, the final inequality depends on the order in which such coefficients
are computed ([P75]). Moreover, we can usually not compute such coefficients
explicitly. Thus, when starting with a minimal cover or (1, k)-configuration in-
equality, we do not have much information about what the lifted inequality will
look like. In particular, one important question for this approach is: what are
the “good” objects to start with? In this paper we present families of inequalities
that involve the whole set of items. It turns out that under mild assumptions
such inequalities define facets of the given knapsack polytope.

The paper is organized as follows. In Section 2 we introduce, for i ∈ {1, . . . ,
� b
2
�}, the knapsack problem Ki, where Nj = ∅ for all 1 < j ≤ � b

i+1
� and Nj = ∅

for all j ≥ � b
i
� + 1. We show that in the two special cases i = 1 and i = 2

a complete description of the associated knapsack polyhedron is obtained. For
i = 2 the proof is quite long and technical and thus is left to the Appendix. It
turns out that the inequalities that are needed for the complete description of
these special polytopes are derived by means of some “reduction principle”. This
principle is generalized in Section 3 to yield valid and under certain conditions
facet defining inequalities for the general 0/1 knapsack polytope. For this class
of inequalities we present an algorithm that solves the corresponding separation
problem in pseudo polynomial time. This is the topic of Section 4.

Notation

Given a set N of items, a capacity b ∈ IN and let Nj be the subset of items in
N with weight j (j = 1, . . . , b). The 0/1 knapsack polytope denoted by P is the
convex hull of all 0/1 vectors that satisfy the knapsack inequality

∑b
j=1

∑
i∈Nj jxi ≤

b. For every i ∈ N we denote by W (i) the weight of i, i.e., W (i) = j if i ∈ Nj.
We say F a face of the polytope P induced by the inequality cTx ≤ γ, if F =
{x ∈ P | cTx = γ}. Every x ∈ F is also called a root of cTx ≤ γ. The inequalities
xi ≤ 1, i ∈ N and xi ≥ 0, i ∈ N are called trivial. Given b ∈ N and i ∈ N ,
1 ≤ i ≤ � b

2
�. We denote the interval [� b

i+1
� + 1, � b

i
�] by Bi. For real numbers τj,

j = 1, . . . , n we define
∑w
j=v τj := 0 if v > w. Finally, for I ⊆ {1, . . . , n} we use

the notation τ (I) :=
∑
i∈I τi with τ (∅) = 0.
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� A Complete Description of P 1 and P 2

In this section we deal with the special 0/1 knapsack polytopes P i (i ∈ {1, . . . ,
� b
2
�}) defined as the convex hull of 0/1 vectors that satisfy the inequality

∑
i∈N1

xi +

� b
i
�∑

j=� b
i+1

�+1

∑
i∈Nj

jxi ≤ b.

Of course, for fixed i the problem of optimizing an objective function over P i can
be solved in polynomial time, because every feasible solution contains no more

than i different items that belong to
⋃� b

i
�

j=� b
i+1

�+1
Nj. Hence, by enumeration the

optimal solution can be found in polynomial time. Our discussions will purely
concentrate on the cases i = 1, 2 and we show that a complete description of the
corresponding polytopes can be derived. It turns out that the complete descrip-
tion of P 2 is already quite complicated and involves several types of inequalities
which – up to our knowledge – have not been presented in this structured form
in literature before. We first give an example.

Example 2.1. Consider the knapsack polytope defined as the convex hull of all
0/1 vectors that satisfy the inequality

x1 + x2 + x3 + x4 + 4x5 + 4x6 + 5x7 + 5x8 ≤ 11.

Here B2 consists of the numbers 4 and 5 and every item has a weight of 1, 4 or
5. A complete inequality description (checked by a program developed in [C91])
is given by the trivial inequalities xi ≥ 0, xi ≤ 1, i = 1, . . . , 8 and the following
system of inequalities:

(1) +x5+x6+x7+x8≤ 2

(2) +x3+x4 +x7+x8≤ 3

(3) +x2 +x4 +x7+x8≤ 3

(4) +x2+x3 +x7+x8≤ 3

(5) +x1 +x4 +x7+x8≤ 3

(6) +x1 +x3 +x7+x8≤ 3

(7) +x1+x2 +x7+x8≤ 3

(8) +x2+x3+x4 +x6+x7+x8≤ 4

(9) +x2+x3+x4+x5 +x7+x8≤ 4

(10) +x1 +x3+x4 +x6+x7+x8≤ 4

(11) +x1 +x3+x4+x5 +x7+x8≤ 4

(12) +x1+x2 +x4 +x6+x7+x8≤ 4

(13) +x1+x2 +x4+x5 +x7+x8≤ 4

(14) +x1+x2+x3 +x6+x7+x8≤ 4
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(15) +x1+x2+x3 +x5 +x7 +x8 ≤ 4

(16) +x2+x3+x4+x5 +x6 +2x7+2x8≤ 5

(17) +x1 +x3+x4+x5 +x6 +2x7+2x8≤ 5

(18) +x1+x2 +x4+x5 +x6 +2x7+2x8≤ 5

(19) +x1+x2+x3 +x5 +x6 +2x7+2x8≤ 5

(20) +x1+x2+x3+x4+x5 +x6 +x7 +x8 ≤ 5

(21) +x1+x2+x3+x4+x5 +2x6+2x7+2x8≤ 6

(22) +x1+x2+x3+x4+2x5+x6 +2x7+2x8≤ 6

(23) +x1+x2+x3+x4+2x5+2x6+3x7+3x8≤ 7

We now introduce three types of inequalities that are needed to describe the
polytope P 2. We prove that these inequalities are valid for P or P 2. About when
these inequalities define facets of P will be reported in Section 3.

Proposition 2.2.

(i) Let T1 ⊆ N1, |T1| < b and set r := b− |T1|. The inequality

∑
i∈T1

xi +
∑
j≥r+1

∑
i∈Nj

(j − r)xi ≤ |T1|

is valid for P (see [Le93]).

(ii) Let T1 ⊆ N1, let i0 ∈ Nj0, 2 ≤ j0 such that |T1|+ j0 < b and define the rest
capacity r := b−|T1|− j0. For every integer ψ ∈ [0, r] such that j0−ψ > 0,
the inequality

∑
i∈T1

xi + (j0 − ψ)xi0 +
j0+r−ψ∑
j=r+1

∑

i∈Nj\{i0}
(j − r)xi+

j0+r∑
j=j0+r−ψ+1

∑
i∈Nj

(j0 − ψ)xi +
∑

j>j0+r

∑
i∈Nj

(j − r − ψ)xi ≤ |T1|+ j0 − ψ

is valid for P .

Proof.

(ii) Let x ∈ P be given and denote the above inequality by cTx ≤ γ. We
distinguish several cases.

Suppose, xi0 = 1. If xi = 0 for all i ∈ Nj , j ≥ r+1, i �= i0, then the inequality is
certainly valid. If xi = 1 for some i ∈ Nj , j ≥ r + 1, i �= i0, then no more than
b− j0 − j < |T1| units in the knapsack are still available. Since cv ≤W (v) for all
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items v ∈ N and since ci0 + ci + b− j − j0 ≤ b− r − ψ = |T1|+ j0 − ψ holds, we
have cTx ≤ γ.

Moreover, the coefficients of the items with weight in the range of [j0, j0 + r] are
less or equal than ci0 . Hence, the same arguments as above apply to the case
when xi = 1 for i ∈ Nj , j ∈ [j0, j0 + r].

In case xi = 1 with W (i) > j0 + r, then no more than b −W (i) < |T1| units in
the knapsack are still available. Moreover, cv ≤ W (v) for all items v ∈ N and
ci + b−W (i) = b− r − ψ = |T1|+ j0 − ψ.

The crucial case is when there exist i′ ∈ Nj′, i
′′ ∈ Nj′′, r + 1 ≤ j′ ≤ j′′, i′ �= i′′

with xi′ = xi′′ = 1, but xi0 = 0. Then ci′ + ci′′ ≤ j′ + j′′ − 2r holds. Moreover,
cv ≤ W (v) for all items v ∈ N and ci′+ci′′+b−j′−j′′ ≤ j′+j′′−2r+b−j′−j′′ =
b− r − r = |T1|+ j0 − r ≤ |T1|+ j0 − ψ. This completes the proof.

The inequalities defined in Proposition 2.2 (i) have been presented in [Le93] and
can be viewed as special lifted cover inequalities if Nr+1 �= ∅ ([B75], [HJP75],
[W75]). If Nr+1 = ∅, but Nj �= ∅ for some j > r + 1, these inequalities are lifted
(1, k)−configuration inequalities ([P80]).

For the inequalities defined in (2.2) (ii) the vector
∑
i∈T1

ei + ei0 is a root. More-
over, the coefficient of item i0 ∈ Nj0 is defined as the corresponding weight de-
creased by some value ψ ∈ [0, r]. This guarantees that if we replace a subset T of
T1 and the item i0 by two items i′ ∈ Nj′ and i

′′ ∈ Nj′′ such that |T |+j0+r = j′+j′′,
then (j′ − r) + (j′′ − r) = |T |+ (j0 − r) ≤ |T |+ (j0 − ψ). Nevertheless, there are
inequalities dTx ≤ δ that define facets of P 2 such that δ = |T1| + di0 for some
T1 ⊆ N1 , i0 ∈ Nj0 \N1 and di0 < j0 − r where r = b− |T1| − j0.

Example 2.3. Consider the knapsack inequality

100∑
i=1

xi +
120∑
i=101

ixi + 120x121 +
151∑
i=122

(i− 1)xi ≤ 300.

The inequality

100∑
i=51

xi +
110∑
i=101

(i− 100)xi +
115∑
i=111

10xi +
120∑
i=116

(i− 105)xi+

131∑
i=121

15xi +
136∑
i=132

(i− 1 − 115)xi +
141∑
i=137

20xi +
151∑
i=142

(i− 1− 120)xi ≤ 80

defines a facet of the corresponding polytope (checked by hand). Moreover, the
vector x defined via x151 = 1 and xi = 1 for all i = 51, . . . , 100 satisfies this
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inequality at equation. Hence r = 100, but the coefficient of item 151 is 30 which
is obviously smaller than 150 − r. On the other hand, there exist two pairs of
items (s1, t1), (s2, t2), s1 = 110, t1 = 136, s2 = 120, t2 = 121 such that the vectors
x1 =

∑100
i=51 ei+ es1 + et1 and x

2 =
∑100
i=51 ei+ es2 + et2 satisfy the above inequality

at equation. Moreover, summing the weight of the items s1 and t1 gives a weight
of 245 which is smaller than the weight of item i0 plus r (j0 + r = 250). The
same is true for the sum of weights of the items s2 and t2 (summing the weights
of items s2 and t2 yields a weight of 240 which is by 10 smaller than j0 + r).
Therefore, items with weight in the range of [121, 130] have a coefficient whose
value is equal to cs2 = ct2 and items with weight in the range of [111, 115] or
[136, 140] have a coefficient with value cs1 or ct1, respectively. In fact, there is
some principle in generating this inequality that we want to explain now.

Recursion Principle (�). Let T1 ⊆ N1 and i0 ∈ Nj0, 2 ≤ j0 such that |T1| +
j0 < b and set r := b − |T1| − j0. We choose pairs of items (s1, t1), . . . , (sk, tk),
si, ti ∈ N \ (N1∪ {i0}), r+1 ≤ W (si) ≤W (ti) < j0 and set li := max{0, j0 + r−
W (si) −W (ti)}, i.e., li is the value by which the sum of the weights of items si
and ti is smaller than j0+ r. Moreover, we assume that W (si)+ li < W (si+1) for
i = 1, . . . , k−1,W (ti)+li < W (ti−1) for i = 2, . . . , k and j0 > W (t1)+l1. Finally,
set l0 := 0. Under these assumptions we define, for every μk ∈ [0,min{lk,W (tk)−
W (sk)}], an inequality cTx ≤ γ with γ = |T1|+ ci0 as follows.

For i ∈ N1 we set ci := 1 if i ∈ T1. We set ci := 0 if W (i) ≤ r and if i �∈ T1.
For i ∈ Nj with r + 1 ≤ j ≤ W (s1) we set ci := j − r. Recursively we determine
for i ∈ Nj, u = 1, . . . , k − 1 the coefficient by setting ci := csu if W (su) ≤ j ≤
W (su) + lu and ci := csu + (j −W (su) − lu) if W (su) + lu + 1 ≤ j ≤ W (su+1).
Similarly for i ∈ Nj \ {tk} we define ci := csk if W (sk) ≤ j ≤ W (sk) + lk and
we define ci := csk + (j − W (sk) − lk), if W (sk) + lk ≤ j ≤ W (tk) + lk − μk.
We set ctk := csk + (W (tk) −W (sk) − μk) and we define ci := ctk if i ∈ Nj with
W (tk) + lk − μk + 1 ≤ j ≤ W (tk) + lk. Accordingly we determine for i ∈ Nj the
coefficient by setting ci := ctu +(j −W (tu)− lu) if W (tu)+ lu+1 ≤ j ≤ W (tu−1)
and ci := ctu−1 if W (tu−1) ≤ j ≤ W (tu−1) + lu−1 (u = k, . . . , 2). Finally, we
set ci := ct1 + (j −W (t1) − l1) if W (t1) + l1 + 1 ≤ j ≤ j0, we set ci := ci0 if
j0 ≤ j ≤ j0 + r and we set ci := ci0 + (j − j0 − r) if j0 + r ≤ j.
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This yields explicitly the inequality

∑
i∈T1

xi +
∑
j≤W (s1)

∑
i∈Nj(j − r)xi +∑k−1

u=1

(∑W (su)+lu
j=W (su)+1

∑
i∈Nj(W (su)− r −∑u−1

v=1 lv)xi +
∑W (su+1)
j=W (su)+lu+1

∑
i∈Nj(j − r −∑u

v=1 lu)xi
)

+
∑W (sk)+lk
j=W (sk)+1

∑
i∈Nj\{tk}(W (sk)− r −∑k−1

v=1 lv)xi +
∑W (tk)+lk−μk
j=W (sk)+lk+1

∑
i∈Nj\{tk}(j − r −∑k

v=1 lv)xi +

(W (tk)− r −∑k−1
v=1 lv − μk)xtk +∑W (tk)+lk

j=W (tk)+lk−μk+1

∑
i∈Nj(W (tk)− μk − r −∑k−1

v=1 lv)xi +
∑k
u=2

(∑W (tu−1)
j=W (tu)+lu+1

∑
i∈Nj(j − r −∑k

v=1 lv − μk −∑k−1
v=u lv)xi +

∑W (tu−1)+lu−1

j=W (tu−1)+1

∑
i∈Nj(W (tu−1)− r −∑k

v=1 lv − μk −∑k−1
v=u lv)xi

)
+∑j0

j=W (t1)+l1+1

∑
i∈Nj(j − r − μk − lk − 2

∑k−1
v=1 lv)xi +∑j0+r

j=j0+1

∑
i∈Nj(j0 − r − μk − lk − 2

∑k−1
v=1 lv)xi +∑

j>j0+r

∑
i∈Nj(j − 2r − μk − lk − 2

∑k−1
v=1 lv)xi ≤

|T1|+ (j0 − r − μk − lk − 2
∑k−1
v=1 lv).

Proposition 2.4. The inequalities defined via the Recursion Principle (�) are
valid for P 2 (note that they are not necessarily valid for P ).

Proof. Let x ∈ P 2 be given and denote the above inequality by cTx ≤ γ. If
xi = 1 for some i with W (i) ≥ j0, then by using similar arguments as in the
proof of Proposition 2.2 we obtain cTx ≤ γ. The crucial case is when there exist
i′ ∈ Nj′, i

′′ ∈ Nj′′, r + 1 ≤ j′ ≤ j′′ with xi′ = xi′′ = 1. We distinguish two cases:

(1) W (su−1) + lu−1 ≤ j′ ≤W (su) for some u ∈ {2, . . . , u} or j ′ ≤W (s1) (u = 1).

(1.1) If W (tu) ≤ j′′ ≤W (tu) + lu, we obtain

ci′ + ci′′ ≤ j′ − r −∑u−1
v=1 lv +W (tu)− r −∑k

v=1 lv − μk −∑k−1
v=u+1 lv

= W (su) +W (tu) + lu − 2r − 2
∑k−1
v=1 lv − lk − μk + (j′ −W (su)).

If W (su) + W (tu) ≤ j0 + r, then W (su) + W (tu) + lu = j0 + r and we obtain
cTx ≤ γ. Otherwise, W (su) +W (tu) > j0 + r and by definition, lu = 0. In this
case we obtain ci′ + ci′′ ≤ j′ + j′′ − 2r − 2

∑k−1
v=1 lv − lk − μk. If j′ + j′′ > j0 + r,

then there exists T ⊆ T1 with |T | = (j′ + j′′ − j0 − r) and xv = 0 for all v ∈ T .
Hence, cTx ≤ γ. Accordingly, cTx ≤ γ, if j′ + j′′ ≤ j0 − r.

(1.2) If W (tu) + lu ≤ j′′, we obtain

ci′ + ci′′ ≤ j′ − r −∑u−1
v=1 lv + j′′ − r −∑k

v=1 lv − μk −∑k−1
v=u lv

= j′ + j′′ − 2r − 2
∑k−1
v=1 lv − lk − μk.
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If j′ + j′′ > j0 + r, then there exists T ⊆ T1 with |T | = (j′ + j′′ − j0 − r) and
xv = 0 for all v ∈ T . Hence, cTx ≤ γ. Accordingly, cTx ≤ γ, if j′ + j′′ ≤ j0 − r.

(1.3) If j′′ < W (tu), then the first subcase is ci′′ = ctu − (W (tu)− j′′) and hence,
ci′+ci′′ ≤ W (su)+W (tu)+lu−2r−2

∑k−1
v=1 lv−lk−μk+(j′+j′′−W (su)−W (tu)).

Then by using excactly the same arguments as in the first subcase we obtain
cTx ≤ γ. Otherwise, ci′′ > ctu − (W (tu)− j′′). Then there exists v > u such that
j′′ < W (tv) + lv and W (sv) +W (tv) < j0 + r. Moreover, ci′ < csv and ci′′ ≤ ctv
and |T1|+ csv + ctv = γ. This implies cTx ≤ γ in this case.

(2) W (su) < j′ ≤ W (su) + lu. This case is similar to case 1, so that we omit the
details.

(3) j′ > W (sk) + lk. Then, ci′ ≤ j′− r−∑k
v=1 lv if i

′ �= tk. Moreover, j′′ ≥ j′ and
hence, ci′′ ≤ j′′ − r−∑k

v=1 lv if i
′′ �= tk. Since ctk = W (tk)− r −∑k−1

v=1 lv − μk, we
obtain

ci′ + ci′′ ≤ j′ + j′′ − 2r − 2
∑k−1
v=1 lv − lk − μk

= (j′ + j′′ − j0 − r) + j0 − r − 2
∑k−1
v=1 lv − lk − μk.

Hence, cTx ≤ γ, if j′ + j′′ ≤ j0 + r. Otherwise, there exists T ⊆ T1 with
|T | = (j′ + j′′− j0 − r) and xv = 0 for all v ∈ T . Therefore, cTx ≤ γ in this case,
too.

Theorem 2.5. The inequalities defined in Propositions 2.2 and 2.4 together with
the inequalities

−xi ≤ 0, i ∈ N
xi ≤ 1, i ∈ N \N1
∑� b

2
�

j≥� b
3
�+1

∑
i∈Nj xi ≤ 2,

and the knapsack inequality completely describe the polytope P 2.

Proof. This proof is left to the Appendix.

Corollary 2.6. The system of inequalities

−xi ≤ 0, i ∈ N∑
i∈T1

xi +
∑

j>b−|T1|

∑
i∈Nj

(j − b+ |T1|)xi ≤ |T1|, T1 ⊆ N1

∑

j≥� b
2
�+1

∑
i∈Nj

xi ≤ 1
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and the knapsack inequality completely describes the polytope P 1.

Proof. The proof follows quite easily from the proof of Theorem 2.5. We briefly
repeat the main steps.

Let F be a non-trivial facet of P 1 that is induced by the inequality cTx ≤ γ that
is not the knapsack inequality. We define T1 := {i ∈ N1 | ci > 0} and w.l.o.g we
assume that T1 = {1, . . . , k} and c1 ≥ c2 ≥ . . . ≥ ck. We distinguish the following
cases:

Case 1: k = 0. In this case it is easy to see that F is induced by the inequality∑b
j=� b

2
�+1

∑
i∈Nj xi ≤ 1.

Case 2: γ <
∑k
v=1 cv. Then, k > b and consequently, every x ∈ F satisfies∑

i∈N1
xi +

∑
j∈B1

∑
i∈Nj jxi = b.

Case 3: γ =
∑k
v=1 cv. Since F �⊆ {x ∈ P 1 | ∑i∈N1

xi +
∑
j∈B1

∑
i∈Nj jxi = b}, we

conclude that k < b and we set r := b − k. Moreover, we define x0 :=
∑k
v=1 ev.

Since γ =
∑k
v=1 cv = cTx0 the relation ci = 0 for all i ∈ Nj with j ≤ b− k holds.

Now let i ∈ Nj, j ≥ b− k + 1 be given. Since x := x0 − ∑k
v=k−(j−r)+1 ev + ei is

feasible, we obtain
ci ≤ ck + ck−1 + . . .+ ck−(j−r)+1.

On the other hand, there exists a root x′ with x′
i = 1. Since j ≥ b− k + 1, there

exists T ⊆ T1, |T | = j − r with xt = 0 for all t ∈ T . This yields

ci ≥ ck + ck−1 + . . .+ ck−(j−r)+1

and hence ci = ck + ck−1 + . . . + ck−(j−r)+1. Now it follows that the inequality
cTx ≤ γ is of the type

∑
i∈T1

xi +
∑
j≥b−k

∑
i∈Nj(j − (b− k))xi ≤ k.

Case 4: γ > c(T1). We suppose F �⊆ {x ∈ P 1 | ∑i∈N1
xi+

∑
j∈B1

∑
i∈Nj jxi = b}.

Hence, there exists a root x0 with
∑
i∈N1

x0i +
∑
j∈B1

∑
i∈Nj jx

0
i < b. This root

satisfies the condition x0t = 1 for all t ∈ T1. Moreover, γ > c(T1) implies that
there exists i0 ∈ Nj0 such that x0i0 = 1, i.e., γ = c(T1) + ci0. This further implies
that every root x ∈ F satisfies the equation

∑b
j=� b

2
�+1

∑
i∈Nj xi = 1, and hence

does not define a facet with T1 �= ∅. This proves the statement.

Remark 2.7. In case b = 3, the weights of the items are 1,2 or 3. Since in this
case B1 = [2, 3], a complete description of the associated knapsack polytopes is
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given by Corollary 2.6.

� Valid Inequalities for the general case

Based on the complete description of P 1 and P 2 we now generalize some of
the inequalities that came up such that they apply to the general 0/1 knapsack
polytope.

Among the inequalities that were introduced in Section 2 (see Proposition 2.2)
were the following ones.

(3.1) Let T1 ⊆ N1, |T1| < b. The inequality
∑
i∈T1

xi +
∑

j≥b−|T1|+1

∑
i∈Nj

(j − b+ |T1|)xi ≤ |T1|

is valid for P .

(3.2) Let T1 ⊆ N1, i0 ∈ Nj0 , 2 ≤ j0, |T1|+ j0 < b and set r := b− |T1| − j0. For
every integer ψ ∈ [0, r] with j0 − ψ > 0 the inequality

∑
i∈T1

xi + (j0 − ψ)xi0 +
j0+r−ψ∑
j=r+1

∑

i∈Nj\{i0}
(j − r)xi+

j0+r∑
j=j0+r−ψ+1

∑
i∈Nj

(j0 − ψ)xi +
∑

j>j0+r

∑
i∈Nj

(j − r − ψ)xi ≤ |T1|+ j0 − ψ

is valid for P .

One way to generalize the inequalities (3.1) and (3.2) is not only to consider a
subset T1 ⊆ N1 and possibly one additional item i0, but a set T1 ⊆ N1 and a set
I = {i1, . . . , ik} of items. More precisely,

(3.3) Let T1 ⊆ N1 and I = {i1, . . . , ik} ⊆ N \ N1 such that iv ∈ Njv for v =
1, . . . , k, 2 ≤ j1 ≤ . . . ≤ jk and |T1| + ∑k

v=1 jv < b. We define r :=
b − |T1| − ∑k

v=1 jv. For every integer ψ ∈ [0, r] such that jk − ψ > 0 the
inequality

∑
i∈T1

xi +
k−1∑
v=1

jvxiv + (jk − ψ)xik +
jk+r−ψ∑
j=r+1

∑

i∈Nj\I
(j − r)xi+

11



jk+r∑
j=jk+r−ψ+1

∑
i∈Nj

(jk − ψ)xi +
∑

j>jk+r

∑
i∈Nj

(j − r − ψ)xi ≤ |T1|+
k∑
v=1

jv − ψ

is valid for P . The set T1 ∪ I is called starting set and the parameter
ψ reduction parameter, because the coefficient of ik is equal to its weight
reduced by ψ.

A proof of this statement is analogous to the proof of Proposition (2.2) (ii) and
is omitted here.

The next question that we want to deal with is under which conditions the in-
equalities (3.1) – (3.3) define facets of P . Before doing so let us illustrate these
inequalities on some example.

Example 3.4. We consider the knapsack inequality in 0/1 variables

x1 + x2 + x3 + x4 + x5 + 3x6 + 4x7 + 6x8 + 7x9 + 9x10 + 10x11 ≤ 13.

(i) The inequality x1 + x2 + x3 + x4 + x5 + x10 + 2x11 ≤ 5 is of the type (3.1),
since r = 13 − 5 = 8. It defines a facet of the corresponding knapsack
polytope. Similarly, the inequality x1+x2+x3+x4+x11 ≤ 4 is of the type
(3.1) and facet defining.

(ii) By setting T1 = {1, 2, 3, 4}, i0 = 7 we obtain r = 13 − 4 − 4 = 5. If we
choose ψ = 3, we obtain the inequality

x1 + x2 + x3 + x4 + x7 + x8 + x9 + x10 + 2x11 ≤ 5.

Setting ψ = 2 yields the inequality

x1 + x2 + x3 + x4 + 2x7 + x8 + 2x9 + 2x10 + 3x11 ≤ 6.

Both inequalities are of type (3.2) and define facets of the corresponding
knapsack polytope.

(iii) Define T1 := {1, 2, 3}, i1 := 6, i2 = 7 and set ψ := 1. Thus, r = 13 − 3 −
3− 4 = 3. The inequality

x1 + x2 + x3 + 3x6 + 3x7 + 3x8 + 3x9 + 5x10 + 6x11 ≤ 9

is of type (3.3) and defines a facet of the corresponding knapsack polytope.

If we set ψ = 0, we obtain the facet-defining inequality

x1 + x2 + x3 + 3x6 + 4x7 + 3x8 + 4x9 + 6x10 + 7x11 ≤ 10.

12



The property that the above inequalities define facets of the given polytope was
checked by a program developed in [C91].

For the knapsack polytope considered in Example 3.4 there are many more facet
defining inequalities of the types (3.2) and (3.3). In principle, for every subset
T1 ⊆ N1 and subset I of N \N1 such that |T1|+∑

i∈I W (i) < b we can generate a
series of inequalities of types (3.1) or (3.2) or (3.3), which differ according to the
choice of the parameter ψ. However, not all of these inequalities define facets.
This issue is discussed now.

Proposition 3.5.

(i) The inequalities (3.1) with T1 �= ∅ define non-trivial facets of P if and only
if Nj �= ∅ for some j > r.

(ii) The inequalities (3.2) with T1 �= ∅ and 0 < ψ < r define facets of P if and
only if Nj0+r−ψ �= ∅.

(iii) The inequalities (3.2) with T1 �= ∅ and ψ = r define facets of P if and only if
Nj0 \ {i0} �= ∅ or there exist numbers j1 and j2 and items i1 ∈ Nj1, i2 ∈ Nj2

with the properties i1 �= i2, r + 1 ≤ j1 ≤ j2 < j0 and j1 + j2 ≥ j0 + r.

(iv) The inequalities (3.2) with T1 �= ∅ and ψ = 0 define facets of P if and only
if Nj �= ∅ for some j ≥ j0 + r.

Proof. First note that the inequalities are valid. This has been pointed out
above. Moreover, statement (i) has been shown in [Le93].

(ii) Let ∅ �= T1 ⊆ N1, i0 ∈ Nj0 , j0 ≥ 2 and |T1| + j0 < b. Moreover, we set
r = b − |T1| − j0. Suppose Nj0+r−ψ = ∅ and let dTx ≤ δ denote the inequality
of type (3.2). Since Nj0+r−ψ = ∅, every root x ∈ Fd := {x ∈ P | dTx = δ}
either satisfies (xi = 1 for some i ∈ Nj , r + 1 ≤ j < j0 + r − ψ and xi0 = 1) or
(xi0 = 1 and xi = 0 for all i ∈ Nj \ {i0}, j ≥ r + 1) or (xi′ = 1 for some i′ ∈ Nj,
j > j0 + r − ψ and xi = 0 for all i ∈ Nj \ {i′},r + 1 ≤ j). Hence, every x ∈ Fd
satisfies the equation

∑
j>j0+r−ψ xi+xi0 = 1 and consequently, dim(Fd) ≤ |N |−2.

Thus, Fd does not define a facet of P .

Conversely, if Nj0+r−ψ �= ∅, the inequality dTx ≤ δ defines a facet Fd of P for the
following reasons.

Suppose, cTx ≤ γ is a facet defining inequality of P such that Fd ⊆ {x ∈ P |
cTx = γ}. First note that for every i ∈ Nj, j ≤ r the vectors x0 :=

∑
v∈T1

ev + ei0
and x0 + ei are elements of Fd. Thus, ci = 0 in this case.
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Let i ∈ Nj0+r−ψ and consider the vectors x0, x1 = x0 − ei0 + ei and x2 =
x0 + ei − ∑

v∈T ev, where T ⊆ T1, |T | = j0 − ψ. As dTx0 = dTx1 = dTx2,
we obtain ci = ci0. Moreover, since T can be choosen arbitrarily, we conclude
ci′ = ci′′ for all i′, i′′ ∈ T1. Finally, this implies ci = ci0 = (j0 − ψ)ci′, where
i′ ∈ T1.

Similary, for i ∈ Nj , r + 1 ≤ j ≤ j0 + r − ψ we define the feasible solutions
xi = x0+ei−∑

v∈T ev, where T ⊆ T1, |T | = j−r. Since dTx0 = dTxi we conclude
ci = (j − r)ci′ where i

′ ∈ T1.

For i ∈ Nj, j0 + r − ψ < j < j0 + r we have that the vectors x0 and x0 − ei0 + ei
are roots of Fd. This implies ci = ci0.

Finally, for an item i ∈ Nj with j = j0 + r + t, t ≥ 1 we obtain ci = ci0 + tci′

where i′ ∈ T1, because the vector x0 − ei0 −
∑
v∈T +ei (T ⊆ T1, |T | = t) belongs

to the face Fd.

This shows that cTx ≤ γ and dTx ≤ δ are equal up to multiplication by a scalar,
which completes the proof of (ii).

The claims stated in (iii) and (iv) can be shown by using similar arguments as in
the proof of (ii).

Now let dTx ≤ δ be an inequality of type (3.3) and suppose δ = |T1| + ∑k
v=1 jv

for some set ∅ �= T1 ⊆ N1 and k items i1, . . . , ik, iv ∈ Njv . In case k ≥ 2 it
is not easy anymore to derive necessary and sufficient conditions under which
dTx ≤ δ defines a facet of P . In particular, we do not see how to treat several
cases analogously and hence end up with a very long and painful proof. However,
in one case we can easily decide that the inequality dTx ≤ δ of type (3.3) defines
a facet of P .

Proposition 3.6. Let ∅ �= T1 ⊆ N1 and I = {i1, . . . , ik} ⊆ N \ N1 such that
iv ∈ Njv for v = 1, . . . , k, 2 ≤ j1 ≤ . . . ≤ jk and |T1| + ∑k

v=1 jv < b. We
define r as the rest capacity, i.e., r := b − |T1| − ∑k

v=1 jv. For every integer
ψ ∈ [0,min{r, jk − jk−1}] such that jk − ψ ≤ |T1|, the inequality

∑
i∈T1

xi +
k−1∑
v=1

jvxiv + (jk − ψ)xik +
jk+r−ψ∑
j=r+1

∑

i∈Nj\I
(j − r)xi+

jk+r∑
j=jk+r−ψ+1

∑
i∈Nj

(jk − ψ)xi +
∑

j>jk+r

∑
i∈Nj

(j − r − ψ)xi ≤ |T1|+
k∑
v=1

jv − ψ

defines a facet of P if Njv+r �= ∅ for all v = 1, . . . , k − 1 and Njk+r−ψ \ {ik} �= ∅.
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Proof. We briefly sketch the proof of Proposition 3.6. Let dTx ≤ δ denote the
above inequality and let x0 denote the vector

∑
v∈T1

ev +
∑k
v=1 eiv . Moreover, we

assume that cTx ≤ γ is a facet defining inequality of P such that Fd := {x ∈ P |
dTx = δ} ⊆ {x ∈ P | cTx = γ}.

As jk − ψ ≤ |T1|, the vector x =
∑
v∈T ev +

∑k
v=1 eiv + ei with i ∈ Nj \ I ,

r+1 ≤ j ≤ jk+ r−ψ, T ⊆ T1, |T | = j− r is an element of Fd. Hence, ci = c(T ).

Moreover, ci′ = ci′′ for all i
′, i′′ ∈ T1, because T can be chosen arbitrarily. This

further implies ci = (j − r)ci′ where i
′ ∈ T1 for all i ∈ Nj , r+1 ≤ j ≤ jk + r−ψ,

i �∈ I . Also, ci = ci0 for all i ∈ Nj, jk+r−ψ+1 ≤ j ≤ jk+r and ci′ = ci0+tci′ for
all i ∈ Njk+r+t, i

′ ∈ T1 can be shown by applying the same arguments as given
in the proof of Proposition 3.5.

Due to the conditions Njv+r �= ∅ for all v = 1, . . . , k − 1 we obtain that civ = ci
for i ∈ Njv+r, because x

v := x0 − eiv + ei is a root of Fd. Finally, the condition
Njk+r−ψ �= ∅ guarantees that x := x0−eik+ei satisfies dTx = δ where i ∈ Njk+r−ψ.
Consequently, ci = cik .

To conclude that cTx ≤ γ and dTx ≤ δ define the same face, we just notice that
for all i ∈ Nj \ I , 2 ≤ j ≤ r the vector x0 + ei is a root of Fd which shows ci = 0.

Of course, there are many more possibilities to obtain valid inequalities by ex-
tending this “reduction principle”. Namely, in the inequalities of type (3.3) an
item of I \ {ik} has a coefficient whose value is equal to the original weight of
this item. In principle, the inequality of type (3.3) can be extended to the case
where we choose for every i ∈ I a reduction coefficient ψi ∈ [0, r] independently
and define an inequality cTx ≤ γ by setting ci = W (i)− ψi for i ∈ I and ci = 1
for i ∈ T1. In this case, it is no longer obvious to determine the coefficients for
the remaining items explicitly, because for every i ∈ Nj \ (N1 ∪ I), j ≥ r + 1 we
need to solve the following integer programming problem

(�) min{ ∑
i∈T1∪I

cizi | zi ∈ {0, 1}, i ∈ T1 ∪ I,
∑

i∈T1∪I
W (i)zi ≥ j − r}.

Under certain assumptions this problem can be solved explicitly. For instance,
if we choose a subset I = {i1, . . . , ik}, iv ∈ Njv , r + 1 ≤ j1 ≤ . . . ≤ jk, with the
property that the weight of the items in I lie in the range [i1, i1 + r] and if we
choose a reduction parameter ψk ∈ [0, i1 + r − ik] and set ψt = jt + ψk − jk for
t = 1, . . . , k− 1, then one can solve problem (�) for all i ∈ N \ (I ∪ T1) explicitly.

One might also think of extending an inequality of type (3.3) in a similar way as
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was done in Proposition 2.4 for the special case where |I | = 1. We claim that in
principle this is possible, but a formal proof would require many technical details
(see Proposition 2.4) that we do not want to go into here.

Rather let us end this section by posing the question: How can we extend an
inequality of type (3.3) to the case when T1 �⊆ N1, but is choosen arbitrarily?
Certainly, if T1 ⊆ N \N1, this question is of no interest for the polytopes P s, be-
cause the only non-trivial facet defining inequality dTx ≤ δ for P s that is not the
knapsack inequality and satisfies dv = 0 for v ∈ N1 is the one

∑
j∈Bs

∑
i∈Nj xi ≤ s.

However, for the 0/1 knapsack polyotope in general, there are many inequalities
dTx ≤ γ that define facets and have the property that di = 0 for all i ∈ N1.

Example 3.7. Consider the knapsack polytope defined as convex hull of all 0/1
vectors that satisfy the constraint

x1 + x2 + x3 + 2x4 + 2x5 + 2x6 + 3x7 + 4x8 + 5x9 + 7x10 + 10x11 ≤ 15.

For instance, the inequalities

(1) x5 + x6 + x7 + x8 + x9 + x10 + 2x11 ≤ 4,

(2) x5 + x6 + x7 + 2x8 + x9 + x10 + 3x11 ≤ 5,

(3) x1 + x2 + x4 + x5 + 2x8 + x10 + 3x11 ≤ 6,

(4) x1 + x2 + x3 + x4 + x5 + x6 + 2x7 + x8 + x9 + 2x10 + 4x11 ≤ 8,

define facets of the corresponding polyhedron (checked by a program developed
in [C91]).

We now show how the inequalities (1) – (4) in Example 3.7 can be obtained
by generalizing the inequalities of type (3.3). Here, the idea is the following.
Choose a subset ∅ �= T1 = {t1, . . . , tl} ⊆ N , W (t1) ≤ . . . ≤ W (tl) and some item
i0 ∈ Nj0 ⊆ N \ (N1 ∪ T1) such that j0 +

∑l
v=1W (tv) < b, j0 > jl and jl ≤ r

where r = b− j0 −∑l
u=1W (tu). Under these assumptions an inequality dTx ≤ δ

is defined by setting di = 0 for all i ∈ N1 and di = 1 for all i ∈ T1. For the items
i ∈ N \(N1∪T1) we compute two numbers: the first one is its “new” weight which
is the old weight relative to the weights of the items in T1. The second number is
the “new” (weight minus rest capacity r) which is the original weight minus the
rest capacity relative to the weights of the items in T1. The coefficient of an item
is its “new” (weight minus rest capacity) if its original weight is smaller than j0.
For the item i0 we choose some coefficient in the range of its “new” (weight minus
rest capacity) and its new weight”. To compute the coefficients of the remaining
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items we apply the same principle as we did in Proposition 2.2 (ii) based on their
“new” weights.

More precisely, we obtain the following proposition.

Proposition 3.8. Let ∅ �= T1 = {t1, . . . , tl} ⊆ N and i0 ∈ Nj0 ⊆ N \ T1 such
that

∑l
v=1W (tv) + j0 < b, W (t1) ≤ . . . ≤ W (tl) < j0 and W (tl) ≤ r where

r = b − ∑l
v=1W (tv) − j0 denotes the rest capacity. We set φ(j) := 0 if j is a

negative integer and for every integer 0 ≤ j ≤ ∑l
v=1W (tv) we define φ(j) as the

value j relative to the weight of the items in T1. In formulas,

φ(j) = min{u ≥ 0 |
l∑

v=l−u+1

W (tv) ≥ j}.

We choose some integer ψ ∈ [0, φ(j0) − φ(j0 − r) − 1], we require
∑l
v=1W (tv) ≥

φ(j0)−ψ and define j1 = min{j ≥ r + 1 | φ(j − r) = φ(j0)− ψ} (note that since
W (tl) ≤ r, then φ(j0)−φ(j0− r) ≥ 1 and j1 ∈ [j0, j0+ r]). Finally, in case ψ = 0
we require that φ(j− j0− r)+φ(j0) ≤ φ(j− r) for all j > j0+ r such that Nj �= ∅
and j − r ≤ ∑l

v=1W (tv). Under these assumptions we define the inequality

∑
i∈T1

xi + (φ(j0)− ψ)xi0 +
j1−1∑
j=r+1

∑

i∈Nj\{i0}
φ(j − r)xi+

j0+r∑
j=j1

∑
i∈Nj

(φ(j0)−ψ)xi+
∑

j>j0+r

∑
i∈Nj

(φ(j− j0 − r) + φ(j0)−ψ)xi ≤ |T1|+ φ(j0)−ψ.

It is valid for P . If Nj1 \ {i0} �= ∅ and if there exists i ∈ Nj \ {i0} for some

r + 1 ≤ j ≤ j1 with
∑φ(j−r)
v=1 W (tv) ≥ j − r, the inequality defines a facet of P .

Proof. We show that the inequality is valid for P .

First note that φ(a) + φ(b) ≤ φ(a+ b) + 1 for all positive integers a, b such that
a + b ≤ ∑l

v=1W (tv). Moreover, W (tl) ≤ r and hence, φ(a − r) ≤ φ(a) − 1
for all numbers r + 1 ≤ a ≤ ∑l

v=1W (tv). Finally, it is not hard to show that
φ(a) + φ(b) ≤ φ(c) + φ(d) + 1, if 0 < a, b, c, d <

∑l
v=1W (tv) and a + b = c + d >∑l

v=1W (tv).

Let x ∈ P be given and denote the above inequality by cTx ≤ γ. If xi0 = 1
or if xi = 1 for some i ∈ Nj, j ≥ j1, then cTx ≤ γ can be shown by using
similar arguments as in the proof of Proposition 2.2. Moreover, if xi = 1 for some
i ∈ Nj \ {i0}, j < j1 and x′

i = 0 for all i′ ∈ N \ (T1 ∪ {i}), we have cTx ≤ γ,
because ci ≤ ci0 . The crucial case is when there exist i′ ∈ Nj′, i

′′ ∈ Nj′′, i
′ �= i′′,

r + 1 ≤ j′ ≤ j′′ ≤ j1 with xi′ = xi′′ = 1.
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Let I ⊆ N \T1, r+1 ≤W (u) ≤ j0+r−ψ, u ∈ I be the subset with xu = 1 for all
u ∈ I . If W (I) ≤ j0 + r, then cTx ≤ |T1|+∑

u∈I φ(W (u)− r) ≤ |T1|+ φ(W (u)−
|I |r)+|I |−1≤ |T1|+φ(j0+r−|I |r)+|I |−1 ≤ |T1|+φ(j0−r)−(|I |−2)+|I|−1≤
|T1|+ ci0 = γ.

If W (I) > j0 + r, then there exists T ⊆ T1, |T | ≥ W (I) − j0 − r such that
xt = 0 for all t ∈ T . As |I | ≥ 2, we have cTx ≤ |T1| − |T |+∑

u∈I φ(W (u)− r) ≤
|T1| − |T |+ φ(j0 + r − 2r) + 1 + φ(W (I)− j0 − r) ≤ |T1| − |T |+ ci0 + |T | = γ.

Under the assumptions in Proposition 3.8 it is easy to show that the inequality
defines a facet.

Remark. In Proposition 3.8 we consider only ψ-values such that ψ < φ(j0) −
φ(j0 − r). Indeed, if ψ = φ(j0) − φ(j0 − r), the proof of Proposition 3.8 does
not work anymore. In this case additional conditions must be satisfied that
guarantee that the inequality is valid. Finding such conditions is not very hard,
but we refrain from explaining the details.

Example 3.9. Consider the knapsack polytope introduced in Example 3.7. Set-
ting T1 = {5, 6, 7} and i0 = 8 yields r = 4 and φ(j0) = 2. If we choose ψ = 0, we
obtain inequality 2 and if we choose ψ = 1, we obtain inequality (1).

Inequality (3) can be derived from Proposition 3.8 if we choose T1 = {1, 2, 4, 5},
i0 = 8 and ψ = 0.

Finally, setting T1 = {1, 2, 3, 4, 5, 6} and i0 = 7 yields r = 3 and φ(j0) = 2. With
ψ = 0 we obtain the inequality (4).

To conclude this section let us mention that Proposition 3.8 can in principle be
generalized by replacing the single item i0 be a set I = {i1, . . . , ik} that satisfies
certain conditions. Then, the definition of φ(j) must be replaced by some more
complicated formula. The conditions under which the corresponding inequality
is valid for P are quite technical and we refrain within this paper from explaining
the details. Instead we give an example.

Example 3.10. Consider the knapsack polytope introduced in Example 3.7. For
instance, the inequality

x6 + x7 + 2x8 + 2x9 + 3x10 + 4x11 ≤ 6

defines a facet of this polytope (checked by a program developed in [C91]). By
setting T1 = {6, 7} and I = {8, 9} we obtain r = 1. Moreover, we choose ψ = 0.
Let cTx ≤ γ denote the above inequality. The weight of items 8 and 9 relative
to the weight of the items in T1 is 2 and hence, c8 = c9 = 2. The weight of item
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10 is equal to 7 . Since r = 1 and 7 − r = 6 ≥ 5 + 3 = W (7) +W (9), we obtain
φ(7− r) = c7 + c9 = 3 = c10. Finally, the weight of item 11 is equal to 10. Since
the weight of the items in I is 4 and 5, respectively, and since 10− r = 4+ 5, we
obtain c11 = c8 + c9 = 4. This explains the above inequality.

� The Separation Problem

Consider the separation problem for the inequalities of type (3.3). i.e., given a
fractional point yi, i ∈ N ; we are looking for a set T1 ⊆ N1 and I = {i1, . . . , ik} ⊆
N\N1 such that iv ∈ Njv for v = 1, . . . , k, 2 ≤ j1 ≤ . . . ≤ jk and |T1|+∑k

v=1 jv < b.
We define r := b − |T1| − ∑k

v=1 jv. For every integer ψ ∈ [0, r], jk − ψ > 0, the
inequality

∑
i∈T1

xi +
k−1∑
v=1

jvxiv + (jk − ψ)xik +
jk+r−ψ∑
j=r+1

∑

i∈Nj\I
(j − r)xi+

jk+r∑
j=jk+r−ψ+1

∑
i∈Nj

(jk − ψ)xi +
∑

j>jk+r

∑
i∈Nj

(j − r − ψ)xi ≤ |T1|+
k∑
v=1

jv − ψ

is valid for P .

Given T1 and I and denote for ψ ∈ [0, r], jk−ψ > 0, the corresponding inequality
of type (3.3) by c(ψ)Tx ≤ γ(ψ). Then we can determine a value ψ∗ in polynomial
time such that c(ψ∗)T y − γ(ψ∗) = max{c(ψ)Ty − γ(ψ) | ψ ∈ [0, r], jk − ψ >
0, Nj0+r−ψ �= ∅} by applying the subsequent algorithm.

• Determine Nψ := {0 ≤ ψ ≤ r|Njk+r−ψ �= ∅, jk − ψ > 0}.
• Determine ψ∗ ∈ Nψ such that

∑jk+r
j=jk+r−ψ∗+1

∑
i∈Nj(j − (jk + r − ψ∗))yi +∑

j>jk+r

∑
i∈Nj ψ

∗yi + ψ∗yik − ψ∗ = minψ∈Nψ{∑jk+r
j=jk+r−ψ+1

∑
i∈Nj(j − (jk +

r − ψ))yi +
∑
j>jk+r

∑
i∈Nj ψyi + ψyik − ψ}.

• Return ψ∗.

This procedure works correct, because, for given T1 and I two inequalities of type
(3.3) with different values of ψ differ only in the right hand side, the coefficient
of item ik and the coefficients for the items with weight greater than jk + r − ψ.
The coefficients for the items with weight smaller than jk are identical. Since
|Nψ| ≤ |N |, this algorithm runs in time that is poynomial in |N |. If we do not
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restrict the set Nψ to values of ψ with Njk+r−ψ �= ∅ the worst case time of this
algorithm is pseudo polynomial.

In fact, the output of the above algorithm is not dependent on the set T1 and I ,
but only on the sum of the weights of the items in T1 ∪ I . This indicates that
the separation problem for the inequalities of type (3.3) can be solved in pseudo
polynomial time and space complexity via a dynamic programming approach (see
[Be54]). Indeed, this is true and we briefly explain the idea now.

Given an item ik with weight jk. Then the sum of the weights of items in T1∪ I \
{ik} lies in the range of [1, b−jk−1]. For every value of d ∈ [1, b−jk−1] we need to
determine the “best” ψ and the “best” set T1 ∪ I \ {ik} with sum of the weights
equal to d (in this context “best” means to find objects so that the left hand
side minus the right hand side of the inequality to be determined is maximized).
However, computing the best ψ and the best set T1 ∪ I \ {ik} can be performed
independently, since the items in T1 ∪ I \ {ik} have a weight which is smaller
than jk and changing ψ has an impact on the value of the coefficients of items
only if the corresponding weight exceeds jk. Second, all items with weight j ≤ jk
have a coefficient of max{0, j− r}, except for the elements in T1∪ I . For an item
i ∈ T1∪ I \{ik} with weight j, its coefficient is j. Hence, by solving the knapsack
problem max{∑

i∈
⋃jk
j=1

Nj\{ik}
min{r,W (i)}yizi | ∑i∈

⋃jk
j=1

Nj\{ik}
W (i)zi = d, zi ∈

{0, 1}, i ∈ ⋃jk
j=1Nj \ {ik}} and setting T1 := {i ∈ N1 | zi = 1} and I := {i ∈

N \ (N1 ∪ {ik}) | zi = 1} ∪ {ik}, we find the best sets T1 ⊆ N1 and I ⊆ N \ N1

such that |T1|+W (I) = d+ jk. Explicitly, the algorithm works as follows.

For all ik ∈ Njk , 2 ≤ jk ≤ b− 1 perform the following steps:

For all d = 1, d ≤ b− jk − 1 perform the following steps:

– Set r = b− jk − d and initialize Nψ := {0 ≤ ψ ≤ r|jk − ψ > 0}.
– Determine ψ∗ ∈ Nψ such that

∑jk+r
j=jk+r−ψ∗+1

∑
i∈Nj(j−(jk+r−ψ∗))yi+∑

j>jk+r

∑
i∈Nj ψ

∗yi + ψ∗yik − ψ∗ = minψ∈Nψ{∑jk+r
j=jk+r−ψ+1

∑
i∈Nj(j −

(jk + r − ψ))yi +
∑
j>jk+r

∑
i∈Nj ψyi + ψ∗yik − ψ}.

– Determine the optimum solution to the following knapsack problem

max{ ∑

i∈
⋃jk
j=1

Nj\{ik}

min{r,W (i)}yizi |
∑

i∈
⋃jk
j=1

Nj\{ik}

W (i)zi = d,

zi ∈ {0, 1}, i ∈
jk⋃
j=1

Nj \ {ik}}.
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– Set T1 := {i ∈ N1 | zi = 1} and I := {i ∈ N \ (N1 ∪ {ik}) | zi =
1} ∪ {ik}.

– Let cTx ≤ γ be the inequality of type (3.3) with starting set T1 ∪ I
and reduction parameter ψ∗ and set g(d + jk) = cTy − γ.

Determine g(d∗) = max{g(d) | d ∈ {jk + 1, . . . , b− 1}}. The corresponding
inequality is the one with maximal slack subject to ik ∈ I .

Since the knapsack problem can be solved in pseudo polynomial time and since
d is bounded by the knapsack capacity b we obtain a pseudo polynomial running
and space complexity of this algorithm. Of course, for large problem instances
this (exact) method is not practical anymore. Nevertheless, instead of solving for
every d the knapsack problem exactly, one could restrict the number of d-values
heuristically and apply some primal heuristic for the knapsack problem.

Conclusions

Our complete description of the 0/1 knapsack polytope when the weight of the
items is equal to one or lies in the range of [� b

3
�+1, � b

2
�] seems to be a further step

to understand the richness of possibilities according to which knapsack inequal-
ities can be derived. It would be interesting to find extensions to more general
cases. For instance, given a complete description of the polytopes

conv{∑i∈N1
xi +

∑� b
u
�

j=� b
u+1

�+1

∑
i∈Nj jxi ≤ b | xi ∈ {0, 1}, i ∈ Nj} and

conv{∑i∈N1
xi +

∑� b
v
�

j=� b
v+1

�+1

∑
i∈Nj jxi ≤ b | xi ∈ {0, 1}, i ∈ Nj} for u �= v.

Can one derive a complete description for the poytope

conv{∑i∈N1
xi+

∑� b
u
�

j=� b
u+1

�+1

∑
i∈Nj jxi+

∑� b
v
�

j=� b
v+1

�+1

∑
i∈Nj jxi ≤ b | xi ∈ {0, 1}, i ∈

Nj}?

To our knowledge, the principle of generating a series of valid inequalities for
the 0/1 knapsack polytope that differ by a parameter by which the weight of
a particular item is decreased has not been introduced before. In particular,
these inequalities are not classified whether they involve the concept of covers or
(1, k)-configurations, but this property is given a priori by the starting set and the
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reduction parameter. We have also shown that these inequalities can be separated
in pseudo polynomial time by applying dynamic programming techniques.

Of course, finding good and efficient heuristic strategies for separating such in-
equalities certainly requires further efforts and testing, but at least the idea of
using such inequalities computationally seems to be worth trying.

Appendix

Proof of Theorem 2.5. Let F be a non-trivial facet of P 2 that is induced by
the inequality cTx ≤ γ that is not the knapsack inequality. We define T1 := {i ∈
N1 | ci > 0} and w.l.o.g we assume that T1 = {1, . . . , k} and c1 ≥ c2 ≥ . . . ≥ ck.
We distinguish the following cases:

Case 1: k = 0. In this case it is easy to check that F is induced by the inequality
∑� b

2
�−1

j=� b
3
�+1

∑
i∈Nj xi ≤ 2, since F is non-trivial.

Case 2: γ <
∑k
v=1 cv. Then, k > b and consequently, every x ∈ F satisfies∑

i∈N1
xi +

∑
j∈B2

∑
i∈Nj jxi = b.

Case 3: γ =
∑k
v=1 cv. Since c

Tx ≤ γ is not the knapsack inequality, we conclude
that k < b and we set r := b − k. Moreover, we define x0 :=

∑k
v=1 ev. Since

γ =
∑k
v=1 cv = cTx0 the relation ci = 0 for all i ∈ Nj with 2 ≤ j ≤ r holds.

Let i ∈ Nj, j ≥ r + 1 be given. Since x := x0 − ∑k
v=k−(j−r)+1 ev + ei is feasible,

we obtain
ci ≤ ck + ck−1 + . . .+ ck−(j−r)+1.

On the other hand, there exists a root x′ with x′
i = 1. Since j ≥ r + 1, there

exists T ⊆ T1, |T | = j − r with x′
t = 0 for all t ∈ T . This yields

ci ≥ ck + ck−1 + . . .+ ck−(j−r)+1

and hence ci = ck + ck−1 + . . . + ck−(j−r)+1. Now it follows that the inequality
cTx ≤ γ is of the type

∑
i∈T1

xi +
∑
j>b−k

∑
i∈Nj(j − (b− k))xi ≤ k.

Case 4: γ > c(T1). Since F �⊆ {x ∈ P 2 | ∑i∈N1
xi +

∑
j∈B2

∑
i∈Nj jxi = b}, there

exists a root x0 with
∑
i∈N1

x0i +
∑
j∈B2

∑
i∈Nj jx

0
i < b. This root satisfies the
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condition x0t = 1 for all t ∈ T1. Now, we can assume that there exists i0 ∈ Nj0,
j0 ≥ 2 such that x0i0 = 1 and γ = c(T1) + ci0. Otherwise, γ �= c(T1) + ci holds for
all i ∈ Nj , j ≥ 2 and x0i′ = 1, x0i′′ = 1 for some i′ ∈ Nj′ and i

′′ ∈ Nj′′, 2 ≤ j′ ≤ j′′.
Since F �⊆ {y ∈ P 2 | ∑j∈B2

∑
i∈Nj yi = 2}, there exists a root y ∈ F such that

yi′′′ = 1 for some i′′′ ∈ Nj′′′, j
′′′ ≥ 2, i′′′ �= i′, i′′′ �= i′′, yi = 0 for all i ∈ Nj , i �= i′′′.

However, W (i′′′) < W (i′) +W (i′′) and consequently, yt = 1 for all t ∈ T1. This
yields γ = c(T1) + ci′′′, a contradiction.

Hence, we can assume that γ = c(T1)+ci0 holds. We can also assume that ci < ci0
for all i ∈ Nj with j < j0 and we can assume that ci ≤ ci0 for all i ∈ Nj with
j0 ≤ j ≤ j0 + r, where r := b − j0 − |T1|. In the following x0 := ei0 +

∑k
v=1 ev

denotes the corresponding root. We can derive several relations.

First note that for every i ∈ Nj , j ∈ B2 the relation j0+ j ≤ b = j0+k+ r holds.
Hence, k + r ≥ j holds.

Due to this observation we have that for every i ∈ Nj \ {i0}, j ∈ B2 the vector
x0 −∑k

v=k−(j−r)+1 ev + ei is feasible. This yields the inequality

ci ≤
k∑

v=k−(j−r)+1

cv.

For the item i0 we now show ci0 ≤ ∑k
v=k−j0+1 cv. Suppose, ci0 >

∑k
v=k−j0+1 cv.

As ci ≤ ∑k
v=k−(j−r)+1 cv for all i ∈ Nj \ {i0}, j ∈ B2, we claim that F is the face

induced by the inequality xi0 ≤ 1. Assume that x is a root of F such that xi0 = 0.
If there exists i ∈ Nj , j > j0+ r with xi = 1, then by exchanging i with i0 and an
appropriate subset of T1 we obtain ci0 ≤

∑k
v=k−j0+1 cv, a contradiction. Similarly,

if there exists i ∈ Nj , j0 ≤ j ≤ j0 + r with xi = 1, then ci ≤ ∑k
v=k−(j−r)+1 cv

holds. By exchanging i with i0 this would also contradict the assumption ci0 >∑k
v=k−j0+1 cv. Otherwise, there exist two items i ∈ Nj, i

′ ∈ Nj′, r+1 ≤ j ≤ j′ ≤ j0
with xi = xi′ = 1. If j′ + j ≤ j0 + r, then by exchanging i and i′ with i0 we
obtain ci0 ≤ ∑k

v=k−j0−r+1 cv, a contradiction. Otherwise, j′ + j > j0 + r and
there exists T ⊆ T1 with xt = 0 for all t ∈ T . Exchanging i and i′ with i0 and
T again yields ci0 ≤ ∑k

v=k−j0−r+1 cv, a contradiction. This shows that the case

ci0 >
∑k
v=k−j0+1 cv is not possible.

Now suppose that Nj �= ∅ for some j > j0+r, j = j0+r+ t (t ≥ 1) say, let i ∈ Nj

be some item and let x be root such that xi = 1. Since x0− ei0 −
∑k
v=k−t+1 ev+ ei

is a feasible point in P 2, we know ci ≤ ci0 +
∑k
v=k−t+1 cv. We distinguish two

cases:

(i) xi0 = 0. Then, the vector x − ei + ei0 +
∑k
v=k−t+1 ev is a feasible point
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as well. Thus, ci ≥ ci0 +
∑k
v=k−t+1 cv and together with the above relation,

ci = ci0 +
∑k
v=k−t+1 cv.

(ii) xi0 = 1. In this case the vector x − ei +
∑k
v=k−(t+j0)+1 ev is a feasible

point. This gives ci ≥ ∑k
v=k−(t+j0)+1 cv and together with the above relation,

ci =
∑k
v=k−(t+j0)+1 cv. Finally, x − ei0 +

∑k−t
v=k−(j0+t)+1 ev is feasible. Therefore,

ci0 ≥ ∑v=k−t
k−(t+j0)+1 cv = ci − ∑k

v=k−t+1 cv. Together with ci0 ≤ ∑k
v=k−j0−r+1 cv we

obtain ci = ci0 +
∑k
v=k−t+1 cv.

Hence, for every i ∈ Nj , j > j0 + r we obtain the relation

ci = ci0 +
k∑

v=k−(j−j0−r)+1

cv.

Based on the value of the coefficient ci0 we distinguish two cases.

(1) The first case is
∑k
v=k−(j0−r)+1 cv ≤ ci0 ≤ ∑k

v=k−j0+1 cv. Let js := min{j |∑k
v=k−(j−r)+1 cv ≥ ci0}. Since j0 ≤ js ≤ j0 + r, we immediately obtain ci = ci0 for

all i ∈ Nj with js ≤ j ≤ j0 + r and ci < ci0 for all i ∈ Nj with j0 ≤ j < js.

Let i ∈ Nj \ {i0}, 2 ≤ j < js be given. If ci <
∑k
v=k−(j−r)+1 cv holds and if x is

a root with xi = 1, then there exists an item i′ �= i, i′ ∈ Nj′, 2 ≤ j′ < js such
that xi′ = 1. Set d := max{0, j + j ′ − j0 − r}. Obviously, j + j′ > j0, so that
x− ei − ei′ + ei0 +

∑k
v=k−d+1 ev is feasible and consequently, ci0 +

∑k
v=k−d+1 cv ≤

ci + ci′ <
∑k
v=k−(j−r)+1 cv +

∑k
v=k−(j′−r)+1 cv ≤ ∑k

v=k−(j0−r)+1 cv +
∑k
v=k−d+1 cv ≤

ci0 +
∑k
v=k−d+1 cv, a contradiction. Thus, ci =

∑k
v=k−(j−r)+1 cv for all i ∈ Nj,

2 ≤ j ≤ js. Now it is easy to see that F is the face induced by the inequality

∑
i∈T1

xi +
∑

r+1≤j≤js−1

∑

i∈Nj\{i0}
(j − r)xi + (js − r)xi0+

∑
js≤j≤j0+r

∑
i∈Nj

(js − r)xi +
∑

j≥j0+r

∑
i∈Nj

(js + j − j0 − r)xi ≤ k + js − r,

which completes the first case.

(2) Finally, we have that
∑k
v=k−(j0−r)+1 cv > ci0 . In this case it is easy to see that

ci = ci0 for all i ∈ Nj, j0 ≤ j ≤ j0 + r. Moreover, we observe the following.

(O1) There exists an item i∗ ∈ Nj∗ \ {i0}, r + 1 ≤ j∗ < j0 and a root x ∈
F such that xi∗ = 1 and xi0 = 1. For if not then every vector x ∈ F also
satisfies

∑
r+1≤j<j0

∑
i∈Nj xi +

∑
j≥j0

∑
i∈Nj 2xi = 2 and hence, dim(F ) ≤ |N | − 2,

a contradiction.
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(O2) Second, we observe that for every root x ∈ F with xi = 1, i ∈ Nj, r + 1 ≤
j < j0 there exists some other item i′ ∈ Nj′, r + 1 ≤ j′ < j0 such that xi′ = 1.
Moreover, j + j′ > j0 and hence, ci0 = ci + ci′ if j + j′ ≤ j0 + r. Otherwise, the
relation ci + ci′ = ci0 +

∑k
v=k−(j+j′−j0−r)+1 cv must be satisfied, since both, x and

x0 are roots.

For every item i ∈ Nj with r + 1 ≤ j ≤ j0 − 1 and every root x such that
xi = 1, there exists some other item i′ ∈ Nj′, r + 1 ≤ j ≤ j0 with xi′ = 1. Let
r + 1 ≤ js ≤ j0 − 1 be the minimum number such that there exist items s ∈ N js

and t ∈ Njt , js ≤ jt ≤ j0 with js + jt = min{j + j ′ | x is a root with xi = xi′ = 1,
i ∈ Nj \ {i0}, i′ ∈ Nj′ \ {i0}, r + 1 ≤ j ≤ j0 − 1, j ≤ j′}.

We now show that js + jt < j0 + r.

Suppose, js+jt ≥ j0+r. Then F is contained in the face induced by the inequality
dTx ≤ δ which is the following

∑
i∈T1

xi +
∑

r+1≤j≤j0

∑
i∈Nj

(j − r)xi +
∑

j0≤j≤j0+r

∑

i∈Nj\{i0}
(j0 − r)xi+

∑
j≥j0+r

∑
i∈Nj

(j − 2r)xi ≤ |T1|+ j0 − r

for the following reason: If x ∈ F is a root with xi = xi′ = 1, i ∈ Nj, i
′ ∈ Nj′,

r+1 ≤ j ≤ j0− 1, j ≤ j′ ≤ j0, then j + j′ ≥ js+ jt > j0+ r and hence, dTx = δ.
In all other cases it is obvious that x ∈ F implies dTx = δ. However, di0 = j0− r,
which contradicts the assumption of case (2),

∑k
v=k−(j0−r)+1 cv > ci0.

Thus, js + jt < j0 + r and we set l := j0 + r− js− jt. First of all we have several
implications.

As js + jt < j0 + r, we obtain ci ≤ cs for all i ∈ Nj \ {t} with js ≤ j ≤ js + l.
Similarly, ci ≤ ct for all i ∈ Nj with jt ≤ j ≤ jt + l. Moreover, if i ∈ Nj \ {t} is
an item with j = js + l + v, v ≥ 1, then ci ≤ cs +

∑k
u=k−v+1 cu. Accordingly, for

i ∈ Nj with j = jt + l + v, v ≥ 1, we obtain ci ≤ ct +
∑k
u=k−v+1 cu.

Again we distinguish two cases.

Suppose, there does not exist an item i ∈ Njs−x with r + 1 ≤ js − x ≤ js such
that ci =

∑k
v=k−(js−x−r)+1 cv. Then every i′ ∈ Nj′ \ {t}, r + 1 ≤ j′ satisfies

ci′ <
∑k
v=k−(j′−r)+1 cv. This implies, t = i∗ (see (O1)).

Our first case is ct =
∑k
u=k−(jt−r)+1 cu.
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Now we claim that F is contained in the face induced by the inequality

∑
i∈T1

xi +
js∑

j=r+1

∑

i∈Nj\{t}
(j − r)xi +

js+l∑
j=js+1

∑

i∈Nj\{t}
(js − r)xi+

(jt − r)xt +
j0∑

j=js+l+1

∑

i∈Nj\{t}
(j − r − l)xi +

j0+r∑
j=j0+1

∑
i∈Nj

(j0 − r − l)xi+

∑
j≥j0+r

∑
i∈Nj

(j − l− 2r)xi ≤ |T1|+ j0 − r − l

and we briefly explain why. For ease of notation let us denote this inequality by
dTx ≤ δ.

Let x be a root with xi = xi′ = 1 for some i ∈ Nj , i
′ ∈ Nj′, r + 1 ≤ j ≤ j′. If

j < js, j = js−x say, then j′ ≥ jt+ l+x, because otherwise by exchanging i and
a subset T ⊆ T1, |T | = jt − j − (j0 + r − jt − js) with t would give the relation
ct < ck + . . .+ ck−(jt−r)+1, a contradiction. Thus, j′ ≥ jt + l + x and in this case
dTx = δ holds. If js < j ≤ jt − 1 and i′ �= t, then by exchanging i and a subset
T ⊆ T1, |T | = jt − j with t would give the relation ct < ck + . . . + ck−(jt−r)+1,
because ci <

∑k
v=k−(j−r)+1 cv. Hence this case can be excluded. In all other cases

it is not difficult to see that x ∈ F implies dTx = δ.

The remaining case is ct <
∑k
u=k−(jt−r)+1 cu. Here, we know that there exists

an item i ∈ Njs−x, r + 1 ≤ js − x ≤ js such that ci =
∑k
v=k−(js−x−r)+1 cv. Let

x1 be minimal such that there exists i ∈ Njs−x1 , r + 1 ≤ js − x1 ≤ js with
ci =

∑k
v=k−(js−x1−r)+1 cv. Let us denote this item i by s1.

Now it is easy to see that ci =
∑k
v=k−(js−y−r)+1 cv for all i ∈ Njs−y, y ≥

x1, W (s1)− y ≥ r + 1. Moreover, let t1 be an item with minimal weight greater
or equal than W (s1) such that there exists a root x ∈ F with xs1 = xt1 = 1.
We define l1 = max{0, j0 + r −W (s1)−W (t1)}. Note that if W (s1) < W (s) we
further know that W (t1) > W (t)+ l. Now the following relations can be derived:

ci ≤ cs1, i ∈ Nj \ {t1},W (s1) ≤ j ≤W (s1) + l1

ci ≤ cs1 +
k∑

v=k−(j−W (s1 )−l1)+1

ck, i ∈ Nj \ {t1}, j > W (s1) + l1

ci ≤ ct1, i ∈ Nj,W (t1) ≤ j ≤ W (t1) + l1

ci ≤ ct1 +
k∑

v=k−(j−W (t1)−l1)+1

ck, i ∈ Nj , j > W (t1) + l1

Moreover, it is easy to see that ci = cs1 for all i ∈ Nj,W (s1) ≤ j ≤ W (s1) + l1
and ci = ct1 +

∑k
v=k−(j−W (t1)−l1)+1 cv for all i ∈ Nj, j > W (t1) + l1.
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Now let s2, W (t1) > W (s2) > W (s1) + l1 be an item with minimal weight such
that there exists an item i, W (s2) < W (i) < W (t1), W (i) + W (s2) < j0 + r
and a root x ∈ F with xs2 = xi = 1. Note that s2 and i exist, since s and t
satisfy these properties. Let t2 be an item with minimal weight greater or equal
than W (s2) that satisfies the above properties, i.e., W (s2) < W (t2) < W (t1),
W (t2) +W (s2) < j0 + r and there exists a root x ∈ F with xs2 = xt2 = 1. We
define l2 := j0 + r −W (s2) −W (t2). Due to the choice of t1 we conclude that
W (t1) ≥ W (t2) + l2. Moreover, we can derive similar relations as pointed out
above. In particular, one can show ci = cs2 for all i ∈ Nj \ {t2},W (s2) ≤ j ≤
W (s2) + l2 and ci = ct2 +

∑k
v=k−(j−W (t2)−l2)+1 cv for all i ∈ Nj, j > W (t2) + l2.

Iterating this argument shows that there exist pairs of items (s1, t1), . . . , (sα, tα)
that satisfy the following properties:

• W (si) ≤ W (ti) with W (si) +W (ti) < j0 + r. We set li := max{0, j0 + r −
W (si)−W (ti)}.

• W (si) + li < W (si+1) for i = 1, . . . , α − 1 and W (ti) + li < W (ti−1) for
i = 2, . . . , α.

• There exists a root x ∈ F with xsi = xti = 1.

• For every item i ∈ Nj \ ∪αu=1{su, tu}, W (si) + li < j < j0 or j < W (s1)
there does not exist a root x with xi = xi′ = 1 for some i′ ∈ Nj′, j

′ ≥ j
such that j + j′ < j0 + r.

Now it easy to see that the face F is contained in the face induced by some
inequality

∑
i∈T1

xi +
∑
j≤W (s1)

∑
i∈Nj(j − r)xi +∑α−1

u=1

(∑W (su)+lu
j=W (su)+1

∑
i∈Nj(W (su)− r −∑u−1

v=1 lv)xi +
∑W (su+1)
j=W (su)+lu+1

∑
i∈Nj(j − r −∑u

v=1 lu)xi
)

+
∑W (sα)+lα
j=W (sα)+1

∑
i∈Nj\{tα}(W (sα)− r −∑α−1

v=1 lv)xi +
∑W (tα)+lα−μα
j=W (sα)+lα+1

∑
i∈Nj\{tα}(j − r −∑α

v=1 lv)xi +

(W (tα)− r −∑α−1
v=1 lv − μα)xtα +∑W (tα)+lα

j=W (tα)+lα−μα+1

∑
i∈Nj(W (tα)− μα − r −∑α−1

v=1 lv)xi +
∑α
u=2

(∑W (tu−1)
j=W (tu)+lu+1

∑
i∈Nj(j − r −∑α

v=1 lv − μα −∑α−1
v=u lv)xi +

∑W (tu−1)+lu−1

j=W (tu−1)+1

∑
i∈Nj(W (tu−1)− r −∑α

v=1 lv − μα −∑α−1
v=u lv)xi

)
+

∑j0
j=W (t1)+l1+1

∑
i∈Nj(j − r − μα − lα − 2

∑α−1
v=1 lv)xi +∑j0+r

j=j0+1

∑
i∈Nj(j0 − r − μα − lα − 2

∑α−1
v=1 lv)xi +∑

j>j0+r

∑
i∈Nj(j − 2r − μα − lα − 2

∑α−1
v=1 lv)xi ≤

|T1|+ (j0 − r − μα − lα − 2
∑α−1
v=1 lv).
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where μα ∈ [0,min{lα,W (tα)−W (sα)}]. This finally completes the proof.
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