
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

THORSTEN KOCH, TOBIAS ACHTERBERG1,
ERLING ANDERSEN2, OLIVER BASTERT3,
TIMO BERTHOLD?, ROBERT E. BIXBY4,
EMILIE DANNA5, GERALD GAMRATH,

AMBROS M. GLEIXNER, STEFAN HEINZ?,
ANDREA LODI6, HANS MITTELMANN7,

TED RALPHS8, DOMENICO SALVAGNIN9,
DANIEL E. STEFFY, KATI WOLTER??

MIPLIB 2010
Mixed Integer Programming Library version 5

http://miplib.zib.de/

1 IBM Deutschland, Böblingen, Germany 2 MOSEK, Copenhagen, Denmark 3 FICO, Munich, Germany
4 Gurobi, Houston, USA 5 Google, Mountain View, USA 6 Università di Bologna, Bologna, Italy
7 Arizona State University, Tempe, USA 8 Lehigh University, Bethlehem, USA 9 Università degli Studi Padova, Padua, Italy

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
?? Funded by DFG Priority Program 1307 “Algorithm Engineering”.

ZIB-Report 10-31

http://miplib.zib.de/




MIPLIB 2010

Mixed Integer Programming Library version 5

Thorsten Koch · Tobias Achterberg · Erling Andersen · Oliver Bastert ·
Timo Berthold · Robert E. Bixby · Emilie Danna · Gerald Gamrath ·
Ambros M. Gleixner · Stefan Heinz · Andrea Lodi · Hans Mittelmann ·
Ted Ralphs · Domenico Salvagnin · Daniel E. Steffy · Kati Wolter

Abstract This paper reports on the fifth version of the Mixed Integer Programming Library. The
miplib 2010 is the first miplib release that has been assembled by a large group from academia
and from industry, all of whom work in integer programming. There was mutual consent that the
concept of the library had to be expanded in order to fulfill the needs of the community. The new
version comprises 361 instances sorted into several groups. This includes the main benchmark test
set of 87 instances, which are all solvable by today’s codes, and also the challenge test set with
164 instances, many of which are currently unsolved. For the first time, we include scripts to run
automated tests in a predefined way. Further, there is a solution checker to test the accuracy of
provided solutions using exact arithmetic.

Keywords Mixed Integer Programming · Problem Instances · IP · MIP · MIPLIB

Mathematics Subject Classification (2000) 90C11 · 90C10 · 90C90

Thorsten Koch, Timo Berthold, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz, Daniel E. Steffy, Kati Wolter
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
E-mail: {koch,berthold,gamrath,gleixner,heinz,steffy,wolter}@zib.de

Tobias Achterberg
IBM Deutschland, E-mail: achterberg@de.ibm.com

Erling Andersen
MOSEK, E-mail: e.d.andersen@mosek.com

Oliver Bastert
FICO, E-mail: oliverbastert@fico.com

Robert E. Bixby
Gurobi, E-mail: bixby@gurobi.com

Emilie Danna
Google, E-mail: edanna@google.com

Andrea Lodi
University of Bologna, E-mail: andrea.lodi@unibo.it

Hans Mittelmann
Arizona State University, E-mail: mittelmann@asu.edu

Ted Ralphs
Lehigh University, E-mail: ted@lehigh.edu

Domenico Salvagnin
Università degli Studi di Padova, E-mail: salvagni@dei.unipd.it



2 Thorsten Koch et al.

1 Introduction

The miplib is now going into its fifth incarnation. Starting in 1992 with the first two versions by
Bixby, Boyd, and Indovina [23], the update to miplib 3 by Bixby, McZeal, Ceria, and Savelsbergh
[24] in 1996, and the compilation of miplib 2003 by Achterberg, Koch, and Martin [3], we have
finally arrived at miplib 2010. The motivation for this update is the same as in the previous versions:
the continuous progress in the field of mixed integer programming.

A mixed integer (linear) program (mip) is an optimization problem in which a linear objective
function is minimized subject to linear constraints over real- and integer-valued variables. For details
on mixed integer programming, see, e. g., [69,106]. The miplib is a diverse collection of challenging
real-world mip instances from various academic and industrial applications suited for benchmarking
and testing of mip solution algorithms.

In this paper, we provide a detailed description of the instances in miplib 2010, including their
origin, information on the coefficient matrices, and the types of constraints and variables they contain.
The complete library is available online at http://miplib.zib.de, where we have collected further
information, such as references to papers that have used the miplib as a test set for their algorithms.
If available, we also provide a problem description in an algebraic modeling language, such as
ampl [57] or zimpl [70]. In addition to the role of miplib as a test suite for integer programming
algorithms, we strongly encourage investigation of alternative models for the given problems.

miplib classifies instances into three categories: easy for those that can be solved within an hour
on a contemporary pc with a state-of-the-art solver, hard for those that are solvable but take a longer
time or require specialized algorithms, and finally open instances for which the optimal solution
is not known. This classification is kept up-to-date on the website, and we ask for notification
whenever an optimal solution is determined for an open instance. The website also contains details
if specific settings have been used to solve an instance.

Fig. 1: Number of miplib 2003 instances classified as easy, hard, and open over time

The progress in solving real-world mip instances has been exceptional over the last decades. It is
recorded in various articles [22,72,77] and numerous talks. One example is the solvability of the
miplib 2003 instances. As shown in Figure 1, at the start of miplib 2003 there were 22 easy, three

http://miplib.zib.de


MIPLIB 2010 3

hard, and 35 open instances. By the end of 2010, 41 were classified as easy, 15 as hard, and only
four open instances remained.

Another showcase is the speedup of commercial mip solvers. Figure 2 depicts the progress made
by two of the commercial solver vendors with long traditions, cplex and xpress. These figures are
based on their internal test sets and record purely the speedup due to algorithmic improvements.
For cplex the geometric mean of the speedup is drawn and for xpress the reduction in total
solution time. Though these measures cannot be compared directly, they both show the impressive
performance improvements gained during the last years.

Combining a pure algorithmic speedup of 55,000 with the speedup in computing machinery, we
see that solving mips has become something like 100 million times faster in the last 20 years. This
easily translates into the difference between considering an instance to be trivial versus unsolvable.

(a) Geometric mean speedup and number of instances
solved by cplex versions 1.2 to 12.2 for an internal test
set of 1,852 instances.

(b) Total solution time and number of instances solved
by xpress versions 2003B to 7.1 for an internal test
set of 329 instances.

Fig. 2: Performance improvements of cplex and xpress

This might give the misleading impression that all mixed integer programs are easy to solve
nowadays. However, keep in mind that practitioners often experiment with tractable instances. In
this sense, mip codes tend to be tuned to more efficiently solve those models that are already known
to be solvable. In order to compensate for this, we added a large set of instances to miplib 2010
that are out-of-scope for today’s solvers. As of this writing, the 361 instances of miplib 2010 are
classified as follows: 185 easy, 42 hard, and 134 open.

2 The test sets

During the initial discussions among the authors, it became evident that a single test set that also
includes many very hard or even unsolved instances was not going to be sufficient. Researchers
have often focused their attention on subsets of the miplib 2003 instances that were suited to their
particular topic of study. This often resulted in inadequate test sets because the full library only
contained 60 instances, and added restrictions further reduced this size.

Therefore, we identified several areas for which dedicated test sets should be made available.
Please note that a particular instance can be part of more than one test set. Table 1 gives an
overview of all test sets.



4 Thorsten Koch et al.

Table 1: Overview of different test sets and the number of instances contained in each of them

B benchmark (87 instances)
contains only instances that can be solved to optimality by at least one solver within two hours on a high-end pc.
Except for the test sets challenge and unstable, at least one instance from each of the other test sets is included
in this one.

I infeasible (20 instances)
contains instances that are infeasible.

P primal (40 instances)
contains instances for which the solution of the root lp relaxation has the same objective value as the optimal
solution, i. e., the solver “only” has to find an optimal solution; the proof of optimality comes for free.

X xxl (11 instances)
contains very large instances with respect to the number of variables, constraints, and non-zeros.

R reoptimize (66 instances)
contains instances for which the reoptimization of the sub-lps takes an unusually long time.

T tree (52 instances)
contains instances that (empirically) lead to large enumeration trees.

U unstable (21 instances)
contains instances that have bad numerical properties and are likely to cause numerical troubles in the solver. This
set is intended to test solver robustness.

C challenge (164 instances)
is a compilation of hard-to-solve instances as well as instances that to our knowledge have not been solved to
optimality. There are 21 instances in this set for which we have not yet been able to compute any feasible solution.
Some of these may of course be infeasible.

2.1 What are the sources of the instances?

We started a call for instances on March 26, 2010. Submission was closed in October 2010. In
total we received over 1,108 instances from 57 contributors. Thanks to all of them! All contributed
instances, unchanged, can be found at the miplib homepage1. Additionally, we had access to a
large number of instances from the neos server. Problems submitted to the solvers scip, feaspump,
qsopt ex in various formats were translated to mps format. For problems originally stated as ampl

model files, these files are preserved on the miplib website.
Finally, we collected publicly available instances from the internet including instances available

from the Berkeley Computational Optimization Lab [108], the Computational Optimization Re-
search at Lehigh test set (cor@l) [109], and the DEIS – Operations Research Group Library of
Instances [111]. Table 2 shows the distribution of instances according to their origin.

2.2 How were the instances selected?

In the following sections, we often mention that instances can be solved within certain time limits.
Unless mentioned otherwise, this refers to experiments that were performed on dual core Intel Xeon
E5420 2.5 GHz computers with 4mb cache and 16gb of main memory, running Linux in 64 bit mode.

After the submission of contributed instances was closed and the data mining of the public
domain was finished, the initial candidate set contained about 2,000 instances.

Exclusion of trivial instances and (near) duplicates. In a first filtering step, duplicates were eliminated,
homogeneous problem subsets were reduced, and instances which were too easy, i. e., could be solved
by either scip or cbc in less than one minute, were removed. The typical case for homogeneous
test sets was that many variations of the same model with different data were submitted. When
comprising these sets of similar problems, we tried to keep the variety while reducing the set to less
than ten instances.

1 http://miplib.zib.de/contrib/submission2010

http://miplib.zib.de/contrib/submission2010


MIPLIB 2010 5

Table 2: Origin of instances

miplib 2
miplib 3 (excluding those from miplib) 7
miplib 2003 (excluding those from miplib 3) 17
other publicly available 180
new contributions 155

Examination and pre-selection by eight groups. The 659 remaining instances were examined indepen-
dently by eight teams formed by the authors. Two instances entered the final test sets on short
notice, as it was realized that certain classes of problems were not well represented in the candidate
set. These were unitcal 7, a unit commitment model, and cov1075, a highly symmetric problem. Except
for these two, all instances contained in the final test sets were part of this list of 659.

After the responses from the different groups had been evaluated, a first proposal of 100 instances
plus 45 potential substitutes for the benchmark set was compiled and circulated again. The minimal
requirements for the benchmark set were that first every instance could be solved to proven
optimality within 24 hours by at least one solver and second that each of the other test sets except
the unstable and the challenge set, were represented in the benchmark set by at least one
instance.

Final refinement of the benchmark set. Starting from this proposal, several instances had to be
exchanged or eliminated for one of the following reasons:

– problem classes were over- or underrepresented,
– instances proved to be too easy or too hard when checking them on different machines with the

current developer versions of the involved software, or
– instances were discovered to be numerically difficult.

In cases where we had to choose between two instances, newly contributed ones were favored and
instances for which the application was unknown, e. g., instances that have been provided via the
neos server, were disfavored. Also, instances that showed a stable performance (see also Section 5)
were favored. Finally, we tried to keep the overall running time of the benchmark set reasonable.

It was far easier to exclude instances for the reasons named above than to include new ones that
fulfilled all hard and soft requirements. We are satisfied to have arrived at a final benchmark set
with 87 instances. We believe that this test set is well-suited for benchmarking purposes: nearly all
instances can be solved in less than one hour by at least one solver, but only a few of them can be
solved within less than a minute by any current solver.

Most of the other test sets were created by predefined rules rather than dynamically, as with the
benchmark set. Because many criteria at least partially depend on the computational environment,
e. g., number of simplex iterations, the numbers listed in the following paragraphs are only guiding
values. The different test sets were double checked with different software packages on different
machines to minimize the risk that some instance entered a particular test set just by chance.

The reoptimize test set. Warm-starting the simplex algorithm is one of the key requirements for
efficiency in lp-based branch-and-bound algorithms. Often, reoptimizing an lp after changing a
bound can be done in less than ten simplex iterations, whereas the initial lp solve takes thousands
of iterations. However, there are a few cases when this advantage of the simplex vanishes. The
reoptimize set is a collection of them. It contains instances for which lp reoptimization takes at
least 500 simplex iterations on average. This does not include simplex iterations that have been
performed at the root node. Furthermore, instances were only included if they required at least 100
nodes to solve.



6 Thorsten Koch et al.

The tree test set. In the development of mip solvers, many algorithmic improvements aim at
reducing the size of the branch-and-bound tree. As a consequence, mip solvers are often able to solve
instances to proven optimality in the root node or after only a few hundred nodes. The test set
tree, however, comprises instances for which state-of-the-art mip solvers perform a large amount of
enumeration. The criterion applied for this test set was that the branch-and-bound tree created
when solving the instance contains at least 1,000,000 nodes.

The xxl test set. Predicting the performance of a mip solver just by knowing the dimensions of
an instance is impossible. The markshare examples [1] show that problems with 60 variables and 6
constraints may be extremely hard to solve for state-of-the-art software packages. On the other
hand, there are instances that contain 100,000 or more variables that can be solved in less than
a minute. The test set xxl is dedicated to mips that are large-scale, but not too easy. It consists
of problems with either more than a million variables, more than a million constraints, or more
than 10 million non-zeros. Instances for which the majority of the variables and constraints can be
eliminated by standard presolving methods were not considered.

The primal and infeasible test sets. A typical experience in solving a mip is that finding an
optimal solution is often much easier than proving its optimality. The test set primal is set up for
instances for which the reverse holds. We included problems for which the bound given by the initial
lp relaxation after presolving is equal to the mip optimum. The only thing left for the solver to do
is to find an optimal solution—the proof of optimality comes for free. We only included instances
for which this appeared to be challenging.

Most MIP solvers are tuned for optimization problems, typically not for feasibility problems,
such as the primal instances, and to our knowledge not at all for infeasible problems. The test set
infeasible should help to investigate the behavior of mip solvers for this kind of problem setting.

The challenge and unstable test sets. The new submissions contained several instances that are
currently rather hard to solve. The challenge set contains problems that we could not solve in less
than two hours with any of the solvers. For some of them, the optimal solution is known; for many,
it is not. As of this writing, no feasible solution is known, if one exists, for 21 of these instances.

Finally, we compiled the numerics test set unstable. mips are identified as numerically unstable
if they exhibit some of the following properties: ill-conditioned basis matrices, large coefficients
close to the internal numerical infinity values of the solvers, drastic performance changes with
different choices of numerical tolerances, or different results reported by different solvers. See also
the Paragraph ‘Condition numbers and numerical reliability’ on Page 16.

3 The solution checker

Together with the miplib, a consistency checker is provided to validate the answers produced by
floating-point based mip solvers. It tries to recognize incorrect results, while, to a certain extent
taking into account the different feasibility policies of the codes.

3.1 Floating-point arithmetic and tolerances

Most mip solvers (in particular, all codes considered in this paper) are based on floating-point
arithmetic and work with tolerances to check solutions for feasibility and to decide on optimality. In
their feasibility tests, solvers typically consider absolute tolerances for the integrality constraints and
relative ones for linear constraints. Some normalize the activity of linear constraints individually,
others directly scale the constraint matrix.



MIPLIB 2010 7

The tolerances affect solution times and solution accuracy, normally in opposite ways, and the
solvers apply different strategies here. As an example, consider the instance rocII-4-11. Some solvers
compute an optimal objective function value of −6.6556387, while others report −6.65275574. If one
fixes all integer variables from the reported solution to the closest integer value and recomputes the
continuous variables by solving the resulting lp with exact arithmetic, some of these post-processed
solutions turn out to be infeasible with respect to exact arithmetic and zero tolerances.

It should be clear that this does not mean that any of the solvers made a mistake. It only means
that the computed solution lies outside the feasible area described by the input file, but inside
the extended feasible area created by reading in the problem and introducing tolerances. It is only
solutions that are feasible in the latter sense that solvers attempt to deliver, and those are the
solutions the checker checks. More precisely, the operation that rounds the reported value of the
integer variables to the closest integer is only applied to compute fully reliable primal bounds for
the mips as described in the paragraph ‘mip and lp solution values’ in Section 6.

3.2 What do mip solvers actually try to solve?

A binary double-precision number is represented in the form

(−1)sign · (1 +
52∑
i=1

2−ibi) · 2e

where sign is a single bit indicating the sign, bi are 52 binary digits used to represent the significant
figures of the number i digits after the first binary digit and e defines the exponent, taking integer
values in e ∈ [−1022, 1023]. The ieee [117] standard defines which results should be returned by the
basic arithmetic operations in order to maintain consistent behavior across different platforms.

Floating-point computations can be performed quickly on computers but the limited size of this
representation has its disadvantages. The error incurred by a single operation is usually small but
algorithms requiring many operations can accumulate and propagate these small errors, leading to
errors of significant magnitude. A survey of the issues that can arise in floating-point computation
can be found in [60]. mip solvers implement techniques to handle these issues. We now discuss those
techniques relevant to the solution checker for that phase of the process that precedes the actual
solution of the problem.

The mps file format which is used as a standard to define mip instances requires the input
numbers to be written in base 10 ascii representation. Furthermore, the definition of the mps file
format specifies that each entry uses only 12 characters, so if a problem cannot be expressed exactly
in this format, even the input file will be an approximation of the intended problem. Suppose a
problem is defined in an mps file as having the feasible region{

x : Ax ≤ b, x ≥ 0, x ∈ Zn} .
As this problem is read in by the solver, the entries in A, b will be transformed to a binary representa-
tion, possibly modifying their values and changing the feasible region to {x : Ãx ≤ b̃, x ≥ 0, x ∈ Zn}.

In addition, due to inexact floating-point computation, the solvers need to introduce tolerances,
hence relaxing (introducing a perturbation of) the feasible region. Typically relative tolerances
are used. In order to do this efficiently and to improve the numerical properties of the model, the
constraint matrix is usually scaled. As a result, solvers operate on something similar to{

x : (Q̃Ã)x ≤ Q̃b̃+ 1ε, x ≥ −1ε, x ∈ (Z + [−δ, δ])n
}
,

where ε and δ are tolerances for feasibility and integrality and 1 is the vector of all ones. As we
can see, even the steps of parsing and scaling the problem can change its description. The entire
solution procedure is then applied to this transformed problem.



8 Thorsten Koch et al.

Note that we have not even mentioned other preprocessing techniques that are applied by the
solver in order to simplify the problem, such as removing redundant constraints and variables, tight-
ening bounds and coefficients, or aggregating variables. All of this may lead to further modifications
of the problem before the branch-and-bound and cutting plane phases are actually started.

In this regard, it is important to note that even though an instance is infeasible, it can become
feasible by the extension of the feasible area due to the tolerances. This is one of the reasons why the
solution checker does not try to test optimality and infeasibility but makes all tests by using solutions
as returned by the solvers and with respect to the tolerances. Some different practice-oriented tests
performed outside the checker are described in Section 4.

3.3 What does the solution checker test?

Given a linear programming problem, the combinatorial nature of the bases provides an efficient way
to check both the optimality and the feasibility of a given solution: this is not the case for mixed
integer programming problems. In the mip setting, we cannot expect polynomially sized certificates
of optimality to exist in general (assuming P 6= NP). However, it is possible to check the feasibility
of a given solution in polynomial time and this is exactly the goal of our solution checker. Although
conceptually simple, the implementation of such a checker still poses some questions:

– In which kind of arithmetic should we perform our calculations?
– Should we take our data from the internal floating-point representation of a solver or should we

use the original text-based one?
– What tolerances should we use?

Concerning the first two questions, we decided to perform all of our computation with an
arbitrary precision arithmetic package, namely gmp [114], taking the problem specification from
a text-based file. In particular, we decided to use the industry standard mps format. Note that
reading the input from the mps file, we perform no risky or potentially unsafe simplification of the
coefficients; for example, if the input file contains the coefficient 0.3333333 we do not try to infer
the “nicer” rational representation 1/3, but we stick to the original 3,333,333/10,000,000. As far as the
solution to check is concerned, in order to keep the solution checker independent of the particular
solvers and the language in which they are implemented, we decided also to read the solution from
a text-based input file, whose very simple format is described in the miplib package.

The solution checker performs two tests: a feasibility test of the computed solution and a
consistency check of the corresponding objective value. For the feasibility test, we followed the
common habit of using two, possibly different, absolute tolerances. One tolerance is used to check
the satisfaction of linear constraints, including bounds on the variables, and the other tolerance is
used to check integrality constraints. For its default settings, the code uses an absolute tolerance of
10−4 for both cases.

In addition to the solution computed by the solver, the solution file contains the computed
objective value. Checking its precision is conceptually trivial, at least for pure integer programming
problems. However, given the potentially large absolute value of the objective function coefficients,
sometimes larger than 1010, it quickly becomes a delicate matter, if one insists on using only absolute
tolerances. Therefore, the checker accepts the objective value if the absolute value of the difference
between the objective value computed by the checker and that read from the input file is less than
10−4 or if the relative error, i. e., the absolute error divided by the maximum of the absolute value
of the checker’s result and 1, is less than 10−7.

Finally, the solution checker reports the maximum violation of the linear and integrality con-
straints and the absolute value of the difference between the solver’s and checker’s objective values.



MIPLIB 2010 9

4 How to run a test, add a solver, and what the scripts do

For the first time, miplib comes with a test engine to run different solvers in a defined way, to check
the answers for consistency, and to generate a table summarizing the results. In this section, we
briefly explain how this engine works, enabling users to incorporate new solvers, and to adjust the
scripts to their needs.

In order to allow meaningful benchmarks, the test engine runs each solver in deterministic
mode2 if possible and applies comparable termination criteria, i. e., the relative gap cutoff is set to 0.
Concerning the performance evaluation, the wall-clock time is measured externally and solution times
are reported rounded up to the second. This means the time for parsing the input file and creating
the model is included. The primal-dual gap at termination is computed, assuming minimization, as

gap =
pb− db

inf{|z|, z ∈ [db, pb]}

where pb and db are primal bound and dual bound, respectively. In case either no feasible solution
was found, the problem was reported as infeasible, or db ≤ 0 ≤ pb, the gap is not computed and is
marked as “--”. In case db = pb = 0 a gap of 0 is reported. We chose this gap calculation since it is
monotonically decreasing if the dual bound increases and the primal bound decreases. Moreover,
this measure gives a worst case bound on the relative gap normalized by the optimal solution value.

The resulting table presents for each instance the name, the primal and dual bound along with
the gap at termination, the number of branch-and-bound nodes, and the solution time. Additionally,
the status of the mip solver and the result of the solution check are displayed. The solver status
is ok for instances where the solver claims optimality, stopped if the solving process was stopped
due to imposed limits, and abort otherwise, e. g., for termination due to errors in the mip solver.
Each solver is expected to write the best solution found into a solution file. If a solution file was
generated, the solution gets checked and the solution status is ok or fail depending on whether
or not the solution passed all tests of the solution checker (see Section 3). In case no solution was
found, e. g., for infeasible problems, we report “--” as the solution status.

Optionally, a file with known primal bounds can be given. If such a file is provided and only
after the solution passed the tests of the solution checker, the primal bound reported by the solver
will be compared with the value given in the file. If a finite primal bound is stated in the file and the
solver reports either infeasibility or an optimal solution with a significantly worse objective value,
the solution status is set to mismatch. In case the solution file reports infeasibility, but the solver
returns a solution within the tolerances of the solution checker, no mismatch is reported. Finally, if
the solution checker code encountered internal problems, the solution status is set to error.

It is important to note that the comparison with respect to a primal solution from a file is
independent of the solution checker, and requires a primal bound that is fully reliable. Here we
computed the primal bounds by rounding the integer variables to the closest integer and then used
exact arithmetic for solving the resulting lps as described in Paragraph ‘mip and lp solution values’
of Section 6.

At the end, we state how many instances were solved to optimality and passed the solution tests
(solved), the number of failed instances (solution process was aborted or solution test failed), and
the remaining number of stopped instances.

We now briefly sketch how the test engine is organized. The engine assumes a Linux environment,
adoption to other UNIX-like operating systems should be possible with minor modifications. The
main folder contains the files “Makefile” and “README” and the folders “bin”, “checker”, “instances”,
“scripts”, and “testsets”. After running the first automated test, there will be a folder named “results”.

2 That is, given the same machine and the same settings the solver should perform identical runs. Especially
in a multi-thread environment special care has to be taken to achieve this since all dependencies on the relative
timing of the threads have to be removed.



10 Thorsten Koch et al.

The “Makefile” provides all the functionality of the test engine and the “README” is an introduction
to the environment. The folder “bin” should contain the solver binaries or a (soft) link to them.
The environment will check this folder for the requested solver binary. The sources for the solution
checker, mentioned in Section 3, are stored in the folder “checker”. The solution checker can be
compiled via the provided “Makefile” of the test engine using the command make checker. All
miplib 2010 instances are stored in “instances”. The folder “testsets” includes, for each test set
described in Section 2, a file with the location of its instances, and for the benchmark set a file
with known primal bounds that are believed to be optimal. Log files and solution files of test runs
and corresponding tables will be stored in a folder called “results” and all relevant scripts can be
found in the folder “scripts”.

The complete evaluation process is triggered by the test target in “Makefile”. For example,

make SOLVER=xyz TEST=benchmark TIME=3600 test

runs solver xyz on the benchmark test set with a time limit of one hour. More precisely, in this
way, the main driver “run.sh” is invoked. It calls the mip solver for every instance listed in the
file “benchmark.test”, asks for the best solution, and applies the solution checker. However, the
solver-specific part, such as setting the time limit and getting the solution, is encapsulated in a
separate script “run xyz.sh”. After running the solver, “run.sh” starts “parse.awk”, which parses the
generated log file and produces the summary table. The evaluation, including primal-dual gap
computation, time measurements, and determination of the solution status, is standardized and
directly implemented in “parse.awk”, whereas the information from the solver-specific log files, e. g.,
dual bound and node count, is actually obtained via auxiliary scripts such as “parse xyz.awk”.

Currently, we support cbc, cplex, gurobi, mosek, scip, and xpress. In order to include other
mip solvers, only the solver-specific information for running the solver and evaluating its log files
have to be provided by “run mysolver.sh” and “parse mysolver.awk”. The template files “parse xyz.awk”
and “run xyz.sh” can be used as a basis. They are located in the “scripts” folder. In order to test
instances that are not shipped with miplib 2010 a file “mytestset.test” with their locations has to be
added to the “testsets” folder.

5 Variability of MIP Solver performance

When running computational experiments, we often experience differences in behavior on different
platforms when optimizing the same model with the same solver. The input format, e. g., the order
of the constraints, can also change the solution process. We use the term performance variability [42]
to denote such changes in performance measures for the same problem that are caused by seemingly
performance-neutral changes in the environment or the input format. Loosely speaking, performance
variability comprises unexpected changes in performance.

Note that other changes, such as minor variations in the model formulation, also affect perfor-
mance in a way that is difficult to predict. Adding or removing redundant constraints or variable
bounds can have a major impact on the performance of modern mip solvers [4]. Some of these
changes are also automatically applied by preprocessing, in which case their effects are compounded
with other sources of variability.

5.1 Reasons for performance variability

One root cause of performance variability is imperfect tie-breaking. When solving a mip, most
decisions are taken by computing a score for several candidates and choosing the candidate with
the highest score. For example, a score based on pseudocosts may be computed for several variables
that are candidates for branching and the variable with the highest score is chosen [20]. If there



MIPLIB 2010 11

is a tie among the top candidates, then a series of secondary criteria should be used to make the
final decision [2]. If tie-breaking is imperfect, selections may be made arbitrarily, based on the order
in which the candidates are considered or influenced by rounding errors in the score computation,
which will differ from platform to platform. Similarly, some decisions consider a subset of candidates:
for example, strong branching [76] is typically applied to the top N branching variable candidates
according to some criterion. If there are more than N candidates tied for the best score, then the
order in which candidates are considered will determine the variables for which strong branching is
performed. Another factor is that compiler optimizations may reorder arithmetic operations and
influence the outcome of floating-point computations; this might introduce a tie-breaking effect for
values that should be equal or it might lead to tied values that should not be the same.3

Once the path in the branch-and-cut tree diverges, the entire subsequent resolution is affected.
Altering the choice of a single branching variable may cause entirely different subtrees to be explored;
the lp solutions at the child nodes could be different, leading to different cuts and different starting
points for primal heuristics, which in turn leads to different integer solutions being found, the
objective cutoff being updated differently, different nodes being pruned, etc. As we see from such a
cascade of events, even a small divergence may lead to a completely different behavior of the solver
and hence to a significant performance difference.

Also, for many models, the optimal basis of the root lp is not unique. If the lp basis is different,
then cuts and lp-based primal heuristics applied at the nodes to find additional feasible solutions
will be applied differently, and consequently the whole solution process will change. It is currently
unknown whether the variability is correlated in any way with the number of alternate optimal lp
bases for the root node.

Performance variability also depends on the intrinsic characteristics of the model; some structures
may create more variability than others. It also depends on the characteristics of the mip solver;
some solvers may have more robust tie-breaking mechanisms or more sophisticated algorithms to
recover from a bad decision. Many questions are open. In particular, what is the importance of each
factor to variability and how should we change mip solvers and mip models so as to reduce variability.
It is not even clear whether performance variability should exclusively be seen as a disturbing factor.
For massive parallel mip solvers, see, e.g., [97], it can even be exploited.

5.2 Generating and measuring performance variability

In order to study performance variability, we need a way to generate a large number of observations
for the same model. Clearly, it is neither sufficient nor practical to run experiments on many different
computers. Previous studies [42] have shown that a good variability generator is to permute columns
and rows in the original model. This generator affects all types of problems and all components of a
typical mip solver. For instances of practically relevant size, many different permutations can be
applied to create as many observations as needed.

For comparison reasons, it is desirable to summarize the performance variability into one number
per model and solver. We choose as the performance variability score the coefficient of variation of
X, where X is the random variable representing the performance of the given solver for the given
model. For example, the performance can be measured as the solution time to optimality or the
time to the first solution. The coefficient of variation is simply the standard deviation divided by
the average: it captures the variations in performance and its normalization allows us to compare
the variability independent of the computational difficulty of the model. This definition is quite
natural and allows us to interpret the variability score in relationship with the probability of a given
performance degradation.

3 While it can be expected that the same binary will run identically on similar cpus in general, modern compilers,
e. g., the Intel C/C++ compilers [116], can detect the precise type of the cpu and use different instructions
depending on the particular cpu. Since the internal precision of x86 type cpus can differ depending on the
instruction set used, the rounding of the last digit can be different.



12 Thorsten Koch et al.

In practice, the coefficient of variation is estimated on a sample of observations provided by
solving multiple permutations of the model: the quality of the estimate increases with the number of
permutations. Given n permutations and corresponding running times ti, i = 1, . . . , n, we compute
the variability score VS as follows:

VS =
1∑n
i=1 ti

·

√√√√ n∑
i=1

(
ti −

∑n
i=1 ti

n

)2

.

In Column VS of Table 7 starting on Page 40 the performance variability score for time to
optimality with scip/spx is shown. It is sampled from 100 different permutations for each model.
However, we calculated the score only for models that scip/spx could solve in less than four hours,
using the original formulation. In addition, we imposed a time limit of ten hours, which, of course,
influences the variability score whenever a permutation hits this limit. In Table 7 those scores that
are affected by the time limit are printed in italic.

We present variability for solution time rather than number of simplex iterations, as in [42],
because time is easier to compare across solvers. Indeed, solvers may count iterations differently; for
example, iterations in sub-mips may or may not be counted, which makes the comparison difficult.
Besides, not all the work done in a mip solver is based on the simplex algorithm, so counting
iterations gives a less comprehensive picture than measuring time.

Note that the variability score is an estimator over a limited sample of the true variability.
Therefore, small differences in variability scores should not be given too much consideration.

5.3 Results on performance variability

Performance variability due to permutations can be observed for all tested instances. There was no
instance for which all 100 permutations showed the same behavior. The minimum observed impact
was for the instance mik-250-1-100-1, where the ratio of the maximal and the minimal solution times
was 1.29. The largest ratio was 915 for the instance tanglegram2; the fastest permutation took a few
seconds, the slowest nearly two hours.

The total running time of all 67 original, unpermuted instances for which we performed this test
was 45.1 hours. If we had an oracle that, hypothetically, always selected the best permutation for
each individual instance, the total running time would be reduced to 25.5 hours, which corresponds
to a speedup factor of 1.77. On the other hand, always using the worst permutation would increase
the running time by a factor of 3.82. This indicates that the negative outliers are more “extreme”,
i. e., the distribution is not symmetric.

It seems to be a natural question whether the original formulation has an advantage over the
permuted ones. Indeed, if we compare the solution time of the unpermuted instances to the average
solution time taken over the 100 permutations, we observe a speedup of 14%. There is evidence
that this might be mainly due to the more extreme behavior of negative outliers. If we compare the
performance of the original formulations to the median, this advantage shrinks to 4% improvement.
Said differently, the probability of improving performance by permuting the instance is about as
high as the probability to deteriorate performance, but the average improvement is smaller than
the average deterioration.

Overall, the range of variability scores is between 0.05 for the instance mik-250-1-100-1 and 2.23
for neos-916792, as can be seen in Column VS of Table 7. Figures 3a to 3e show the distribution
of performance for specific instances. For the instances ex9, pg5 34, neos13, bnatt350, and enlight13,
each of the dots in the corresponding diagram depicts the performance of one permutation when
being solved with scip/spx. They have been sorted by non-decreasing solution time; the black dot
corresponds to the performance of the original formulation.



MIPLIB 2010 13

In Figure 3a, the vast majority of the permuted instances perform very similar, with only a few
outliers. The original formulation is superior to the others. The most common case, however, is
illustrated in Figure 3b. The different solution times are nearly uniformly distributed around the
median value. There are a few negative outliers. The original formulation is “somewhere in the
middle”. Figure 3c shows the interesting case of clusters. Most of the permutations need around 12
minutes, but there is a significant accumulation point at 1:40 h. In order to have a smaller scale to
make the accumulation point better visible in the picture, all permutations that took three hours
or longer are treated as if they hit a time limit of three hours. Figures 3d and 3e depict bad cases
for which permuting the model can lead to nearly arbitrary changes in the performance. For the
instance enlight13, the best ten permutations need less than three minutes, but nearly twenty percent
hit the time limit of ten hours.

Another source of variability is depicted in Figure 4, which shows the performance variability
of a single instance depending on the number of threads. The computations where done on a 32
core machine with 8 AMD Opteron 8384 processors at 2.7GHz. As can be seen, both performance
measures go up and down quite arbitrary with no visible pattern. If we compare neighboring bars,
we see that adding one additional thread leads to fewer evaluated nodes in 17 cases, in 14 cases it
results in more search nodes. The same holds for the solution time: in 14 cases the solver got faster
when using one more thread, in 17 cases it slowed down.

5.4 Consequences for benchmarking

Performance variability affects all standard objectives of benchmarking, such as comparing different
solvers, comparing different parameter settings for the same solver, or comparing a new algorithm
to an existing algorithm. In particular, it is important to take performance variability into account
during the analysis of experimental results when the performance difference is small, the variability
of the models is high, or the stopping criterion is highly variable. Small test sets are more prone to
disturbances caused by performance variability. This is one reason why miplib 2010 provides more
instances than its predecessors.

Performance is not deterministic. Instead, it is a random variable that can be sampled with
computational experiments. In order to isolate the signal from the noise and draw robust conclusions,
performance needs to be studied with appropriate statistical tools. First, it is useful to obtain a
large data sample, by running experiments on a large set of models or by artificially multiplying the
number of observations by running experiments on permuted models for multiple permutations.
Secondly, descriptive statistics such as the average or the geometric mean give limited insights.
Instead, robust indicators such as truncated averages and rank statistics are more resistant to
outliers. Performance profiles [47] are also useful. Finally, inferential statistics, such as statistical
tests and confidence intervals, give the most insight and allow questions such as “how likely is it
that the performance change is created by variability rather than by genuine algorithmic changes?”
to be answered.

Variability should be taken into account not only when studying performance, but also when
studying the correctness of computation. A different path in the branch-and-cut tree often leads the
mip solver to find a different integral solution because most models have several alternate optimal
solutions. In all cases, the integral solution returned should have the expected objective value and
respect all tolerances. It is a good idea to verify this on several permutations of the same model.

6 The instance catalog

In this section, we give an overview of all miplib 2010 instances. Table 5 on Page 25 provides
information about their origin and application. For each instance, we list originators or submitters,



14 Thorsten Koch et al.

(a) Instance ex9

(b) Instance pg5 34

(c) Instance neos13

(d) Instance bnatt350

(e) Instance enlight13

Fig. 3: Solution times for 100 permutations



MIPLIB 2010 15

 0 k

 20 k

 40 k

 60 k

 80 k

 100 k

 120 k

 140 k

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

#
 N

o
d

e
s

# Threads

(a) Total number of nodes explored (cplex)

 0

 100

 200

 300

 400

 500

 600

 700

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
im

e
 [

s
]

# Threads

(b) Wall clock solution time (gurobi)

Fig. 4: Example of performance variability depending on the number of threads. Instance roll3000 on
a 32 core computer. Filled bar indicates minimum

a short description of the application and references to publications in which the instance was used.
Additionally, there are a large number of instances from neos and cor@l for which, unfortunately,
no information is available to us. Instances with the same originator and application are grouped in
one row. The 26 instances from previous versions of miplib are marked by italic names.

Problem statistics. Table 6 starting on Page 32 gives statistics about the instances. In particular,
for each instance, we give the number of Rows, Columns, and Non-Zeros. Furthermore, the number
of variables is divided into the number of Binary , general Integer , and Continuous variables. Table 3
shows a distribution of instances based upon variables types. Only 13 instances do not have any
binary variables, while only 72 of 361 instances have general integer variables.

Table 3: Distribution of instances based upon variable types

Type Binary Integer Continuous Instances

Binary Programs X 116
Integer Programs X 1

X X 29
Mixed Integer Programs X X 173

X X 12
X X X 30

mip and lp solution values. If known, the objective values of an optimal mip Solution and the
lp relaxation (lp Solution) are listed. The rational lp solver qsopt ex [12,52,123] was used to
solve the lp relaxation of the instances with exact arithmetic. We report up to 16 digits, last digit
rounded, in the table. For those instances that could not be solved by qsopt ex within a reasonable
amount of time, we print the optimal solution value of the lp relaxation reported by cplex in italic.
Note that we used the pure lp relaxation without applying mip presolving, so the root lp bound
computed during mip solution might be better, even before cutting planes are added.

Although first steps have been taken in developing exact mip solvers [12,38], current imple-
mentations are not yet capable of computing provably optimal solutions for most of the instances



16 Thorsten Koch et al.

in miplib 2010. Therefore, we post-processed the mip solutions generated by the inexact solvers.
The solution values of all integer variables were rounded and fixed to the nearest integer. The
remaining lp was solved with qsopt ex. This does not give an optimality proof, but can provide a
mip solution that is truly feasible. Again, if this lp could not be solved by qsopt ex, we state in
italic the objective value of an inexact optimal solution that passed the test of the solution checker.
Instances where no optimal mip solution is known, i. e., open instances, are labeled with a question
mark ‘?’.

For the instances in the challenge set, we invested limited time to try to solve them with one
of the available solvers. Four instances, 50v-10, probportfolio, reblock354, and rmatr200-p20, could be
solved by ug[scip/spx] [97], a distributed massively parallel version of scip run on 2,000 cores at
the HLRN-II super computer facility. To finally solve reblock354 about 42 billion nodes had to be
processed. This took approximately 36 cpu years.

Condition numbers and numerical reliability. Column Att.-level lists the numerical attention level

calculated using the set mip strategy kappastats 2 command of cplex 12.2.0.2. This gathers
statistics about the condition numbers of sub-problem basis matrices during cplex’s solution process
and is explained below in more detail. Vaguely speaking, a higher attention level indicates larger
condition numbers of lp basis matrices, which in turn points to a higher probability of numerical
instabilities during the solution process. A node limit of 1,000 and a time limit of two days was
used to get a reliable data base for this computation. Those few instances that did not finish the
root node within this time limit, are marked by “—”, for those instances with attention level 0.0,
the value is omitted.

The condition number κ(AB) is a well-known measure of how errors in the input of a linear
system of equations ABx = b are propagated to the solution x; for further details see, e. g., [62]. The
condition numbers κ(AB) of the basis matrices AB that are used to calculate optimal solutions of the
sub-problem lp relaxations provide some insight into the origin of potential numerical inaccuracies
that may have arisen during the solution process.

Double-precision arithmetic, as employed in the solvers at hand, provides roughly 16 significant
decimal digits. Given that we used a feasibility tolerance of 10−6, condition numbers larger than
1010 suggest that the errors encountered when calculating optimal lp solutions of the sub-problems
may be larger than the feasibility tolerance. cplex classifies the condition numbers by the following
four categories and outputs a histogram of the condition number distribution of optimal lp bases
encountered during the mip search:

– stable if κ(AB) < 107,
– suspicious if κ(AB) ∈ [107, 1010),
– unstable if κ(AB) ∈ [1010, 1014), and
– ill-posed if κ(AB) ≥ 1014.

The attention level AL ∈ [0, 1] summarizes this histogram as

AL = pill-posed + 0.3 · punstable + 0.01 · psuspicious

with p... being the relative frequencies of the sampled condition number categories. Thus, the
attention level provides an estimate of the probability that the solver has encountered numerical
issues during the solution process and their severity.

The attention level is not a property inherent to the model, but a measure for a specific algorithm

applied to a certain instance and will even vary for one solver when different parameter settings are
used. Since all solvers tested are based on the same paradigm of branch-and-bound-and-cut, we still
believe that the attention level is a measure that can be of use in predicting numerical difficulties
during the solution of an instance, though by no means the only one.



MIPLIB 2010 17

Category and status. The last two columns denote the test sets in which an instance is contained by
giving the first letter of Benchmark, Challenge, Infeasible, Primal, Unstable, Resolve, Tree,
Xxl, as well as the status of the instance as of this writing, i.e., easy (solvable within one hour), hard

(solvable in a longer time or with a specialized algorithm), or open (optimal solution unknown).

Size, structure and sparsity. The coefficient matrices vary largely in size and proportion. Figure 5
shows their distribution according to number of rows and columns. It can be seen that instances
with more columns than rows are slightly in the majority (199 vs. 160 instances). Two instances,
namely ramos3 and go19, have an equal number of columns and rows.

(a) Instances as scattered by number of rows vs. number
of columns. The area of each bubble corresponds to
the density of the instance. Densities smaller than 0.05
are drawn in uniform size

(b) Cumulative distribution function of number of
rows divided by number of columns and corresponding
histogram over a log2 scale

Fig. 5: Size distribution of instances in miplib 2010

Apart from all the randomness involved, the instances typically show a strong structure, see, e. g.,
[80]. To underline this, we provide pictures representing the non-zero distribution in the coefficient
matrices on the miplib website. Figure 6 shows the sparsity patterns for instances cov1075 and
triptim2.

Note that the structure shown in the pictures is intensified, i. e., the instances are usually sparser
than they appear here. This is especially true for large instances where the ratio of zero to non-zero
elements of the matrix is as small as 2.3 · 106 to one (for instance zib02). Only 11 instances show a
density larger than 10% and the average density over all 361 instances is 1.6%; see also Figure 5a.

7 State-of-the-art MIP solving

In this section, we try to provide a snapshot of the state-of-the art in mip solving as of March 2011.
We emphasize that the goal of this section is not to compare the performance of the solvers, but
rather to introduce the instances of the miplib 2010 test set. We hope to reveal characteristics of the
problems and give an impression of what is possible with today’s codes, giving a point of reference
for future research and investigation.



18 Thorsten Koch et al.

cov1075

(637×120)

triptim2

(14,427×27,326)

Fig. 6: Two examples of sparsity patterns

All of the solvers are in continuous development, often experiencing significant improvements
from release to release. After having assembled a preliminary version of the test sets between
December 2010 and mid January 2011, each development group was asked to send the latest version
of their code, even if it was not yet officially released. While it is relatively easy for cbc and scip

to make new releases on short notice, the commercial vendors require more thorough testing. For
gurobi, we used the very latest beta and from xpress, the first release candidate. Both will be
officially released soon. cplex provided its most recent public version, which was released in January
2011. Table 4 lists the solvers used.

Table 4: Solvers used for the computations

Solver Version Status Website

cbc 2.6.4 R1630 Release http://projects.coin-or.org/Cbc
cplex 12.2.0.2 Release http://www.cplex.com
gurobi 4.5 beta0 Beta http://www.gurobi.com
scip/spx 2.0.1.3/1.5.0.3 Internal Version http://zibopt.zib.de
xpress 7.2 RC Release Candidate http://www.fico.com/xpress

We also investigated other solvers like glpk [113] and lp solve [119], but since neither of them
was able to solve more than 20% of the instances within the time limit and no multithreaded
versions were available, we omitted the results. For a recent survey of mip software we refer to [75].

For computations in this section, a computer with two Intel Xeon X5680 cpus, each providing
6 cores at 3.33GHz, was used. Hyperthreading and Turboboost were disabled. The machine has
32gb ram. All computations were done using the benchmark test set.

Table 7, starting on Page 40, lists the results for computations using one thread with a time
limit of one hour and a memory limit of 8 gb. The solvers are ordered by release date, commercial
ones first, non-commercial ones in a second block. For each solver, the number of branch-and-bound
nodes used and the wall clock time in seconds are listed. If the time limit was reached before the
solver finished, the optimality gap is given instead. If the gap at termination is infinite, i. e., if
no primal solution was found or if 0 ∈ [db, pb] and db 6= pb, we write inf%. Italics indicate that the
solution (as printed in the output file by the solver) did not pass the tolerances for the solution
checker described in Section 3. If a solver aborted, we write abort across the columns for nodes and
time. In the latter two cases, a footnote gives details, if available.

http://projects.coin-or.org/Cbc
http://www.cplex.com
http://www.gurobi.com
http://zibopt.zib.de
http://www.fico.com/xpress


MIPLIB 2010 19

The column Best lists the minimum number of nodes and the best time taken over all solvers
that solved the instance to optimality and provided a solution accepted by the solution checker.
In this respect, minimum tree size and solution times may have been taken from different solvers.
The column VS lists the variability score of the instance as described in Section 5. Higher numbers
indicate higher performance variability. In order to indicate special properties of the instances, the
additional test sets containing an instance, other than benchmark, are listed in column Sets.

While each solver hits the time limit for at least 12 instances, there are only four benchmark

instances that none of the solvers was capable of solving within one hour, using only one thread.
These are iis-bupa-cov, m100n500k4r1, neos-1337307, and newdano. Furthermore, for each solver there is
at least one instance for which this solver is faster than all the other solvers. The geometric mean of
the times in the Best column actually is less than half of the geometric mean of the numbers in any
of the solvers Time columns.

Table 8, starting on Page 43, gives the results for computations using 12 threads with a time
limit of one hour and a memory limit of 24gb. Except for the last column, we list the same numbers
as for the single thread computations. The last column lists the speedup between the Best Time

column from the single thread and from the 12 thread results.
Using 12 threads, all instances with the exception of m100n500k4r1 can be solved by at least one

of the solvers within one hour. The speedup between the best of all solvers and any particular
solver is now even more significant. The average overall speedup for going from 1 to 12 threads is
approximately a factor of 3. In some of the cases where the speedup is less than 1 this is due to
rounding the time up to the second on instances which do not benefit from using multiple threads.
This rounding is also the reason for the super linear speedup reported for binkar10 1.

We purposely refrained from directly comparing the individual solvers based on measures of
average solution times. There are a number of reasons for this:

– As stated in Section 5, we would have to sample over a sufficient number of permuted instances
to decrease the impact of performance variability.
When redoing the single thread computations on a 14% faster machine with a different mem-
ory/cache system, the speedup of the geometric mean solution time was between 8.5% and
nearly 20%, depending on the particular solver.
When redoing the 12 thread computations, even though the codes ran in deterministic mode on
an empty machine, differences in wall clock time up to 73 seconds between two runs of the same
instance could be observed.

– The result depends on several quite arbitrary choices, like the time limit, the number of threads,
and the particular computer system. If we changed any of them, the results would change.

– The fact that each solver was the single fastest on some instances and only a few instances could
not be solved by any solver, strongly indicates that if one wants to know which solver is the
fastest for a particular problem, the only way to find out is to try them all.

– While the geometric mean of the solution times in the 12 thread setting for the commercial
solvers is the same within measurement precision, the ratio between the slowest and the fastest
of the three solvers can be over 1,000 on an individual instance. The geometric mean of this ratio
is over 5, and the median is more than 3, i. e., for more than half of the instances the fastest
solver is at least three times faster than the slowest one. (We are not giving precise numbers
here because due to the time limit there are several possibilities for computing the numbers or
lower bounds.)

– We were “only” using default settings. Each of the solvers has at least 50 parameters to tune
it. This often allows considerable improvements in performance, especially on instances were a
certain solver has difficulties.

– Finally, there are many performance measures that could be used to decide which solver is best,
like lowest number of timeouts, highest number of fastest solves, minimum total time, lowest
geometric mean of solution time, etc. Interestingly, regarding the commercial solvers, depending
on the measure and the number of threads used, each solver wins at least once.



20 Thorsten Koch et al.

8 Final remarks

Since the first release of miplib, nearly 20 years ago, we have seen impressive advances in computa-
tional mixed integer programming. To support the ongoing progress, we have compiled miplib 2010
to help provide a basis for evaluating future developments and to stimulate continuing algorithmic
improvements.

The common efforts of collecting, experimenting with, selecting, and categorizing relevant
problem instances have proven to be very insightful. Getting everybody involved and agreeing on
common limits and tolerances for testing already led to beneficial discussions, code improvements,
and new ideas.

Last but not least, one important insight after literally spending decades of cpu time is that
one should not try to boil down the result tables to a single number. We hope that our detailed
computational experiments provide an accurate snapshot of the current state-of-the-art in mixed
integer programming.

To be continued . . .

Acknowledgments

The authors wish to thank all contributers for providing us with such a variety of instances from
which we could select. Thanks to: Adrian Zymolka, Alper Atamtürk, Andreas Bley, Andrew J.
Miller, Arie Koster, Armin Fügenschuh, Ashutosh Mahajan, Axel Werner, Brian Borchers, Carlos
Cardonha, Christian Raack, Christoph Helmberg, Christopher Cullenbine, Daniel Bienstock, Daniel
Espinoza, Dinakar Gade, Dmitry Krushinsky, Elmar Swarat, F. Jordan Srour, Falk Hueffner, Federico
Liberatore, Feng Qiu, François Margot, Gábor Pataki, Gerald Lach, Gerardo Gonzalez, Hamideh
Anjomshoa, Harald Schilly, Iulian Ober, Jennifer Van Dinter, Jens Schulz, Joachim P. Walser,
Jon Dattorro, Jonathan Ott, Jörg Rambau, Kelly Eurek, Kerem Akartunalı, Kiyan Ahmadizadeh,
Kristopher A. Pruitt, Luigi Poderico, Marc Pfetsch, Marco Lübbecke, Martin Bergner, Martin
Savelsbergh, Matthew Galati, Matteo Fischetti, Michael Winkler, Milind Dawande, Mustafa Atlihan,
Nora Konnyu, Paul Rubin, Pavel Troubil, Ralf Borndörfer, Renjie He, Richard O’Neill, Robert
Fourer, Ryuhei Miyashiro, Sam Allen, Sebastian Orlowski, Serge Bisaillon, Simge Küçükyavuz,
Steffen Weider, Tally Yunes, Tatsuya Akutsu, Thomas Schlechte, William Cook, and all those which
we missed. Our apologies that not all submitted instances could make it into one of the test sets.

We would like to thank Robert Ashford, Katsuki Fujisawa, Ed Klotz, Michael Perregaard,
Edward Rothberg, and Yuji Shinano for their valuable feedback.

Thanks to Jeff Linderoth for his efforts in putting together the cor@l test suite from instances
called from neos and elsewhere. This effort contributed directly to the construction of miplib 2010.

Emilie Danna worked on performance variability in mixed integer programming from 2008 to
2010 while she was employed at ILOG then IBM.

Timo Berthold and Stefan Heinz are supported by the DFG Research Center Matheon Mathemat-

ics for key technologies in Berlin. Kati Wolter is funded by DFG Priority Program 1307 “Algorithm
Engineering”.

References

1. K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, and J. W. Smeltink. Market split and basis
reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS Journal on Computing,
12(3):192–202, 2000.

2. T. Achterberg and T. Berthold. Hybrid branching. In W. J. van Hoeve and J. N. Hooker, editors, Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, volume
5547 of Lecture Notes in Computer Science, pages 309–311. Springer, Berlin, 2009.



MIPLIB 2010 21

3. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters, 34(4):361–372, 2006.
4. T. Achterberg, T. Koch, and A. Tuchscherer. On the effect of minor changes in model formulations. Technical

Report ZR 08-29, Zuse Institute Berlin, 2008.
5. T. Achterberg and C. Raack. The MCF-separator – detecting and exploiting multi-commodity flows in MIPs.

Mathematical Programming Computation, 2(2):125–165, 2010.
6. K. Ahmadizadeh, B. Dilkina, C. P. Gomes, and A. Sabharwal. An empirical study of optimization for

maximizing diffusion in networks. In Principles and Practice of Constraint Programming, volume 6308 of
Lecture Notes in Computer Science, pages 514–521, 2010.

7. K. Akartunalı and A. J. Miller. Computational analysis of lower bounds for big bucket production planning
problems. Technical Report http://www.optimization-online.org/DB_HTML/2007/05/1668.html, Optimiza-
tion Online, 2007.

8. K. Akartunalı and A. J. Miller. A heuristic approach for big bucket multi-level production planning problems.
European Journal of Operational Research, 193:396–411, 2009.

9. T. Akutsu, M. Hayashida, and T. Tamura. Integer programming-based methods for attractor detection
and control of Boolean networks. In Proceedings of The combined 48th IEEE Conference on Decision and
Control and 28th Chinese Control Conference, pages 5610–5617, 2009.

10. S. D. Allen, E. K. Burke, and J. Marecek. A space-indexed formulation of packing boxes into a larger box.
Technical Report, University of Nottingham, 2010.

11. E. Amaldi, M. E. Pfetsch, and L. E. Trotter, Jr. On the maximum feasible subsystem problem, IISs, and
IIS-hypergraphs. Mathematical Programming, 95(3):533–554, 2003.

12. D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza. Exact solutions to linear programming problems.
Operations Research Letters, 35:693–699, 2007.

13. A. Atamtürk. On capacitated network design cut-set polyhedra. Mathematical Programming, 92:425–437,
2002.

14. A. Atamtürk. On the facets of the mixed–integer knapsack polyhedron. Mathematical Programming,
98:145–175, 2003.

15. A. Atamtürk and D. Rajan. On splittable and unsplittable capacitated network design arc-set polyhedra.
Mathematical Programming, 92:315–333, 2002.

16. L. Bai and P. A. Rubin. Combinatorial Benders cuts for the minimum tollbooth problem. Operations
Research, 57(6):1510–1522, 2009.

17. L. Bai, M. T. Stamps, R. C. Harwood, and C. J. Kollmann. A genetic algorithm for the minimum tollbooth
problem. In Proceedings of the 2006 Meeting of the Decision Sciences Institute, 2006.

18. J. Barutt and T. Hull. Airline crew scheduling: Supercomputers and algorithms. SIAM News, 23(6):19–22,
1990.

19. P. Belotti and F. Malucelli. A Lagrangian relaxation approach for the design of networks with shared
protection. In Proceedings of the 2003 International Network Optimization Conference, pages 72–77, 2003.

20. M. Benichou, J. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Experiments in mixed-integer
programming. Mathematical Programming, 1:76–94, 1971.

21. W. Bentz, M. Martens, S. Orlowski, A. Werner, and R. Wessäly. FTTx-PLAN: Optimierter Aufbau von
FTTx-Netzen. In Breitbandversorgung in Deutschland, volume 220 of ITG-Fachbericht. VDE-Verlag, 2010.

22. R. E. Bixby. Solving real-world linear programs: A decade and more of progress. Operations Research,
50(1):3–15, 2002.

23. R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB: A test set of mixed integer programming problems.
SIAM News, 25:16, 1992.

24. R. E. Bixby, S. Ceria, C. McZeal, and M. Savelsbergh. An updated mixed integer programming library:
MIPLIB 3.0. Optima, 58:12–15, 1998.

25. A. Bley, N. Boland, C. Fricke, and G. Froyland. A strengthened formulation and cutting planes for the open
pit mine production scheduling problem. Computers and Operations Research, 37:1641–1647, 2010.

26. A. Bley and T. Koch. Integer programming approaches to access and backbone IP-network planning. Technical
Report ZR 02-41, Zuse Institute Berlin, 2002.

27. A. Bley, U. Menne, R. Klaehne, C. Raack, and R. Wessaely. Multi-layer network design – A model-based
optimization approach. In Proceedings of the 5th Polish-German Teletraffic Symposium, pages 107–116, 2008.

28. S. Böcker, F. Hüffner, A. Truss, and M. Wahlström. A faster fixed-parameter approach to drawing binary
tanglegrams. In J. Chen and F. Fomin, editors, Parameterized and Exact Computation, volume 5917 of
Lecture Notes in Computer Science, pages 38–49. Springer, 2009.

29. R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering. Shaker Verlag, Aachen, 1998. Ph.D.
thesis, Technische Universität Berlin.

30. R. Borndörfer, M. Grötschel, F. Klostermeier, and C. Küttner. Telebus Berlin: Vehicle scheduling in a
dial-a-ride system. In N. Wilson, editor, Proceedings of the 7th International Workshop on Computer-Aided
Transit Scheduling, volume 471 of Lecture Notes in Economics and Mathematical Systems, pages 391–422,
Berlin, 1999. Springer Verlag.

31. R. Borndörfer and C. Liebchen. When Periodic Timetables are Suboptimal. In J. Kalcsics and S. Nickel,
editors, Operations Research Proceedings 2007, pages 449–454. Springer, 2008.

http://www.optimization-online.org/DB_HTML/2007/05/1668.html


22 Thorsten Koch et al.

32. R. Borndörfer, A. Löbel, and S. Weider. A bundle method for integrated multi-depot vehicle and duty
scheduling in public transit. In M. Hickman, P. Mirchandani, and S. Vo, editors, Computer-aided Systems in
Public Transport, volume 600 of Lecture Notes in Economics and Mathematical Systems, pages 3–24, 2008.

33. R. Borndörfer and T. Schlechte. Models for railway track allocation. In C. Liebchen, R. K. Ahuja, and J. A.
Mesa, editors, 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems. Dagstuhl Publishing, 2007.

34. M. R. Bussieck, T. Lindner, and M. E. Lübbecke. A fast algorithm for near optimal line plans. Mathematical
Methods of Operations Research, 59(2):205–220, 2004.

35. A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem. Operations Research,
47:730–743, 1999.

36. A. Chabrier, E. Danna, C. L. Pape, and L. Perron. Solving a network design problem. Annals of Operations
Research, 130:217–239, 2004.

37. C. Colbourn and J. Dinitz. Handbook of Combinatorial Designs, Second Edition. Chapman & Hall/CRC,
2006.

38. W. Cook, T. Koch, D. Steffy, and K. Wolter. An exact rational mixed-integer programming solver. To appear
in Integer Programming and Combinatorial Optimization, 2011.

39. G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. INFORMS Journal on Computing,
11(2):205–210, 1999.

40. E. Coughlan, M. Lübbecke, and J. Schulz. A branch-and-price algorithm for multi-mode resource leveling.
In P. Festa, editor, Experimental Algorithms, volume 6049 of Lecture Notes in Computer Science, pages
226–238. Springer Berlin / Heidelberg, 2010.

41. N. D. Curet. The network diversion problem. Military Operations Research, 6(2):35–44, 2001.
42. E. Danna. Performance variability in mixed integer programming. Presentation at Workshop on Mixed

Integer Programming 2008.
43. J. Dattorro. Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA, 2011.
44. M. Dawande, S. Gavirneni, and S. Tayur. Effective heuristics for multiproduct partial shipment models.

Operations Research, 54(2):337–352, 2006.
45. M. Dawande and J. Kalagnanam. The multiple knapsack problem with color constraints. Research Report

RC 21138, IBM, 1998.
46. A. Dittel, A. Fügenschuh, and A. Martin. Polyhedral aspects of self-avoiding walks. Technical Report ZR

11-11, Zuse Institute Berlin, 2011.
47. E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathematical

Programming, 91:201–213, 2002.
48. J. Eckstein. Control strategies for parallel mixed integer branch and bound. In Proceedings of Supercomputing

1994, pages 41–48. IEEE Computer Society Press, 1994.
49. J. Eckstein. Parallel branch-and-bound methods for mixed integer programming. SIAM News, 27(1):12–15,

1994.
50. J. Eckstein. Parallel branch-and-bound methods for mixed integer programming on the CM-5. SIAM Journal

on Optimization, 4(4):794–814, 1994.
51. A. Eisenblätter, A. Fügenschuh, E. Fledderus, H.-F. Geerdes, B. Heideck, D. Junglas, T. Koch, T. Kürner,

and A. Martin. Mathematical methods for automatic optimization of UMTS radio networks. Technical
Report D4.3, IST-2000-28088 MOMENTUM, 2003.

52. D. G. Espinoza. On Linear Programming, Integer Programming and Cutting Planes. PhD thesis, Georgia
Institute of Technology, 2006.

53. M. C. Ferris, G. Pataki, and S. Schmieta. Solving the seymour problem. Optima, 66:2–6, 2001.
54. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming, 104:91–104, 2005.
55. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2003.
56. J. J. H. Forrest, J. Kalagnanam, and L. Ladanyi. A column-generation approach to the multiple knapsack

problem with color constraints. INFORMS Journal on Computing, 18(1):129–134, 2006.
57. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language for Mathematical Programming.

Duxbury Press, Brooks/Cole Publishing Company, 2nd edition, 2002.
58. D. Gade and S. Küçükyavuz. Deterministic lot sizing with service levels. Technical Report http://www.

optimization-online.org/DB_HTML/2010/12/2844.html, Optimization Online, 2010.
59. M. Galati. Decomposition Methods for Integer Linear Programming. PhD thesis, Lehigh University, 2010.
60. D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing

Surveys, 23(1):5–48, 1991.
61. B. Goldengorin and D. Krushinsky. Complexity evaluation of benchmark instances for the p-median problem.

Mathematical and Computer Modelling, 53(9–10):1719–1736, 2011.
62. G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins University Press, 1996.
63. J.-W. Goossens, S. van Hoesel, and L. G. Kroon. A branch-and-cut approach for solving railway line-planning

problems. Transportation Science, 38(3):379–393, 2004.
64. M. Grötschel, R. Borndörfer, and A. Löbel. Duty scheduling in public transit. In W. Jäger and H.-J. Krebs,

editors, MATHEMATICS – Key Technology for the Future, pages 653–674. Springer-Verlag, 2003.

http://www.optimization-online.org/DB_HTML/2010/12/2844.html
http://www.optimization-online.org/DB_HTML/2010/12/2844.html


MIPLIB 2010 23

65. O. Günlük and D. Bienstock. Computational experience with a difficult mixed-integer multicommodity flow
problem. Mathematical Programming, 68:213–237, 1995.

66. C. Helmberg and S. Röhl. A case study of joint online truck scheduling and inventory management for
multiple warehouses. Operations Research, 55(4):733–752, 2007.

67. P. Holub, H. Rudová, and M. Lǐska. Data transfer planning with tree placement for collaborative environments.
To appear in Constraints, 2011.

68. F. Hüffner, N. Betzler, and R. Niedermeier. Separator-based data reduction for signed graph balancing.
Journal of Combinatorial Optimization, 20:335–360, 2010.

69. M. Jünger, T. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A.
Wolsey, editors. 50 Years of Integer Programming 1958-2008. Springer, 2009.

70. T. Koch. Rapid Mathematical Programming. PhD thesis, Technische Universität Berlin, 2004.
71. A. Lau. Erstellen von wegeoptimierten Stundenplänen mit Diskreten Methoden. Diploma thesis, Technische

Universität Chemnitz, 2008.
72. R. Laundy, M. Perregaard, G. Tavares, H. Tipi, and A. Vazacopoulos. Solving hard mixed integer programming

problems with Xpress-MP: A MIPLIB 2003 case study. INFORMS Journal on Computing, 21:304–319, 2009.
73. C. Liebchen and R. H. Möhring. Information on the MIPLIB’s timetab-instances. Technical Report 2003/49,

Technische Universität Berlin, Dept. of Mathematics, 2003.
74. J. T. Linderoth, E. K. Lee, and M. W. P. Savelsbergh. A parallel, linear programming based heuristic for

large scale set partitioning problems. INFORMS Journal on Computing, 13:191–209, 2001.
75. J. T. Linderoth and A. Lodi. MILP software. In J. Cochran, editor, Wiley Encyclopedia of Operations

Research and Management Science, volume 5, pages 3239–3248. Wiley, 2011.
76. J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies for mixed integer

programming. INFORMS Journal on Computing, 11:173–187, 1999.
77. A. Lodi. MIP computation. In M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt,

G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages 619–645. Springer,
2009.

78. I. Luzzi. Exact and Heuristic Methods for Nesting Problems. PhD thesis, University of Padova, 2002.
79. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming B, 94:207–220, 2003.
80. A. Martin. Integer programs with block structure. Habilitations-Schrift, Technische Universität Berlin, 1998.
81. R. Meirich. Polyedrische Untersuchung eines Linienplanungsproblems. Diploma thesis, Technische Universität

Berlin, 2010.
82. R. Miyashiro, Y. Yano, and M. Muramatsu. On the maximum number of strings in go. Transactions of

Information Processing Society of Japan, 48(11):3463–3469, 2007.
83. G. L. Nemhauser and M. A. Trick. Scheduling a major college basketball conference. Operations Research,

46(1):1–8, 1998.
84. S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–Survivable Network Design Library.

Networks, 55(3):276–286, 2010.
85. F. Ortega and L. Wolsey. A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge

network flow problem. Networks, 41(3):143–158, 2003.
86. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Solving large Steiner triple covering problems. Operations

Research Letters, 39:127–131, 2011.
87. D. M. Panton and A. W. Elbers. Mission planning for synthetic aperture radar surveillance. Interfaces,

29(2):73–88, 1999.
88. L. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Universiteit Rotterdam, 2003.
89. T. Pfender. Arboreszenz-Flüsse in Graphen: polyedrische Untersuchungen. Diploma thesis, Technische

Universität Berlin, 2000.
90. M. E. Pfetsch. Branch-and-cut for the maximum feasible subsystem problem. SIAM Journal on Optimization,

19:21–38, 2008.
91. Y. Pochet and M. V. Vyve. A general heuristic for production planning problems. INFORMS Journal on

Computing, 16(3):316–327, 2004.
92. C. Polo. Algoritmi euristici per il progetto ottimo di una rete di interconnessione. Technical report, Testi di

laurea in Ingegneria Informatica, Universitità degli Studi di Padova, 2002.
93. C. Raack, A. M. C. A. Koster, S. Orlowski, and R. Wessäly. On cut-based inequalities for capacitated network

design polyhedra. Networks, 57(2):141–156, 2011.
94. A. Reuter. Kombinatorische Auktionen und ihre Anwendungen im Schienenverkehr. Diploma thesis,

Technische Universität Berlin, 2005.
95. H. Schilly. Modellierung und Implementation eines Vorlesungsplaners. Diploma thesis, Universität Wien,

2007.
96. D. Sheldon, B. Dilkina, A. Elmachtoub, R. Finseth, A. Sabharwal, J. Conrad, C. P. Gomes, D. Shmoys,

W. Allen, O. Amundsen, and B. Vaughan. Maximizing spread of cascades using network design. In Proceedings
of the 26th Conference on Uncertainty in Artificial Intelligence, pages 517–526, 2010.

97. Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP – a parallel extension of SCIP.
Technical Report ZR 10-27, Zuse Institute Berlin, 2010.



24 Thorsten Koch et al.

98. H. Stadtler. Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling
schedules with lot-sizing windows. Operations Research, 51(3):487–502, 2003.

99. M. Sun, J. E. Aronson, P. G. McKeown, and D. A. Drinka. A tabu search heuristic procedure for the fixed
charge transportation problem. European Journal of Operational Research, 106:441–456, 1998.

100. L. M. Torres Carvajal. Online Vehicle Routing. PhD thesis, Technische Universität Berlin, 2003.
101. P. Troubil and H. Rudová. Integer programming for media streams planning problem. In L. Matyska,

M. Kozubek, T. Vojnar, P. Zemćık, and D. Antos, editors, Sixth Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science, volume 16 of OpenAccess Series in Informatics, pages 116–123.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

102. J. P. Walser. Radar surveillance, 1997. http://www.ps.uni-saarland.de/~walser/radar/radar.html.
103. J. P. Walser. Solving linear pseudo-boolean constraint problems with local search. In Proceedings of the

14th national conference on artificial intelligence and 9th conference on Innovative applications of artificial
intelligence, pages 269–274. AAAI Press, 1997.

104. J. P. Walser. Solving the ACC basketball scheduling problem with integer local search, 1998. http:
//www.ps.uni-saarland.de/~walser/acc/acc.html.

105. S. Weider. Integration of Vehicle and Duty Scheduling in Public Transport. PhD thesis, Technische Universität
Berlin, 2007.

106. L. A. Wolsey. Integer programming. Wiley-Interscience, New York, NY, USA, 1998.
107. T. Yunes. CuSPLIB 1.0: A library of single-machine cumulative scheduling problems, 2009. http://moya.

bus.miami.edu/~tallys/cusplib/.
108. Berkeley Computational Optimization Lab – Data Sets. http://ieor.berkeley.edu/~atamturk/data/.
109. COR@L MIP Instances. http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/.
110. Convex Optimization of Eternity II. http://www.convexoptimization.com/wikimization/index.php/

Dattorro_Convex_Optimization_of_Eternity_II.
111. DEIS - Operations Research Group Library of Instances. http://www.or.deis.unibo.it/research_pages/

ORinstances/MIPs.html.
112. Eternity II puzzle. http://www.eternityii.com.
113. GNU linear programming toolkit version 4.45. http://www.gnu.org/software/glpk.
114. GMP, GNU multiple precision arithmetic library. http://gmplib.org.
115. Management of Inter-Warehouse-Logistics for Stochastic Demand. http://www.tu-chemnitz.de/mathematik/

discrete/projects/warehouse_trucks/index.html.
116. ICC, Intel C++ compiler. http://software.intel.com/en-us/articles/intel-compilers/.
117. IEEE standard 754-2008 for floating-point arithmetic, 2008.
118. Challenge Problems: Independent Sets in Graphs. http://www2.research.att.com/~njas/doc/graphs.html.
119. lp solve 5.5.2. http://lpsolve.sourceforge.net.
120. MULTILSB: Multi-Item Lot-Sizing with Backlogging. http://personal.strath.ac.uk/kerem.akartunali/

research/multi-lsb/.
121. NEOS Server for Optimization. http://www.neos-server.org.
122. Pseudo-Boolean Competition 2010. http://www.cril.univ-artois.fr/PB10/.
123. QSopt ex. http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html.
124. IBM Ponder This – August 2008. http://domino.research.ibm.com/comm/wwwr_ponder.nsf/challenges/

August2008.html.
125. SNDlib. http://sndlib.zib.de.
126. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

http://www.ps.uni-saarland.de/~walser/radar/radar.html
http://www.ps.uni-saarland.de/~walser/acc/acc.html
http://www.ps.uni-saarland.de/~walser/acc/acc.html
http://moya.bus.miami.edu/~tallys/cusplib/
http://moya.bus.miami.edu/~tallys/cusplib/
http://ieor.berkeley.edu/~atamturk/data/
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/
http://www.convexoptimization.com/wikimization/index.php/Dattorro_Convex_Optimization_of_Eternity_II
http://www.convexoptimization.com/wikimization/index.php/Dattorro_Convex_Optimization_of_Eternity_II
http://www.or.deis.unibo.it/research_pages/ORinstances/MIPs.html
http://www.or.deis.unibo.it/research_pages/ORinstances/MIPs.html
http://www.eternityii.com
http://www.gnu.org/software/glpk
http://gmplib.org
http://www.tu-chemnitz.de/mathematik/discrete/projects/warehouse_trucks/index.html
http://www.tu-chemnitz.de/mathematik/discrete/projects/warehouse_trucks/index.html
http://software.intel.com/en-us/articles/intel-compilers/
http://www2.research.att.com/~njas/doc/graphs.html
http://lpsolve.sourceforge.net
http://personal.strath.ac.uk/kerem.akartunali/research/multi-lsb/
http://personal.strath.ac.uk/kerem.akartunali/research/multi-lsb/
http://www.neos-server.org
http://www.cril.univ-artois.fr/PB10/
http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://domino.research.ibm.com/comm/wwwr_ponder.nsf/challenges/August2008.html
http://domino.research.ibm.com/comm/wwwr_ponder.nsf/challenges/August2008.html
http://sndlib.zib.de
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


MIPLIB 2010 25

Table 5: Descriptions and references for miplib instances. Instances coming from a previous version
of miplib are listed in italic

Name Originator and description

30n20b8 E. Coughlan, M. Lübbecke, J. Schulz [40]
Multi-mode resource leveling with availability constraints; precedence and resource con-
strained scheduling problem

30 70 45 095 100 J. Walser [102,103]
Geographic radar station allocation

50v-10 S. Bisaillon
Network loading instance

a1c1s1, b2c1s1 M. Vyve, Y. Pochet [55,91]
Lot sizing instances

acc-tight4, acc-tight5,
acc-tight6

J. Walser [83,104]
ACC basketball scheduling instances

aflow40b T. Achterberg [89]
Arborescence flow problem on a graph with 40 nodes and edge density 0.9

air04 G. Astfalk [18]
Airline crew scheduling set partitioning problem

app1-2 E. Danna
Undisclosed industrial application from Google

ash608gpia-3col M. Pfetsch
Infeasible and highly symmetric graph 3-coloring assignment formulation

atlanta-ip, msc98-ip E-Plus, D. Bienstock, A. Bley, R. Wessäly [26]
Min-cost network dimensioning problems with a finite set of link capacities for each
bidirected link, unsplittable shortest path routing, path restoration for single node failures,
and routing path length restrictions

atm20-100 M. Galati [59]
ATM cash management problem

bab1 E. Swarat, L. Traverso, J. Buwaya
Integrated vehicle routing and crew scheduling of toll inspectors on German highways

bab3, bab5 E. Swarat
Vehicle routing with profits and an integrated crew scheduling problem formulated by two
coupled multi-commodity flow problems

beasleyC3, g200x740i,
k16x240, mc11, p80x400b,
p100x588b, r80x800

F. Ortega, L. Wolsey [85]
Fixed cost network flow problems

berlin 5 8 0,
usAbbrv-8-25 70

G. Klau [54]
Railway optimization problems

bg512142, dg012142 A. Miller [8,54,98]
Multilevel lot-sizing instances

biella1, dc1c, dc1l, dolom1,
nsr8k, siena1

Double-Click SAS [54,55]
Crew scheduling instances

bienst2, binkar10 1 H. Mittelmann
Relaxed versions of problems bienst and binkar10

bley xl1 A. Bley
Min-cost network dimensioning problem with finite sets of link capacities and unsplittable
flow routing

blp-ar98, blp-ic97 M. Lübbecke [34,54]
Railway line planning instances

bnatt350, bnatt400 T. Akutsu [9]
Model to identify a singleton attractor in a Boolean network, applications in computational
systems biology



26 Thorsten Koch et al.

Table 5 continued

Name Originator and description

buildingenergy K. Pruitt
Model to determine the minimum cost design and dispatch of a distributed generation
system for a commercial building

cdma S. Bisaillon
3G wireless multiplexing communication model

circ10-3 [122]
Instance from the 2010 SAT conference pseudo-Boolean competition

co-100 A. Werner [21]
Model from optical access network planning

core2536-691,
core4872-1529

A. Caprara, M. Fischetti, P. Toth [35]
Set covering instances coming from Italian railway models

cov1075 F. Margot [37,79]
Problem of selecting a minimum collection of 7-subsets containing all 5-subsets of a ground
set of 10 elements.

csched007, csched008,
csched010

T. Yunes [107]
Cumulative scheduling problem instances

d10200, d20200, leo1, leo2 cor@l test set [109]
Instances coming from the cor@l test set with unknown origin

dano3mip, danoint,
newdano

D. Bienstock [65]
Telecommunications applications

datt256 J. Dattorro [43,110]
Model to find solution to the “Eternity II” puzzle [112]

dfn-gwin-UUM,
germany50-DBM,
janos-us-DDM,
nobel-eu-DBE, zib54-UUE

C. Raack [5,93]
Network design, link dimensioning models for problems in the SNDlib [84,125]

ds-big R. Borndörfer [64]
Bus driver duty scheduling problem

eil33-2, eilA101-2, eilB101 J. Linderoth [74,126]
Set partitioning problem approximations for capacitated vehicle routing problem instances
from TSPLIB

enlight9, enlight13,
enlight14, enlight15,
enlight16

A. Zymolka
Model to solve instances of a combinatorial game “EnLight”

ex9, ex10 I. Ober
Formulations of Boolean SAT instances

ex1010-pi [122]
Logic synthesis problem from the 2010 SAT conference pseudo-Boolean competition

f2000, hanoi5 [122]
Reformulated SAT instances from the 2010 SAT conference pseudo-Boolean competition

ger50 17 trans C. Raack [27]
Multi-layer network design problem using a link-flow formulation over a path-flow formula-
tion

germanrr Q. Chen [109]
Model from a German railroad company

glass4 I. Luzzi [78]
Nesting instance

gmu-35-40, gmu-35-50,
gmut-75-50, gmut-77-40

N. Konnyu
Timber harvest scheduling models

go19 R. Miyashiro, Y. Yano, M. Muramatsu [82]
Instance of the maximum string problem in the Go board game: to find a position of
stones that maximizes the number of live “strings” on the board



MIPLIB 2010 27

Table 5 continued

Name Originator and description

harp2 M. Savelsbergh [24]
Unknown application

hawaiiv10-130 J. van Dinter
Unit commitment model

ic97 potential L. Peeters [88]
A model for cyclic railway timetable optimization

iis-100-0-cov, iis-bupa-cov,
iis-pima-cov

M. Pfetsch [11,90]
Set covering instances arising from irreducible infeasible subsystem covering problems

in A. Fügenschuh
Packing of paths, multicommodity flow formulation

ivu06-big, ivu52, rvb-sub S. Weider [32,105]
Set partitioning instances resulting from a column generation algorithm used for duty
scheduling in public transportation

lectsched-1, lectsched-1-obj,
lectsched-2, lectsched-3,
lectsched-4-obj

H. Schilly [95]
University lecture scheduling instances

liu X. Liu [3]
Floorplan and placement problem in the physical design of VLSI circuits

lotsize D. Gade, S. Küçükyavuz [58]
Multi-item lot sizing with service level constraints

lrsa120 M. Atlihan
Model to break a 120 bit RSA key

m100n500k4r1 L. Torres [100]
Set packing problem with 4 ones per column

macrophage,
methanosarcina,
tanglegram1, tanglegram2,
toll-like

F. Hüffner [28,68]
Balanced subgraph instances coming from applications in bio-informatics: finding monotone
subsystems in gene regulatory networks and finding optimal layouts of tanglegrams

map06, map10, map14,
map18, map20

K. Ahmadizadeh [6,96]
Land parcel selection problems motivated by Red-Cockaded Woodpecker conservation
problem

markshare 5 0 G. Cornuéjols, M. Dawande [1,39]
Market sharing problem

maxgasflow,
transportmoment

G. Gamrath
Transport momentum maximization in a capacitated gas network, transportmoment forbids
cycles by pseudo pressures

mcsched, npmv07 Q. Chen [109]
Unknown application

mik-250-1-100-1 A. Atamtürk [14,108]
Problem with mixed integer knapsack constraints

mine-90-10, mine-166-5,
reblock67, reblock166,
reblock354, reblock420

A. Bley [25]
Multi-period mine production scheduling instances

mining K. Eurek
Unspecified mining application

mkc J. Kalagnanam, M. Dawande [45,56]
Multiple knapsack problem with color constraints

momentum1, momentum2,
momentum3

T. Koch [51]
Snapshot based UMTS planning problems, having a very wide dynamic range in the matrix
coefficients and tending to be numerically unstable



28 Thorsten Koch et al.

Table 5 continued

Name Originator and description

mspp16 P. Troubil, P. Holub, M. Lǐska, H. Rudová [67,101]
Media Streams Planning Problem - A network optimization problem regarding routing of
multiple concurrent multimedia streams with bandwidth close to capacity of network links

mzzv11 S. Lukac [94]
Railway slot allocation problems

n3-3, n4-3, n9-3, n15-3 A. Atamtürk [13,108]
Capacitated network design problems

n370a, n3700, n3705,
ran14x18, ran14x18-disj-8,
ran16x16

J. Aronson [99]
Fixed charge transportation problems

n3div36, n3seq24 R. Meirich [81]
Static line planning models on the Dutch IC network

nag N. Shenoy [109]
Unknown Application

nb10tb S. Bisaillon
Forestry industry model

net12 P. Belotti [19,55]
Network design instance

netdiversion C. Cullenbine [41]
Directed network diversion problem

noswot J. Gregory, L. Schrage [23]
Unknown application

ns4-pr3, ns4-pr9, nu60-pr9,
nu120-pr3

A. Atamtürk, D. Rajan [15,108]
Multicommodity flow capacitated network design problems

ns1111636, ns1158817 H. Mittelmann, neos Server [121]
Network routing problems

ns1631475, ns2137859 H. Mittelmann, neos Server [121]
Traveling salesman problem models

ns1702808, ns1905797,
ns1905800, ns2118727

H. Mittelmann, neos Server [121]
Vehicle routing problems

ns1853823, ns1854840 H. Mittelmann, neos Server [121]
Network flow problems

ns1856153, ns1904248 H. Mittelmann, neos Server [121]
Sensor placement problems

ns2081729 H. Mittelmann, neos Server [121]
Short-term scheduling in a multiproduct sequence dependent facility

ofi L. Poderico
Natural gas supply portfolio optimization

opm2-z7-s2, opm2-z10-s2,
opm2-z11-s8, opm2-z12-s7,
opm2-z12-s14

D. Espinoza
Problems coming from precedence constrained knapsacks arising in mining applications

p2m2p1m1p0n100 B. Krishnamoorthy, G. Pataki
A 0-1 knapsack problem constructed to be difficult

p6b B. Borchers
Maximum independent set problem on a component of the graph 1et.2048 from the
collection of N. Sloane [118]

pb-simp-nonunif [122]
Retrieving haplotype information from DNA samples using Haplotype Inference by Pure
Parsimony

pg, pg5 34 M. Dawande [44]
Multiproduct partial shipment models



MIPLIB 2010 29

Table 5 continued

Name Originator and description

pigeon-10, pigeon-11,
pigeon-12, pigeon-13,
pigeon-19

S. Allen [10]
Instances of 3D packing (container loading) problems

probportfolio S. Ahmed, S. Dey, F. Qiu
Sample average approximation formulation of a probabilistic portfolio optimization problem

protfold A. Fügenschuh [46]
Protein folding instance

pw-myciel4 A. Koster
Model to compute the pathwidth of Mycielski-4 instance from DIMACS graph coloring
database

qiu Y. Chiu, J. Eckstein [48,49,50]
Fiber-optic network design, logical SONET ring level

queens-30 A. Mahajan [124]
Models the problem of placing as many queens on a 30 by 30 chess board as possible so
that each queen threatens at most one other queen

rail01, rail02, rail03 T. Schlechte [33]
Track allocation problem modeled as arc coupling problem

rail507 A. Caprara, M. Fischetti, P. Toth [35,55]
Railway crew scheduling

ramos3 F. Ramos
Set covering problem from a product manufacturing application

rmatr100-p5, rmatr100-p10,
rmatr200-p5, rmatr200-p10,
rmatr200-p20

D. Krushinsky [61]
Instances coming from a formulation of the p-Median problem using square cost matrices

rmine6, rmine10, rmine14,
rmine21, rmine25

D. Espinoza
Set of instances coming from open pit mining over a cube considering multiple time
periods and two knapsack constraints per period

rococoB10-011000,
rococoC10-001000,
rococoC11-011100,
rococoC12-111000

A. Chabrier, E. Danna, C. Le Pape, L. Perron [36]
Models for dimensioning the arc capacities in a telecommunication network

rocII-4-11, rocII-7-11,
rocII-9-11

J. Rambau
Optimal control of opinion dynamics

roll3000 L. Kroon [55]
Rolling stock and line planning instances

satellites1-25, satellites2-60,
satellites2-60-fs,
satellites3-40,
satellites3-40-fs

A. Ceselli, R. He
Satellite scheduling instances

sct1, sct5, sct32 Siemens
Assembly line balancing for printed circuit board production

set3-10, set3-15, set3-20 K. Akartunalı, A. Miller [7,8,120]
Multi-item lot-sizing with backlogging

seymour W. Cook, P. Seymour
A set-covering problem that arose from work related to the proof of the 4-color theorem

seymour-disj-10 M. Ferris, G. Pataki, S. Schmieta [53]
The seymour instance after adding 10 rounds of disjunctive cuts

shipsched E. Günther, M. Lübbecke
A ship scheduling problem on the Kiel Canal

shs1023 C. Helmberg [66,115]
Joint online truck scheduling and inventory management for multiple warehouses



30 Thorsten Koch et al.

Table 5 continued

Name Originator and description

sing2, sing161, sing245,
sing359, uc-case3,
uc-case11

D. Espinoza
Unit commitment problems (electricity production planning problems) coming from the
Chilean electricity system, they have either one or two week planning horizons, and include
constraints on minimum on-off time for the power plants, ensure some reserve energy in
the system, and minimize global operation costs.

sp97ar, sp98ic, sp98ir J. Goessens, S. v. Hoessel, L. Kroon [55,63]
Railway line planning instances

splan1 C. Helmberg, A. Lau [71]
University course timetabling instances

stockholm L. Bai, P. Rubin [16,17]
Toll booth placement problem

stp3d T. Koch [70]
Steiner tree packing instance in a 3 dimensional grid-graph, LP relaxation is highly
degenerate

sts405, sts729 J. Linderoth [86]
Steiner triple system problems

swath D. Panton [87]
Model arising from the defense industry, involves planning missions for radar surveillance

t1717, t1722 R. Borndörfer [29,30]
Vehicle scheduling set partitioning problems from Berlin’s Telebus handicapped people’s
transportation system

timtab1 C. Liebchen, R. Möhring [73]
Public transport scheduling problems

triptim1, triptim2, triptim3 R. Borndörfer [31]
Trip timetable optimization problems

tw-myciel4 A. Koster
Model to compute the treewidth of the Mycielski-4 instance from the DIMACS graph
coloring database

uct-subprob G. Lach
Subproblem of a university course timetabling problem

umts C. Polo [55,92]
Telecommunications network model

unitcal 7 R. O’Neill
California seven day unit commitment problem

van C. Mannino, E. Parrello [55]
Telecommunications network model

vpphard, vpphard2 C. Cardonha
Vehicle positioning problem instances

wachplan S. Orlowski
Shift planning model to assign crew members to shifts for a sail training trip

wnq-n100-mw99-14 [122]
Weighted n-queens problem with an additional separation constraint

zib01, zib02 T. Koch
Group channel routing on a 3D grid graph



MIPLIB 2010 31

Table 5 continued

Name Originator and description

neos6, neos13, neos15, neos16, neos18, neos-476283, neos-506422, neos-506428, neos-520729, neos-555424, neos-
631710, neos-686190, neos-693347, neos-738098, neos-777800, neos-785912, neos788725, neos-799711, neos-807456,
neos808444, neos-820146, neos-820157, neos-824661, neos-824695, neos-826650, neos-826694, neos-826812, neos-
826841, neos-847302, neos-849702, neos858960, neos-859770, neos-885086, neos-885524, neos-911880, neos-916792,
neos-932816, neos-933638, neos-933966, neos-934278, neos-935627, neos-935769, neos-937511, neos-937815, neos-
941262, neos-941313, neos-942830, neos-948126, neos-952987, neos-957389, neos-984165, neos-1109824, neos-1112782,
neos-1112787, neos-1140050, neos-1171692, neos-1171737, neos-1224597, neos-1225589, neos-1311124, neos-1337307,
neos-1396125, neos-1426635, neos-1426662, neos-1429212, neos-1436709, neos-1440225, neos-1440460, neos-1442119,
neos-1442657, neos-1601936, neos-1605061, neos-1605075, neos-1616732, neos-1620770, ns894236, ns894244, ns894786,
ns894788, ns903616, ns930473, ns1116954, ns1208400, ns1456591, ns1606230, ns1644855, ns1663818, ns1685374,
ns1686196, ns1688347, ns1696083, ns1745726, ns1758913, ns1766074, ns1769397, ns1778858, ns1830653, ns1952667,
ns2124243, ns2017839

Instances coming from the neos Server [121] with unknown applications



3
2

T
h

o
rsten

K
o
ch

et
a
l.

Table 6: Problem statistics

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

30 70 45 095 100 12,526 10,976 46,640 10,975 1 3 3 P easy
30n20b8 576 18,380 109,706 11,036 7,344 302 1.566408 B easy
50v-10 233 2,013 2,745 1,464 183 366 3311.179984123 2879.065687 C hard
a1c1s1 3,312 3,648 10,178 192 3,456 11503.444125 997.529583 C hard
acc-tight4 3,285 1,620 17,073 1,620 0 0 RP easy
acc-tight5 3,052 1,339 16,134 1,339 0 0 BRP easy
acc-tight6 3,047 1,335 16,108 1,335 0 0 0.001 RP easy
aflow40b 1,442 2,728 6,783 1,364 1,364 1168 1005.664817 B easy
air04 823 8,904 72,965 8,904 56137 55535.436388 B easy
app1-2 53,467 26,871 199,175 13,300 13,571 -41 -264.601651 0.001 B easy
ash608gpia-3col 24,748 3,651 74,244 3,651 infeasible 2 BI easy
atlanta-ip 21,732 48,738 257,532 46,667 106 1,965 90.009878614 81.243199 C hard
atm20-100 4,380 6,480 58,878 2,220 4,260 ? 2141734.684878 0.006 C open
b2c1s1 3,904 3,872 11,408 288 3,584 ? 4034.218333 C open
bab1 60,680 61,152 854,392 61,152 ? -286923.824223 C open
bab3 23,069 393,800 3,301,838 393,800 ? -733091.180443 C open
bab5 4,964 21,600 155,520 21,600 -106411.8401 -124657.641413 B easy
beasleyC3 1,750 2,500 5,000 1,250 1,250 754 40.426829 B easy
berlin 5 8 0 1,532 1,083 4,507 794 289 ? 52 C open
bg512142 1,307 792 3,953 240 552 ? 144364.073815 C open
biella1 1,203 7,328 71,489 6,110 1,218 3065005.78 3060037.430763 B easy
bienst2 576 505 2,184 35 470 54.6 11.724138 B easy
binkar10 1 1,026 2,298 4,496 170 2,128 6742.200024 6637.188027 B easy
bley xl1 175,620 5,831 869,391 5,831 190 154.3902 B easy
blp-ar98 1,128 16,021 200,601 15,806 215 6205.2147104 5891.22658 T easy
blp-ic97 923 9,845 118,149 9,753 92 ? 3846.358667 C open
bnatt350 4,923 3,150 19,061 3,150 0 0 BRP easy
bnatt400 5,614 3,600 21,698 3,600 1 0 CR hard
buildingenergy 277,594 154,978 788,969 26,287 128,691 ? 33246.2 C open
cdma 9,095 7,891 168,227 4,235 3,656 ? -6.38289e+16 0.194 CU open
circ10-3 42,620 2,700 307,320 2,700 ? 140 0.001 CR open
co-100 2,187 48,417 1,995,817 48,417 2639942.06 917102.214427 C hard
core2536-691 2,539 15,293 177,739 15,284 9 689 688.476034 B easy
core4872-1529 4,875 24,656 218,762 24,645 11 ? 1509.718561 C open
cov1075 637 120 14,280 120 20 17.142857 B easy
csched007 351 1,758 6,379 1,457 301 351 269.251587 T easy
csched008 351 1,536 5,687 1,284 252 173 171 RT easy
csched010 351 1,758 6,376 1,457 301 408 332.422727 B easy
d10200 947 2,000 57,637 733 1,267 ? 12425.583005 C open
d20200 1,502 4,000 189,389 3,181 819 ? 12229.625788 C open
dano3mip 3,202 13,873 79,655 552 13,321 ? 576.23162 0.005 CR open
danoint 664 521 3,232 56 465 65.666666667 62.63728 B easy
datt256 11,077 262,144 1,503,732 262,144 ? 256 — C open
dc1c 1,649 10,039 121,158 8,380 1,659 ? 1754946.863638 C open
dc1l 1,653 37,297 448,754 35,638 1,659 ? 1744591.692942 C open
dfn-gwin-UUM 158 938 2,632 90 848 38752 27467.257235 B easy



M
IP

L
IB

2
0
1
0

3
3

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

dg012142 6,310 2,080 14,795 640 1,440 ? 757818.480114 C open
dolom1 1,803 11,612 190,413 9,720 1,892 ? 6556066.068315 C open
ds-big 1,042 174,997 4,623,442 174,997 ? 86.820068 CR open
eil33-2 32 4,516 44,243 4,516 934.007916 811.278996 B easy
eilA101-2 100 65,832 959,373 65,832 880.920108 803.373888 C hard
eilB101 100 2,818 24,120 2,818 1216.920174 1075.247691 B easy
enlight13 169 338 962 169 169 71 0 B easy
enlight14 196 392 1,120 196 196 infeasible 0 BI easy
enlight15 225 450 1,290 225 225 69 0 T easy
enlight16 256 512 1,472 256 256 infeasible 0 IT easy
enlight9 81 162 450 81 81 infeasible 0 I easy
ex1010-pi 1,468 25,200 102,114 25,200 ? 220.670087 C open
ex10 69,608 17,680 1,162,000 17,680 100 100 0.001 P easy
ex9 40,962 10,404 517,112 10,404 81 81 BP easy
f2000 10,500 4,000 29,500 4,000 ? 1331 CR open
g200x740i 940 1,480 2,960 740 740 ? 2292.465 C open
ger50 17 trans 499 22,414 172,035 18,062 4,352 ? 6850.628623 0.01 CU open
germanrr 10,779 10,813 175,547 5,288 5,286 239 ? 45980135.416399 C open
germany50-DBM 2,526 8,189 24,479 88 8,101 ? 438028 C open
glass4 396 322 1,815 302 20 1200012600 800002400 BT easy
gmu-35-40 424 1,205 4,843 1,200 5 -2406733.3688 -2406943.556343 BT easy
gmu-35-50 435 1,919 8,643 1,914 5 -2607958.33 -2608070.315743 T easy
gmut-75-50 2,565 68,865 571,475 68,859 6 ? -14182312.661731 0.001 C open
gmut-77-40 2,554 24,338 159,902 24,332 6 ? -14173396.636852 0.002 C open
go19 441 441 1,885 441 84 76.530222 CT hard
hanoi5 16,399 3,862 39,718 3,862 ? 1467 CR open
harp2 112 2,993 5,840 2,993 -73899798 -74353341.5023 U easy
hawaiiv10-130 1,388,052 685,130 183,263,061 578,444 106,686 ? 52281537.594958 0.24 CXU open
ic97 potential 1,046 728 3,138 450 73 205 3942 3868 C hard
iis-100-0-cov 3,831 100 22,986 100 29 16.666667 B easy
iis-bupa-cov 4,803 345 38,392 345 36 26.497217 B easy
iis-pima-cov 7,201 768 71,941 768 33 26.620389 B easy
in 1,526,202 1,449,074 6,811,639 1,489 1,447,585 ? ? — CRX open
ivu06-big 1,177 2,277,736 23,125,770 2,277,736 ? 135.428 CRX open
ivu52 2,116 157,591 2,179,476 157,591 ? 480.250438 0.001 CR open
janos-us-DDM 760 2,184 6,384 84 2,100 ? 1488134.75 C open
k16x240 256 480 960 240 240 10674 2769.838 T easy
lectsched-1 50,108 28,718 310,792 28,236 482 0 0 P easy
lectsched-1-obj 50,108 28,718 310,792 28,236 482 ? 0 C open
lectsched-2 30,738 17,656 186,520 17,287 369 0 0 P easy
lectsched-3 45,262 25,776 279,967 25,319 457 0 0 P easy
lectsched-4-obj 14,163 7,901 82,428 7,665 236 4 0 B easy
leo1 593 6,731 131,218 6,730 1 404227536.16 388573315.509608 T easy
leo2 593 11,100 219,959 11,099 1 404077441.12 386421293.208919 C hard
liu 2,178 1,156 10,626 1,089 67 ? 346 C open
lotsize 1,920 2,985 6,565 1,195 1,790 1480195 348385.346551 0.009 C hard
lrsa120 14,521 3,839 39,956 120 119 3,600 ? 29 C open
m100n500k4r1 100 500 2,000 500 -25 -25 BP hard
macrophage 3,164 2,260 9,492 2,260 374 0 B easy



3
4

T
h

o
rsten

K
o
ch

et
a
l.

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

map06 328,818 164,547 549,920 146 164,401 -289 -406.181173 R easy
map10 328,818 164,547 549,920 146 164,401 -495 -602.176181 R easy
map14 328,818 164,547 549,920 146 164,401 -674 -778.549324 R easy
map18 328,818 164,547 549,920 146 164,401 -847 -932.782685 BR easy
map20 328,818 164,547 549,920 146 164,401 -922 -998.836419 B easy
markshare 5 0 5 45 203 40 5 1 0 T easy
maxgasflow 7,160 7,437 19,717 2,456 4,981 ? -70929535.9 0.01 CT open
mc11 1,920 3,040 6,080 1,520 1,520 11689 608.84434 T easy
mcsched 2,107 1,747 8,088 1,731 14 2 211913 193774.753707 B easy
methanosarcina 14,604 7,930 43,812 7,930 ? 0 C open
mik-250-1-100-1 151 251 5,351 100 150 1 -66729 -79842.423635 B easy
mine-166-5 8,429 830 19,412 830 -566395707.87083 -821763677.673139 B easy
mine-90-10 6,270 900 15,407 900 -784302337.633173 -887165318.510226 B easy
mining 661,133 348,921 3,844,879 348,920 1 ? -949724584.696851 — C open
mkc 3,411 5,325 17,038 5,323 2 -563.846 -611.85 C hard
momentum1 42,680 5,174 103,198 2,349 2,825 109143 72793.345255 0.017 CT hard
momentum2 24,237 3,732 349,695 1,808 1 1,923 12314.1 7225.44067 0.069 U easy
momentum3 56,822 13,532 949,495 6,598 1 6,933 ? 91952.392314 0.014 CR open
msc98-ip 15,850 21,143 92,918 20,237 53 853 19839497.005874302 19520966.151661 BR easy
mspp16 561,657 29,280 27,678,735 29,280 363 341 BX easy
mzzv11 9,499 10,240 134,603 9,989 251 -21718 -22945.239631 0.001 B easy
n15-3 29,494 153,140 611,000 780 152,360 ? 23703.941176 0.007 CR open
n3-3 2,425 9,028 35,380 366 8,662 ? 7465.294118 C open
n3700 5,150 10,000 20,000 5,000 5,000 ? 972305.748043 0.008 C open
n3705 5,150 10,000 20,000 5,000 5,000 ? 973361.017012 0.008 C open
n370a 5,150 10,000 20,000 5,000 5,000 ? 979219.544813 0.007 C open
n3div36 4,484 22,120 340,740 22,120 130800 114333.374741 B hard
n3seq24 6,044 119,856 3,232,340 119,856 52200 52000 B easy
n4-3 1,236 3,596 14,036 174 3,422 8993 4080.882353 B easy
n9-3 2,364 7,644 30,072 252 7,392 14409 7889.705882 C hard
nag 5,840 2,884 26,499 1,350 35 1,499 ? 465 C open
nb10tb 150,495 73,340 1,172,289 14,124 2,756 56,460 ? 12986061164.423624 0.34 CU open
neos-1109824 28,979 1,520 89,528 1,520 378 278 B easy
neos-1112782 2,115 4,140 8,145 2,070 2,070 5.72103e+11 499999999923.7446 0.246 U easy
neos-1112787 1,680 3,280 6,440 1,640 1,640 5.65032e+11 499999999913.1923 0.066 U easy
neos-1140050 3,795 40,320 808,080 38,640 1,680 ? 5071593.661704 0.299 CU open
neos-1171692 4,239 1,638 42,945 819 819 -273 -273 P easy
neos-1171737 4,179 2,340 58,620 1,170 1,170 -195 -195 P easy
neos-1224597 3,276 3,395 25,090 3,150 245 -428 -428 P easy
neos-1225589 675 1,300 2,525 650 650 1231065191.85 200000000 0.186 U easy
neos-1311124 1,643 1,092 7,140 546 546 ? -182 C open
neos-1337307 5,687 2,840 30,799 2,840 -202319 -203123.973856 B easy
neos-1396125 1,494 1,161 5,511 129 1,032 3000.045337302 388.5524 B easy
neos13 20,852 1,827 253,842 1,815 12 -95.474806559 -126.178378 B easy
neos-1426635 796 520 3,400 260 260 -176 -178 T easy
neos-1426662 1,914 832 8,048 416 416 -44 -52 T easy
neos-1429212 58,726 416,040 1,855,220 54,756 361,284 ? 30 C open
neos-1436709 1,417 676 6,214 338 338 -128 -129 T easy
neos-1440225 330 1,285 14,168 1,285 36 36 0.003 P easy



M
IP

L
IB

2
0
1
0

3
5

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

neos-1440460 989 468 4,302 234 234 -179.25 -180 T easy
neos-1442119 1,524 728 6,692 364 364 -181 -182 T easy
neos-1442657 1,310 624 5,736 312 312 -154.5 -156 T easy
neos15 552 792 1,766 160 632 80598.430096861 29624.693694 T easy
neos-1601936 3,131 4,446 72,500 3,906 540 3 1 BR easy
neos-1605061 3,474 4,111 93,483 3,570 541 12 6.150735 R easy
neos-1605075 3,467 4,173 91,377 3,633 540 9 3.214461 R easy
neos-1616732 1,999 200 3,998 200 159 100 T easy
neos-1620770 9,296 792 19,292 792 9 1 T hard
neos16 1,018 377 2,801 336 41 446 429 T easy
neos18 11,402 3,312 24,614 3,312 16 7 B easy
neos-476283 10,015 11,915 3,945,693 5,588 6,327 406.363206984 406.244708 B easy
neos-506422 6,811 2,527 31,815 63 2,464 0 0 P easy
neos-506428 129,925 42,981 343,466 42,981 583780 145945 R easy
neos-520729 31,178 91,149 322,203 30,708 60,441 -1385000 -1391291.666667 0.185 U easy
neos-555424 2,676 3,815 15,667 3,800 15 1286800 1196312.54944 P easy
neos-631710 169,576 167,056 834,166 167,056 ? 188.25 CR open
neos-686190 3,664 3,660 18,085 3,600 60 6730 5134.81383 B easy
neos-693347 3,192 1,576 113,472 1,405 171 234 234 P easy
neos6 1,036 8,786 251,946 8,340 446 83 83 P easy
neos-738098 25,849 9,093 101,360 8,946 147 -1099 -1099 P easy
neos-777800 479 6,400 32,000 6,400 -80 -80 P easy
neos-785912 1,714 1,380 16,610 1,380 infeasible 42 I easy
neos788725 433 352 4,912 352 infeasible -44.65 I easy
neos-799711 59,218 41,998 147,164 910 41,088 -11170211.73363777 -11228065.153797 0.056 U easy
neos-807456 840 1,635 4,905 1,635 ? 280 0.005 C open
neos808444 18,329 19,846 120,512 19,846 0 0 P easy
neos-820146 830 600 3,225 600 infeasible 0 IT easy
neos-820157 1,015 1,200 4,875 1,200 infeasible 0 IT easy
neos-824661 18,804 45,390 138,890 15,640 29,750 33 33 P easy
neos-824695 9,576 23,970 72,590 8,500 15,470 31 31 P easy
neos-826650 2,414 5,912 20,440 5,792 120 29 28 T easy
neos-826694 6,904 16,410 59,268 16,290 120 58 58 P easy
neos-826812 6,844 15,864 53,808 10,350 5,514 58.011 58.011 P easy
neos-826841 2,354 5,516 18,460 3,488 2,028 29.0082 28.0082 T easy
neos-847302 609 737 9,566 729 8 4 0 T hard
neos-849702 1,041 1,737 19,308 1,737 0 0 0.001 BP easy
neos858960 132 160 2,770 160 infeasible 1 IT easy
neos-859770 2,065 2,504 880,736 2,504 infeasible 4500 I easy
neos-885086 11,574 4,860 248,310 2,430 2,430 -243 -243 P easy
neos-885524 65 91,670 258,309 91,670 12320.092 11754.885 P easy
neos-911880 83 888 2,568 840 48 54.76 23.26 T easy
neos-916792 1,909 1,474 134,442 717 757 31.870398371 26.203596 0.001 B easy
neos-932816 30,823 21,007 484,926 20,566 441 15376 2285.5 P easy
neos-933638 13,658 32,417 187,173 28,637 3,780 276 276 P easy
neos-933966 12,047 31,762 180,618 27,982 3,780 318 318 P easy
neos-934278 11,495 23,123 125,577 19,955 3,168 260 259.5 B easy
neos-935627 7,859 10,301 40,476 7,522 2,779 2598 2598 RP easy
neos-935769 6,741 9,799 36,447 7,020 2,779 3010 3010 P easy



3
6

T
h

o
rsten

K
o
ch

et
a
l.

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

neos-937511 8,158 11,332 44,237 8,562 2,770 3510 3510 P easy
neos-937815 9,251 11,646 48,013 8,876 2,770 ? 2837 CR open
neos-941262 6,703 9,480 35,659 6,710 2,770 2791 2790.5 R easy
neos-941313 13,189 167,910 484,080 167,910 9361 9361 P easy
neos-942830 803 882 13,290 834 48 16 12 T easy
neos-948126 7,271 9,551 38,219 6,965 2,586 2607 2602 R hard
neos-952987 354 31,329 90,384 31,329 ? 1327.33714 C open
neos-957389 5,115 6,036 355,372 6,036 1.5 1.5 P easy
neos-984165 6,962 8,883 36,742 6,478 2,405 ? 2186 CR open
net12 14,021 14,115 80,384 1,603 12,512 214 17.249479 BR easy
netdiversion 119,589 129,180 615,282 129,180 242 230.8 B easy
newdano 576 505 2,184 56 449 65.666666667 11.724138 B easy
nobel-eu-DBE 879 3,771 11,313 1,639 2,132 608910 570687.5 T hard
noswot 182 128 735 75 25 28 -41 -43 BT easy
npmv07 76,342 220,686 859,614 1,880 218,806 1.0481e+11 104809667051.7079 0.007 U hard
ns1111636 13,895 360,822 568,444 13,200 347,622 ? 96.25 0.015 CR open
ns1116954 131,991 12,648 410,582 7,482 5,166 0 0 P easy
ns1158817 68,455 1,804,022 2,842,044 66,022 1,738,000 infeasible infeasible 0.01 I easy
ns1208400 4,289 2,883 81,746 2,880 3 2 0 B easy
ns1456591 1,997 8,399 199,862 8,000 19 380 ? 361.939022 0.001 CT open
ns1606230 3,503 4,173 92,133 3,633 540 21 13.225 R easy
ns1631475 24,496 22,696 116,733 22,470 211 15 ? 817.193748 CR open
ns1644855 40,698 30,200 2,110,696 10,000 20,200 -1524.333333333 -1524.333333 0.039 R hard
ns1663818 172,017 124,626 20,433,649 124,626 ? 1 — CX open
ns1685374 44,121 10,000 220,859 10,000 -13 -51.800913 R hard
ns1686196 4,055 2,738 68,529 2,738 infeasible 2 I easy
ns1688347 4,191 2,685 66,908 2,685 27 2 B easy
ns1696083 11,063 7,982 384,129 7,982 ? 2 0.003 CR open
ns1702808 1,474 804 5,856 666 138 infeasible 1700 I easy
ns1745726 4,687 3,208 90,278 3,208 infeasible 3 I easy
ns1758913 624,166 17,956 1,283,444 17,822 134 -1454.671755 -1501.183256 B easy
ns1766074 182 100 666 90 10 infeasible 5833.8 BIT easy
ns1769397 5,527 3,772 117,383 3,772 infeasible 3 0.001 I easy
ns1778858 10,666 4,720 32,673 4,720 ? -28931833.446612 C open
ns1830653 2,932 1,629 100,933 1,458 171 20622 6153 B easy
ns1853823 224,526 213,440 1,489,480 213,440 ? 60182.9 0.008 C open
ns1854840 143,616 135,754 856,994 135,280 474 ? 122000 C open
ns1856153 35,407 11,998 105,882 11,956 42 ? 0 CR open
ns1904248 149,437 38,458 378,770 38,416 42 ? 0 0.007 C open
ns1905797 51,884 18,192 239,700 17,676 4 512 ? 11.75098 C open
ns1905800 8,289 3,228 38,100 3,030 3 195 ? 6.4366 C open
ns1952667 41 13,264 335,643 13,264 0 0 P easy
ns2017839 54,510 55,224 317,840 12 55,212 7.70305e+13 77025639567520.05 0.01 U easy
ns2081729 1,190 661 5,680 600 61 9 4.6 T easy
ns2118727 163,354 167,440 646,864 159,514 7,926 infeasible 260.751793 0.002 IR easy
ns2122603 24,754 19,300 77,044 7,588 11,712 infeasible 0 1 IU hard
ns2124243 139,280 156,083 429,032 16,447 139,636 ? 53998.333333 C open
ns2137859 206,726 103,361 923,682 103,041 320 ? 24629 C open
ns4-pr3 2,210 8,601 25,986 61 8,540 ? 36073 C open



M
IP

L
IB

2
0
1
0

3
7

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

ns4-pr9 2,220 7,350 22,176 42 7,308 ? 35175 C open
ns894236 8,218 9,666 41,067 9,666 ? 12.305229 CR open
ns894244 12,129 21,856 90,864 21,856 15 12.326616 0.006 R easy
ns894786 16,794 27,278 113,575 27,278 ? 6.080533 0.001 CR open
ns894788 2,279 3,463 14,381 3,463 7 6.304802 T easy
ns903616 18,052 21,582 91,641 21,582 ? 14.750147 0.001 CR open
ns930473 23,240 11,328 121,764 11,176 152 ? 0 0.001 CR open
nsr8k 6,284 38,356 371,608 32,040 6,316 ? 17500809.511815 0.001 CR open
nu120-pr3 2,210 8,601 25,986 8,540 61 28130 21306.442308 C hard
nu60-pr9 2,220 7,350 22,176 7,308 42 24940 22850 C hard
ofi 422,587 420,434 1,778,754 18,632 11,073 390,729 6.15538e+09 6131846109.623997 0.168 U hard
opm2-z10-s2 160,633 6,250 371,243 6,250 ? -49308.278601 0.001 C open
opm2-z11-s8 223,082 8,019 510,283 8,019 ? -62971.930395 CR open
opm2-z12-s14 319,508 10,800 725,376 10,800 ? -91524.54224 0.001 CR open
opm2-z12-s7 319,508 10,800 725,385 10,800 ? -90514.285842 0.001 CR open
opm2-z7-s2 31,798 2,023 79,762 2,023 -10280 -12879.686897 B easy
p100x588b 688 1,176 2,352 588 588 ? 5554.011111 C open
p2m2p1m1p0n100 1 100 100 100 infeasible 80424 IT easy
p6b 5,852 462 11,704 462 ? -231 C open
p80x400b 480 800 1,600 400 400 39667 6418.8 T easy
pb-simp-nonunif 1,451,912 23,848 4,366,648 23,848 ? 6 0.001 CX open
pg5 34 225 2,600 7,700 100 2,500 -14339.353446926 -16646.586017 B easy
pg 125 2,700 5,200 100 2,600 -8674.342607117 -11824.657382 T easy
pigeon-10 931 490 8,150 400 90 -9000 -10000 BT easy
pigeon-11 1,123 572 9,889 473 99 -10000 -11000 T easy
pigeon-12 1,333 660 11,796 552 108 -11000 -12000 CT hard
pigeon-13 1,561 754 13,871 637 117 ? -13000 C open
pigeon-19 3,307 1,444 29,849 1,273 171 ? -19000 C open
probportfolio 302 320 6,620 300 20 16.734246764 5 C hard
protfold 2,112 1,835 23,491 1,835 -31 -41.957447 0.01 R hard
pw-myciel4 8,164 1,059 17,779 1,058 1 10 0 B easy
qiu 1,192 840 3,432 48 792 -132.873136947 -931.638845 B easy
queens-30 960 900 93,440 900 ? -70.912689 C open
r80x800 880 1,600 3,200 800 800 ? 3651.48 C open
rail01 46,843 117,527 392,086 117,527 -70.5699643 -92.0873 0.002 R easy
rail02 95,791 270,869 756,228 270,869 -200.449907667 -206.6102 0.01 CR hard
rail03 253,905 758,775 1,728,451 758,775 ? -920.274 0.025 CR open
rail507 509 63,019 468,878 63,009 10 174 172.145567 B easy
ramos3 2,187 2,187 32,805 2,187 ? 145.8 CR open
ran14x18-disj-8 447 504 10,277 252 252 3735 3444.421066 T easy
ran14x18 284 504 1,008 252 252 3712 3016.944354 T easy
ran16x16 288 512 1,024 256 256 3823 3116.429512 B easy
reblock166 17,024 1,660 39,442 1,660 -6.00052e+08 -886882876.965829 T easy
reblock354 19,906 3,540 52,901 3,540 -39280521.2281657 -39641692.452292 C hard
reblock420 62,800 4,200 138,670 4,200 -5.17793e+08 -886535897.522137 C hard
reblock67 2,523 670 7,495 670 -34630648.43833169 -39339910.923037 B easy
rmatr100-p10 7,260 7,359 21,877 100 7,259 423 360.593308 B easy
rmatr100-p5 8,685 8,784 26,152 100 8,684 976 762.040054 B easy
rmatr200-p10 35,055 35,254 105,362 200 35,054 ? 1550.620783 C open



3
8

T
h

o
rsten

K
o
ch

et
a
l.

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

rmatr200-p20 29,406 29,605 88,415 200 29,405 837 688.357943 C hard
rmatr200-p5 37,617 37,816 113,048 200 37,616 4521 3283.653831 C hard
rmine10 65,274 8,439 162,264 8,439 ? -1926.86382 C open
rmine14 268,535 32,205 660,346 32,205 ? -4310.694704 0.002 C open
rmine21 1,441,651 162,547 3,514,884 162,547 ? -10679.2 0.01 CX open
rmine25 2,953,849 326,599 7,182,744 326,599 ? -15667.9 — CX open
rmine6 7,078 1,096 18,084 1,096 -457.18614 -462.305727 B easy
rocII-4-11 21,738 9,234 243,106 9,086 148 -6.652756 -11.937162 B easy
rocII-7-11 37,215 16,101 423,661 15,851 250 ? -11.964093 C open
rocII-9-11 47,533 20,679 544,031 20,361 318 ? -11.972072 C open
rococoB10-011000 1,667 4,456 16,517 4,320 136 19449 8350.199468 C hard
rococoC10-001000 1,293 3,117 11,751 2,993 124 11460 7515.271029 B easy
rococoC11-011100 2,367 6,491 30,472 6,325 166 ? 9024.205406 CR open
rococoC12-111000 10,776 8,619 48,920 8,432 187 ? 27337.357381 C open
roll3000 2,295 1,166 29,386 246 492 428 12890 11097.127677 B easy
rvb-sub 225 33,765 984,143 33,763 2 ? 11.206514 C open
satellites1-25 5,996 9,013 59,023 8,509 504 -5 -20 0.016 B easy
satellites2-60-fs 16,516 35,378 125,048 34,324 1,054 -19 -30 0.051 R easy
satellites2-60 20,916 35,378 283,668 34,324 1,054 -19 -30 0.143 CRU hard
satellites3-40-fs 35,553 81,681 291,161 79,961 1,720 ? -39 0.292 CRU open
satellites3-40 44,804 81,681 698,176 79,961 1,720 ? -39 0.3 CRU open
sct1 12,154 22,886 105,571 9,044 1,268 12,574 ? -218.139003 C open
sct32 5,440 9,767 109,654 6,396 1,332 2,039 ? -62.990833 C open
sct5 13,304 37,265 147,037 20,702 2,302 14,261 ? -228.176552 CR open
set3-10 3,747 4,019 13,747 1,424 2,595 ? 788.890655 C open
set3-15 3,747 4,019 13,747 1,424 2,595 ? 8364.040745 C open
set3-20 3,747 4,019 13,747 1,424 2,595 ? 10347.381087 C open
seymour 4,944 1,372 33,549 1,372 423 403.846474 C hard
seymour-disj-10 5,108 1,209 64,704 1,209 ? 280.817818 C open
shipsched 45,554 13,594 121,571 10,549 3,045 ? 0 C open
shs1023 133,944 444,625 1,044,725 1,296 440,899 2,430 ? 12121.358113 0.001 C open
siena1 2,220 13,741 258,915 11,775 1,966 ? 10163179.229002 C open
sing161 455,631 770,102 2,072,500 733,244 36,858 ? 19071259.113927 C open
sing245 143,161 235,146 652,817 220,692 14,454 ? 25024015.754083 0.001 CR open
sing2 28,891 31,630 149,712 23,377 8,253 ? 17150914.71694 C open
sing359 437,116 713,762 1,975,605 674,643 39,119 ? 22534478.962498 0.001 CR open
sp97ar 1,761 14,101 290,968 14,101 660705645.76 652560391.247564 C hard
sp98ic 825 10,894 316,317 10,894 449144758.4 444277568.934152 B easy
sp98ir 1,531 1,680 71,704 871 809 219676790.4 216663444.589936 B easy
splan1 572,800 1,317,382 5,233,840 90,810 1,978 1,224,594 ? -201899 — CXU open
stockholm 57,346 20,644 171,076 962 19,682 ? 0.755613 0.001 C open
stp3d 159,488 204,880 662,128 204,880 493.71965 481.877786 0.006 CR hard
sts405 27,270 405 81,810 405 ? 135 C open
sts729 88,452 729 265,356 729 ? 243 0.001 CR open
swath 884 6,805 34,965 6,724 81 467.407491 334.496858 C hard
t1717 551 73,885 325,689 73,885 ? 134531.021428 C open
t1722 338 36,630 133,096 36,630 ? 98815.407611 C open
tanglegram1 68,342 34,759 205,026 34,759 5182 0 B easy
tanglegram2 8,980 4,714 26,940 4,714 443 0 B easy



M
IP

L
IB

2
0
1
0

3
9

Table 6 continued

Name Rows Columns Non-Zeros Binary Integer Continuous mip Solution lp Solution Att.-level Sets Status

timtab1 171 397 829 64 107 226 764772 28694 BT easy
toll-like 4,408 2,883 13,224 2,883 ? 0 C open
transportmoment 9,616 9,685 29,541 2,456 7,229 ? -70929535815.37999 0.325 CU open
triptim1 15,706 30,055 515,436 20,451 9,597 7 22.8681 22.868088 0.01 BP easy
triptim2 14,427 27,326 521,898 20,771 6,548 7 ? 10.866359 0.01 CR open
triptim3 14,939 28,440 524,124 21,621 6,812 7 ? 13.511741 0.011 CR open
tw-myciel4 8,146 760 27,961 759 1 ? 3.838028 C open
uc-case11 51,438 34,134 202,042 3,898 302 29,934 ? 611267.013004 0.001 C open
uc-case3 52,003 37,749 273,618 11,256 26,493 ? 7181.264177 C open
uct-subprob 1,973 2,256 10,147 379 1,877 314 242 C hard
umts 4,465 2,947 23,016 2,802 72 73 30090328 29129565.161344 T easy
unitcal 7 48,939 25,755 127,595 2,856 22,899 19635558.2440195 19387553.381271 0.002 B easy
usAbbrv-8-25 70 3,291 2,312 9,628 1,681 631 ? 95 C open
van 27,331 12,481 487,296 192 12,289 ? 1.72352 C open
vpphard2 198,450 199,999 648,340 199,999 ? 0 C open
vpphard 47,280 51,471 372,305 51,471 5 0 B easy
wachplan 1,553 3,361 89,361 3,360 1 -8 -9 T easy
wnq-n100-mw99-14 656,900 10,000 1,333,400 10,000 ? 185.263158 CT open
zib01 5,887,041 12,471,400 49,877,768 12,471,400 ? 64697 — CX open
zib02 9,049,868 37,709,944 146,280,582 37,709,944 infeasible infeasible — CIX hard
zib54-UUE 1,809 5,150 15,288 81 5,069 10334015.82 3875862.862589 B easy



4
0

T
h

o
rsten

K
o
ch

et
a
l.

Table 7: Results for the Benchmark-Set using 1 thread, time limit 1 hour. Time is given in seconds, if the time limit was reached the
optimality gap is given instead. Italic indicates that the solution did not pass the feasibility check. Best lists the minimum number of nodes
and time over all solvers providing a feasible solution. Nodes and Time may have not been taken from the same solver. VS lists the variablility
score of the instance as described in Section 5.2. Higher numbers indicate higher performance variability. The additional test sets containing
each instance, other than benchmark, are listed in Sets

cplex xpress gurobi cbc scip/spx Best
Name Sets Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time VS

30n20b8 96.7k 20.3% 2.3M 74.8% 87.7k 804 213.1k 60.2% 8.2k 332.5% 87654 804
acc-tight5 RP 9 5 487 75 1.4k 121 1.2k 303 497 137 9 5 0.72
aflow40b 98.3k 376 134.8k 399 166.7k 738 367.9k 5.3% 278.7k 2400 98349 376 0.39
air04 225 6 121 12 125 10 456 55 76 65 76 6 0.14
app1-2 30.0k 1420 33.6k 125 64 65 2.7k inf% 1 inf% 64 65
ash608gpia-3col I 9 53 15 180 5 221 1 567 7 47 1 47 0.20
bab5 55.1k 1722 27.3k 0.7% 9.5k 662 22.7k inf% 7.5k 1.4% 9470 662
beasleyC3 544.9k 1.1% 11.2k 89 729 13 170.1k 21.6% 504.8k 22.3% 729 13
biella1 11.2k 899 5.5k 424 1.2k 238 16.0k 0.0% 1.7k 682 1162 238 0.29
bienst2 70.1k 63 101.8k 121 97.6k 33 90.8k 1312 89.6k 290 70054 33 0.21
binkar10 1 8.7k 15 5.5k 14 51.5k 35 59.0k 481 199.4k 406 5461 14 0.50
bley xl1 43 17 1 8 1 17 50 891 38 305 1 8 0.26
bnatt350 RP 16.5k 3408 82.9k inf% 36.1k inf% 7.4k inf% 6.6k 1191 6567 1191 0.50
core2536-691 748 57 183 81 771 194 869 275 308 377 183 57 0.67
cov1075 4.7k 19 185.9k 8.7% 342 6 138.6k 8.9% 529.5k 8.9% 342 6 0.06
csched010 400.3k 3.9% 136.3k 1176 621.6k 2.8% 549.1k 18.9% 466.4k 5.2% 136309 1176 0.26
danoint 528.9k 2.4% 514.7k 3398 819.9k 3.0% 210.1k 2.7% 507.6k 3.1% 514711 3398 0.09
dfn-gwin-UUM 36.4k 72 150.9k 264 242.3k 225 332.5k 1132 14.5k 54 14491 54 0.23
eil33-2 10.8k 58 15.7k 125 10.1k 110 8.8k 307 11.1k 180 8792 58 0.15
eilB101 10.5k 160 2.3k 80 22.0k 231 23.8k 1570 3.0k 680 2305 80 0.23
enlight13 84.2k 397 39.1k 13 62.0k 307 237.6k inf% 622.6k 413 39107 13 1.22
enlight14 I 663.8k inf% 142.0k 42 571.5k inf% 183.1k inf% 738.2k 665 142035 42 0.82
ex9 P 1 2102 1 17 1 227 1 inf% 1 85 1 17 0.11
glass4 T 4.4M 1537 1.7M 26.6% 496.3k 280 221.8k 47.5% 4.0M 100.0% 496349 280
gmu-35-40 T 1.6M 893 3.6M 0.0% 13.0M 1898 1.8M 0.0% 4.9M 0.0% 1578834 893
iis-100-0-cov 386.8k 3233 83.4k 1882 144.0k 1515 30.1k 12.1% 103.9k 1808 83425 1515 0.09
iis-bupa-cov 154.1k 8.6% 54.1k 7.5% 164.2k 5.9% 25.2k 11.3% 85.0k 10.0% – – 0.06
iis-pima-cov 27.0k 869 17.2k 1014 7.9k 318 15.9k 10.2% 11.1k 864 7917 318 0.21
lectsched-4-obj 1.5k 9 1 1 108 5 8.4k 1544 9.4k 265 1 1 1.04
m100n500k4r1 P 1.8M 4.2% 1.6M 4.2% 4.3M 4.2% 1.0M 4.2% 3.9M 4.2% – –
macrophage 8.6k 131 641 43 418.2k 1.4% 6.1k 20.6% 308.1k 27.1% 641 43
map18 R 809 190 513 147 1.1k 203 1.2k 1485 544 764 513 147 0.15
map20 575 138 521 177 1.2k 177 1.0k 1339 550 580 521 138 0.20



M
IP

L
IB

2
0
1
0

4
1

Table 7 continued

cplex xpress gurobi cbc scip/spx Best
Name Sets Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time VS

mcsched 111.8k 479 427.7k 2769 28.6k 198 117.4k 2.4% 23.1k 337 23111 198 0.16
mik-250-1-100-1 118.1k 14 79.7k 37 97.2k 18 441.8k 0.5% 415.1k 176 79739 14 0.05
mine-166-5 5.4k 24 249 7 6.7k 24 4.7k 157 6.1k 76 249 7 0.24
mine-90-10 345.9k 1350 142.5k 216 1.1M 1144 130.8k 1965 56.2k 264 56177 216 0.75
msc98-ip R 2.4k 5.0% 21.0k 1.3% 4.7k 700 294 inf% 118 inf% 4734 700
mspp16 X 53 635 1 253 1 1840 abort abort1 1 253
mzzv11 869 51 69 8 6 17 739 187 2.4k 591 6 8 0.21
n3div36 286.3k 6.0% 190.3k 1.2% 501.7k 3358 120.4k 0.5% 84.7k 11.2% 501686 3358
n3seq24 491 61 1 181 40.8k 677 268 1495 348 0.4% 1 61
n4-3 8.5k 328 47.6k 1979 120.6k 2110 293.2k 18.7% 81.5k 1052 8467 328 0.34
neos-1109824 8.7k 30 2.1k 14 10.5k 109 22.0k 428 10.8k 119 2071 14 0.30
neos-1337307 67.5k 0.1% 439.5k 0.0% 220.7k 0.0% 12.4k 0.1% 167.4k 0.0% – –
neos-1396125 26.4k 82 12.6k 79 8.2k 135 54.9k 24.0% 49.8k 3338 8175 79 0.25
neos-1601936 R 6.3k 1759 695 31 333 56 8.9k 996 8.9k 66.7% 333 31 0.81
neos-476283 1.0k 243 777 149 515 142 710 1561 453 322 453 142 0.16
neos-686190 4.3k 29 6.7k 52 5.3k 47 5.5k 154 5.6k 95 4298 29 0.27
neos-849702 P 44.9k inf% 43.9k 409 104.6k 1066 152.6k inf% 244.3k inf% 43941 409 1.59
neos-916792 122.8k 569 42.1k 208 67.2k 1525 106.0k 4.3% 67.4k 367 42060 208 2.23
neos-934278 101 230 199 82 1 82 400 649 2.1k 2.9% 1 82
neos13 4.1k 58 65 26 711 47 28.1k 2.7% 283 657 65 26 1.72
neos18 13.7k 27 20.0k 55 13.7k 65 abort 9.9k 68 9854 27 0.39
net12 R 2.5k 22.1% 2.5k 92 1.3k 290 1.4k 35.3% 5.0k 57.6% 1348 92 0.33
netdiversion 28 74 9 76 123 628 847 1.4% 51 inf% 9 74
newdano 170.6k 34.7% 372.4k 4.8% 683.3k 11.0% 81.9k 23.7% 1.5M 31.0% – – 0.21
noswot T 6.9M 950 1.7M 344 566.3k 72 1.0M 2194 605.0k 210 566273 72 0.34
ns1208400 2.9k 88 221.6k inf% 623 81 57.8k inf% 3.0k 526 623 81 0.70
ns1688347 7.3k 139 2.5k 25 868 31 3.6k inf% 4.2k 1027 868 25 0.79
ns1758913 24 158 1 37 1 44 1 inf% 1 inf% 1 37
ns1766074 IT 870.3k 133 520.8k 141 1.1M 110 189.9k 592 945.4k 668 189900 110 0.12
ns1830653 10.9k 206 31.9k 394 26.9k 427 20.7k 95.0% 47.0k 638 10915 206 0.42
opm2-z7-s2 2.0k 282 2.5k 501 639 67 3.5k 1039 1.5k 660 639 67 0.17
pg5 34 107.8k 244 88.6k 376 187.0k 439 97.3k 1787 257.0k 1247 88573 244 0.13
pigeon-10 T 5.8M 985 7.8M 2561 4.0M 558 685.7k 11.1% 3.7M 11.1% 3984370 558
pw-myciel4 33.1k 159 108.6k 1121 4.7M 11.1% 35.5k 66.7% 309.9k 42.9% 33124 159 0.51
qiu 2.2k 11 8.3k 55 3.4k 18 13.1k 222 14.5k 98 2157 11 0.19
rail507 3.5k 207 2.8k 911 1.5k 123 7.6k 1458 1.3k 1252 1259 123
ran16x16 64.3k 73 69.9k 88 81.8k 76 195.6k 785 344.3k 291 64322 73 0.20
reblock67 588.1k 766 234.5k 342 636.6k 651 305.1k 3275 139.6k 373 139635 342 0.32
rmatr100-p10 2.0k 76 917 56 1.0k 28 2.9k 157 863 322 863 28 0.08
rmatr100-p5 1.2k 94 681 107 1.2k 107 1.4k 167 419 991 419 94 0.12
rmine6 917.2k 1979 416.7k 1032 404.4k 476 459.9k 0.1% 546.9k 0.1% 404406 476 0.19



4
2

T
h

o
rsten

K
o
ch

et
a
l.

Table 7 continued

cplex xpress gurobi cbc scip/spx Best
Name Sets Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time VS

rocII-4-11 175.6k 271 47.3k 318 33.8k 205 19.2k 0.3% 27.6k 381 27610 205 0.32
rococoC10-001000 45.5k 597 35.9k 420 1.7M 0.4% 36.3k 1345 462.5k 2493 35937 420 0.42
roll3000 31.3k 138 1.9k 16 6.8k 68 34.5k 2284 593.9k 3399 1947 16 0.54
satellites1-25 3.5k 200 2.3k 120 634 102 14.5k 1582 2 8.6k 197.0% 634 102 0.53
sp98ic 196.3k 1166 23.3k 563 32.8k 289 86.5k 0.3% 35.0k 3.5% 23317 289
sp98ir 6.5k 39 2.6k 38 6.9k 126 6.9k 103 4.8k 78 2641 38 0.20
tanglegram1 31 1791 35 157 23 287 203 inf% 1 9954.4% 23 157
tanglegram2 3 59 3 2 7 17 302 216 15 1306 3 2 0.41
timtab1 T 855.6k 797 307.8k 373 3.4M 1568 233.4k 24.8% 700.0k 415 307773 373 0.43
triptim1 P 1 39 33 60 1 59 1 123 118 0.1% 1 39 0.48
unitcal 7 2.0k 108 39 18 3.1k 189 3.3k 1511 12.3k 1479 39 18 1.05
vpphard 13.6k 2481 149.3k inf% 12.8k inf% 6.4k inf% 4.3k inf% 13580 2481
zib54-UUE 22.1k 1818 164.0k 1527 31.3k 2397 79.3k 6.5% 431.0k 9.9% 22093 1527 0.28

1 out-of-memory; 2 constraint violation, absolute error: 0.0003



M
IP

L
IB

2
0
1
0

4
3

Table 8: Results for the Benchmark-Set using 12 cores, time limit 1 hour. Time is given in seconds, if the time limit was reached the optimality
gap is given instead. Italic indicates that the solution did not pass the feasibility check. Best lists the minimum number of nodes and time
over all solvers providing a feasible solution. Nodes and Time may have not been taken from the same solver. SU gives the speedup as the
ratio between the best solution times for 1 thread and 12 threads. The additional test sets containing each instance, other than benchmark,
are listed in Sets

cplex xpress gurobi cbc ug[scip/spx] Best
Name Sets Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time SU

30n20b8 158.7k 401 7.9M 19.4% 61.2k 173 abort1 361 200.0% 61204 173 4.6
acc-tight5 RP 53 6 743 13 235 13 395 45 151 66 53 6 0.8
aflow40b 67.1k 45 218.8k 139 535.9k 159 abort1 28.9k 233 28947 45 8.4
air04 765 9 122 11 214 9 1.1k 34 35 70 35 9 0.7
app1-2 378.0k 1545 330.3k 276 36 61 10.9k 3443 282 490.3% 36 61 1.1
ash608gpia-3col I 1 14 15 203 5 222 1 571 7 94 1 14 3.4
bab5 230.5k 1048 350.6k 0.1% 25.1k 277 465.7k 8.6% 2.0k 0.9% 25086 277 2.4
beasleyC3 1.6M 1088 31.7k 29 2.2k 11 1.5M 21.5% 557.4k 22.3% 2248 11 1.2
biella1 10.8k 101 17.0k 128 2.8k 178 22.0k 371 1.5k 723 1496 101 2.4
bienst2 72.0k 9 99.5k 14 102.6k 5 104.7k 104 115.5k 128 71998 5 6.6
binkar10 1 16.5k 6 9.5k 4 2.5k 1 36.6k 67 28.3k 35 2516 1 14.0
bley xl1 18 12 1 6 1 17 21 563 1 178 1 6 1.3
bnatt350 RP 12.5k 357 256.0k 1237 128.7k 1650 108.3k inf% 1.4k 344 1398 344 3.5
core2536-691 1.1k 47 639 49 3.6k 122 1.1k 125 54 359 54 47 1.2
cov1075 8.7k 6 1.6M 3415 342 3 748.2k 7.0% 1.6M 1601 342 3 2.0
csched010 590.4k 391 280.4k 319 2.3M 1158 4.8M 14.1% 1.0M 1307 280429 319 3.7
danoint 472.3k 239 479.8k 336 1.6M 598 abort1 754.8k 599 472286 239 14.2
dfn-gwin-UUM 31.2k 12 181.2k 65 245.7k 23 91.1k 73 12.2k 57 12202 12 4.5
eil33-2 10.6k 16 10.7k 60 8.4k 38 9.5k 175 8.1k 163 8145 16 3.6
eilB101 6.2k 18 2.8k 34 41.7k 53 28.5k 231 2.2k 445 2202 18 4.4
enlight13 1.5M 273 106.6k 6 1.5M 274 abort1 3.1M 931 106585 6 2.2
enlight14 I 7.3M 2617 234.6k 13 14.7M inf% 2.3M inf% 114.7k 193 114658 13 3.2
ex9 P 1 376 1 16 1 226 1 inf% 1 87 1 16 1.1
glass4 T 2.2M 20.8%2 6.5M 718 1.6M 45 abort1 4.3M 570 1622146 45 6.2
gmu-35-40 T 1.2M 55 19.6M 0.0% 103.2M 3482 abort1 abort3 1240043 55 16.2
iis-100-0-cov 147.6k 149 88.2k 257 149.8k 215 113.2k 7.5% 50.0k 718 49991 149 10.2
iis-bupa-cov 770.5k 1576 300.3k 1246 224.1k 612 355.3k 5.6% 126.8k 1350 126850 612 >5.9
iis-pima-cov 30.8k 142 36.2k 244 20.3k 149 32.3k 695 7.3k 889 7304 142 2.2
lectsched-4-obj 5.7k 8 393 2 547 4 12.7k 170 697 121 393 2 0.5
m100n500k4r1 P 19.8M 4.2% 12.3M 4.2% 47.8M 4.2% 3.8M 4.2% 8.0M 4.2% – – –
macrophage 248.1k 355 725 29 1.6M 1102 159.6k 15.8% 4.4k 27.0% 725 29 1.5
map18 R 1.1k 124 2.0k 78 1.5k 48 1.3k 733 375 1531 375 48 3.1
map20 1.1k 103 3.1k 113 1.4k 36 1.1k 625 332 1292 332 36 3.8



4
4

T
h

o
rsten

K
o
ch

et
a
l.

Table 8 continued

cplex xpress gurobi cbc ug[scip/spx] Best
Name Sets Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time SU

mcsched 117.8k 58 324.0k 263 26.7k 50 76.2k 389 15.5k 269 15487 50 4.0
mik-250-1-100-1 46.1k 2 77.1k 8 195.5k 5 256.5k 210 96.1k 19 46052 2 7.0
mine-166-5 6.2k 9 253 7 24.0k 18 2.0k 92 2.6k 67 253 7 1.0
mine-90-10 314.0k 124 172.2k 44 1.4M 270 120.0k 320 63.2k 154 63248 44 4.9
msc98-ip R 4.7k 1342 169.9k 0.7% 6.6k 215 1.1k inf% 29 57.0% 4737 215 3.3
mspp16 X 22 659 1 254 1 1844 abort abort3 1 254 1.0
mzzv11 828 25 141 8 1 13 621 98 2.1k 850 1 8 1.0
n3div36 2.1M 3.6% 578.5k 3268 1.3M 1342 155.4k 1167 50.1k 11.0% 155362 1167 2.9
n3seq24 539 69 1 183 3.1k 187 599 1243 11 20.0% 1 69 0.9
n4-3 12.7k 116 75.7k 359 65.5k 224 808.6k 16.1% 20.1k 441 12681 116 2.8
neos-1109824 11.1k 9 2.2k 6 3.0k 3 19.7k 72 4.4k 169 2167 3 4.7
neos-1337307 252.2k 1024 818.7k 1094 638.9k 1051 175.5k 0.0% 1.2M 0.1% 252150 1024 >3.5
neos-1396125 96.6k 31 34.1k 50 28.2k 25 126.3k 521 23.9k 1278 23883 25 3.2
neos-1601936 R 1.6k 273 2.5k 19 4.8k 213 537.4k 200.0% 2.0k 1223 1558 19 1.6
neos-476283 832 143 537 104 905 106 408 1169 486 878 408 104 1.4
neos-686190 6.3k 11 17.2k 24 10.0k 20 4.6k 43 2.5k 81 2533 11 2.6
neos-849702 P 241.0k 1685 11.9k 19 1.8M 3160 107.2k 187 25.6k 412 11877 19 21.5
neos-916792 98.9k 83 205.5k 210 69.8k 183 467.9k 7.1% 898.4k 15.7% 69764 83 2.5
neos-934278 606 151 4.5k 119 1 82 abort 58 4.0% 1 82 1.0
neos13 3.9k 33 23 14 2.1k 55 8.5k 563 510 655 23 14 1.9
neos18 7.9k 5 24.8k 10 14.3k 20 28.4k 224 6.3k 65 6293 5 5.4
net12 R 3.5k 562 909 11 4.1k 229 2.2k 1010 1.7k 44.9% 909 11 8.4
netdiversion 27 96 17 67 54 550 229 1652 15 inf% 17 67 1.1
newdano 938.0k 1321 797.7k 506 950.0k 373 741.4k 1197 3.4M 924 741404 373 >9.7
noswot T 1.6M 28 2.1M 94 382.4k 7 788.5k 182 1.5M 191 382411 7 10.3
ns1208400 8.6k 248 2.0M inf% 3.1k 47 835.8k inf% 141.3k inf% 3142 47 1.7
ns1688347 2.5k 23 2.9k 6 1.3k 20 29.2k 34.7% 23.4k 671 1271 6 4.2
ns1758913 1 118 1 45 1 44 1 inf% 1 inf% 1 44 0.8
ns1766074 IT 845.6k 18 521.9k 22 1.1M 14 191.0k 75 925.5k 2366 191024 14 7.9
ns1830653 12.0k 35 20.0k 40 53.0k 284 22.8k 237 22.5k 308 12003 35 5.9
opm2-z7-s2 6.5k 236 2.8k 374 868 42 1.2k 459 1.2k 1572 868 42 1.6
pg5 34 108.1k 43 108.4k 62 156.0k 50 57.6k 190 87.9k 377 57638 43 5.7
pigeon-10 T 5.8M 118 9.2M 399 3.4M 51 abort1 1.6M 11.1% 3405798 51 10.9
pw-myciel4 10.9k 15 75.3k 93 711.5k 126 268.6k 3351 434.3k 1242 10893 15 10.6
qiu 5.6k 3 13.6k 11 4.1k 5 12.2k 36 10.0k 70 4143 3 3.7
rail507 3.0k 39 20.2k 685 4.2k 26 abort1 1.2k 3054 1250 26 4.7
ran16x16 56.4k 10 89.8k 19 238.1k 24 59.7k 52 134.6k 54 56408 10 7.3
reblock67 572.2k 84 485.1k 95 817.8k 160 114.3k 369 115.7k 86 114337 84 4.1
rmatr100-p10 1.8k 15 791 12 1.8k 8 3.0k 39 809 397 791 8 3.5
rmatr100-p5 441 10 421 19 881 12 1.7k 63 419 1535 419 10 9.4
rmine6 944.8k 278 584.9k 220 487.9k 137 262.2k 585 474.8k 354 262168 137 3.5



M
IP

L
IB

2
0
1
0

4
5

Table 8 continued

cplex xpress gurobi cbc ug[scip/spx] Best
Name Sets Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time SU

rocII-4-11 250.8k 75 42.7k 45 29.7k 73 51.6k 1266 27.3k 3744 27259 45 4.6
rococoC10-001000 70.9k 91 69.1k 91 1.7M 309 40.5k 154 164.7k 370 40502 91 4.6
roll3000 32.0k 19 2.1k 5 69.4k 52 22.7k 233 672.0k 1440 2117 5 3.2
satellites1-25 4.2k 90 4.8k 45 2.5k 97 18.9k 1765 14.7k 240.0% 2496 45 2.3
sp98ic 213.5k 200 39.0k 215 14.2k 73 380.4k 2292 1.2M 0.4% 14212 73 4.0
sp98ir 6.3k 12 5.0k 18 9.9k 39 6.8k 16 4.4k 82 4376 12 3.2
tanglegram1 31 514 23 65 54 196 549 inf% 1 0.0% 23 65 2.4
tanglegram2 1 3 3 2 15 16 519 46 47 2153 1 2 1.0
timtab1 T 842.8k 62 403.8k 63 1.7M 106 abort1 1.5M 174 403805 62 6.0
triptim1 P 1 159 119 57 1 60 1 125 2 3011 1 57 0.7
unitcal 7 3.2k 97 45 16 3.7k 128 3.7k 664 4.5k 0.1% 45 16 1.1
vpphard 18.5k 1340 511.8k inf% 78.0k 66.7% abort1 409 inf% 18514 1340 1.9
zib54-UUE 16.2k 353 292.5k 317 40.9k 312 263.3k 1148 360.7k 811 16156 312 4.9

1 segmentation fault; 2 early termination after 90 s due to bug in cplex 12.2.0.2, will be fixed in cplex 12.3;
3 out-of-memory; 4 objective function mismatch; 5 constraint violation, absolute error: 0.0003


	Introduction
	The test sets
	The solution checker
	How to run a test, add a solver, and what the scripts do
	Variability of MIP Solver performance
	The instance catalog
	State-of-the-art MIP solving
	Final remarks 

