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POLYHEDRAL ASPECTS OF SELF-AVOIDING WALKS

AGNES DITTEL, ARMIN FÜGENSCHUH, AND ALEXANDER MARTIN

Abstract. In this paper, we study self-avoiding walks of a given length on a graph. We consider

a formulation of this problem as a binary linear program. We analyze the polyhedral structure

of the underlying polytope and describe valid inequalities. Proofs for their facial properties

for certain special cases are given. In a variation of this problem one is interested in optimal

configurations, where an energy function measures the benefit if certain path elements are placed

on adjacent vertices of the graph. The most prominent application of this problem is the protein

folding problem in biochemistry. On a set of selected instances, we demonstrate the computational

merits of our approach.

1. Introduction

A path in a graph is a sequence of adjacent vertices. A path is called simple if multiple occurrence of
vertices is prohibited. Paths in graphs give rise to various optimization questions. One of the most
prominent is the shortest-path problem, where one is interested in an optimal connection between
two given distinct vertices of the graph with respect to certain edge weights. If the edge weights are
all positive or, more general, if there is no cycle with negative total weight, then an optimal path
is automatically a simple path. Moreover, in this case, the solution of the shortest-path problem
can be obtained in polynomial time complexity.
Our work is motivated by a field of applications in physical chemistry, where linear polymer
molecules are modeled as simple paths in graphs featuring a certain regularity. These graphs
are then referred to as lattices, and a simple path in this context is called a self-avoiding walk
on the lattice. A prominent example is the protein folding problem which refers to the assembly
(“folding”) of a three-dimensional structure of a polypeptide molecule, which is a linear polymer
consisting of amino acids, in an aqueous solvent. Formulations of this problem as binary linear
programs were given in [10, 17]. Our work contributes to a deeper understanding of the respective
underlying polytopes. In particular, we are interested in the convex hull of the incidence vectors
of self-avoiding walks. To the best of our knowledge, a polyhedral analysis of families of valid in-
equalities was not done so far. Under certain conditions we are able to prove facet-defining criteria
for some substructures of interest.
The outline of the remainder of this article is the following. In Section 2 we introduce the necessary
mathematical description of the problem. In Section 3, we state a complete outer description for
P (2) by facet-defining inequalities. In the general case, one technical difficulty arising with the de-
scription of the facial structure of P (n) is the lack of dimensionality of these polytopes. We therefore
consider their down-monotonization as a full-dimensional relaxation. The down-monotonization of
P (n) yields the submonotone SAW-n polytope P (n;≤) which we study in Section 4. We describe
the structure of valid inequalities, and we provide a facet characterization for two special cases. In
Section 5, we demonstrate the application of cutting planes derived from the polyhedral structures
of P (2) and P (n;≤), respectively. Section 6 contains a conclusion and an outlook to further research
opportunities.
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2. Problem Description

Let G = (V,E) be a graph. A path in G is a sequence

ω = (ω0, . . . , ωm)

with ωi ∈ V for all i ∈ {0, . . . ,m} and {ωi−1, ωi} ∈ E for all i ∈ {1, . . . ,m}. We alternatively call
ω an m-step path (which refers to the number of its edges) or a path of length m+ 1 (which refers
to the number of its vertices). A self-avoiding walk (SAW) on G is a path in G without repetition
of vertices, i.e., ωi 6= ωj for i 6= j. At this point, we remark that the term “self-avoiding walk”
is typically associated with a lattice, which can be seen as an infinite graph featuring a certain
regular structure (usually originating from a regular tiling of the plane or space). Although the
results of this paper are valid for general graphs, we put the focus on finite subgraphs of regular
lattices, which we denote as x×y(×z) lattices. Examples of regular grid graphs include x×y square
(Qx×y) and triangular (Tx×y) lattices in two dimensions, as well as x× y × z cubic (Qx×y×z) and
tetrahedral (Tx×y×z) lattices in three dimensions. As an example, the 3 × 3 square lattice Q3×3 is
shown in Figure 1. As a convention, we number the vertices consecutively, starting with zero, as
indicated in Figure 1.

0 1 2

3 4 5

6 7 8

Figure 1. 3 × 3 square lattice

In order to emphasize the connection to lattice graphs, we use the term “self-avoiding walk”
instead of “path”. In the following, we consider SAWs in the context of their vertices and therefore

denote the set of all SAWs of length n on G (or (n− 1)-step SAWs, respectively) by Ω
(n)
G . We set

S(n) = {0, . . . , n− 1} and define the incidence vector for an SAW ω ∈ Ω
(n)
G as

x(ω) = (x(ω)sv)v∈V,s∈S(n) with x(ω)sv =

{

1, if ωs = v,
0, otherwise.

The aim of this paper is the investigation of the convex hull P (n) of the incidence vectors for all
SAWs of length n on a given graph G, i.e., we are going to study the structure of the polytope

P (n) = conv {x(ω) | ω ∈ Ω
(n)
G }

which we call the SAW-n polytope.

We start with the introduction of a terminology which enables a set-based representation for SAWs
of length n on a graph G = (V,E). For the remainder of this paper, we assume that G is connected
and consists of at least two vertices, and we assume n ≥ 2 to be fixed. Next, we introduce the
SAW-n graph associated to a graph G as the expansion

G(n) =
(

V (n), E(n)
)

where V (n) = V × S(n) and E(n) =
⋃

j∈S(n)\{0} {{(v, j − 1), (w, j)} | {v, w} ∈ E} .
In the following, we mention two properties of the SAW-n graph. The proofs for the respective
statements can be found in [16].

Property 2.1. The SAW-n graph G(n) is bipartite with the partition

V (n) = V × S
(n)
0 ∪̇ V × S

(n)
1 ,

where S
(n)
0 contains all even and S

(n)
1 all odd elements of S(n), i.e.,

S
(n)
k =

{

j ∈ S(n) | j ≡ k(mod 2)

}

for k = 0, 1.
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Property 2.2.

a) The number κ
(

G(n)
)

of connected components of G(n) is at most two.

b) G(n) is connected if and only if G is non-bipartite.

Example 2.3. Consider the 3×3 square lattice G = Q3×3. Since G is bipartite, the corresponding

SAW-n graph G(n) consists of two connected components for each n ≥ 2. Figure 2 shows the

corresponding SAW-4 graph and the decomposition into its two connected components.

(0,0)

(0,2)

(3,1)

(3,3)

(6,0)

(6,2)

(1,1)

(1,3)

(4,0)

(4,2)

(7,1)

(7,3)

(2,0)

(2,2)

(5,1)

(5,3)

(8,0)

(8,2)

(0,1)

(0,3)

(3,0)

(3,2)

(6,1)

(6,3)

(1,0)

(1,2)

(4,1)

(4,3)

(7,0)

(7,2)

(2,1)

(2,3)

(5,0)

(5,2)

(8,1)

(8,3)

Figure 2. Connected components of the SAW-4 graph corresponding to the 3×3

square lattice

The SAW-n graph enables the representation of an SAW of length n on G as a subset of its vertices.
For this, we introduce the following terminology.

Definition 2.4. Let G = (V,E) be a graph and G(n) the corresponding SAW-n graph.

a) An SAW-n conformation in G(n) is a set

ψ =
{

(v, s) ∈ V (n) | ωs = v for some ω ∈ Ω
(n)
G

}

.

b) We denote the set of all SAW-n conformations in G(n) with Ψ
(n)
G .

c) For an SAW-n conformation ψ ∈ Ψ
(n)
G in G(n), the corresponding SAW-n vector is given

by the incidence vector χψ ∈ {0, 1}|V
(n)|.

d) We denote the set of SAW-n vectors in G(n) with X
(n)
G = {χψ | ψ ∈ Ψ

(n)
G }.

Thus the SAW-n polytope P (n) is given by P (n) = conv (X
(n)
) . In the sequel, we present a straight-

forward description of P (n) by linear constraints and integrality conditions which has already been
stated in [10, 17]. Throughout this article we will refer to this as the classical 0/1 model.
For each vertex v ∈ V and for each element s ∈ S(n), we introduce a binary variable xsv with

(1) xsv =

{

1, if ωs = v,
0, otherwise.

In order to guarantee the correct representation of a SAW of length n by the x-variables, the set
of possible assignments of these variables has to be restricted by the following constraints:

• Total Deployment

Each element s ∈ S(n) must occupy exactly one vertex v ∈ V :
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(2)
∑

v∈V

xsv = 1, ∀ s ∈ S(n).

• Self-Avoidance

Each vertex v ∈ V can be occupied by at most one element s ∈ S(n):

(3)
∑

s∈S(n)

xsv ≤ 1, ∀ v ∈ V.

• Contiguity

Successive elements s, s+ 1 ∈ S(n) have to occupy adjacent vertices of G:

(4) xsv ≤
∑

w∈δG(v)

xs+1
w , ∀ v ∈ V, s ∈ S(n)\{n− 1},

where δG (v) denotes the set of all vertices adjacent to v in G.

In the sections below, we are going to study certain polytopes related to P (n). Of particular interest
in this context are the inequalities defining their facets. Having regard to this issue, we introduce
the following notation which will be used throughout this article.

Definition 2.5. Let P be a polyhedron and aTx ≤ α an inequality.

a) An element x ∈ P is called a root of aTx ≤ α if aTx = α. The set of all such roots is

denoted as eq(P ; aTx ≤ α).

b) We call (a subset of) an SAW-n conformation ψ an SAW-n root (sub-) conformation of

aTx ≤ α for the associated polytope P if its incidence vector χψ constitutes a root of

aTx ≤ α.

3. The SAW-2 Polytope

The aim of this section is the investigation of a class of polytopes for the representation of one-
step paths (which are naturally self-avoiding). For these polytopes, we provide a complete outer
description by facet-defining inequalities. We observe that the set of 1-step SAWs on a graph G
can be bijectively mapped to the set of edges of the SAW-2 graph G(2) in the sense that an edge

e = {(v, s) , (w, 1 − s)} ∈ E(2) is assigned the 1-step SAW ω ∈ Ω
(2)
G given by ωs = v, ω1−s = w.

Thus an SAW-2 conformation in G(2) is equivalent to an edge of G(2).

3.1. Dimension. We provide an upper bound for the dimension of P (n) which is given by a linear
independent set of valid equations.

Theorem 3.1. For a given graph G, an upper bound for the dimension of the corresponding SAW-n

polytope P (n) is given by

dimP (n) ≤

{

n · |V | − n− (n− 1), if G is bipartite,

n · |V | − n, if G is not bipartite.

Proof. Since P (n) ⊆ [0, 1]|V
(n)|, its dimension is at most |V (n)| = n · |V |. Each vertex of P (n)

satisfies the total deployment conditions (2). For S(n) = {0, ..., n− 1}, we denote the deployment
condition for the element s ∈ S(n) with TD(s). The set {TD(s) | s ∈ S(n)} of all deployment
equations is linearly independent. Consequently, each of these n equations reduces the upper bound
of the dimension of P (n) by one. If moreover G = (V,E) is bipartite with vertex partition V =
VI ∪̇ VII , there are n− 1 additional parity equations

(5)
∑

v∈VI

(

xs−1
v + xsv

)

= 1 ∀ s ∈ S(n)\{0}.

Then this set {PARI(s) | s ∈ S(n)\{0}} of equations, joined with the set {TD(s) | s ∈ S(n)} of
deployment equations, is linearly independent, yielding the theorem. �
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The equations causing the reduction in the dimension can be represented as the two total deploy-
ment conditions from the classical 0/1 model

∑

v∈V

x0
v = 1,(6)

∑

v∈V

x1
v = 1,(7)

and, in the case of a bipartite graph G, the parity equation

(8)
∑

v∈VI

x0
v −

∑

v∈VII

x1
v = 0.

Remark 3.2. For bipartite lattices G = (V,E) with vertex partition V = VI ∪̇ VII , the parity

equation (8) can be replaced by an equivalent parity equation by exchanging the assignments of

s ∈ {0, 1} to the partitions VI and VII . In terms of the equations introduced above, we replace (8)

by (8) - (6) + (7). The resulting equation reads

(9)
∑

v∈VII

x0
v −

∑

v∈VI

x1
v = 0.

In the following, we derive the lower bound for P (2) by stating affine independence of SAW-2
vectors. This lower bound turns out to be equal to the upper bound for P (2).

Definition 3.3. Let X ⊆ X
(2)
G be a set of SAW-2 vectors, i.e., a subset of incidence vectors of the

edges set of the SAW-2 graph G(2). Then we define

GX =
(

V (2), EX

)

with EX =
{

e ∈ E(2)
∣

∣ ∃x ∈ X : x = χe
}

.

Lemma 3.4. Let X ⊆ X
(2)
G be a set of SAW-2 vectors. X is linearly independent if and only if

GX does not contain a cycle.

Proof. It suffices to show that X is linearly dependent if and only if GX contains a cycle of
even length, since GX is included in G(2) which is bipartite, and each cycle in a bipartite graph
has even length.
”⇐”: We show that X is linearly dependent if GX contains a cycle of even length.
Let X = (x1, ..., xn) and EX = {e1, ..., en} be the set of edges of GX . Let w.l.o.g. C = (e1, ..., el),
l ≤ n, l even, be a cycle of even length in GX with corresponding SAW-2 vectors xj = χej for
j ∈ {1, ..., l}. W.l.o.g. we assume that the sequence (e1, ..., el) is chosen in such a manner that the
successor edge of ej in the cycle is given by ej+1, and that of el by e1.
For each pair (xj , xj+1), j ∈ {1, ..., l − 1} of successive columns, including (xl, x1) in the matrix
XC having x1, ..., xl as its columns, there is a row index i such that xij = xij+1 = 1. Set λj = (−1)j,

j ∈ {1, ..., l} and consider the sum λ1x1 + ... + λlxl. Due to the sequence of (x1, ..., xl), the ones
in each pair of successive columns are eliminated in this sum. Since l is even, also the remaining
ones in the columns xl and x1 are eliminated. Consequently, λ1x1 + ... + λlxl = 0, which means
that the vectors (x1, ..., xl) are linearly dependent.
”⇒”: We show that GX contains a cycle of even length if X is linearly dependent.
Let X = {x1, ..., xn} be linearly dependent and λ1x1 + ... + λnxn = 0 and (λ1, ..., λn) 6= 0. We
assume that GX does not contain a cycle of even length, that means, as GX is bipartite, it does
not contain any cycle at all. Consequently, GX consists of a set of trees. Let ej = {i1, i2} be
an edge incident to a leaf of GX which we w.l.o.g. assume to be i1. Consider the corresponding
vector xj = χej with xi1j = xi2j = 1. Therefore, in the matrix (x1, ..., xl) in the row i1 there is
only one 1. To obtain λ1x1 + ...+ λnxn = 0, λi1 has to be zero. Now we remove the edge ej from
GX . The remaining graph is also a set of trees, so we can gradually apply the procedure to all
λ ∈ {λ1, ..., λn}, yielding λi = 0 for all i, a contradiction to our assumption. Consequently, GX
must contain a cycle of even length. �
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Corollary 3.5. Let X ⊆ X
(2)
G be a set of vertices of P (2). Then the affine rank of X equals the

number of edges in a spanning tree of GX .

Now we can supply a lower bound for the dimension of P (2):

Theorem 3.6. A lower bound for dimension of the SAW-2 polytope of a given graph G is given

by

dimP (2) ≥ |V (2)| − κ
(

G(2)
)

− 1.

Proof. Consider the set X = X
(2)
G . Then we have GX = G

X
(2)
G

= G(2). The number of edges in

each spanning tree of G(2) is |V (2)| − κ
(

G(2)
)

, which, according to Corollary 3.5, equals the affine

rank of X
(2)
G . Since X

(2)
G ⊆ P (2), the dimension of P (2) is at least |V (2)| − κ

(

G(2)
)

− 1. �

Thus we obtain the dimension of P (2):

Theorem 3.7.

dimP (2) = |V (2)| − κ
(

G(2)
)

− 1.

Proof. As a consequence of Property 2.2 and Theorem 3.1, we obtain dimP (2) ≤ |V (2)| −
κ

(

G(2)
)

− 1. Concurrently, Theorem 3.6 states dimP (2) ≥ |V (2)| − κ
(

G(2)
)

− 1, which yields the

dimension of P (2). �

3.2. Valid and Facet-Defining Inequalities. Now we are ready to introduce a class of valid
inequalities for P (2) arising by a generalization of the contiguity constraints (4) of the classical
0/1 model. We investigate their structure and characterize the facets-defining inequalities among
these.

Definition 3.8. Let G be a graph, G(2) the corresponding SAW-2 graph, and s ∈ {0, 1}. An

inequality of the form

(10)
∑

(v,s)∈L

xsv ≤
∑

(w,1−s)∈δ
G(2) (L)

x1−s
w

is called an SAW-2 inequality with left-hand side L ⊆ V (2), if L ⊆ V ×{s}. For such an inequality,

we set

VL = {v ∈ V | (v, s) ∈ L}.

In other words, an SAW-2 inequality with left-hand side L enforces that once an element s occupies
some vertex v ∈ VL in G, its neighbor (1 − s) occupies a vertex in the neighborhood of VL. This
fact gives rise for the validity of an SAW-2 inequality for P (2). Note that the SAW-2 inequalities
with |L| = 1 exactly correspond to the contiguity constraints (4) of the classical 0/1 model. Hence,
the entirety of SAW-2 inequalities can be seen as a generalization of the contiguity constraints.
Obviously, an SAW-2 inequality is defined by its left-hand side L. Next we turn to the problem
of identifying facet-defining inequalities for P (2) among the SAW-2 inequalities. To this end, we
relate the roots of an SAW-2 inequality to a subgraph of the SAW-2 graph.

Definition 3.9. Let

(11)
∑

(v,s)∈V (2)

asvx
s
v ≤ α

be a generic inequality with coefficients corresponding to the vertices of the SAW-2 graph G(2).

Then we define the SAW-2 root graph G= of (11) as Geq(P (2);(11)).

If (11) is an SAW-2 inequality defined by L ⊆ V (2), we relate the terms “root” and “SAW-2 root

graph” directly to L. In this case, we denote the set of roots by XL and the SAW-2 root graph by

G=
L .
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We will use the SAW-2 root graph for some statements on the dimension of an SAW-2 inequality
with left-hand side L. Here we state the dimension of an SAW-2 inequality as the affine rank of
the set of its roots. For ease of exposition, we denote this affine rank with dimL.

Theorem 3.10. Let G(2) be an SAW-2 graph, and let L ⊆ V (2) be the left-hand side of an SAW-2

inequality. Then

dimL =
∣

∣

∣
V (2)

∣

∣

∣
− κ (G=

L) .

Proof. According to Corollary 3.5, the dimension of L equals the number of edges in a spanning
tree of G=

L . Using the general formula |T | = |V |−κ (G) for a spanning tree T of a graph G = (V,E)
we obtain the theorem. �

Corollary 3.11. An SAW-2 inequality whose root graph consists of exactly κ
(

G(2)
)

+1 connected

components defines a facet of P (2).

Proof. Let L be the left-hand side of an SAW-2 inequality whose root graph consists
of κ (G=) components. According to Theorem 3.10, we have dimL = |V (2)| − κ (G=). Since
κ (G=) = κ

(

G(2)
)

+ 1, the SAW-2 inequality defined by L is facet-defining for P (2). �

Example 3.12. Consider the 3 × 3 square lattice G = Q3×3 as shown in Figure 1. The SAW-2

inequality x0
1 ≤ x1

2 + x1
3 defines a facet of P (2), since its root graph consists of 3 = κ

(

G(2)
)

+ 1

connected components (see Figure 3). However, the SAW-2 inequality x0
5 ≤ x1

2 + x1
4 + x1

6 + x1
8 does

not define a facet of P (2), since its root graph consists of 6 > κ
(

G(2)
)

+ 1 components (see Figure

4).

(0,0) (1,1) (2,0)

(3,1) (4,0) (5,1)

(6,0) (7,1) (8,0)

(0,1) (1,0) (2,1)

(3,0) (4,1) (5,0)

(6,1) (7,0) (8,1)

Figure 3. Root graph for a facet-defining SAW-2 inequality. The vertices (v, s) ∈

L (left-hand side of the inequality) are colored in dark gray, the vertices (w, 1−s) ∈

δG(2) (L) (right-hand side) in light gray.

(0,0) (1,1) (2,0)

(3,1) (4,0) (5,1)

(6,0) (7,1) (8,0)

(0,1) (1,0) (2,1)

(3,0) (4,1) (5,0)

(6,1) (7,0) (8,1)

Figure 4. Root graph for a non-facet-defining SAW-2 inequality

3.3. Complete Description. At this stage, the classification of facet-defining SAW-2 inequalities
is complete. In the following, we show that the facet-defining SAW-2 inequalities, together with
the nonnegativity constraints, the deployment equations (6) and (7), and, if applicable, the parity
equation (8), provide a complete outer description of P (2).
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Theorem 3.13. Let G be a graph. Then the SAW-2 polytope P (2) for G, i.e., the convex hull of

all SAW-2 conformations in G(2), is completely described by the two equations (6) and (7) and, if

G is bipartite, equation (8), the nonnegativity constraints, and the set of SAW-2 inequalities whose

root graph consists of κ
(

G(2)
)

+ 1 connected components.

The proof of this theorem requires the results of several lemmata. These are stated below and
finally lead to the actual proof on page 10. We start with a statement on the representation of
facet-defining inequalities for P (2).

Lemma 3.14. Any facet-defining inequality for P (2) can be written in the form

(12)
∑

(v,s)∈VL

bsvx
s
v ≤

∑

(w,t)∈VR

btwx
t
w

with VL, VR ⊆ V (2), VL ∩ VL = ∅, as well as bsv > 0 for (v, s) ∈ VL and btw > 0 for (w, t) ∈ VR.

Proof. Let

(13)
∑

(v,s)∈V (2)

asvx
s
v ≤ α

with asv ∈ Z for all (v, s) ∈ V (2) and α ∈ Z be an inequality inducing a facet of P (2).
In order to obtain an inequality with right-hand side α = 0, we choose α0, α1 ∈ Z with α0+α1 = α,
and subtract [α0 · (6) + α1 · (7)] from (13). The result is an inequality

(14)
∑

(v,s)∈V (2)

βsvx
s
v ≤ 0

with βsv = asv−αs. This transformed inequality is equivalent to the original one with respect to the
vertices of P (2) whose incidence vectors are roots of it. From the form (14), it is straightforward
to achieve (12). �

Next, we deal with the number of connected components of the SAW-2 root graph of a facet-defining
inequality for P (2).

Lemma 3.15. Consider an inequality (12) defining a facet of P (2), and let X = eq(P (2); (12))

denote the set of its roots. Then the number of connected components of the SAW-2 root graph GX
is given by

κ (GX) = κ
(

G(2)
)

+ 1.

Proof. GX is a subgraph of the SAW-2 graph G(2). According to Corollary 3.5 the affine rank
of X is

∣

∣V (2)
∣

∣ − κ (GX). On the other hand, X is a set of roots of a facet-defining inequality, and
hence its affine rank is

dimP (2) − 1 =
∣

∣

∣
V (2)

∣

∣

∣
− κ

(

G(2)
)

− 2

according to Theorem 3.7. Consequently, κ (GX) = κ
(

G(2)
)

+ 1. �

In a further step, we investigate the coefficients b within the connected components of GX .

Lemma 3.16. Let GX be the SAW-2 root graph of a facet-defining inequality (12). Let further

(v, s), (w, t) ∈ V (2) belong to the same connected component (K,E(K)) of GX . Then

|bsv| = |btw| =: bK .

Proof. We distinguish two cases.

(i) {(v, s), (w, t)} ∈ E
(2)
X :

Then t = 1 − s, and there exists an SAW-2 vector x ∈ X with xsv = x1−s
w = 1. For x

plugged in (12), we obtain the following requirements for the coefficients b: If (v, s) ∈ VN ,
x can be a root of (12) if (w, 1 − s) ∈ VN , i.e., both sides of the equation are zero, and
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bsv = b1−sw = 0. If bsv 6= 0, i.e., (v, s) ∈ VL or (v, s) ∈ VR, we get b1−sw = −bsv. Consequently,
we have |bsv| = |b1−sw |.

(ii) {(v, s), (w, t)} /∈ E
(2)
X :

Since (v, s) and (w, t) belong to the same connected component (K,E(K)), there exists
a path ((v, s) =: (v0, s0), (v1, s1), ..., (vn−1, sn−1), (vn, sn) := (w, t)) with (vj , sj) ∈ K for
j = 0, ..., n, and {(vj−1, sj−1), (vj , sj)} ∈ E(K) for j = 1, ..., n. For j ∈ {1, ..., n} we
consider {(vj−1, sj−1), (vj , sj)} and apply (i). This yields b

sj
vj = −b

sj−1
vj−1 , or |b

sj
vj | = |b

sj−1
vj−1 |.

Successively applying this argument for all j ∈ {1, ..., n}, we obtain |bsv| = |b1−sw |.

�

In the following, we show that (12) can be transformed so that it has nonzero coefficients on only
one connected component of GX . For this, we remark that according to Lemma 3.15 and Corollary
2.2, the number of connected components of GX is two if G is non-bipartite, and it is three if G is
bipartite.

Lemma 3.17. Let GX be the SAW-2 root graph of a facet-defining inequality (12). Let KX;0,

KX;1, and, if applicable, KX;2 denote the vertex sets of its connected components. Then (12) has

a representation such that its support is contained in only one component (w.l.o.g. KX;1), i.e.,

(15) b̂KX;1

∑

(v,s)∈VL ∩KX;1

xsv ≤ −b̂KX;1

∑

(w,t)∈VR ∩KX;1

xtw,

Proof. We first remark that we can w.l.o.g. claim that

VL ⊆ V × {0} and(16a)

VR ⊆ V × {1}.(16b)

This can be justified by the following argument: Assume VL = VL;0 ∪̇ VL;1 and VR = VR;0 ∪̇ VR;1

where VL;i, VR;i ⊆ V × {i} for i = 0, 1. Then (12) can be written as

(17)
∑

(v,s)∈VL;0

bsvx
s
v +

∑

(v,s)∈VL;1

bsvx
s
v ≤

∑

(w,t)∈VR;0

btwx
t
w +

∑

(w,t)∈VR;1

btwx
t
w.

Since per definition VL ∩ VR = ∅, (17) is the sum of two valid inequalities with disjoint coefficient
sets

∑

(v,s)∈VL;0

bsvx
s
v ≤

∑

(w,t)∈VR;1

btwx
t
w and(18a)

∑

(v,s)∈VL;1

bsvx
s
v ≤

∑

(w,t)∈VR;0

btwx
t
w.(18b)

Now we have to distinguish between bipartite and non-bipartite graphs G.

(i) We consider the case that G is bipartite, i.e., κ
(

G(2)
)

= 2 (see Theorem 2.2). We denote
these components with K0 and K1. Then GX consists of three connected components
KX;0,KX;1,KX;2. W.l.o.g., K0 ⊆ KX;0 (otherwise, GX would consist of more than three

components). Since KX;0 as a subgraph of G(2) is bipartite, we can add linear combinations
of the equations (8) and (9) to (12) without reducing the dimension of (12). Furthermore,
using the notation of (8) and (9), we have (w.l.o.g.) VL ⊆ VI×{0, 1} and VR ⊆ VII×{0, 1}.
Adding

(

bKX;0 · ((8) − (9))
)

to (12) yields an inequality

(19)
∑

(v,s)∈VL

b̃svx
s
v ≤

∑

(w,t)∈VR

b̃twx
t
w,

where b̃KX;0 = 0.

Now we consider the remaining two components KX;1 and KX;2 of GX .
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Then (19) reads

(20)
∑

i∈{1,2}

∑

(v,s)∈VL ∩KX;i

b̃svx
s
v ≤

∑

i∈{1,2}

∑

(w,t)∈VR ∩KX;i

−b̃twx
t
w

or equivalently,

(21)
∑

i∈{1,2}

b̃KX;i

∑

(v,s)∈VL ∩KX;i

xsv ≤
∑

i∈{1,2}

−b̃KX;i

∑

(w,t)∈VR ∩KX;i

xtw

Now we consider the equations (8) and (9). We remark that the coefficients of each
of these equations are completely zero on one connected component of G(2). With the
notation used in (8) and (9), this can w.l.o.g. be expressed as

VII × {0} ∪ VI × {1} ⊆ K0,(22a)

VI × {0} ∪ VII × {1} ⊆ K1.(22b)

Since (VII × {0} ∪ VI × {1}) ∪ (VI × {0} ∪ VII × {1}) = V (2), the ”⊆” in (22a) and (22b)
can be replaced by ”=”.

With KX;1 ∪KX;2 ⊆ K1 = VI × {0} ∪ VII × {1}, subtraction of b̃KX;2 · (8) from (21)
yields an inequality of the form (15) which reads

(23) b̂KX;1

∑

(v,s)∈VL ∩KX;1

xsv ≤ −b̂KX;1

∑

(w,t)∈VR ∩KX;1

xtw

with coefficients b̂KX;1 = b̃KX;1 − b̃KX;2 . The coefficients on KX;2 are zero, and the coef-
ficients on KX;0 remain zero, since KX;0 is not affected by (8). In other words, (15) has
nonzero coefficients only in KX;1.

(ii) In the case thatG is non-bipartite, the root graphGX consists of two connected components
KX;0 and KX;1. For the transformation of (12) we have the two equations (6) and (7)
at our disposal. Using the assumption VL ⊆ V × {0} and VR ⊆ V × {1} we subtract
(

bKX;0 · ((6) − (7))
)

from (12). This yields an inequality of the form (15) whose coefficients

are zero on KX;0 and ±b̂KX;1 on KX;1, where b̂KX;1 = bKX;1 − bKX;0 .

�

Now we have all prerequisites to prove Theorem 3.13.

Proof of Theorem 3.13. Given a facet-defining inequality for P (2), Lemmata 3.14, 3.15, 3.16,
and 3.17 provide a transformation into an equivalent inequality (15) with nonzero coefficients on
exactly one connected component of its root graph (w.l.o.g. KX;1).

We scale (15) by b̂KX;1 and obtain an inequality

(24)
∑

(v,s)∈VL ∩KX;1

xsv ≤
∑

(w,t)∈VR ∩KX;1

xtw.

It remains to show that (24) has the form of an SAW-2 inequality. In particular, we have to show
that

∀ (v, s) ∈ VL ∩ KX;1 : δG(2) ((v, s)) ⊆ VR ∩ KX;1.

Consider (v, s) ∈ VL ∩ KX;1. Assume there exists (w, t) ∈ δG(2) ((v, s)) with (w, t) /∈ VR ∩ KX;1.

Then the SAW-2 conformation defined by the edge e = {(v, s), (w, t)} ∈ E(2) violates (24). However,
this is a contradiction to the assumption that (24) defines a facet of P (2) which in particular has
to be valid for all vertices of P (2). �
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4. Submonotone SAW-n Polytopes

In this section, we explore the down-monotonization of the SAW-n polytopes P (n) yielding the
submonotone SAW-n polytopes P (n;≤). For these, we derive a class of valid inequalities, and for a
subclass we prove facet property.

Definition 4.1. Let G = (V,E) be a graph and P (n) the corresponding SAW-n polytope. The

down-monotonization of P (n) is given by

P (n;≤) =
{

y ∈ R
|V (n)| | ∃x ∈ P (n) : 0 ≤ y ≤ x

}

.

We remark that P (n;≤) is a polytope again. In the following, we refer to it as the submonotone

SAW-n polytope.

4.1. Vertices. We provide a description of P (n;≤) as the convex hull of its vertices. To this end,
we consider the set of all SAW-n sub-conformations which contains all SAW-n conformations and
all subsets of V (n) that can be extended to SAW-n conformations.

Definition 4.2. Let G = (V,E) be a graph and G(n) the corresponding SAW-n graph.

a) An SAW-n sub-conformation in G(n) is a set

ζ ⊆ V (n) with ∃ψ ∈ Ψ
(n)
G : ζ ⊆ ψ.

b) We denote the set of all SAW-n sub-conformations in G(n) with Ψ
(n,≤)
G .

c) For an SAW-n sub-conformation ζ ∈ Ψ
(n,≤)
G in G(n), the corresponding SAW-n subvector

is given by the incidence vector χζ ∈ {0, 1}|V
(n)|.

d) We denote the set of SAW-n subvectors in G(n) with X
(n,≤)
G = {χζ | ζ ∈ Ψ

(n,≤)
G }.

It can be shown that the submonotone SAW-n polytope is the convex hull of all SAW-n subvectors
in G(n), i.e.,

P (n;≤) = conv (X
(n,≤)
G ).

The proof for this statement can be found in [16]. According to the results of Balas and Fischetti
[5], the submonotone SAW-n polytope is full-dimensional, i.e., its dimension is

dim(P (n;≤)) = |V (n)|.

4.2. Valid and Facet-Defining Inequalities. We first remark that according to the results in
[5], the nonnegativity constraints

(25) xsv ≥ 0 ∀ (v, s) ∈ V (n)

are valid and facet-defining for P (n;≤). A further consequence from [5] is the nonnegativity of the
coefficients of any facet-defining inequality for P (n;≤).
In order to describe valid inequalities for P (n;≤), we introduce the following notation.

Definition 4.3. Let G be a graph, G(n) the corresponding SAW-n graph, α ∈ {1, ..., n− 1}, and

(V0, · · · , Vα) a partition of V (n). An inequality of the form

(26)

α
∑

a=1

a ·
∑

(v,s)∈Va

xsv ≤ α

which is valid for P (n;≤) is called a submonotone SAW-n inequality with right-hand side α. In this

case, we call (V0, · · · , Vα) a valid partition of V (n).

In the following, we investigate criteria required for a submonotone SAW-n inequality (26) to
define a facet of P (n;≤). First, we recall that, according to Theorem 2.2, the SAW-n graph G(n) is
connected for non-bipartite graphs G, and it consists of two connected components if G is bipartite.
For the upcoming considerations, we introduce a terminology which enables a uniform approach to
the problem of stating criteria concerning the facet property of an inequality (26) both for bipartite
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and non-bipartite graphs G. For the former case, we have the following statement for which a proof
can be found in [16].

Remark 4.4. Let G = (V,E) be a bipartite graph and G(k) the corresponding SAW-n graph.

Denote the vertex sets inducing the two connected components of G(n) by V
(n)
I and V

(n)
II . Then

each SAW-n conformation in G(n) is entirely included in one of the connected components G
(n)
I or

G
(n)
II , i.e.,

∀ψ ∈ Ψ
(n)
G : ψ ∩ V

(n)
I 6= ∅ ⇔ ψ ∩ V

(n)
II = ∅.

Obviously, the above statement holds analogously when for substituting the term “SAW-n confor-
mation” by “SAW-n sub-conformation”. This fact leads to the following definition of restrictions
of the set of SAW-n conformations and the set of SAW-n sub-conformations, respectively, to the
connected components of G(n).

Definition 4.5. Let G be a bipartite graph and R ∈ {I, II}. Then we call the set

Ψ
(n)

G
(n)
R

=
{

ψ ∈ Ψ
(n)
G

∣

∣ ψ ∩ V
(n)
R 6= ∅

}

the restriction of Ψ
(n)
G to G

(n)
R . Analogously, we define the restriction of Ψ

(n,≤)
G to G

(n)
R as

Ψ
(n,≤)

G
(n)
R

=
{

ζ ∈ Ψ
(n,≤)
G

∣

∣ ζ ∩ V
(n)
R 6= ∅

}

.

The restrictions of the set of SAW-n (sub-) conformations define two polytopes.

Definition 4.6. Let G be a bipartite graph, G(n) the corresponding SAW-n graph consisting of the

connected components G
(n)
I and G

(n)
I , and R ∈ {I, II}. We define

a) the reduced SAW-n polytope with respect to G
(n)
R as

P
(n)
R = conv

{

χψ
∣

∣ ψ ∈ Ψ
(n)

G
(n)
R

}

,

and

b) the reduced submonotone SAW-n polytope with respect to G
(n)
R as

P
(n;≤)
R = conv

{

χζ
∣

∣ ζ ∈ Ψ
(n,≤)

G
(n)
R

}

.

Next, we introduce a decomposition of a submonotone SAW-n inequality with respect to the
connected components of G(n). First, we consider bipartite graphs G (for which G(n) consists of
two connected components).

Definition 4.7. Let G be a bipartite graph and G(n) the corresponding SAW-n graph. Let further

(26) be a submonotone SAW-n inequality with α ∈ {1, . . . , n−1} and a corresponding valid partition

(V0, . . . , Vα) of V (n). For R ∈ {I, II} we call the inequality

(27)

α
∑

a=1

a ·
∑

(v,s)∈Va∩V
(n)

R

xsv ≤ α

the restriction of the submonotone SAW-n inequality (26) to G
(n)
R .

For a non-bipartite graph G with corresponding SAW-n graph G(n), we set G
(n)
R = G(n) and

accordingly V
(n)
R = V (n).

In the following, we show that the decision whether a submonotone SAW-n inequality (26) is facet-
defining for P (n;≤) can be reduced to the separate examination of its restrictions. First of all, we
observe that each restriction of a submonotone SAW-n inequality is valid for P (n;≤).
The following theorem relates the property of being facet-defining from a submonotone SAW-n
inequality to its restrictions.
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Theorem 4.8. Let G be a graph and G(n) the corresponding SAW-n graph. A submonotone SAW-

n inequality (26) with α ∈ {1, . . . , n−1} and a valid partition (V0, . . . , Vα) of V (n) is facet-defining

for P (n;≤) if and only if each of its restrictions (27) is facet-defining for the associated reduced

submonotone SAW-n polytope P
(n;≤)
R .

Proof. For R ∈ {I, II} and x ∈ {0, 1}|V
(n)|, we set

fR(x) =

α
∑

a=1

a ·
∑

(v,s)∈Va∩V
(n)

R

xsv.

Then (26) can be written as

(28) fI(x) + fII(x) ≤ α,

and its restrictions (27) as

(29) fR(x) ≤ α, R ∈ {I, II}.

Furthermore, we denote by Φ the set of SAW-n root sub-conformations of (28) and by FΦ =

eq(P (n;≤); (28)) ∩ X
(n,≤)
G the set of corresponding SAW-n subvectors. Analogously, we denote by

ΦR the set of SAW-n root sub-conformations of (29) and by FΦR
= eq(P

(n;≤)
R ; (29)) ∩X

(n,≤)
GR

the
set of corresponding SAW-n subvectors.

”⇐”: Assume that w.l.o.g. restriction (29) for R = I is not facet-defining for P
(n;≤)
I . Then FΦI

is contained in a facet of P
(n;≤)
I which is defined by the equation gI(x) = α where gI is linearly

independent from fI . (Note that we can assume that the right-hand side of the equation is α after

appropriate scaling of its coefficients.) For ζ ∈ ΦI , according to Remark 4.4, ζ ∩ V
(n)
II = ∅ which

implies that fII(χ
ζ) = 0 and hence the incidence vector x of ζ in {0, 1}|V

(n)| is a root of (28), i.e.,

fI(x) + fII(x) = α.

Thus fI can be substituted by gI in (28), and the equality

gI(x) + fII(x) = α

holds. This, however, means that the set FΦ is contained in a face of P (n;≤) induced by the
inequality

gI(x) + fII(x) ≤ α,

and consequently, (28) cannot be facet-defining for P (n;≤).

”⇒”: Let (29) be facet-defining inequalities for P
(n;≤)
I and P

(n;≤)
II , respectively. Let Φ and FΦ as

introduced above describe the set of roots of (28). Now consider a generic hyperplane

(30) F =
{

x ∈ R
|V (n)|

∣

∣

∑

(v,s)∈V (n)

bsvx
s
v = β

}

containing FΦ. Since for each ζ ∈ Φ there exists R ∈ {I, II} with ζ ∈ ΦR, we have dim(Φ) =
dim(ΦI) + dim(ΦII) = n which means that (28) is facet-defining for P (n;≤).

Since FΦR
is contained in the facet of P

(n;≤)
R induced by the inequality fR(x) ≤ α, for (v, s) ∈ V

(n)
R

the coefficients bsv in (30) are determined by the coefficients of this facet-defining inequality. �

In the following, we prove certain facet criteria for restrictions (27) of submonotone SAW-n in-
equalities for the special cases α = 1 and α = 2. We start with α = 1.

For the characterization of the facet property of those inequalities of the form (27) with α = 1,
we introduce a generalization of stable sets. Whereas a stable set in G is a set of vertices with the
property that each edge of G is incident to at most one of its elements, we generalize this term for
SAW-n conformations in G(n) in the following way:
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Definition 4.9. Let G be a graph and V
(n)
R the vertex set inducing the connected component

G
(n)
R of its SAW-n graph. A set Z ⊆ V

(n)
R is called an SAW-n stable set in G

(n)
R if each SAW-n

conformation in G
(n)
R contains at most one of its elements, i.e.,

∀ψ ∈ Ψ
(n)

G
(n)
R

: |Z ∩ ψ| ≤ 1.

We denote the set of all SAW-n stable sets in G
(n)
R by S

G
(n)
R

.

The term of SAW-n stable sets can be used for a characterization of the facet property of an
inequality (27) in the case α = 1.

Theorem 4.10. Let G be a graph and V
(n)
R the vertex set inducing the connected component G

(n)
R

of its SAW-n graph. Let further Z ∈ S
G

(n)
R

be an SAW-n stable set in G
(n)
R . Then the inequality

(31)
∑

(v,s)∈Z

xsv ≤ 1

is facet-defining for P
(n;≤)
R if and only if the set Z is maximal with respect to vertex inclusion.

Applied to (27) with α = 1, the theorem states that (27) is facet-defining for P
(n;≤)
R if and only if

V1 ∩ V
(n)
R (which is the only set occurring in the sum) is an SAW-n stable set in G

(n)
R .

Proof. Let (v, s) ∈ Z, and set

Ψ[(v, s)] =
{

ζ ∈ Ψ
(n,≤)

G
(n)
R

∣

∣ (v, s) ∈ ζ
}

.

To ensure the validity of (31), any ζ ∈ Ψ[(v, s)] must not contain any further element (w, t) ∈ Z.
This is true since

∀ ζ ∈ Ψ[(v, s)] ∀ (w, t) ∈ ζ\{(v, s)} : (w, t) /∈ Z

⇔ ζ ∩ Z = {(v, s)}

⇔ |ζ ∩ Z| = 1 ≤ 1.

Next, we show the facet property of (31) for P
(n;≤)
R . Let thus Z ∈ S

G
(n)
R

be a maximal SAW-n

stable set in G
(n)
R defining the submonotone SAW-n inequality (31) and FZ = eq(P

(n;≤)
R ; (31)). We

consider a generic hyperplane

(32) Fb,β =
{

x ∈ R
|V

(n)
R

|
∣

∣

∑

(v,s)∈V
(n)

R

bsvx
s
v = β

}

with FZ ⊆ Fb,β . The coefficients bsv are nonnegative for (v, s) ∈ V
(n)
R . For (v, s) ∈ Z, consider the

SAW-n sub-conformation {(v, s)} ⊆ Z. The corresponding SAW-n subvector χ{(v,s)} is an element
of FZ , and consequently χ{(v,s)} ∈ Fb,β . It follows that bsv = β. For each (w, t) /∈ Z there is an SAW-

n conformation ψ ∈ Ψ
(n)

G
(n)
R

such that ψ ∩ Z 6= ∅ and (w, t) ∈ ψ (otherwise, (w, t) could be added

to Z which is a contradiction to the maximality of Z). Now consider an SAW-n sub-conformation

ζ in G
(n)
R containing both (v, s) ∈ Z and (w, t) ∈ V

(n)
R \Z and the corresponding SAW-n subvector

χ{(v,s),(w,t)} which is an element of FZ . Application of (32) on the difference χ{(v,s),(w,t)}−χ{(v,s)}

yields

0 =
〈

b, χ{(v,s),(w,t)}
〉

−
〈

b, χ{(v,s)}
〉

=
〈

b, χ{(v,s),(w,t)} − χ{(v,s)}
〉

=
〈

b, χ{(w,t)}
〉

= btw.
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Consequently, btw = 0 which means that the (generic) facet-defining inequality

(33)
∑

(v,s)∈Z

bsvx
s
v ≤ β

is a positive multiple of (31), which is therefore facet-defining for P
(n;≤)
R .

It remains to show that (31) is not facet-defining for non-maximal Z ∈ S
G

(n)
R

. Let thus Z̃ ∈ S
G

(n)
R

be a non-maximal SAW-n stable set in G
(n)
R and

(34)
∑

(v,s)∈Z̃

xsv ≤ 1

the corresponding submonotone SAW-n inequality. Now consider a maximal SAW-n stable set
Z ∈ S

G
(n)
R

with Z̃ ⊂ Z and the corresponding submonotone SAW-n inequality

(35)
∑

(v,s)∈Z

xsv ≤ 1.

As shown above, (35) is facet-defining for P
(n;≤)
R . However, addition of the nonnegativity constraints

−xsv ≤ 0 for (v, s) ∈ Z\Z̃

to (35) yields (34), which consequently cannot be facet-defining for P
(n;≤)
R . �

Example 4.11. Consider the submonotone SAW-3 inequality

x1
0 + x1

1 + x1
3 + x0

5 + x2
5 + x1

6 + x0
8 + x2

8 ≤ 1

on the 3 × 3 square lattice G = Q3×3. Its restrictions to the connected components G
(3)
I and G

(3)
II ,

respectively, read

x1
1 + x1

3 + x0
8 + x2

8 ≤ 1,

x1
0 + x0

5 + x2
5 + x1

6 ≤ 1.

Figure 5 shows the SAW-3 graph with the vertices constituting the support of the inequality colored

in light gray. For both restrictions, the supporting vertices in V
(3)
R constitute a maximum SAW-3

stable set in the respective graph G
(3)
R . Consequently, both restrictions are facet-defining for the

respective polytopes P
(3;≤)
R , and according to Theorem 4.8, the entire inequality is facet-defining for

P (3;≤).

Let us now discuss the case α = 2. We consider submonotone SAW-n inequalities of the form

(36)
∑

(v,s)∈V1

xsv + 2 ·
∑

(v,s)∈V2

xsv ≤ 2

with appropriate subsets V1, V2 ⊆ V (n). For the investigation of the facet property of a submonotone
SAW-n inequality (36), we consider a restriction of (36) and set

W1 = V1 ∩ V
(n)
R , W2 = V2 ∩ V

(n)
R .

Hence we consider the inequality

(37)
∑

(v,s)∈W1

xsv + 2 ·
∑

(v,s)∈W2

xsv ≤ 2.

In the following, we state some facet criteria for (37). First, we observe that the distribution of
coefficients occurring in (37) can appear in two cases. In the case W1 = ∅, i.e., all coefficients have
value 2, we consider inequalities of the form

(38) 2 ·
∑

(v,s)∈W2

xsv ≤ 2.
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(3,1)

(1,1)

(8,0)

(8,2)

(0,0)

(0,2)

(6,0)

(6,2)

(4,0)

(4,2)

(7,1)

(2,0)

(2,2)

(5,1)

(0,1)

(6,1)

(5,0)

(5,2)

(3,0)

(3,2)

(1,0)

(1,2)

(4,1)

(7,0)

(7,2)

(2,1)

(8,1)

≤ 1

Figure 5. Example of a facet-defining submonotone SAW-3 inequality for P (3;≤)

which, after re-scaling, are equivalent to inequalities with right-hand side α = 1. As a consequence

of Theorem 4.10 we derive that (38) is facet-defining for P
(n;≤)
R if and only if W2 is a maximal

SAW-n stable set in G
(n)
R .

Next, we turn to the more complicated case W1 6= ∅ where we consider inequalities of the form

(39)
∑

(v,s)∈W1

xsv + 2 ·
∑

(v,s)∈W2

xsv ≤ 2.

We define the graph

H
(n)
W1

:= (W1, E1)

with E1 =

{

{(v, s), (w, t)} ⊆W1

∣

∣ ∃ψ ∈ Ψ
(n)

G
(n)
R

: {(v, s), (w, t)} ⊆ ψ

}

.

A first necessary condition for W1 and W2 to define a facet-defining inequality for P
(n;≤)
R is a

maximality condition which we specify below.

Definition 4.12. Let W1,W2 ⊆ V
(n)
R such that (39) is valid for P

(n;≤)
R . We denote (W1,W2) as

maximal in G
(n)
R if any of the following operations on (W1,W2) makes (39) invalid for P

(n;≤)
R .

(i) Addition of an element (v, s) ∈ V
(n)
R \(W1 ∪W2) to W1, or

(ii) addition of an element (v, s) ∈ V
(n)
R \(W1 ∪W2) to W2, or

(iii) transfer of an element (v, s) ∈ W1 to W2.

Now we can formulate a necessary requirement to the coefficients of an inequality (39) in order to

be facet-defining for P
(n;≤)
R .

Lemma 4.13. Let (39) be a valid inequality for P
(n;≤)
R . If (39) defines a facet of P

(n;≤)
R , (W1,W2)

is maximal in G
(n)
R .

The proof is basically straightforward and is omitted here. For details, we refer to [16].

The following theorem provides a characterization of facet-defining inequalities for P
(n;≤)
R .

Theorem 4.14. Let G = (V,E) be a graph and G(n) the corresponding SAW-n graph. Let further

R ∈ {I, II} and W1 ⊆ V
(n)
R . An inequality (39) is facet-defining for P

(n;≤)
R if and only if (W1,W2)

is maximal in G
(n)
R and H

(n)
W1

is both connected and non-bipartite.
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Proof. Consider the set

F =
{

x ∈ P
(n;≤)
R

∣

∣

∑

(v,s)∈W1

xsv + 2 ·
∑

(v,s)∈W2

xsv = 2
}

of roots of (39) as well as a generic hyperplane

(40) Fb,β =
{

x ∈ R
|V

(n)
R

|
∣

∣

∑

(v,s)∈V
(n)

R

bsvx
s
v = β

}

with F ⊆ Fb,β . Let now (W1,W2) be maximal in G
(n)
R , and H

(n)
W1

connected and non-bipartite.

First, we consider the coefficients bsv for (v, s) ∈ W1. Due to its non-bipartition, H
(n)
W1

contains an
odd cycle C = (vj1 , vj2 , . . . , vj2l+1

, vj1) with vjk ∈ W1 for k ∈ {1, . . . , 2l+ 1}. Each of the incidence
vectors

χ{vj1 ,vj2}, . . . , χ{vj2l+1
,vj1}

is a root of (39) and consequently an element of Fb,β . From χ{vji
,vjk

} ∈ Fb,β we derive bvji
+bvjk

= β.
Then the system of linear equations

bvj1
+bvj2

= β
bvj2

+bvj3
= β

. . . = β
bvj2l

+bvj2l+1
= β

bvj2l+1
+bvj1

= β

yields the unique solution bvji
= β

2 for vji ∈ C.

Now we consider those vertices in W1 that are not included in an odd cycle in H
(n)
W1

. For this,

consider w ∈ W1 and an odd cycle C = (vj1 , vj2 , . . . , vj2l+1
, vj1) in H

(n)
W1

where w /∈ C. Since per

assumption H
(n)
W1

is connected, there exists a path p in H
(n)
W1

connecting w to a vertex vj̃ ∈ C.
Denote the series of vertices defining p by w = wi0 , wi1 , . . . , wik = vj̃ . Each of the incidence vectors

χ{wi0 ,wi1}, . . . , χ{wik−1
,wik

=vj̃}

is a root of (39) and consequently an element of Fb,β . From χ{wik−1
,vj̃} ∈ Fb, we get bwik−1

= β
2 ,

and recursively bwik−1
= bwik−2

= . . . = bw = β
2 . With this, we have

bsv =
β

2
for all (v, s) ∈W1.

Next, let (v, s) ∈ W2. Then the incidence vector χζ of the SAW-n sub-conformation ζ = {(v, s)} is
a root of (39) and hence contained in Fb,β . Consequently,

bsv = β for all (v, s) ∈W2.

Finally, consider (v, s) ∈ V
(n)
R \(W1 ∪ W2). Since (W1,W2) is maximal in G

(n)
R , there exists at

least one SAW-n sub-conformation ζ ∈ Ψ
(n,≤)

G
(n)
R

containing (v, s) which fulfills one of the following

conditions:

(i) ζ contains two elements (w1, t1, ), (w2, t2) ∈ W1, i.e.,
〈

χζ , χW1
〉

= 2. Now consider the
SAW-n sub-conformations ζ1 = {(w1, t1), (w2, t2)} and ζ2 = {(v, s), (w1, t1), (w2, t2)} which
are both contained in ζ and whose incidence vectors both are roots of (39) and are hence
contained in Fb,β . Thus we obtain

〈

b, χζ1
〉

= β =
〈

b, χζ2
〉

,



18 AGNES DITTEL, ARMIN FÜGENSCHUH, AND ALEXANDER MARTIN

which implies

bsv =
〈

b, χ{(v,s)}
〉

=
〈

b, χζ2\ζ1
〉

=
〈

b, χζ2
〉

−
〈

b, χζ1
〉

= 0.

(ii) ζ contains one element (w, t) ∈ W2, i.e.,
〈

χζ , χW2
〉

= 1. Now consider the SAW-n sub-
conformations ζ1 = {(w, t)} and ζ2 = {(v, s), (w, t)} which are both contained in ζ and
whose incidence vectors both are roots of (39) and are hence contained in Fb,β . Thus we
obtain

〈

b, χζ1
〉

= β =
〈

b, χζ2
〉

,

which implies

bsv =
〈

b, χ{(v,s)}
〉

=
〈

b, χζ2\ζ1
〉

=
〈

b, χζ2
〉

−
〈

b, χζ1
〉

= 0.

Consequently, we have

bsv = 0 for all (v, s) ∈ V
(n)
R \(W1 ∪W2).

Altogether, we have shown that (39) is a positive multiple of the equation defining the generic

hyperplane (40) and is therefore facet-defining for P
(n;≤)
R .

It remains to show that (39) cannot be a facet-defining inequality for P
(n;≤)
R if H

(n)
W1

is not connected

or bipartite. First, assume H
(n)
W1

is bipartite with vertex partition W1 = W I
1 ∪̇ W II

1 , and consider
the inequalities

∑

(v,s)∈W I
1

xsv ≤ 1 and(41a)

∑

(v,s)∈W II
1

xsv ≤ 1.(41b)

Due to the bipartition of H
(n)
W1

, both W I
1 and W II

1 are stable sets in H
(n)
W1

which implies that they

are SAW-n stable sets in G
(n)
R . (Note that they need not be maximal, even though W1 is maximal;

Example 4.16 shows such an instance.) Consequently, both (41a) and (41a) are valid for P
(n;≤)
R ,

and since (39) is their sum, it cannot be a facet-defining inequality for P
(n;≤)
R .

Next, assume H
(n)
W1

is not connected. Then there exists a vertex z ∈ V
(n)
R \W1 whose addition to W1

would entail the appearance of an edge in H
(n)
W1

joining two or more connected components of H
(n)
W1

.

We denote the set of all such vertices inH
(n)
W1

by ZW1 . (Note that the inequality
∑

(v,s)∈W1∪ZW1
xsv ≤

2 is invalid for P
(n;≤)
R .) Then each root of (39) also fulfills the equation

∑

(v,s)∈ZW1

xsv = 0,

which means that (39) cannot be facet-defining for P
(n;≤)
R . �



POLYHEDRAL ASPECTS OF SELF-AVOIDING WALKS 19

Below, the statements of Theorems 4.8 and 4.14 are illustrated by a couple of examples. We start
with an example of a facet-defining inequality for the submonotone SAW-3 polytope on the 3 × 3
square lattice G = Q3×3.

Example 4.15. Consider the submonotone SAW-3 inequality

(42) 2x1
0 + x0

2 + 2x1
2 + x2

2 + x1
3 + x0

4 + 2x1
4 + x2

4 + 2x1
6 + x0

8 + 2x1
8 + x2

8 ≤ 2

on the 3 × 3 square lattice G = Q3×3. Its restrictions to the connected components of G(3) read

fI(x) = x0
2 + x2

2 + x1
3 + x0

4 + x2
4 + x0

8 + x2
8 ≤ 2 and(43a)

fII(x) = 2x1
0 + 2x1

2 + 2x1
4 + 2x1

6 + 2x1
8 ≤ 2.(43b)

The coefficients of the restriction (43a) of (42) to G
(3)
I are uniformly one (W2 = ∅), and those of

the restriction (43b) to G
(3)
II are uniformly two (W1 = ∅). Figure 6 shows the SAW-3 graph G(3)

where the vertices of W1 are colored in light gray, and the vertices of W2 in dark gray. For the

restriction to G
(3)
I , furthermore the corresponding graph H(3) is shown.

(3,1)

(4,0)

(4,2)

(2,0)

(2,2)

(8,0)

(8,2)

(0,0)

(0,2)

(6,0)

(6,2)

(1,1)

(7,1)

(5,1)

(0,1)

(6,1)

(4,1)

(2,1)

(8,1)

(3,0)

(3,2)

(1,0)

(1,2)

(7,0)

(7,2)

(5,0)

(5,2)

≤ 2

Figure 6. Example of a facet-defining submonotone SAW-3 inequality for P (3;≤)

with H(3) for both connected components of G(3)

The restriction (43a) to G
(3)
I is facet-defining for P

(3;≤)
I , since (W1,W2) is maximal in G

(3)
I , and

H(3) is both connected and non-bipartite.

Now consider restriction (43b) to G
(3)
II which can be scaled by two and then reads

(44) x1
0 + x1

2 + x1
4 + x1

6 + x1
8 ≤ 1.

This is a submonotone SAW-3 inequality with right-hand side α = 1. The vertices defining its

support constitute a maximum SAW-3 stable set in G
(3)
II . Hence, according to Theorem 4.10, the

inequality (43b) is facet-defining for P
(3;≤)
II . Thus both restrictions of (42) are facet-defining for the

respective reduced polytopes, and hence, according to Theorem 4.8, (42) defines a facet of P (3;≤).

The next example documents an instance of a submonotone SAW-3 inequality on the 3× 3 square

lattice G = Q3×3 which is not facet-defining for P (3;≤) since H
(3)
W1

is bipartite.

Example 4.16. Consider the inequality

(45) fI(x) + fII(x) ≤ 2
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on the 3 × 3 square lattice G = Q3×3 whose restrictions are given by

fI(x) = 2x0
0 + x2

0 + x0
2 + x0

4 + x1
5 + x0

6 + x1
7 + x0

8 ≤ 2,(46a)

fII(x) = x1
0 + x0

1 + x1
2 + x0

3 + x1
4 + x0

5 + x1
6 + x0

7 + x1
8 ≤ 2.(46b)

Figure 7 shows the inequality (45) together with the corresponding graphs H
(3)
W1

for both of its

restrictions. First, consider the restriction (46a) to G
(3)
I . There we have

(1,1)

(3,1)

(6,2)

(4,2)

(8,2)

(2,2)

(0,0)

(0,2)

(6,0)

(4,0)

(7,1)

(2,0)

(5,1)

(8,0)

(3,0)

(6,1)

(7,0)

(2,1)

(1,2)

(5,2)

(1,0)

(0,1)

(4,1)

(5,0)

(3,2)

(7,2)

(8,1)

≤ 2

Figure 7. Example of a non-facet-defining inequality for P
(3;≤)
I

W1 = {(0, 2), (2, 0), (4, 0), (5, 1), (6, 0), (7, 1), (8, 0)} and

W2 = {(0, 0)}.

In the present case, (W1,W2) is maximal in G
(3)
I . Furthermore, the corresponding graph H

(3)
W1

is connected. However, H
(3)
W1

is bipartite with vertex partition W1 = W I
1 ∪̇ W II

1 where W I
1 =

{(0, 2), (5, 1), (7, 1)} and W II
1 = {(2, 0), (4, 0), (6, 0), (8, 0)}. Hence (46a) has a representation as

the sum of the two inequalities

x0
0 + x2

0 + x1
5 + x1

7 ≤ 1 and

x0
0 + x0

2 + x0
4 + x0

6 + x0
8 ≤ 1

which are both valid for P
(3;≤)
I . Hence (46a) cannot be facet-defining for P

(3;≤)
I . Consequently,

the entire inequality (45) cannot be facet-defining for P (3;≤) any more, regardless whether (46b) is

facet-defining for P
(3;≤)
II or not.

Nevertheless let us have a look at the restriction (46b) to G
(3)
II . There we have

W1 = {(1, 2), (2, 1), (3, 0), (5, 2), (6, 1), (7, 0)} and

W2 = ∅.

The corresponding graph H
(3)
W1

is bipartite with vertex partition W1 = W I
1 ∪̇ W II

1 where W I
1 =

{(1, 2), (5, 2), (6, 1)} and W II
1 = {(2, 1), (3, 0), (7, 0)}. Hence (46b) has a representation as the sum

of the two inequalities

x2
1 + x2

5 + x1
6 ≤ 1 and

x1
2 + x0

3 + x0
7 ≤ 1

which are both valid for P
(3;≤)
II . Hence (46b) cannot be facet-defining for P

(3;≤)
II .
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5. Computational Results

In the previous sections, we studied self-avoiding walks from a polyhedral point of view. In this
section, we show how our results can be embedded into a branch-and-cut framework, and we
demonstrate the computational benefits of our approach.
The optimization problem at hand is the protein folding problem originating from molecular biol-
ogy. It is believed that in principle the three-dimensional structure of a protein can be predicted
(computed) solely from the sequence of amino acids, taking into account the physical forces be-
tween the atoms within the polypeptide and in the solvent. In a quite simple and abstract version,
the protein folding problem can be formulated as an optimization problem, where an optimal self-
avoiding walk with respect to a certain measure is sought. This approach is due to Dill [14], who
named this the HP protein folding model. The about 20 different types of amino acids are grouped
into two classes, the hydrophobic (h) and the polar (p) ones. Furthermore, the model assumes that
the folding takes place on a regular lattice graph, such as a two- or three-dimensional square or
triangular lattice. Only one type of physical force is considered, namely the attraction between
hydrophobic amino acids resulting in a minimization of the contact surface between hydrophobic
amino acids and the solvent. In the HP model, two non-adjacent hydrophobic elements are said to
form a hydrophobic contact if they occupy adjacent vertices (connected by an edge) in the lattice
graph. Folding a protein in this model thus means the computation of a self-avoiding walk that
maximizes the number of hydrophobic contacts. This problem is known to be NP-hard [6, 13],
hence one cannot expect a polynomial-time algorithm for its solution to proven optimality.
The protein folding problem in the HP model can be translated into a binary linear program.
Respective formulations can be found in literature. Chandru, Rao, and Swaminathan [10] describe
the set of self-avoiding walks by linear equality and inequality constraints as well as additional
integrality conditions on the variables. Further variables and constraints are introduced to count
the number of hydrophobic contacts. The objective function to be maximized counts their number.
Using this formulation and standard integer programming solvers, global optimal solutions can
be found for sequences consisting of up to 11 elements on two-dimensional square lattices. The
same formulation is mentioned by Greenberg, Hart, and Lancia [17]. Carr, Hart, and Newman [9]
describe improvements to this model by removing symmetries, lifting further variables into the
constraints, and by extending the model with a network flow formulation.
We remark that several other approaches to tackle the HP model can be found in literature.
Examples include approximation algorithms with a guaranteed solution quality [2, 18, 24, 25],
exhaustive enumeration [11, 19, 20, 21, 22], constraint programming [3, 4], and various heuristic
approaches [7, 8, 12, 15, 23, 26].
We give a formulation of the HP protein folding model that has also been stated in [17]. Let
σ ∈ {h, p}n be an HP string of length n and G = (V,E) a lattice graph. We consider this HP
string as a self-avoiding walk ω on G. In order to count the number of hydrophobic contacts in ω,
we need to introduce an additional binary variable yv,w for each edge {v, w} ∈ E. This variable
indicates whether hydrophobic (h) elements are assigned to both v and w. To this end we introduce
the following additional constraints. Denote by (xsv)v∈V,s∈S(n) and by H = {i ∈ S(n) : σi = h} the
subset of hydrophobic elements of σ. The coupling of the y-variables with the x-variables is given
by the following constraints which enforce that an edge {v, w} ∈ E holds a hydrophobic contact if
and only if on both vertices v and w an element of H is placed:

yv,w ≤
∑

s∈H

xsv,(47a)

yv,w ≤
∑

s∈H

xsw ,(47b)

∑

s∈H

(xsv + xsw) ≤ 1 + yv,w, ∀ {v, w} ∈ E.(47c)
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An optimal self-avoiding walk is characterized by a maximal number of hydrophobic contacts. It
can be obtained from a solution of the optimization problem

(48)

max
∑

{v,w}∈E

yv,w

s.t. (47a), (47b), (47c),

x ∈ P (n),
y ∈ {0, 1}|E|.

In principle, common MIP solvers (such as ILOG CPLEX [1]) can be used to find global optimal
solutions. However, even for small instances with HP strings of length about 20, the computing
times are tremendous. This behavior is, amongst others, supported by the highly symmetric char-
acter of the model which is induced to a great extent by the regularity of the underlying lattice
graphs. For this reason, we base our computations on a variant of the original model (48) which
takes into account certain symmetries inherent to the model formulation. These symmetries can be
broken to a considerable extent by fixing selected HP string elements on adequate lattice vertices.
However, this approach is only practicable in cases where the lattice graph is chosen large enough
in order to allow at least one potentially optimal solution after the fixation of string elements has
been performed. Typically, the two mid elements of the HP string are fixed in the center of the
lattice graph. However, the choice of the fixation can have a significant impact on the efficiency of
the solution process. For a thorough discussion of this issue, we refer to [16].
In the following, we show how we use our insights into the polytopes P (n) in the form of cutting
planes in order to furthermore enhance the solution process. We use a strengthened formulation of
(48) by lifting the contiguity constraints (4) as stated in [9]:

(49) xs−1
v + xs+1

v ≤
∑

w∈δG(v)

xsw, ∀ v ∈ V, s ∈ S(n)\{0, n− 1}.

A further strengthening of (48) can be accomplished, in principle, by adding all inequalities defining
the facets of the SAW-n polytope. However, even for the smallest length (i.e., n = 2) their number
is too high to add them all in the beginning. Hence we resort to a cutting plane approach, i.e.,
we solve the LP relaxation of (48) and then separate over a class of cutting planes which are
obtained either from the SAW-2 polytope or the submonotone SAW-k polytope for an appropriate
k with 2 ≤ k ≤ n. We add violated inequalities, if available, to the root LP relaxation and
iterate. If the LP relaxation is still fractional after completion of this cutting plane phase, we
continue with a branch-and-bound scheme. The separation of SAW-2 inequalities is done by means
of an exact polynomial-time procedure, whereas submonotone SAW-k inequalities are separated
by a heuristic polynomial-time routine. For the technical details of the respective cutting plane
separation procedures, we refer to [16]. In the sequel, we focus on some issues on the use of cutting
planes found.
In order to use an SAW-2 inequality (10) with left-hand side L ⊆ V (2) for a polytope describing
SAWs of length n > 2, we choose t ∈ {0, . . . , n− 2} and consider the inequality

(50)
∑

(v,s)∈L

xt+sv ≤
∑

(w,1−s)∈δ
G(2) (L)

xt+1−s
w

which we call the embedding of (10) into P (n) at position t. A set T ⊆ {0, . . . , n − 2} of values
for t within a cutting plane cycle defines the positions of SAW segments of length two for which
a violated SAW-2 inequality is sought. For the choice of T , we identify several possibilities. The
most dense one corresponds to the choice of T = {0, . . . , n− 2} and can be imagined as a covering
of the SAW by overlapping segments of length two. For our purposes, we introduce a parameter
dcut which describes the distance between two positions at which separation is to be applied, such
that T = {dcutj | 0 ≤ j ≤ ⌊(n − 2)/dcut⌋}. The overlapping cover described before is then given
by dcut = 1. For dcut = 2, we deal with a (non-overlapping) partition of the SAW into segments
of length two. For any dcut > 2, we have a distribution of segments of length two leaving some
elements uncovered. The value of dcut can be used to control the number of cuts added. This is
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relevant since there is a trade-off between a high number of cuts that improve the LP relaxation,
and the computing time required to solve it. For our computations, we select the parameter dcut

individually for each instance by numerical experiments. In the tables below, we indicate the usage
of SAW-2 cuts by “C2”. Eventually, we remark that for any SAW-2 inequality a lifting step can be
applied yielding inequalities similar to the lifted contiguity constraints (49). For the computations
presented below, we therefore use embeddings of lifted SAW-2 inequalities as cutting planes. For
s = 0, these inequalities are of the form

(51)
∑

v∈VL

(

xtv + xt+2
v

)

≤
∑

w∈δG(VL)

xt+1
w ,

and for s = 1, they read

(52)
∑

v∈VL

(

xt+1
v + xt−1

v

)

≤
∑

w∈δG(VL)

xtw.

The embedding of submonotone SAW-k inequalities into P (n) can be accomplished along the lines
of the SAW-2 case. Given a submonotone SAW-k inequality (26) and some t ∈ {0, . . . , n− k}, we
call

(53)
α

∑

a=1

a ·
∑

(v,s)∈Va

xt+sv ≤ α

the embedding of (26) into P (n) at position t. The parameter dcut is used just as described above.
In the tables below, we indicate the usage of submonotone SAW-k cuts by “Sk”.

As a first example, we consider the HP string pphpphhpppphhpppphhpppphh of length 25 which
is taken from [26]. An optimal fold features a compact 3 × 3 hydrophobic core. The maximum
number of hydrophobic contacts thus is 8. We choose the 12 × 12 square lattice, and we fix the
two mid HP string elements in its center. This instance was solved to optimality without addition
of SAW-2 and submonotone SAW-k cuts. The computation required 166 branch-and-bound nodes
and 90.49 seconds of cpu time. Figure 8 shows the solution. Subsequently, we solved the same

Figure 8. Optimal fold for the HP string pphpphhpppphhpppphhpppphh on the

12 × 12 square lattice with the two middle string elements fixed in the center of

the lattice

instance including the separation of cutting planes. The results of the computations are listed in
Tables 1 and 2. We observe that the choice of the parameters dcut and, where applicable, k, causes
a great variation in the number of cuts that have been added. In turn, the number of cuts has
a profound impact on the efficiency of the solution process; in particular, too many cuts added
cause an increase in the cpu time. This behavior becomes obvious in Table 1. The best result w.r.t
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both the number of branch-and-bound nodes and the computing time is achieved with dcut = 6,
where 15 SAW-2 cuts have been added. In contrast, with dcut = 2, as many as 313 SAW-2 cuts
are added, which causes the computing time to be nearly four times the time needed for the run
without cutting plane separation, even though the number of processed branch-and-bound nodes
is slightly lower. However, we also observe that with dcut = 7, causing the addition of 8 SAW-
2 cuts, the number of branch-and-bound nodes increases significantly, and so does the need for
computing time. From these facts, we deduce the necessity of having a criterion for the rating of

cuts dcut #cuts #nodes cpu time

– – 0 166 90.49

C2 2 313 121 336.54

C2 3 359 19 259.35

C2 4 58 31 51.66

C2 5 40 44 62.53

C2 6 15 20 34.79

C2 7 8 439 230.49

C2 8 26 114 81.29

C2 9 12 274 222.85

C2 10 28 39 57.79

C2 11 4 36 44.4

Table 1. SAW-2 cuts for pphpphhpppphhpppphhpppphh on the 12 × 12 square lattice

cuts which brings about a decision whether to add the respective inequality to the LP relaxation
or not. We suppose that there is a correlation between the HP sequence and the optimal choice of a
cutting plane distance (which in general should not be chosen constant). In the present example, we
recognize dcut = 6 as a preferable cutting plane distance which is substantially independent of the
type of the separated cutting planes. The present instance features three blocks of four subsequent
p elements, separated each by two h elements. Thus there are three identical subsequences of length
six which coincides with the optimal value for dcut. However, at this point no precise statements
can be given regarding the character of a potential interrelation, which indeed constitutes a topic
subject to further research activities.
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cuts dcut #cuts #nodes cpu time

– – 0 166 90.49

S2 2 28 154 150.14

S2 5 28 154 149.14

S2 10 28 154 145.57

S3 2 5 118 76.34

S3 3 9 41 45.31

S3 4 5 118 73.76

S3 8 5 118 74.44

S3 9 9 41 45.49

S4 2 121 40 202.83

S4 3 8 69 46.42

S4 4 10 44 46.82

S4 6 8 69 46.27

S4 7 5 76 52.56

S4 8 10 44 46.46

S5 2 24 20 36.12

S5 3 5 18 29.51

S5 5 8 10 16.98

S5 6 5 18 28.89

S5 7 254 19 552.18

S6 2 54 90 106.61

S6 3 134 23 151.02

S6 4 9 6 18.12

S6 5 13 131 99.65

S6 6 176 5 312.54

S7 2 119 214 265.64

S7 3 60 60 84.08

S7 4 149 53 183.90

S7 5 105 44 148.75

S7 6 3 40 39.31

S8 2 53 35 68.25

S8 3 26 43 55.49

S8 4 22 27 29.83

S8 5 32 32 66.75

S9 2 5 21 24.14

S9 3 15 40 48.23

S9 4 3 21 25.30

S10 2 8 30 33.32

S10 3 4 21 27.90

S11 2 3 22 26.46

Table 2. Submonotone SAW-k cuts for pphpphhpppphhpppphhpppphh on the

12 × 12 square lattice
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The next example is given by the HP string ppphhpphhppppphhhhhhhpphhpppphhpphpp of length
36 which we also obtained from [26]. Here we are interested in an optimal compact fold, i.e., a fold
on a lattice graph whose number of vertices equals the length of the HP string. For this type of
instances, fixing of HP string elements for the purpose of symmetry breaking is not applicable in
the same way as for unrestricted folds. For this reason, we perform the computations without fixing
of elements. We choose the 6 × 6 square lattice. Without separation of SAW-2 and submonotone
SAW-k cuts, this instance was solved to optimality within 394.92 seconds of cpu time processing 224
branch-and-bound nodes. Figure 9 shows the solution which features a compact 4× 4 hydrophobic
core with 14 hydrophobic contacts. The results of the computations using cutting plane separation

Figure 9. Optimal fold for the HP string

ppphhpphhppppphhhhhhhpphhpppphhpphpp on the 6 × 6 square lattice

are listed in Tables 3 and 4. Concerning the influence of the number of cutting planes on the runtime
of the solution procedure, we observe a similar behavior as in the above example. In principle, it
is essential to use a suitable selection of cutting planes in order to achieve an enhancement in the
solution process. This becomes obvious considering Table 3, where with the parameter dcut = 7,
the instance can be solved after processing 7 branch-and-bound nodes after addition of 9 SAW-2
cuts, whereas for dcut = 9 with 26 SAW-2 cuts added, 245 nodes were necessary. Even worse,
setting dcut = 2 leads to the addition of 378 SAW-2 cuts which significantly increases the number
of branch-and-bound nodes and almost triples the computing time. Table 4 demonstrates that

cuts dcut #cuts #nodes cpu time

– – 0 224 394.92

C2 2 378 344 1126.53

C2 3 285 13 452.19

C2 4 191 2 319.98

C2 5 106 331 732.38

C2 6 54 240 553.79

C2 7 9 7 103.33

C2 8 12 14 131.77

C2 9 26 245 411.04

C2 10 10 8 107.44

C2 11 22 135 343.25

Table 3. SAW-2 cuts for ppphhpphhppppphhhhhhhpphhpppphhpphpp on the 6×6

square lattice

even a low number of submonotone SAW-k cuts may lead to a decline in efficiency of the solution
procedure. When separating submonotone SAW-7 cuts (S7) with distance dcut = 3, only three
violated inequalities are added, however, both the number of branch-and-bound nodes and the
computing time are about doubled compared to the run without cutting plane separation, which
is one of the worst results listed in the table. In contrast, separation of SAW-7 cuts with distance
dcut = 5 causes the addition of 5 violated inequalities, which leads to the best result in which the
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cuts dcut #cuts #nodes cpu time

– – 0 224 394.92

S2 2, . . . , 10 0 224 377.48

S3 2, . . . , 9 3 383 609.45

S4 2, . . . , 8 9 18 132.97

S5 2 14 289 541.49

S5 3, . . . , 7 8 281 442.13

S6 2 10 102 232.69

S6 3 32 18 176.10

S6 4, . . . , 6 8 15 117.49

S7 2 7 220 269.87

S7 3 3 463 689.51

S7 4 8 370 431.43

S7 5 5 13 106.38

S8 2 12 468 599.67

S8 3 10 179 302.27

S8 4 8 509 822.89

S9 2 98 12 291.14

S9 3 42 83 307.16

S10 2 36 320 530.05

Table 4. Submonotone SAW-k cuts for ppphhpphhppppphhhhhhhpphhpppphhpphpp

on the 6 × 6 square lattice

solution is obtained after processing only 13 nodes in about a quarter of the cpu time spent for
the solution of the instance without cutting plane separation.
The above discussion shows that it is really instance dependent how to choose the parameters
appropriately. And we are currently far away from having some default strategy at hand that
solves most of the instances in reasonable time. However, Table 6 finally gives an impression of the
potential of our approach when choosing the parameters in the best way. It shows the computational
benefit drawn from cutting plane generation for three selected instances, each specified by an HP
string S(N) of length N and a lattice graph G. The instances are listed in Table 5, and Figures
10, 11, and 12 show associated optimal solutions. We note that the optimal solutions have been
obtained by combining cutting plane generation with certain slight extensions and/or modifications
to the binary program (48), such as the introduction of additional variables or the fixing of selected
string elements. For a detailed discussion concerning these topics, we refer to [16].

instance S N G

1 (php)12 36 16× 15 square

2 hppppphhhhhhhhppphhhhhhhpppphhpphhpppphhpphhpphpp 49 7× 7 square

3 hhhpphpphpphpphphpphphpphpphhh 30 12× 12 triangular

Table 5. Selected instances demonstrating the computational benefit of SAW-2

cuts and submonotone SAW-k cuts for the computation of optimal solutions

6. Conclusion

In this article, we investigated a polyhedral description of self-avoiding walks on regular lattice

graphs. We studied the polytopes P
(N)
G associated to feasible solutions which are determined by

N -step self-avoiding walks on a given lattice G. By the investigation of appropriate substructures

of P
(N)
G , we derived two classes of cutting planes. First, we considered the sub-polytope P (2) related
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instance cuts dcut #cuts #nodes cpu time

1 – – – 15000 77029

1 C2 3 57 5746 42618

2 – – – 531 5762

2 C2 6 101 136 2486

2 C2 8 173 70 3177

2 C2 10 104 18 1613

2 S3 5 8 8 551

3 – – – 675 11031

3 S14 1 3 185 2712

Table 6. Computational benefit of the separation of SAW-2 cuts and submono-

tone SAW-k cuts for the solution of selected instances

Figure 10. Optimal fold for instance 1 ((php)12 on the 16 × 15 square lattice)

Figure 11. Optimal fold for instance 2 (hppppphhhhhhhhppphhhhhhhpppphhpphhpppphhpphhpphpp

on the 7 × 7 square lattice)

to the contiguity constraints. For this 0/1 polytope, we gave a complete outer description by linear
equations and facet-defining inequalities. Embedding these inequalities into the original polytope

P
(N)
G leads to the class of chain-2 cutting planes. Moreover, we studied the family of polytopes P (k)

related to k-step self-avoiding walks on G with 2 ≤ k ≤ N . We investigated the facial structure of
the down-monotonization P (k;≤) of P (k) from which we derived the class of submonotone chain-k
cutting planes.

We implemented the binary linear program for the HP model using the ILOG Concert Technology
C++ API in combination with ILOG CPLEX as the underlying IP solver. The implementation
enables the use of various lattices and the specification of arbitrary fixings of HP string elements
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Figure 12. Optimal fold for instance 3 (hhhpphpphpphpphphpphphpphpphhh on

the 12 × 12 triangular lattice)

on lattice vertices. We extended the provided branch-and-cut framework by the implementation
of a callback function for cutting plane generation. Cutting plane generation can be applied for
SAW-2 cuts or for submonotone SAW-k cuts. The number of cuts added to the model is controlled
by the specification of a cutting plane distance dcut. For submonotone SAW-k cuts, the parameter
k specifies the cutting plane wingspan.

We evaluated the performance of the branch-and-cut procedure for selected test instances with
different parameter settings, where we put the focus on folds on 2-D square lattices. We observe
that the separation of either SAW-2 cuts or submonotone SAW-k cuts with adequate parameter
settings tends to result in an enhancement of the solution process regarding the number of branch-
and-bound nodes as well as the computing time. This behavior occurs for instances with sufficiently
large lattices that allow arbitrarily shaped folds and for which symmetry breaking is applied as well
as for instances forcing the fold into a compact shape prescribed by the lattice where symmetry
breaking is neglected.

Furthermore, we observe that the tractability of an instance and in particular the usefulness of
cutting planes strongly depends on the sequence of h and p elements within the HP string. This
fact gives rise to further research activities. In this connection, a topic of significant interest is
the selection of HP string elements to be fixed and the choice of the settings for cutting plane
generation, such as cutting plane distance and, if applicable, wingspan.

A further aspect concerns the impact of fixed HP string elements on the SAW-n polytopes P (n).
Since any fixing reduces the dimension of the polytope, the inequalities derived for the original
problem have to be adapted in a suitable way. To this end, the investigation of the facial structure
of the polytopes associated with a given set of fixed HP string elements is necessary in order to
obtain efficient cutting planes when solving the respective instances.

We arrive at the conclusion that the skillful application of the cutting planes presented above
and the appropriate setting of the associated parameters is essential in order to obtain satisfactory
results. The results of this article can be seen as a basis for the analysis of the polyhedral structure of
combinatorial optimization problems associated with self-avoiding walks. They potentially provide
the fundamentals for the development of new approaches that, in combination with standard
methods, may lead to further progress in a more general context than protein structure prediction.
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