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A b s t r a c t 

The paper presents the mathematical concepts underlying the new adaptive 
finite element code KASKADE, which, in its present form, applies to lin­
ear scalar second-order 2-D elliptic problems on general domains. Starting 
point for the new development is the recent work on hierarchical finite ele­
ment bases due to Yserentant (1986). It is shown that this approach permits 
a flexible balance between iterative solver, local error estimator, and local 
mesh refinement device - which are the main components of an adaptive 
PDE code. Without use of standard multigrid techniques, the same kind 
of computational complexity is achieved - independent of any uniformity 
restrictions on the applied meshes. In addition, the method is extremely 
simple and all computations are purely local - making the method partic­
ularly attractive in view of parallel computing. The algorithmic approach 
is illustrated by a well-known critical test problem. 
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0. Introduction 

In the field of ordinary differential equations, adaptive techniques have been 
standard for many years. In boundary value problems involving partial dif­
ferential equations, however, most of the work still concentrates on uniform 
or quasi-uniform grids. Because of the additional complications arising 
from the boundary geometry, this class of problems should even more be 
attacked by adaptive techniques - in view of real life applications in science 
and engineering. 

The present paper focusses on the mathematical concepts underlying our 
new adaptive finite element code KASKADE. In its present version, this 
code applies to scalar self-adjoint second-order plane elliptic problems on 
general domains. Among the most popular comparable codes in the field are 
PLTMG due to Bank [3] and NFEARS due to Mesztenyi/Rheinboldt [10]. 
Both of these codes apply to nonlinear problems and offer path continuation 
facilities, whereas KASKADE at present just applies to linear problems. 

Despite of this present restriction and a number of features that KASKADE 
shares with PLTMG, the new code opens an independent line of develop­
ment - both in its concept and its implementation. Starting point is the 
rather recent work of Yserentant [12] on hierarchical finite element bases. 
Without use of standard multigrid techniques [8,11,4], the new code never­
theless achieves the same kind of computational complexity - independent 
of any uniformity restriction on the applied meshes. An important feature 
of the new method is its enticing simplicity. All computations are local, 
which implies small start-up times and no assembling of the global matrix. 
This feature makes the method particularly attractive in view of parallel 
computing. Conceptually, this simplicity permits a rather flexible balance 
between the three main components of an adaptive PDE code, which are: 
the iterative solver, the local error estimator, and the local mesh refinement. 

The basic idea of the iterative linear equation solver implemented in 
KASKADE is outlined in Section 1 - there in the simplified context of 
uniform grid refinement. In Section 2, an edge-oriented estimator for the 
local discretization error is derived. It is the basic tool for the local mesh 
refinement strategy described in detail in Section 3. Moreover, this sec­
tion deals with the hierarchical basis construction for nonuniformly refined 
meshes, the procedure nesting the termination criteria of the iteration with 
the discretization error estimator, and a complexity estimate for the gen­
eral case. Finally, in Section 4, a critical numerical example illustrates the 
efficiency of the new approach. 
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1. Basic Idea 

Let Q C IR2 denote a bounded polygonal domain with boundary dO com­
posed of two disjoint parts dCli,dQ2- Consider the following elliptic bound­
ary value problem: 

-V(a(x)Vu) + q(x)u = / ( x ) , x <E ft 
ttL=° t1-1) 

n-a(x)Vu\ = 0 , 

where a is a symmetric positive definite (2,2)-matrix, and a, g, / are as­
sumed to be piecewise continuous. For simplicity, the assumption q{x) > 0 
is made throughout this paper. However, an extension of the method to 
the indefinite case (q{x) either sign) is possible along the lines worked out 
in Yserentant [13]. The weak formulation associated with (1.1) is: find a 
function U G H(Q) satisfying 

B{U,v) = f f(x)vdx , v e H{Q) (1.2) 

where 
B(u,v) := Ma(x )Vu- Vv + q(x)u- vjdx . (1.3) 

Herein the solution space H(Q) is defined as 

^(n):={«e^(n)| <in,= 0} (x-4) 

where the Dirichlet boundary condition is understood to hold in the sense 
of the trace operator. Assume that (1.2) has a unique solution (which 
excludes, for instance, the case q(x) = 0 , dCli = 0 ) . 

For a finite element treatment of (1.2), H is covered by a coarse triangu-
lation To. With 7o as initial grid, subsequent mesh refinements lead to 
triangulations 71, T2 • • • • For ease of presentation, uniform mesh refine­
ments are assumed (throughout this section only), compare Figure 1. 

• > 

Figure 1 Uniform mesh refinement. 

2 



Si 

Figure 2 Nodal bases for 5,- in the 1-D case (homogeneous Dirichlet boundary 
conditions). 

Each triangulation Ti is associated with the piecewise linear element space 
$i of dimension nt-. Usually, 5,- is represented by its nodal basis - see Figure 
2 for the 1-D case. The method to be described herein uses the alternative 
representation in terms of hierarchical bases (compare Yserentant [12]). In 
Figure 3, the corresponding 1-D case is illustrated. The essential feature 
of this representation is that S,+i is partitioned according to 

Si+i = Si 8 V*+i (1.5) 

where the functions in "Vt+i vanish at the nodes associated with S,-. The 
hierarchical basis of S,+i is obtained by keeping the hierarchical basis of 5, 
and representing "V,-+1 by its nodal basis. 

The finite element solution of (1.2) requires the determination of a function 
Ui € Si satisfying 

B(Ui,v) = f f(x)vdx , veSi . (1.6) 

In nodal basis representation, this is equivalent to the linear system 

AiUi = bi . (1.7) 
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Vu Si = So © Vi 

Vi, s2 = Si e v2 

Figure 3 Hierarchical bases for S,- - to be compared with Figure 2. 

In hierarchical basis representation, one obtains 

A* = h (1.8) 

where 
a,- = 5tüt- , 5,- = STbi , Ät = STAiSi . (1.9) 

Assuming natural ordering of hierarchical basis functions, one may define 
the symmetric positive definite (nt-,nt)-matrix 

Mt AH*'
 (110) 

where the diagonal matrix Df contains those diagonal entries of Ä» that are 
not contained in Ä0. It has been shown in [12] that for 

A, := LTlÄtLrT = L^STAtSiLrT ( l .U) 

the spectral condition number K satisfies 

* ( A ) < C i - ( * + l ) 2 (1.12) 
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where C\ is bounded independent of i and of the regularity of the boundary 
value problem - see also [5]. Recall that in nodal basis representation one 
has 

K{Ai) = C2-4* . (1.13) 

In view of result (1.12), the matrix 

S,-TDtSfl (1.14) 

may serve as an efficient preconditioner for the linear system (1.7). This 
means that the linear system 

A,t2, = k , br^L^sTbi (1.15) 

can be solved in a fast way by means of conjugate gradient iteration. The 
solution Ui in nodal basis representation is 

u{ = SiLjTUi : (1.16) 

Let 
\\u\\:=B(u,u)^\ u € J J ( n ) - , (1.17) 

denote the energy norm. Let e be the user prescribed reduction factor 
from the initial to the final error - measured in the energy norm. Then the 
number mt(e) of necessary cg-iterations is well-known [l] to be bounded 
by 

mi(e) < Jv^-l log^l . (1.18) 

Upon inserting (1.12), one thus obtains 
2 

m t ( e ) < C s . ( t + l ) . | l o g | | . (1.19) 

As shown in [12], neither Ai nor 6, need to be computed explicitly. Rather 
routines for the fast evaluation of matrix times vector with the matrices 

Li1, L;T, S,, Sf, A, (1.20) 

are sufficient. Surprisingly, the evaluation of S,tu , S?w can be performed 
recursively and requires only 2n,- additions and n,- divisions by 2 each. This 
means that the amount of work per cg-iteration is proportional to nt-. As 
a consequence, the total amount of work sums up to 

a,.(e)<C4-fi,--(t + l ) . | l o g | | . (1.21) 

Of course, in order to avoid unnecessary computational work, the value 
€ should reflect the discretization error on level i. In the best case, the 
discretization error for linear elements behaves like 0(hi) with 

fk = ho • ay (i.22) 
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for uniform refinements. This means that a prescribed reduction factor e 
less than 

«i ™ (})' (1-23) 

is unreasonable. To achieve the reduction e,- one needs at most 

m , ( £ i ) < C , - ( . + l ) 2 

preconditioned cg-iterations and, at most, 

o , (e t )<C 4 -n t - . (» + l ) 2 (1.25) 

operations. 
A rough interpretation of (1.23) is that level t supplies, in the best case, t 
binary digits of accuracy. However, t — 1 bits can be obtained on coarser 
grids at lower cost. This naturally inspires the following implementation, 
reminding of the nested multigrid iteration process [8] : rather than solving 
(1.7) for i = j , a cascade of linear systems (1.7) for i = 0 , 1 . . . ,j is solved 
successively. For t = 0, i.e. on the coarsest grid, Cholesky decomposition 
may be applied, yielding U0 € So, thus initializing the cascade. On finer 
levels, certain approximations of £/,-, say £/,- 6 St-, are determined bv precon­
ditioned cg-iteration. The iteration on level i is started with U^ ' := E/t_i 
and terminated when 

ii^--^ii<m--i-t/ii (i.26) 
for some reduction factor e to be discussed below. Recall that the norm on 
the right-hand side of (1.26) measures the distance between the solution U 
of the continuous problem (1.2) and the last iterate on level i — 1. 
Repeated induction leads to 

m-Uf^tiey-'WUi-UW . (1.27) 
t = 0 

This means that for the choice 

<f = p . i , ( X / X l , (1.28) 

the errors introduced on coarser levels are damped sufficiently fast so that 
the iterates Uj achieve discretization error accuracy. To see this, assume 
that, for 0 < a < 1 , 

|| üi - U\\ < C5 • hf = C6.h$- (J)*- . (1.29) 

Then insertion of (1.29) into (1.27) yields 

{fa - u\\ < c6 • hf. (i - (^-V)-172 (i.3o) 

6 
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Note that in this estimate the usually critical case of small a is uncritical, 
whereas the best case a = 1 appears to be the critical one. 

As shown above, the crucial condition nesting the different levels is (1.26). 
Because of Ü^i = U>0' and 

||t/f> - U\\*-= ||tf/°> - UN + ||Di - Uf > | | ü f > - Utf , (1.31) 

the condition 
||Di - DIU < g | | ü f - oil 

is sufficient for (1.26). Therefore, the number 

mi{s)<Cs •(« + !) log | 

(1.32) 

(1.33) 

of cg-iterations needed to satisfy (1.32) is an upper bound for the number of 
cg-iterations needed to satisfy (1.26). The total amount of work to compute 
Uj from U0 can be estimated by 

t = i 

(1.34) 

For further estimation, assume geometric progression for the number of 
nodes, i.e. 

n t + 1 > s • rii , s > 1 . (1.35) 

Note that s = 4 for uniform refinement of grids (this section only). By 
(1.21), one obtains 

Hence, 

a Ui 

n,- ._, n,-
t = i 

log | < 

< £<vfe) . (y+i). log | 

. 5,<C4-n,-- (y+1) 
a - 1 

log | (1.36) 

With n — Uj « 4J , one obtains a computational complexity of 

0(n Id n) . 
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2. Error Estimation 

An actual realization of the cascade iteration described in the preceding 
section requires an estimator for both the discretization error and the it­
eration error - compare the crucial criterion (1.26). At the same time, a 
discretization error estimator is anyway required for the construction of 
nonuniform meshes. In principle, the highly efficient and reliable triangle 
oriented local error estimator of Bank and Weiser [7], which is realized in 
PLTMG [3], could also be applied in the context here. However, in the 
hierarchical basis framework, a much simpler edge oriented local error esti­
mator seems to be worth discussing. This alternative is the subject of this 
section. The method to he developed has certain similarities with ideas of 
Zienkiewicz and Craig; see [14], for example. 

Let T be a fixed triangulation, which is either the initial triangulation or 
a triangulation obtained in the course of the adaptive process described in 
Section 3. Let SL and SQ denote the spaces of piecewise linear and piecewise 
quadratic finite element functions associated with T. In what follows, the 
distance between the approximate finite element solution SL and the exact 
finite element solution in SQ will be estimated. SQ can be decomposed into 
a direct sum 

SQ = SL®VQ . (2.1) 

The functions of VQ vanish at the vertices of the triangles in T and can be 
characterized by their midpoint values on the edges of these triangles. One 
immediately observes that this construction corresponds to the splitting 
(1.5). Now, assume that a hierarchical basis of SL is given (for details of 
its construction compare Section 3). Then the hierarchical basis of SQ is 
naturally defined by adding the usual nodal basis functions of SQ spanning 
VQ. For an illustration in the 1-D case see Figure 4. With respect to this 
hierarchical basis of SQ every function has a coefficient vector 

(2.2) 

with VL representing the linear part in SL and VQ representing the quadratic 
part in VQ. 

The finite element equations corresponding to the boundary value problem 
(1.2) and to this hierarchical basis of SQ are 

(2.3) 
/ ALL ALQ 

\ AQL AQQ 

or, in short form, 
Au* = b . (2.4) 
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Figure 4 Hierarchical basis representation of SQ = $£, © VQ 

The finite element equations with respect to SL only are 

ALLuL = 6L . (2.5) 

Assume that an approximate solution uL of (2.5) is at hand. In the hierar­
chical basis of SQ the coefficient vector (ux,0) represents the same function. 
The defect 

CH:;)-m 
represents the difference between the exact piecewise quadratic finite ele­
ment solution in SQ and the given approximate piecewise linear solution in 
Sj> It satisfies 

( ALL ALQ \ f dL \ = / rL \ 
V AQL A Q Q J \dQ J \rQ J 

with 
n := bL - ALLuL , (2.8) 
rQ := bQ - AQLuL . (2.9) 

Of course, an exact solution of (2.7) would be far too expensive. To estimate 
CLL and rfg, (2.7) is substituted by a much simpler system 

(2.7) 

BLL BLQ 

BQL BQQ 
(2.10) 
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or, in short notation, 
Bd = r . (2.11) 

In the context of hierarchical bases 

f fl" *« ) : = ( D L L ° ) (2.12) 

is a natural choice. The matrix DLL corresponds to the already denned 
nearly diagonal matrix (1.10), and DQQ is the diagonal part of AQQ. Then 
di, and &Q can be computed from 

DLLdL = rL , DQQ&Q = rQ . (2.13) 

The replacement of d by d essentially means that instead of the optimal 
global correction in SQ a set of optimal one-dimensional corrections in each 
of the directions of the hierarchical basis functions spanning SQ is deter­
mined. In the interior of the domain and on the free part of the boundary 
these corrections are computed utilizing the underlying variational princi­
ple. On the Dirichlet part of the boundary the prescribed boundary values 
are used. If uL is the exact solution of (2.5), one may interpret this proce­
dure as solving Dirichlet problems with respect to one-dimensional spaces 
associated with the edges. 

An appropriate measure for the size of the error is its energy norm 

\A^2d\2 = (d,Ad) (2.14) 

where (•, •) denotes the Euclidean inner product and | • | the induced norm. 
This value is approximated by 

\Bl'*d\2 = ID^d,]1 + | D $ d 0 | J (2.15) 

where 

\D£&\* = (dL,DLJL) = (DllrL,rL) = \Dll'\L\* , (2.16) 

\D^dQf = (dQ,DQQdq) = {D^QTQ,TQ) = \D$I\Q\* . (2.17) 

In order to justify this approach, the question of whether the value (2.15) 
is a reasonable estimate for (2.14) must be studied. 

Lemma: 

Let B be an arbitrary symmetric and positive definite preconditioner for A 
and assume that ßi and /Lt2 are positive constants with 

— (v,Bv) < {v,Av) < /i2(v,Bt;) (2.18) 
ßi 
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for all coefficient vectors v. Let r be a given residual vector and let d and 
d be the solutions of 

Ad=r, Bd = r , (2.19) 

respectively. Then 

-^—\All2d\ < \Bll2d\ < y/ir2\A
xf2d\ . (2.20) 

Proof: Using (2.19) one gets 

\All*d\ = \All2A-lBd\<\A-l!2Bll2\\Bll2d\, 

\Bll2d\ = \Bll2B~1Ad\ < \B-ll2A1l2\\All2d\ , 

and because of 
|C|2 = |CT |2 = \CCT\ = \CTC\ 

one has 
|^-i/2jBi/2 |2 = | ( f l - V M B - i / » ) - i | < M l , 
|B-1/2^1/2|2 = \B-l/2AB-l/2\ < ß 2 u 

Inserting above confirms the proposition. • 

In the following the constants ßi and /Z2 are estimated for the matrix (2.12). 
First, there exist positive constants 7! and 72 with 

— {{vL,ALLvL) + (VQ.DQQVQ)} 
7I 

<(( V L ) J ÄLL ALA(VL\) (2.21) 
\\VQ ) \ AQL AQQ J \VQ J J 

< 72 {(vL,ALLvL) + (VQ,DQQVQ)} 

for all coefficient vectors t; partitioned as usual. 71 and 72 depend only on 
the degeneration of the triangles and on the local ellipticity of the bound­
ary value problem, not on the meshsize or any quasi-uniformity assumption 
for the triangulation, and not on global properties of the boundary value 
problem. The estimate (2.21) can be proved by considering each trian­
gle separately and by summing up the local estimates. The upper bound 
in (2.21) is an easy consequence of the triangle and the Cauchy-Schwarz 
inequality. Splitting a quadratic function into its linear part and the re­
maining three parts associated with the edges of the given triangle one 
gets 

72 < 4 . (2.22) 
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For the proof of the lower bound in (2.21), one utilizes the locally uniform 
ellipticity of the bilinear form (1.3) and transforms the individual triangles 
to a fixed reference triangle. 

In a second step one utilizes that DLL is spectrally nearly equivalent to 
ALL', it has been shown in [12] that there exist positive constants K\ and 
K2 with 

1 - K , DLLvL) < K , ALLvL) < K2{vL,DLLvL) (2.23) 
KJ2 

for all coefficient vectors VL. Here j denotes the depth of the triangulation 
T; for its definition see Section 3 below. Like the constants ix and 72

 m 

(2.21), the constants K\ and K2 only depend on the degeneration of the 
triangles and on the local ellipticity of the boundary value problem; see 
also [5]. Inserting (2.23) into (2.21), the estimate (2.18) follows with 

Mi < Krtrf2 , ß2 < K2l2 < AK2 . (2.24) 

Summarizing one obtains 

This result confirms that \Bll2d\ has the usually required properties of an 
error estimator [7]. 
The slightly unsatisfactory appearance of j in (2.25) disappears as uL ap­
proaches the exact solution of the linear system (2.5). To see this, just 
observe that for 

rL = bL- ALLUL = 0 (2.26) 

the linear systems 

(2.27) 

and 

have the same solution 

(2.28) 

dL = 0 , dQ = DgX
QrQ . (2.29) 

For this case the estimate (2.25) can be improved to 

-^=:\A^2d\ < \Bl'2d\ < 2\A1?2d\ . (2.30) 
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3. The Adaptive Algorithm 

In the preceding sections, the main ingredients necessary for the construc­
tion of our adaptive finite element code KASKADE have been presented. In 
Section 1, the iterative solver has been outlined - however, in the restricted 
situation of uniform grid refinement, which is relieved in the present sec­
tion. In Section 2, an estimator for the local discretization error has been 
worked out - which will be used to derive the strategy for nonuniform mesh 
refinement. 

The process for solving the boundary value problem (1.2) starts at some 
initial triangulation T° - usually given by the user or generated by some 
preprocessor. It is assumed that T° reflects the geometry of the domain 0 
sufficiently well. Typically, T° will consist of only few triangles. Let ra0 be 
the number of vertices of T° and let $° denote the space of piecewise linear 
finite element functions with respect to T°. The finite element solution 
U° E S° of problem (1.2) is obtained by sparse elimination techniques. 
This establishes cascade level t = 0. 

Mesh refinement strategy. For the time being, the transition from 
cascade level t = 0 to cascade level t = 1 is described. First, the local error 
estimator of Section 2 is activated, which supplies the components of the 
vector 

D\HdQ = D^TQ , (3.1) 

one component for each edge of the triangulation. Then a threshold value 
0 is computed, and those edges are marked for local refinement that satisfy 

(D^dQ | e d g e ) 2 > 0 . (3.2) 

Our present choice is 

0 := a • m , a := 0.95 , (3.3) 

with m denoting the mean value of the squares of the components of the 
weighted residual (3.1). Next, as a standard procedure, each triangle hav­
ing at least one edge marked for refinement, is refined regularly ("red* 
refinement in the notation of [6]) - see Figure 5. An exception is made for 
obtuse triangles, which are refined to reduce the largest angle - see Figure 
6. 
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Figure 5 Standard regular or "red" refinement [6]. 

Figure 6 Regular or "red" refinement for obtuse triangles. (See package PLTMG, 
edition 5.0 [3]). 

The triangulation is then completed by possibly using additional "red" 
refinements and finally "green" refinements (in the notation of [6]). The 
typical situations occurring are depicted in Figure 7 and Figure 8. 

Figure 7 Completion of triangulation by regular or "red" refinement. 

Let n be the number of vertices of the thus defined triangulation T. In 
view of (1.35) one now checks the condition 

n > s - n0 (3-4) 

with s := 2 in the present version of KASKADE. If (3.4) holds, then cascade 
level t = 1 is established and T 1 := T is the associated triangulation. 
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Figure 8 Completion of triangulation by irregular or "green" refinement. 

Otherwise, the local error estimator is once more activated leading to a new 
set of marked edges. Next, green edges are removed, replacing two green 
triangles by one red triangle. Then those triangles are refined regularly, 
which have at least one marked red edge. To close the triangulation, first 
red refinements as shown in Figure 7 and Figure 9 are performed. Finally, 
green refinements complete the triangulation. The whole refinement process 
just described must be repeated, until the test (3.4) is passed. After a finite 
number of steps the cascade level t = 1 is established and the triangulation 
T1 is defined. 

Figure 9 Additional red refinement. 

The above techniques describe in sufficient detail the general transition 
from triangulation T* on cascade level i to triangulation T*+1 on cascade 
level ii + 1. 

Hierarchical basis. Given a triangulation T obtained by the above mesh 
refinement process (intermediate level or cascade level), now the hierar­
chical basis of the associated finite element space S is constructed. The 
hierarchical basis is needed for both the evaluation of the error estimator 
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(see Section 2) and the realization of the preconditioned cg-iteration (see 
Section 1 for uniformly refined meshes). The problem is to find an appro­
priate hierarchy of subspaces of S, defined by the corresponding hierarchy 
of triangulations. 
Independent of any history of the adaptive process, the triangulation T is 
understood as the last member 7y of a hierarchy of nested triangulations 
To, 7i, T2,... which is uniquely determined by T and the triangulation T° 
establishing the initial cascade level. 7o is identical to this triangulation T°. 
In the transition from 7* to Tt+i triangles are either kept or are refined as 
shown in Figure 5 and Figure 6, and in Figure 8, respectively. The triangles 
of 7o are the triangles of level 0. The triangles of level k + 1 are created 
by a red or a green refinement of a triangle of level k. To get a unique 
decomposition of T, only triangles of level k in 7* are allowed to be refined 
in the transition to Tt+i. As a result of this construction, the finite element 
space Sk associated with 7* is a subspace of S*+i- With T = 7} , j is the 
depth of the triangulation T. 

It should be remarked that in the case of uniform refinement (as treated 
in Section 1) the cascade triangulations T°, T 1 , . . . , T* are identical to the 
internal triangulations 7o, 7 i , . . . ,7J associated with T*. For the general 
case of nonuniform refinement, however, the depth j \ of triangulation T* 
of cascade level i may be greater than t. (A more precise notation would 
require double indices!). 

The vertices of the triangles in 7o are the vertices or nodes of level 0. The 
vertices created by the refinement of a level k triangle are the vertices or 
nodes of level k •+-1; see Figure 10. Note that the definition of the level of a 
node is unique because green edges are never refined during the construction 
of the internal triangulations. 

Figure 10 The level k + 1 nodes created by the refinement of two level k triangles. 

The subspace Vk+i of Sk+i is spanned by the nodal basis functions of Sfc+1 

associated with level k + 1 nodes. Corresponding to (1.5) 

Sk+i = Sk® Vjb+i (3.5) 
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holds. The hierarchical basis of So is the nodal basis of this space. The 
hierarchical basis of St+i consists of the hierarchical basis functions of Sk 

and the nodal basis functions of St+i spanning Vk+i-

With the definition of the hierarchical basis of S = Sj corresponding to 
the triangulation T = 7} the definition of the preconditioner for the case 
of nonuniform mesh refinements is also established. As in the case of uni­
form refinement a condition number estimate like (1.12) holds, now with t 
replaced by the depth of T. For details compare [12] and [5]. 

Termination Criteria for the Iterative Solver. Assume that an ap­
proximate solution U{-i € S*_1 of problem (1.2) is given, which has dis­
cretization error accuracy, i.e. 

l l ^ - ^ i l l ^ l l ^ x - ^ H (3.6) 

in the notation of Section 1. This relation certainly holds for t = 1 (direct 
solution on cascade level 0). The aim is now to compute the approximate 
solution U{ G S* on the already given triangulation T*. First, an initial 
approximation U^ G S* is determined. For this purpose, one merely keeps 
all hierarchical basis coefficients associated with C/,_i and sets the new 
coefficients to zero. Then the conjugate gradient method is applied to the 
preconditioned form corresponding to (1.15) of the arising linear system. 
From (1.26), the ideal termination criterion for the iteration would be 

W&i-UiWKEiWÜi^-UW . (3.7) 

As in Section 1, an efficient choice of the parameter e,- deserves special 
consideration. The principle transferred from Section 1 is that the g{ should 
reflect the best possible behavior of the discretization error. For an i r ­
regular problem and quasi-uniform meshes the discretization error is well-
known to behave like 0(h), which means 

|| Di - tT|| ~ l/nl'2 . (3.8) 

Using conformally mapped uniform meshes one can show that this approx­
imation order can be reached for a fairly general class of problems. This 
leads to the choice 

ff,-:=/>-(i*i-i/»ü)1/2, 0 < / > < l , (3.9) 

wherein the safety factor p takes care of the considerations of Section 1 and 
of the estimation of the norms arising in (3.7) as described in Section 2. In 
the present version of KASKADE the value p := 1/2 is selected (compare 
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also (2.30)). With the choice (3.9) of e, (3.7) leads to 

iioi - n* < m - u\\2+p'—m-i - u\\*+ 
nn ""' . (310) 

+ ... + />*^||l/o-tf||2 

Hi 

which corresponds to (1.27). Therefore efficiency would only be lost for 
finite element approximations behaving better than (3.8). 

Complexity E s t i m a t e . In order to estimate the complexity of this pro­
cedure, first one needs some knowledge about the growth of the number 
of unknowns from one cascade level to the next. Let nt- be the number of 
vertices of the triangulation T*. Since T*, i > 1, has to pass the test (3.4), 
one has 

5 < — , t > 1 . (3.11) 

To get an'upper bound for this quotient assume that T is the last inter­
mediate triangulation before T \ The number n of vertices of T does not 
pass the test (3.4). Thus 

n < s - n t_i . 

After the green edges of T have been removed, every remaining triangle is 
subdivided at most once into four red triangles. Therefore in the transition 
form T to T* the number of newly created vertices is bounded by the 
number of edges of T. Let 70 denote the maximal number of edges meeting 
at a vertex of T° . Then at most 7 = max(70> 6) edges meet at a vertex of 
T. Therefore 

n.- — n <>. — • n , 
- 2 

and finally 

follows. 

Corresponding to (1.33), the number of preconditioned cg-iterations on 
cascade level i necessary to achieve 

| | Ö i - D l l | < e 4 | | D < 0 » - ü | | (3.13) 

can be estimated by 

mi{Ei) < Cs • {ji + 1) • |log | | . (3.14) 

Herein j \ > i denotes the depth of the triangulation T*. Recalling the 
construction of Uf' G S% from U^x € S*_1, one can assume that 

| | l / f > - U\\ = HÖi., - U\\ . (3.15) 
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Thereby (3.14) becomes an estimate for the number of iterations needed to 
satisfy (3.7). Combining the definition (3.9) of e,- and (3.12) one has 

te 7 / 2 5 

1/2 

< €i < 1 , (3.16) 

which leads to 

m.-te)<<?;-tt' + l) (3.17) 
for properly defined Cg. With n< the number of vertices associated with 
T*, the work estimate corresponding to (1.21) comes out to be 

o.-fe) < Ci " «<' U + 1) • (3-18) 

Let t denote the final cascade level, j = Ji the' associated depth of the final 
triangulation T* and n = n? the number of vertices of this triangulation. 
Then the total amount of iteration work a can be estimated by 

t 

« < £ « , • ( * , • ) . (3.19) 
t = 0 

Insertion of (3.16) and condition (3.11) lead to 

t=0 V S / 

Summing up, one obtains 

a<Cl--^—-n-(j + l) . (3.20) 
5 — 1 

For the choice s := 2 made in the code KASKADE, the result (3.20) esti­
mates the total amount of iteration work by roughly the double amount of 
iteration work on the finest cascade level. 

In addition to the iteration work, the work for building the local element 
matrices and right-hand sides (associated with the individual triangles), 
for the computation of the local error estimates and for the administration 
of the triangulations needs to be considered. For a clever arrangement of 
these computations the involved amount of additional work can be bounded 
proportional to the number of triangles on the final cascade level. The 
amount of work for selecting the edges according to (3.2) can be neglected 
from a practical point of view. 
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In actual computation, the unavailable terms on both sides of (3.7) are 
replaced according to 

llüi-Oilp-lW (3-21) 

Ha,.! - U\\* - l-DI^-i^-il2 + ID^U'Vi-i? • (3-22) 
Herein, the notation in (3.21) agrees with the notation of Section 1, the 
notation in (3.22) is an adaptation of the notation of Section 2. Both 
estimates (3.21) and (3.22) represent the preconditioned residual in the 
associated scaled hierarchical basis. 

Assume that for some iterate on cascade level t, the condition (3.7) with 
the replacements (3.21), (3.22) and the choice (3.9) for et- holds. Then the 
discretization error estimator described in Section 2 is called on level i. In 
order to mimic the computationally unavailable condition (3.6), one checks 
for the substitute condition 

\D~L]!jrLti\<P'T, 0 < p < l , (3.23) 

where 

' = ( P Z ^ / + l ^ % , f ) ' (3.24) 
is the current estimate for the discretization error. If this condition holds, 
the refinement procedure is called. If (3.23) does not hold, one keeps r fixed 
and continues the iteration on level % until 

\DLL,irL,i\ < P • T , 0 < p < p , (3.25) 

is satisfied. After a new call of the error estimator refinement begins. In 
the present version of KASKADE the values p — 1/2 and p = 1/4 are used. 
It may be worth mentioning that in the examples tested so far a restart of 
the cg-iteration never occurred. 

The presentation up to now ignored the question which kind of data struc­
ture is needed to handle the algorithm in an efficient way. Note that a 
careless treatment of this question might easily lead to a computational 
amount behaving worse than the estimate (3.20). A detailed presentation 
of this important part of the development would be far beyond the scope 
of the present paper and is left to [9]. 
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4. A Numerical Experiment 

The above described code KASKADE has been applied to a number of ex­
amples including those with re-entrant corners (such as L-shaped regions), 
discontinuous Dirichlet boundary conditions or discontinuous coefficients 
(material constants). As it turns out, the basic performance of the code 
can be sufficiently illustrated by a documentation of a well-known nasty 
test problem [2,5]. Consider Laplace's equation 

- Au = 0 (4.1) 

on a circle n of radius 1 (centered at the origin) having a crack along the 
positive x-axis. Homogeneous Dirichlet (Neumann) boundary conditions 
are imposed on the top (bottom) of the crack, giving a singular solution 
with leading term 

u = r1/4sin(v?/4) . (4.2) 

This function is imposed as Dirichlet boundary condition on the remain­
ing part of the boundary, yielding (4.2) as exact solution. The associated 
contour plot of (4.2) is given in Figure 11. 

Figure 11 Contour map of the solution u = r1'4 sin(y>/4) as obtained by 
KASKADE. 
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The initial triangulation T° used to start KASKADE is presented in Figure 
12. Further triangulations as obtained by the code are documented in 
Figures 13-15. 

Figure 12 The initial triangulation T° (10 nodes). 

Figure 13 Triangulation T2 (50 nodes, depth 2) 
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Figure 14 TViangulation 7 s (218 nodes, depth 4) 

Figure 15 TViangulation T 4 (769 nodes, depth 6) 
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This documentation illustrates the efficiency of the mesh refinement strat­
egy of KASKADE. The actual performance of the suggested error estima­
tor is illustrated by the convergence history in Figure 16. For reasons of 
a clear presentation, each approximate solution on the grids T ° , . . . , T 5 is 
embedded into the piecewise linear finite element space associated with the 
final triangulation T 6 by setting appropriate hierarchical basis coefficients 
to zero. The quantity DISTL is defined as the distance between the em­
bedded approximate solution on T*, t = 0 , . . . ,6, and the exact piecewise 
linear finite element solution corresponding to T6 . The quantity DISTQ is 
defined as the equivalent distance to the exact piecewise quadratic solution 
corresponding to T6 . Both distances are measured in the energy norm. As 
the space of piecewise linear functions is a subspace of the space of piece-
wise quadratic functions, DISTL is always less than DISTQ. The estimated 
error ERR-EST is defined by formula (2.15). It should roughly behave like 
DISTQ. Each dotted vertical line indicates the appearance of a new cascade 
level (here up to j = 6). 

error 

1 f BO ERR-EST 
^ 0 DISTQ 
+ + DISTL 

"* 1 1 1 H 1 1 - 1 1 -
iterations 

Figure 16 The convergence history of the cascade (logarithmic scale). 
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From Figure 16, the following observations can be made: 

• The quantity ERR-EST is only a slight underestimate of the quantity 
DISTQ - thus nicely confirming our error estimation device 
(Section 2). 

• On the final cascade level (/ = 6), the iteration would normally ter­
minate after 4 steps. Further iterations, which have deliberately been 
added for illustration purposes, do not "improve" the solution - a fact, 
which nicely demonstrates the efficiency of our termination criterion 
(3.7)/(3.9). 

• The number of iterations necessary on each cascade level remains 
small (not greater than 6). 

The total computing time for this problem on a Macintosh II work station 
using the MPW PASCAL compiler is given in Table 1. 

Cascade Depth Nodes CPU-Time (t/riij • 100 

level * Ji n, t [sec] 

0 0 10 0.02 0.20 1 

1 1 23 0.20 0.86 

2 2 50 0.52 1.04 

3 4 218 2.88 1.32 

4 6 769 10.23 1.33 

5 8 2774 42.00 1.51 i 

6 10 6156 98.20 1.60 

Table 1 

Summary. This test problem and a series of further examples illustrate 
the efficiency (robustness, reliability, speed) of our adaptive hierarchical fi­
nite element code KASKADE. Independent of the special implementation, 
the authors feel that with this approach a new door has been opened to­
wards a more efficient treatment of elliptic PDE's on arbitrary 2-D domains 
arising in science and engineering applications. 
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Appendix 

This section contains a documentation of further test problems. For each 
example, the initial triangulation T° and the final triangulation T3\ a con­
tour plot of the solution on T3 and the convergence history (as in Figure 
13) are presented. 

The following examples are arranged: 

• A.l The Notorious Model Problem 

• A.2 L-shaped Region 

• A.3 Discontinuous Coefficients 

• A.4 Discontinuous Dirichlet Boundary Conditions 

The computing times given in the subsequent tables refer to a Macintosh II 
work station using the MPW PASCAL compiler. 
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A. l The Notorious Model Problem 

For the sake of completeness, the standard model problem 

- A u = 1 

u\dn = 0 

for Q = [0, l ] 2 is included. In this example, the discretization error estimate 
is nearly exact - see Figure 4. Moreover, note that KASKADE performs 
just as in the case of the L-shaped region (Example A.2). 

Cascade Depth Nodes CPU-Time (t/rii) • 100 1 

1 level i ji n, t [sec] 

r o 0 13 0.03 0.23 

i 1 41 0.27 0.66 

2 2 137 1.12 0.82 

3 3 485 4.63 0.95 

4 4 1685 18.38 1.09 ! 

5 5 5377 62.38 1.16 

Table 2 
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Figure 1 Initial triangulation for Example A.l. 

Figure 2 Final triangulation (level 5, depth 5) for Example A.l. 
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Figure 3 Contour plot of solution of Example A.l on final triangulation as ob­
tained from KASKADE. 

Bfl ERR-EST 
^ D I S T Q 
4~» DISTL 

iterations 

Figure 4 Convergence history for Example A.l . 
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A.2 L-shaped Region 

In many engineering applications, re-entrant corners arise. A typical ex­
ample is 

- A « = 1 

«Ian = 0 

withn = [0,l]2\[|,l]2. 
Once more, one observes that the error estimate is nearly exact! More­
over, compare the convergence behavior with the behavior in the standard 
problem A.l. 

Cascade Depth Nodes CPU-Time (t/m) • 100 
level i ji Hi t [sec] 

0 0 8 0.02 0.25 1 

• 1 1 21 0.10 0.48 

2 2 65 0.45 0.69 i 

3 3 208 1.68 0.80 

4 4 645 5.75 0.89 

5 5 1876 19.28 1.03 

6 6 4993 51.07 1.02 

Table 3 
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Figure 5 Initial triangulation for Example A.2. 

V*T*'ATArA"Ar. 

'A'iW.VAWAr.wsi^.zr''' 
ViWA'iViTtTATiViVAWfWAVi 

Figure 6 Final triangulation (level 6, depth 6) for Example A.2 
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Figure 7 Contour plot of solution of Example A.2 on final triangulation as ob­
tained from KASKADE. 

QO ERR-EST 
OODISTQ 
++ DBTL 

iterations 

Figure 8 Convergence bistory for Example A.2. 
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A.3 Discontinuous Coefficients 

This type of problem arises, whenever different materials are combined. As 
a model of such an occurrence, consider the example for H = [0, l ] 2 

-V-(<rVu) = 1 

«|an = 0 

with 
_ f 1 | [0.25,0.75]2\[0.375,0.625]2 

° ~ I 106 I else 

Cascade Depth Nodes CPU-Time (t/rii) • 100 

level t ji Hi t [sec] 

0 0 25 0.10 0.40 

1 1 45 0.35 0.78 

2 2 145 1.47 1.01 

3 3 521 5.42 1.04 

4 4 1553 16.88 1.09 

5 5 4017 45.72 1.14 

6 6 10029 116.05 1.17 

Table 4 
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Figure 9 Initial triangulation for Example A.3. 
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Figure 10 Final triangulation (level 6, depth 6) for Example A.3. 
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Figure 11 Contour plot of solution of Example A.3 on final triangulation as 
obtained from KASKADE. 

QG ERR-EST 
^ 0 DBTQ 
• • D I S T L 

iterations 

Figure 12 Convergence history for Example A.3. 
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A.4 Discontinuous Dirichlet Boundary Conditions 

For H = [0, l ]2 consider Laplace's equation 

Au = 0 

with boundary conditions 

f 1 * < f A y < J 

( 0 else 

The solution is known to be globally in Hll2(ti) - compare Lions/Magenes, 
Non-Homogeneous Boundary Value Problems and Applications I, p. 188-
189, Theorem 7.4. The energy norms DISTQ and ERR-EST are asymp­
totically constant - because the energy norm is equivalent to the J^-norm. 
Nevertheless, the problem is satisfactorily solved, since only local ellipticity 
properties are required by KASKADE. 

Cascade Depth Nodes CPU-Time (t/rii) • 100 

level i Ji n{ t [sec] 

o 0 13 0.03 0.23 

1 1 41 0.27 0.66 

2 3 198 1.97 0.99 

3 5 633 7.27 1.14 

4 8 1654 22.52 1.36 

5 11 3768 59.73 1.59 

6 15 8217 143.95 1.75 

Table 5 
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Figure 13 Initial triangulation for Example A.4. 

Figure 14 Final triangulation (level 6, depth 15) for Example A.4. 
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Figure 15 Contour plot of solution of Example A.4 on final triangulation as 
obtained from KASKADE. 

o + 
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Figure 16 Convergence history for Example A.4. 
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